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Abstract
We study the friction force during lubricated sliding of a rigid cylindrical indenter against a viscoelastic substrate in the 
iso-viscous visco-elasto-hydrodynamic lubrication (VEHL) regime. The substrate is represented by a foundation model. The 
solution is controlled by three dimensionless parameters. The first of these, λ, measures the time for the indenter to move 
one contact zone relative to the viscoelastic relaxation time; the second is the ratio of the long time to short time compli-
ance of the substrate, c∞∕c0 ; the third parameter, β, is the ratio of average fluid flow rate to the sliding velocity. Although 
our solution works well for the full range of parameters, we focus on the “Hertz” regime (β >>1) where practically all the 
fluid in the contact region is squeezed out. This regime is quite common in soft contact lubrication problems and presents 
significant numerical difficulties. Our analysis gives insight into why these numerical difficulties arise. The friction force can 
be decomposed into two parts, one due to viscoelastic dissipation and the other from hydrodynamics. Although these two 
are generally coupled, in the Hertz limit, an important result is that the viscoelastic portion of the friction force can be well 
approximated by the solution of the corresponding “dry” sliding problem, in which there is no lubricating fluid layer. This 
provides a simple way to decouple the hydrodynamic portion of the friction force from the viscoelasticity of the substrate. 
We study how hydrodynamic pressure and film thickness vary with the controlling dimensionless parameters. Scaling laws 
for these relationships are given in closed form.
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1  Introduction

Lubricated sliding, in which an intervening liquid layer 
separates two solid surfaces, is ubiquitous in nature and in 
technology. When the contacting solids are elastic and the 
liquid layer forms a continuous film in the contact region, 
we obtain an important subclass: Elasto-Hydrodynamic 
Lubrication (EHL) [1–3]. EHL theory has been extensively 

applied, traditionally with a heavy emphasis on stiff metal 
contacts such as in bearings [4, 5] and pistons [6, 7]. EHL 
theory is also relevant to contact between soft elastic mate-
rials and a hard surface, such as the sliding of rubbery tires 
or shoe soles on a lubricated hard surface. Many parts of 
our body rely on soft lubrication to function; examples are 
joints, eyelids and eyeballs with contact lenses. For more 
compliant materials the effect of deformation qualitatively 
alters the contact geometry and pressure profile, as well 
as hysteretic friction forces [8–12]. Material compliance 
and lubricant viscosity strongly affect friction behavior 
in the EHL regime. The Stribeck plot [13] shows that 
lubricated contact can be divided into three regimes. For 
high sliding or rolling velocities and small enough verti-
cal loads, the liquid film is continuous and normal load is 
supported mainly by hydrodynamic pressure; friction is 
governed by fluid flow. As velocity decreases or normal 
load increases, the system enters the mixed lubrication 
regime, in which the liquid film starts to break apart, and 
the load is supported by both dry and lubricated contact. 
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At very high loads or slow velocities, the system arrives in 
the boundary lubrication regime, where most of the liquid 
is squeezed out, and the solid surfaces come into intimate 
contact. Here adhesive forces form areas of “dry” contact 
and hysteretic forces from material deformation also begin 
to contribute to the friction response. In this regime sam-
ple roughness and inelasticity control the friction behavior.

EHL theory assumes that the contacting solids are elas-
tic. However, many soft elastic solids such as rubber are vis-
coelastic. Viscoelasticity is a dissipative mechanism which 
can be used to significantly increase friction during sliding. 
However, as noted by Putignano [14], other than a hand-
ful of papers [15–17], the literature on how viscoelasticity 
affects lubricated contact mechanics is scant. The focus of 
this work is to study a special case of this class of problems 
in detail. Specifically, we report on a study of the lubricated 
sliding of a rigid cylinder on a soft, flat, and viscoelastic 
substrate. We focus on the regime where the liquid layer 
is continuous. We shall call this the VEHL (viscoelastic 
hydrodynamic lubrication) regime. Since the role of pres-
sure-sensitive viscosity is negligible for typical soft solids 
[3], we assume that the liquid is Newtonian with a con-
stant viscosity (iso-viscous). Our analysis is focused on the 
“Hertz” regime, in which the layer of liquid is thin and the 
elastic foundation deforms much as it would for dry friction-
less indentation by the same indenter and load. The domi-
nance of the Hertz regime is illustrated by our recent experi-
ment [18, 19]. Briefly, we slid a spherical glass indenter on 
the lubricated surface of an elastic polydimethylsiloxane 
(PDMS) substrate. These tests were performed using dif-
ferent combinations of sliding velocity, normal load and 
sphere radius. Our results showed that, consistent with EHL 
theory, suitably normalized hydrodynamic friction plotted 
against the normalized sliding velocity collapses to a master 
curve, which means that elastohydrodynamic lubrication 
is controlled by a single dimensionless parameter � (see 
below for definition), of which the inverse Hersey Number 
is an approximate version [13]. In our experiments, � was 
found to be much larger than unity, which corresponds to 
the “Hertz” limit [18].

To put our work in context, many studies have examined 
lubricated sliding of elastic contact with a sphere-on-flat or 
cylinder-on-flat contact geometry to investigate the effects 
of properties such as material modulus, lubricant viscosity 
and surface roughness [13, 20–29]. Closely related to this 
work is a paper by Snoeijer et al. [30], who carefully studied 
lubricated sliding of a rigid cylinder on an elastic half space. 
Their focus is also on the “Hertz” regime. They showed that 
near the edge of the contact, the liquid film profile can be 
described by a similarity solution. More importantly, they 
showed that this 2D local solution can be applied to study 
the pressure and film thickness in 3D problems. Another 
closely related work is by Pandey et al. [16], who studied 

VEHL in a 2D geometry and presented asymptotic relations 
between the lift force and the sliding velocity.

The plan for the rest of this paper is as follows: Sect. 2 
begins by summarizing the formulation of the VEHL prob-
lem. The main result in this section is to show that the vis-
coelastic lubrication problem can be broken down into two 
simpler problems: the first is the EHL problem in which 
the substrate has the short time modulus. The second is the 
“dry” viscoelastic problem, in which frictionless sliding 
takes place in the absence of a fluid layer. Full numerical 
solution is provided for the EHL problem. Highly accurate 
expressions which relate the liquid profile and the pres-
sure distribution within the effective contact zone to � are 
obtained. An exact closed-form solution is obtained for the 
second, dry, contact problem. We then use the solutions of 
these two problems to obtain approximate expressions for 
the film thickness, the pressure distribution and the friction 
force in the viscoelastic lubrication sliding problem. Sec-
tion 3 uses the results in Sect. 2 to obtain a generalization of 
the Stribeck curve—a Stribeck surface. We conclude with 
summary and discussion in Sect. 4.

2 � Theoretical Methods

2.1 � Problem Statement and Formulation

Figure 1 shows a schematic of the problem. An infinitely 
long rigid circular cylindrical indenter of radius R is sliding 
at a constant velocity V in the positive x direction on a vis-
coelastic substrate, which is modeled as a spring foundation. 
A coordinate system (x, y) is attached to the moving cylinder. 
Here, y = 0 is the surface of the undeformed foundation and 
x = 0 is the horizontal coordinate of the center of the cylin-
der. The vertical displacement of the center of the cylinder 
is denoted by h0 ( h0 < 0). The surface profile of the cylinder 
with respect to the moving coordinate system is h(x) . A layer 
of fluid lies between the cylinder and the foundation. The 
thickness of fluid layer is d = h − w > 0 where w is the dis-
placement of the viscoelastic spring foundation. The com-
pressive vertical line load required to maintain the indenter 
displacement h0 is denoted by N. In this work compressive 
load and pressure are taken to be positive.

We assume steady state sliding, and so field quantities are 
independent of time and depend only on x. The Reynolds’ 
equation for the fluid layer is then [31]

here, p is the fluid pressure field, � is the fluid viscosity 
and a comma “,” denotes differentiation with respect to x. 
The thickness of the fluid layer is d = h − w . Using Hertz’s 

(1)

(
p,x (h − w)3

12�

)
,x = −

(
V

2

)
(h − w),x .
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approximation for small contact [32], the surface of cylinder 
is approximated as a parabola, so

The springs in the foundation are assumed to be viscoe-
lastic, that is, the displacement w is related to the pressure 
by a creep function c

(
t∕t0

)
[units m3∕N  ] where t denotes 

time and t0 is a characteristic relaxation time in a creep 
test. Specifically, for a fixed material point Xm on the sur-
face of the foundation, we have

Steady state sliding implies that

Equation (4) allows us to replace the time derivative by 
the spatial derivative in the moving coordinate system, so 
(3) can be rewritten as

In the following, we shall assume that the foundation 
is a solid, so that c

(
t∕t0 → ∞

)
= c∞ > 0 , where c∞ is 

the long-time or relaxed compliance of the foundation. 
We will also denote the instantaneous compliance by 
c
(
t∕t0 = 0

)
= c0 . Equations (1) and (5) are the governing 

equations for the lubricated sliding problem on a founda-
tion of viscoelastic springs.

(2)h = h0 +
x2

2R
.

(3)w
(
Xm, t

)
=

t

∫
−∞

c

(
t − t�

t0

)
�p

(
Xm, t

�
)

�t�
dt�.

(4)
�p

(
Xm, t

)
�t

= −Vp,x .

(5)w(x) = −

∞

∫
x

c

(
x� − x

Vt0

)
p,x� dx

�.

During sliding, as the material enters the leading edge of 
the (effective) contact region, it is compressed. Conversely, 
towards the rear (trailing edge) it relaxes. Thus, a typical 
material point experiences cyclic deformation, which results 
in hysteresis or viscoelastic dissipation. For a purely elastic 
solid there is no hysteresis and, in the Hertz limit, the pres-
sure distribution and deformation are symmetrical about 
x = 0 and there is no net dissipation. This is not the case for 
viscoelastic foundations; the pressure distribution turns out 
to be asymmetrical.

2.1.1 � Normalization

We normalize displacements, surface deformation w, and the 
cylinder profile h by ||h0|| . The rest of the normalization is 
guided by the corresponding elastic “Hertz” contact problem 
in which the indenter is pushed vertically without sliding onto 
a spring foundation with instantaneous compliance c0 . For this 
case, the contact width is 2

√
2R||h0|| and the pressure distribu-

tion is [32]

Hence, we normalize all horizontal distances by 
√

2R||h0|| 
and pressure p by c0∕||h0|| . Then, the normalized form of 
Eq. (6) (Hertz pressure) is:

and,

(6)pH =

⎧⎪⎨⎪⎩

�h0�
c0

�
1 −

�
x∕

�
2R��h0��

�2
�
; �x� ≤

�
2R��h0��

0; �x� ≥
�

2R��h0��
.

(7)PH =

{
1 − X2; |X| ≤ 1

0; |X| ≥ 1
,

(8)
W =

w
||h0||

, H =
h

||h0||
= −1 + X2, X =

x√
2R||h0||

,D =
d

||h0||
= H −W, P =

c0
||h0||

p.

 

Cylinder
R

Fig. 1   A schematic of a steadily sliding rigid cylinder on a foundation of viscoelastic springs
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The normalized governing Eqs. (1, 2, 5) are [after inte-
grating Eq. (1) once]:

where D = H −W  is the normalized film thickness, 
�
(
t∕t0

) ≡ c
(
t∕t0

)
∕c0 is the dimensionless creep function and 

C is a dimensionless integration constant. In the following 
we will use the standard viscoelastic solid model to illustrate 
ideas. In this case, the creep compliance function is given by

where t0 is the characteristic relaxation time in a creep test. 
With this model, the normalized solution depends on three 
dimensionless parameters (instead of one, � , for the cor-
responding elastic foundation hydrodynamic lubrication 
problem); these are �, � and c∞∕c0 . Note that the integration 
constant C depends on all three parameters.

2.1.2 � Physical Meaning of Parameters

The parameter c∞∕c0 controls the amount of viscoelastic-
ity; for a non-dissipative elastic solid, c∞∕c0 = 1 . It is typi-
cally much greater than 1 for highly dissipative solids. The 
parameter � represents the time to move the indenter by 
one contact zone length divided by the creep relaxation 
time. When it is very large/small compared to unity, the 
material behaves like a soft/stiff elastic solid. Dissipation 
is maximized when � takes intermediate values. The 
parameter β is the ratio of the pressure gradient due to 
elastic deformation, which scales as 

(||h0||∕c0
)
∕

√
2R||h0|| , 

to the hydrodynamic pressure gradient in the film which 
scales as 

(
�V∕||h0||2

)
 . Alternatively, 1∕� can be viewed as 

a normalized sliding velocity. It is the ratio of the sliding 
velocity and the average rate of fluid flow at a given inden-
tation depth. To see this, we recall that in lubrication the-
ory, the average flow rate in the film scales with the pres-
sure gradient multiplied by the square of the fluid film 
thickness and divided by the viscosity. In our problem, the 
pressure gradient scales with 

(||h0||∕c0
)
∕

√
2R||h0|| and the 

film thickness scales with ||h0|| [see Eq. (8)]. Hence the 
average flow rate scales with ||h0||2

(||h0||∕c0
)
∕�

√
2R||h0|| . It 

is interesting to note that � carries little information about 
viscoelasticity whereas the parameters � and c∞∕c0 are 
independent of fluid flow.

(9)

�P,X D
3 = −D + C, H = −1 + X2, W = −

∞

∫
X

�
(
�
(
X� − X

)) �P

�X�
dX�

� =

√
2R||h0||
Vt0

, �=
||h0||3

6�Vc0

√
2R||h0||

,

(10)c
(
t∕t0

)
= c∞ −

(
c∞ − c0

)
e−t∕t0 .

2.2 � Friction Force Due to Fluid Flow (Hydrodynamic 
Friction, Ff  ) and Friction Force Due 
to Viscoelastic Dissipation, Fvis

Two important quantities are the friction due to fluid flow 
( Ff  ) and that due to viscoelastic dissipation Fvis . The hydro-
dynamic friction Ff  (force per unit length) is computed by 
integrating the shear stress �yx acting on the indenter (see 
SI, Section 1).

The viscoelastic friction force is the total dissipation (the 
area of the hysteresis loop) experienced by a material point 
as it moves from ∞ → −∞ (see argument below)

here we emphasize that both these friction forces are nor-
malized in the same way, that is, by ||h0||2∕c0.

2.3 � Two Special Problems

Important insights can be gained by examining two related, 
simpler, problems. The first is the special case of lubricated 
sliding on a purely elastic foundation. The second case is the 
non-lubricated (or ‘dry’, but still frictionless) limit where 
there is no fluid but the foundation is viscoelastic. As we 
shall see later, combination of the solutions to these simpler 
problems provides a useful approximation to the full viscoe-
lastic lubrication problem.

2.3.1 � Elastic Foundation

We identify foundation compliance with c0 so Eq. (9) 
reduces to W = −P and Eq. (9) becomes a first order non-
linear ordinary differential equation (ODE) in P:

Equation (13) implies that the solution depends on a sin-
gle parameter � . The integration constant associated with 
the solution of Eq. (9) and C are determined by the bound-
ary conditions that the pressure vanishes at X = ±∞ . There 
is little difficulty finding the solution numerically (see for 
example the closely related problem of two rotating cyl-
inders [32].) However, these solutions by themselves do 
not provide enough insight, especially in the “Hertz” limit 
where 𝛽 >> 1 . For example, the corresponding problem in 
3D, of a sphere undergoing lubricated sliding on an elastic 
foundation, is much harder to solve numerically as the ODE 

(11)

Ff = �
∞

−∞

�yx
|||y=hdx =

||h0||2
c0 �

∞

−∞

[
DP,X

2
+

1

6�D

]
dX ≡ ||h0||2

c0
Ff .

(12)

Fvis = −�
∞

−∞

p
dw

dx
dx = −

||h0||2
c0 �

∞

−∞

P
dW

dX
dX ≡ ||h0||2

c0
Fvis,

(13)�P,X
(
P − 1 + X2

)3
= −

(
P − 1 + X2

)
+ C,
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becomes a nonlinear partial differential equation (PDE) [19, 
30, 33, 34]. In the literature, this PDE is usually solved by 
a relaxation method [19] which requires an initial guess for 
the pressure profile. However, the numerical solution is very 
sensitive to this initial guess when 𝛽 >> 1 . Intuitively, one 
may think that the Hertz pressure Eq. (7) would be a good 
initial guess. However, if one makes that choice, the numeri-
cal procedure diverges rapidly after a few iterations. Even 
with the “right” initial guess, it takes thousands of iterations 
for the numerical procedure to converge.

Here we highlight two ways to think about this limit. The 
first is geometrical and sheds light on the aforementioned 
numerical difficulty. Figure 2 plots the slope field of Eq. (13) 
in the (X, P) plane for � = 10 . The normalized Hertz pres-
sure (Eq. 7) (Hertz curve, �H ) is indicated in Fig. 2 by a red 
solid line. We divide �H  into two parts: the first is 
PH = 1 − X2, where  X ∈ (−1, 1) ;  t he  second i s 
PH = 0,X ∈ (−∞,−1] ∪ [1,∞) . Note that the slope field on 
�H is positive infinity as P approaches �H from the top side 
for any integration constant C > 0.1 This means that the solu-
tion is always repelled from the Hertz curve for X ∈ (−1, 1)

—this is the source of numerical instability. A scaling analy-
sis (see SI, Section 2) shows that C ≃ O

�
1∕

√
�

�
 for 𝛽 >> 1 . 

We solve Eq.  (13) using an ODE solver and find that 
C = 1∕

√
13� for 𝛽 > 10 . The curve �0 where the slope field 

is exactly zero (nullcline) is readily determined using 
Eq. (13) and is

For 𝛽 >> 1 , �0 is extremely close to �H; the gap between 
them is (13�)−1∕2 . We also plot another curve �1 where the 
slope is -1. We plotted this curve to indicate that the exact 
solution is trapped between �H where the slope is +∞ and 
the curve where the slope is negative such as �1.

Since the slope field for any curve above �0 is negative, 
the solution is attracted to �0. This means that the solution 
is slightly above �0 and �H for X ∈ (−1, 1) - a very narrow 
region (see Fig. 2). In dynamical systems, such a region is 
called a funnel. The numerical solution is the grey line in 
Fig. 2.

A different approach is to treat the ODE Eq. (13) as a 
boundary layer problem, governed by the large parameter � . 
Figure 3b, c show the numerical pressure profile and the nor-
malized fluid layer thickness D ≡ H −W  for � = 100, 500 . 
The normalized Hertz pressure, PH = 1 − X2 for |X| ≤ 1 
is plotted in the same figure. Note that as � increases, the 

(14)P = PH + C = 1 − X2 +
1√
13�

.

Fig. 2   Slope field of Eq. (13) 
for C = 0.0877 ( � = 10). The red 
line ( �H ) is the Hertz pressure. 
For X ∈ (−1, 1) , the slope 
on �H is positive infinity as P 
approaches �H from above. The 
red arrows indicate infinite 
slope. Thus, solution is repelled 
from �H . The slope field on the 
blue curve indicates that the 
solution is trapped inside the 
“funnel”. The grey line shows 
the numerically computed solu-
tion (Color figure online)
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1  There is no solution if C is negative, since the boundary conditions 
P(X → ±∞) = 0 cannot be satisfied.
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pressure approaches the Hertz profile, consistent with slope 
field analysis.

Note that D approaches zero and P approaches PH in 
Ωc ⊂ (−1, 1) as � increases. We will call Ωc the contact zone 
even though there is no physical solid–solid contact due to 
the lubrication layer. Note that, since the pressure must be 
continuously differentiable everywhere, the convergence to 
the Hertz pressure cannot be uniform (the gradient of PH is 
discontinuous at |X| = 1 ). This means that there exist two 
internal boundary layers, one at the leading edge at X = 1, 
which we denote by ΩL , and the other ΩT , at the trailing edge 
at X = −1 (see Figs. 3a or 2). Inside these boundary layers, 
the pressure gradient is continuous (see Fig. 3b). Outside 
these boundary layers and Ωc , i.e., |X| ≫ 1 , P goes to zero 
as (see derivation in SI, Section 3)

Figure 3b shows that, for large � , the pressure profile 
inside the contact zone is well approximated by (see SI for 
a derivation, Section 3)

Equation (16) shows that the pressure inside the contact 
zone is always greater than the Hertz pressure for X > 0 
and slightly above the nullcline [compare Eq. (16) with 
Eq. (14)], consistent with the slope field analysis. Figure 3a 
plots P versus X; the grey line is the numerical solution for 
� = 100 , and the solid black line is (16). We also plot the 
Hertz pressure (red line) in Fig. 3a as a comparison. Clearly, 
the approximate solution, Eq. (16), is extremely accurate as 
long as X is inside the contact zone.

(15)P ≈
1

3�X3
.

(16)P = 1 − X2 + C

(
1 +

X

5
+

3X2

25
+ ...

)
.

Note that the pressure distribution at the trailing edge is 
slightly negative. The maximum negative pressure, Pmin , 
occurs at Xmin ≃ −1 −

0.397√
�

 and is well approximated by

where B = 0.611 (see SI, Section 4). The existence of a 
region of negative pressure is frequent in lubrication prob-
lems [32]. For large negative pressure, the solution becomes 
unrealistic as the fluid often cavitates. However, cavitation 
is unlikely in our case since the maximum negative pressure 
goes to zero for large � as indicated by Eq. (17).

The normalized film thickness D inside the contact zone 
is given by Eq. (16) and W = −P , so

in the contact zone and we assume that the minimum film 
thickness occurs at Xmin = −1 , so2

Figure 3c shows that Eq. (18) is an excellent approxi-
mation for the film thickness inside the contact zone. The 
normalized friction force is calculated using Eqs.  (11) 

(17)Pmin = −
B√
�
,

(18)D ≈ C

�
1 +

X

5
+

3X2

25
+ ...

�
C =

1√
13�

,

(19)Dmin ≈
1√
13�

�
4

5
+

3

25

�
⇒ dmin ≈

23��h0��
25

√
13�
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(a) (b) (c)

Fig. 3   a Pressure profile for � = 100 . Numerical result is given by the 
grey line, Hertz pressure by the red line, Eqs. (7), and the approxi-
mate solution (16) by the black line. b The gap between Hertz pres-

sure and the numerical solution decreases with increasing � . c Nor-
malized film thickness D versus position; the dotted line corresponds 
to Eq. (18) (Color figure online)

2  The actual minimum should occur at Xmin = −5∕6 (as noted by an 
anonymous reviewer). However, the expression for the film thickness 
is an approximation and we found numerically that the minimum 
occurs closer to Xmin = −1 . In any case, the difference in Dmin 
between Xmin = −5∕6 and Xmin = −1 is ≈ 1

300
√
13�

 , which is negligibly 
small for large �.
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and (18). In SI (Section 5), we show that it is very well 
approximated by:

Equations (19), (20) and (14) show that the maximum 
contact pressure, and friction force can be expressed in 
terms of minimum fluid layer thickness, the indentation 
depth and the compliance of the foundation; they are, for 
� ≥ 10:

Equation (22) shows that friction due to flow is directly 
proportional to fluid layer thickness and the indentation 
depth (which is independent of the radius of the cylinder). 
In addition, since the “effective” contact width is 
aeff ≡

√
2R||h0|| , the friction force is proportional to a3∕2

eff
 . 

Since the cylinder is infinite in the out-of-plane direction, 
aeff  is also the effective area of contact per unit length of 
cylinder. In the SI Section 6, we give an expression for the 
thickness of the boundary layer near the exit. It turns out the 
friction force due to this boundary layer is small in compari-
son with the friction force given by (16), which ignores the 
effect of this layer.

Finally, the normal force N is related to ||h0|| by

Combining Eqs. (22) and (23), we can express the friction 
as a function of the normal force,

Thus, in force control sliding where N is fixed, the friction 
force is independent of the radius of the indenter and the 
stiffness of the foundation. In contrast to Coulomb friction, 
the friction force is proportional to 

√
N and increases as the 

square root of the sliding velocity.
The average through thickness velocity V1 (relative to the 

moving frame) is obtained by integrating the velocity field

and dividing the result by D, i.e.,

(20)Ff =
1.084√

�
−

0.3261

�
� ≥ 10.

(21)pmax =
||h0||
c0

(
1 +

25

23

dmin

||h0||

)
,

(22)Ff =
25

√
13dmin

23

��h0��
c0

�
1.084 − 0.3261

�
25

√
13dmin

23��h0��

��
≈

��h0��2
c0

√
�
=
�
2R��h0��

�1∕4
�

6�V��h0��
c0

.

(23)N ≡ c0N

��h0��
�

2R��h0��
=

4

3
+

52

25
√
13�

.

(24)Ff ≈
3

2

√
2�VN.

(25)V1 ≡ v1

V
= (Y − H)

[
6�P,X (Y −W) +

1

D

]
,

Using Eqs. (16) and (18), the leading order behavior of the 
average flow velocity inside the contact zone is

The average flow (with respect to the cylinder) is approxi-
mately linear and is −9V∕26 at the leading edge (X = 1) and 
−17V∕26 at the trailing edge (X = −1).

2.3.2 � Dry Limit

Just as the Hertz limit provides an excellent approximation to 
the pressure distribution for the elastic foundation lubrication 
problem, the contact pressure of a rigid cylinder sliding on a 
non-lubricated and frictionless viscoelastic foundation turns 
out to be an excellent approximation to the viscoelastic contri-
bution to friction. Note for this case Ff = 0 since the resistance 
to sliding is due entirely to viscoelastic dissipation. This is 
because we assume frictionless contact between the indenter 
and the surface of the viscoelastic foundation. For this case, 
the horizontal force resisting motion, denoted by Fvis , comes 
entirely from ploughing due to the asymmetry of the pressure 
distribution. This is illustrated schematically in Fig. 4. Thus, 
within the small contact approximation of Hertz

Note that Eq. (28) is identical to Eq. (12) except that the 
limits of integration are replaced by the position of the leading 
and trailing edges, which are denoted by a and b, respectively. 
These positions are well defined due to the absence of the fluid 
layer—the pressure field vanishes outside [b, a] . At a and b, the 
pressure is exactly zero. The solution of the “dry” problem can 
be obtained in closed form. Details are given in the SI, Sec-
tion 7. Here we summarize the key results, they are:

1.	 The solution depends only on two dimensionless param-
eters,� and c∞∕c0.

2.	 The normalized positions of the leading and trailing 
edges are, respectively

(26)V1 ≡ v1

V
≡ 1

D

H

�
W

V1dY = −�P,X D
2 − 1∕2

(27)V1(|X| < 1, 𝛽 >> 1) ≈
2X

13
−

1

2
.

(28)Fvis = −∫
a

b

p
dw

dx
dx.
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	   The position of the leading edge given by the first 
expression of Eq. (29) is exact and independent of veloc-
ity, while Eq. (29) is a transcendental equation for the 
normalized position of the trailing edge b . In general, 
−1 < b < 0. Note b → −1 as c0∕c∞ → 1 , recovering the 
Hertz solution for a spring foundation. The asymptotic 
solution of b for the cases of 𝜆 >> 1 and 0 < 𝜆 << 1 is 
given in the SI, Section 8.

3.	 The normalized pressure distribution inside the contact 
zone 

[
b, 1

]
 is

(29)a = a∕

√
2R||h0|| = 1,

2

�2

(
�b + 1

)
− e

−�
(
1−b

)
(� + 1)

(
1 − b

2
) = −

c0

c∞

(
1 −

c0

c∞

)−1

,

(30)� ≡ c∞�

c0
=

√
2R||h0||

V
[
c0t0∕c∞

] .

(31)P(X) =

[(
1 −

c0

c∞

)
2

�2

[
(�X + 1) − e−�e�X(� + 1)

]
+

c0

c∞

[
1 − X2

]]
, � ≡ c∞�

c0
.

5.	 The normal force acting on the cylinder,

	   is the normalized normal force. Using Eq. (31), it is

An important observation is that only λ (instead of 
α) appears in Eqs. (29–34). This suggests that the rel-
evant time scale is tR ≡ c0t0∕c∞ [see Eq. (30)] which is 

the characteristic relaxation time in a relaxation tension 
test. Hence, the dimensionless parameter � = c∞�∕c0 is 
the time for the indenter to move one contact zone divided 
by tR . For 𝜆 ≫ 1 , the foundation is fully relaxed with com-

pliance c∞ . For 𝜆 ≪ 1 , the foundation behaves as a stiff 
elastic foundation with compliance c0 . Since the transition 
from soft to stiff occurs at � ≈ 1 , one expects maximum 
dissipation to occur at � ≈ 1 (see Fig. 5 below).

(33)N =

(
||h0||

√
2R||h0||∕c0

)
N where N =

1

∫
b

Pd�,

(34)

N =
2

�2

(
1 −

c0

c∞

)[(
1 − b

)(
1 +

�

2
+

�

2
b

)
−

(1 + �)

�

(
1 − e

−�+�b
)]

+
c0

c∞

(
2

3
− b +

1

3
b

3
)
.

Fig. 4   Since the surface is 
frictionless, the traction acting 
on the indenter surface, �n must 
be normal to the surface (red 
arrow). The horizontal 
component of this traction is 
p
dw

dx
 so Fvis is given by Eq. (28) 

(Color figure online)

	   It is easy to verify that pressure profile given 
by Eq.  (31) approaches the Hertz profile PH when 
c0∕c∞ → 1.

4.	 The normalized “ploughing” force is

	   Equation (28) implies that Fvis is the area of the hys-
teresis loop experience by a material point after it enters 
the leading edge. In the next section, we will compare 
the “dry” solution with the full solution of the lubricated 
viscoelastic sliding problem.

(32)F
vis

=

�
1

2
− b

2

�
1 −

b

2

2

��
c
0

c∞

+
4

�2

�
1 −

c
0

c∞

�⎧
⎪⎨⎪⎩

�

3

�
1 − b

3
�
+

�
1 − b

2
�

2
−

(� + 1)

�2

�
(� − 1) −

�
�b − 1

�
e

−�
�
1−b

��⎫⎪⎬⎪⎭
.
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2.4 � Numerical and Approximate Solution 
of the Viscoelastic Lubrication Problem

The integro-differential Eq. (9) are solved numerically for 
a foundation that obeys Eq. (10). Details of the numerical 
method are provided in the SI, Section 9. Figure 5 plots the 
hysteresis loop for a material point as it moves from x = ∞ 
to x = −∞ . The area of the hysteresis loop is Fvis defined 
by Eq. (12). In Fig. 5, we vary � while keeping c∞∕c0 and � 
fixed at 100 and 10, respectively. As expected, the loading 
and unloading curves lie on top of each other for small and 
large � indicating that the foundation behaves like an elastic 
solid with compliances c0 and c∞ , respectively. Figure 5 also 
confirms our expectation that maximum energy dissipation 
occurs at � ≈ 1.

Figure 6 plots the pressure distribution for different values 
of � and � with c∞∕c0 = 100 . The dry solution Eq. (31) (dot-
ted line) is plotted in the same figure as a comparison. It is 
seen that for large � , there is very little difference between 
the dry and the lubricated solutions. Indeed, as long as 
𝛽 > 20 , the agreement between the dry solution and the full 
lubrication solution is independent of � and c∞∕c0).

Figure 7 compares Fvis obtained by solving the full lubri-
cation problem with the “dry” analytical solution given by 
Eq. (32). Figure 7 shows that Eq. (32) is an excellent approx-
imation for 𝛽 ≫ 1.

The asymmetry of the pressure distribution is reflected 
in b , the position of the trailing edge. Numerical results 

of b versus � are presented in Fig. 8. The dry solution 
Eq. (29) corresponds to the limit where � → ∞ (solid black 
line). As shown in Fig. 8, the dry solution provides a rea-
sonable approximation to b for 𝛽 > 10 . The approximation 
is especially good where viscoelasticity is significant, that 
is, for 0.1 ≤ � ≤ 10 . In this regime, � ≥ 10 is sufficient 
to ensure excellent agreement between the full and dry 
solution.

Next, we plot the normalized hydrodynamic friction 
Ff  against � in Fig. 9. We also plot Fvis in the same plot 
as a comparison. Figure 9 shows that the maximum fric-
tion force due to both mechanisms are comparable for 
c∞∕c0 = 100 . The maximum friction due to viscoelastic 
dissipation occurs at � ≈ 1 . Although the maximum of 
the hydrodynamic friction occurs at � = 0 , there is a wide 
range of � where Ff  deviates little from its maximum.

2.4.1 � Approximate Expressions for D and Ff

In the section above, we have demonstrated that the dry 
solution provides an excellent approximation for Fvis . Here 
we highlight an approximate method that combines the dry 
and the elastic lubrication solution to find the film thick-
ness D and Ff  for the full lubrication solution. The basic 
idea is that scaling analysis implies that for large � , C in 
Eq. (9) has the form:

Fig. 5   Normalized pressure 
versus normalized displacement 
for a viscoelastic foundation 
with c∞∕c0 = 100 and � = 10 .  
Fvis is the area enclosed by each 
curve. Note for large and small 
� this area is zero as loading and 
unloading coincides
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Recall that for an elastic substrate, � is a numerical con-
stant. Substituting Eq. (35) into Eq. (9) and making the 
transformation D = CD̂ , (9) becomes:

Next, we note that, within the contact zone, P,X in 
Eq. (36) is well approximated by the dry solution and can 
be computed using Eq. (31). Since Eq. (36) is a cubic in 
z ≡ 1∕D̂ , it can be solved in closed form. Since the algebra 
is quite messy, the solution is given in the SI. Once D is 
found, Ff  can be evaluated using Eqs. (11) and (31). The 

(35)C =
�
�
�, c0∕c∞

�
√
�

.

(36)𝜌2P,X = −
1

D̂2
+

1

D̂3

only unknown in this procedure is � which depends on � and 
c0∕c∞ . Since small and large values of � correspond to an 
elastic foundation with compliance c0 and c∞ , respectively,

Also, �
�
�, c0∕c∞ = 1

�
= 1∕

√
13 . A plot of C versus 

λ for c∞∕c0 = 100 is shown in Fig. 10. The symbols are 
numerical results and the grey curves are obtained using 
the approximation:

(37)

�

�
� → 0,

c0

c∞

�
=

1√
13

, �

�
� → ∞,

c0

c∞

�
=

1√
13

�
c∞

c0
.

(38)

C =
1√
13�∗

+
0.03

�∗
where �∗ ≡ �c0

�
�k

�
�1�

�
+ (1 − �)k

�
�2�

��
,
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Fig. 6   Comparison of the normalized pressure of the viscoelastic lubrication problem with dry friction solution, c∞∕c0 = 100 , � = 10 − 100 are 
same for (a–c) while � is different. a � = 0.1 , b � = 1 , c � = 10
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where k
(
t∕tR

)
=
(
1∕c∞

)
+
[(
1∕c0

)
−
(
1∕c∞

)]
e−t∕tR is the 

relaxation modulus, � = 0.15 ; �1 = 0.025 and �2 = 0.25 . 
Comparing Eqs. (38) with (35), we find

The approximation Eq. (38) is based on the simple idea 
that � is proportional to the foundation stiffness 1∕c0 . In 

(39)� =
�
c0

√
13

�−1�
�k

�
�1�

�
+ (1 − �)k

�
�2�

��−1
.

Fig. 7   Numerical solution of 
Fvis versus � for β = 10, 50 and 
100. The dry analytical solution 
given by Eq. (32) is the solid 
black line
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the viscoelastic problem the stiffness of the foundation is 
a function of position, hence we replace 1∕c0 by the relaxa-
tion modulus k

(
t∕tR

)
 evaluated at t∕tR = �� , where � is a 

numerical factor of order one to account for the fact that a 
material point experiences different stiffness during sliding. 

Figure 11a plots the spatial distribution of normalized film 
thickness D for � = 10, 50, 100 and c∞∕c0 = 100 . The 
asymptotic solution obtained by solving the cubic Eq. (36) 
is plotted in the same figure as dashed lines. There is good 
agreement between the asymptotic and the numerical 

Fig. 9   Comparison of hydro-
dynamic friction and friction 
due to viscoelastic dissipation 
for different values of � , with 
c∞∕c0 = 100
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Fig. 10   Numerical results of C 
versus � for different values of 
� (symbols). The grey lines are 
obtained using Eq. (39)
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solution. Figure 11b plots the hydrodynamic friction Ff  ver-
sus � for � = 10, 50, 100 and c∞∕c0 = 100 . The asymptotic 
solutions [by solving D from cubic and using Eq. (11)] are 
plotted as solid lines. Again, there is very good agreement 
between the asymptotic solution and the numerical result.

3 � Friction Coefficient

Since friction is split into Ff  and Fvis , we define two friction 
coefficients:

with

The factor 
√||h0||∕2R in Eqs. (40, 41) appears due to dif-

ferent normalization for the friction and normal forces [see 
Eqs. (11) and (33)]. The normal load N in Eqs. (40, 41) is 
obtained by integrating the hydrodynamic pressure over the 
whole domain:

The dry friction solution serves as a lower bound for the 
normal load as shown in Fig.  12. Similar to b , the dry 

(40)�f ≡ Ff

N
=

√
||h0||
2R

Ff

N
, �vis ≡ Fvis

N
=

√
||h0||
2R

Fvis

N
,

(41)�total = �f + �vis =

√
||h0||
2R

Ff + Fvis

N
.

(42)N =

||h0||
√

2R||h0||
c0 �

∞

−∞

Pd� ≡
||h0||

√
2R||h0||
c0

N

solution is very accurate where viscoelasticity is relevant, 
0.1 ≤ � ≤ 10 . Figure 13a–c plot the friction coefficients �vis , 
�f  and �total against � for different � . For convenience, the 
vertical axis is multiplied by 2R∕

√||h0|| . Since the area of 

contact is proportional to 
√||h0|| and both Fvis∕N and Ff∕N 

depend on 
√||h0|| through the parameters � and � . These 

friction coefficients in general depend on the area of contact 
and hence friction does not obey the Coulomb model. Inter-
estingly, the maximum friction coefficient for both mecha-
nisms occurs at λ between 10 and 100. Note that, when 
𝜆 < 1 , the friction coefficient due to hydrodynamic flow 

(
�f

)
 

increases linearly with area (recall � ∝

√||h0|| ), which sug-
gests that fatter tires have higher friction for the same normal 
force. Figure 13a shows that, for 1 < 𝜆 < 102 , �f  increases 
faster than the area of contact since �f  increases with � in 
this range. It is interesting to note that the maximum friction 
coefficient does not occur at � ≈ 1 , instead, it occurs near 
� = �peak ≈ 50.

A convenient way of presenting results for an elastic sub-
strate is to plot the Stribeck curve, that is, the friction coef-
ficient against the Hersey number. Note, even for an elastic 
substrate, the solution of our problem cannot be expressed 
solely in terms of the Hersey number. Indeed, as shown 
above and by others [3, 30, 35], friction depends on the sin-
gle parameter � , which one can view as a generalized Hersey 
number. For viscoelastic substrates, the friction coefficient 
depends on three dimensional parameters,�, �, c0∕c∞ . This 
means that the generalization of the Stribeck curve is a sur-
face in four-dimensional space. Here we present a slice of 
this surface by fixing c0∕c∞ to be 100, and plot the friction 
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Fig. 11   a Comparison of the full lubrication solution and approxi-
mate expression for the film thickness [by solving Eq. (36)]. b Com-
parison of hydrodynamic friction obtained by numerical method and 

asymptotic solution. Results are for three normalized sliding veloci-
ties with c∞∕c0 = 100
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coefficient �total against � and � . These results are shown 
in Fig. 14. In Fig. 14a, we plotted the special case where 
c0∕c∞ = 1 , which corresponds to an elastic substrate, as a 
reference. Clearly, in all cases viscoelasticity enhances fric-
tion. More interesting, the friction coefficient varies slowly 
for a fixed �.

4 � Discussion and Summary

We have used a 1D model to study lubricated sliding on 
a viscoelastic substrate with focus on the large � regime. 
Three dimensionless parameters are needed to determine the 
solution despite the simplicity of our model. Although the 
underlying physics are the same, 1D models are much easier 
to solve numerically. In 2D or 3D, numerical calculations 
are much more difficult even for elastic substrates. In addi-
tion to numerical difficulties, the large number of parameters 
requires many calculations and impedes understanding of 
the basic physics. Our analysis suggests an approach that 
can alleviate these difficulties. A key result is that many 
features of the full viscoelastic lubrication problem can be 
obtained by combining the solution of two simpler problems. 
The first is to replace the viscoelastic substrate by an elastic 

substrate; the second is the solution of dry (no lubricant) 
problem with a viscoelastic substrate. One simply solves the 
dry problem to find the pressure field and the friction force 
due to viscoelastic dissipation. In the large β regime, this 
“dry” pressure field and corresponding viscoelastic friction 
differ little from the pressure and friction of the full viscoe-
lastic lubrication problem. The thickness of the lubrication 
layer can be obtained using perturbation theory using the dry 
pressure and this allows one to compute the hydrodynamic 
friction force without solving the full viscoelastic lubrication 
problem. We expect these insights are applicable to lubrica-
tion problems with more complex geometries such as such 
as sphere or ellipsoid.

In summary, we have accomplished the following:

•	 A detailed analysis of the elastic lubrication problem in 
the Hertz regime (large β). Accurate expressions for the 
hydrodynamic friction and film thickness are provided.

•	 A detailed analysis of the dry viscoelastic sliding con-
tact problem. Accurate expressions for friction caused by 
viscoelastic dissipation are provided for a standard solid. 
Furthermore, the dry problem can be solved exactly 
(within quadrature) for any relaxation function.

Fig. 12   N versus � for the dry 
case ( c∞∕c0 , � = ∞ ) and the 
viscoelastic hydrodynamic 
lubrication cases ( c∞∕c0 , 
� = 10 − 100)
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Fig. 13   Friction coefficient components from: a the hydrodynamic part �f  ; b the part of substrate viscoelasticity �vis , c the total frictional coef-
ficient �total versus different � . c∞∕c0 = 100 and � = 10 ∼ 100 . The dry friction case corresponds to c∞∕c0 = 100 and � = ∞
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•	 A detailed numerical study of the full viscoelastic lubri-
cation problem in the large β regime. We demonstrated 
that many features of these numerical solutions can be 
obtained using the solutions of the first two problems.

Supplementary Information  The online version of this article (https​://
doi.org/10.1007/s1124​9-020-01396​-5) contains supplementary mate-
rial, which is available to authorized users.
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