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Abstract

We study the friction force during lubricated sliding of a rigid cylindrical indenter against a viscoelastic substrate in the
iso-viscous visco-elasto-hydrodynamic lubrication (VEHL) regime. The substrate is represented by a foundation model. The
solution is controlled by three dimensionless parameters. The first of these, 4, measures the time for the indenter to move
one contact zone relative to the viscoelastic relaxation time; the second is the ratio of the long time to short time compli-
ance of the substrate, ¢, /c,; the third parameter, f, is the ratio of average fluid flow rate to the sliding velocity. Although
our solution works well for the full range of parameters, we focus on the “Hertz” regime (>>1) where practically all the
fluid in the contact region is squeezed out. This regime is quite common in soft contact lubrication problems and presents
significant numerical difficulties. Our analysis gives insight into why these numerical difficulties arise. The friction force can
be decomposed into two parts, one due to viscoelastic dissipation and the other from hydrodynamics. Although these two
are generally coupled, in the Hertz limit, an important result is that the viscoelastic portion of the friction force can be well
approximated by the solution of the corresponding “dry” sliding problem, in which there is no lubricating fluid layer. This
provides a simple way to decouple the hydrodynamic portion of the friction force from the viscoelasticity of the substrate.
We study how hydrodynamic pressure and film thickness vary with the controlling dimensionless parameters. Scaling laws
for these relationships are given in closed form.
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1 Introduction

Lubricated sliding, in which an intervening liquid layer
separates two solid surfaces, is ubiquitous in nature and in
technology. When the contacting solids are elastic and the
liquid layer forms a continuous film in the contact region,
we obtain an important subclass: Elasto-Hydrodynamic
Lubrication (EHL) [1-3]. EHL theory has been extensively
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applied, traditionally with a heavy emphasis on stiff metal
contacts such as in bearings [4, 5] and pistons [6, 7]. EHL
theory is also relevant to contact between soft elastic mate-
rials and a hard surface, such as the sliding of rubbery tires
or shoe soles on a lubricated hard surface. Many parts of
our body rely on soft lubrication to function; examples are
joints, eyelids and eyeballs with contact lenses. For more
compliant materials the effect of deformation qualitatively
alters the contact geometry and pressure profile, as well
as hysteretic friction forces [8—12]. Material compliance
and lubricant viscosity strongly affect friction behavior
in the EHL regime. The Stribeck plot [13] shows that
lubricated contact can be divided into three regimes. For
high sliding or rolling velocities and small enough verti-
cal loads, the liquid film is continuous and normal load is
supported mainly by hydrodynamic pressure; friction is
governed by fluid flow. As velocity decreases or normal
load increases, the system enters the mixed lubrication
regime, in which the liquid film starts to break apart, and
the load is supported by both dry and lubricated contact.
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At very high loads or slow velocities, the system arrives in
the boundary lubrication regime, where most of the liquid
is squeezed out, and the solid surfaces come into intimate
contact. Here adhesive forces form areas of “dry” contact
and hysteretic forces from material deformation also begin
to contribute to the friction response. In this regime sam-
ple roughness and inelasticity control the friction behavior.

EHL theory assumes that the contacting solids are elas-
tic. However, many soft elastic solids such as rubber are vis-
coelastic. Viscoelasticity is a dissipative mechanism which
can be used to significantly increase friction during sliding.
However, as noted by Putignano [14], other than a hand-
ful of papers [15-17], the literature on how viscoelasticity
affects lubricated contact mechanics is scant. The focus of
this work is to study a special case of this class of problems
in detail. Specifically, we report on a study of the lubricated
sliding of a rigid cylinder on a soft, flat, and viscoelastic
substrate. We focus on the regime where the liquid layer
is continuous. We shall call this the VEHL (viscoelastic
hydrodynamic lubrication) regime. Since the role of pres-
sure-sensitive viscosity is negligible for typical soft solids
[3], we assume that the liquid is Newtonian with a con-
stant viscosity (iso-viscous). Our analysis is focused on the
“Hertz” regime, in which the layer of liquid is thin and the
elastic foundation deforms much as it would for dry friction-
less indentation by the same indenter and load. The domi-
nance of the Hertz regime is illustrated by our recent experi-
ment [18, 19]. Briefly, we slid a spherical glass indenter on
the lubricated surface of an elastic polydimethylsiloxane
(PDMS) substrate. These tests were performed using dif-
ferent combinations of sliding velocity, normal load and
sphere radius. Our results showed that, consistent with EHL.
theory, suitably normalized hydrodynamic friction plotted
against the normalized sliding velocity collapses to a master
curve, which means that elastohydrodynamic lubrication
is controlled by a single dimensionless parameter § (see
below for definition), of which the inverse Hersey Number
is an approximate version [13]. In our experiments, f was
found to be much larger than unity, which corresponds to
the “Hertz” limit [18].

To put our work in context, many studies have examined
lubricated sliding of elastic contact with a sphere-on-flat or
cylinder-on-flat contact geometry to investigate the effects
of properties such as material modulus, lubricant viscosity
and surface roughness [13, 20-29]. Closely related to this
work is a paper by Snoeijer et al. [30], who carefully studied
lubricated sliding of a rigid cylinder on an elastic half space.
Their focus is also on the “Hertz” regime. They showed that
near the edge of the contact, the liquid film profile can be
described by a similarity solution. More importantly, they
showed that this 2D local solution can be applied to study
the pressure and film thickness in 3D problems. Another
closely related work is by Pandey et al. [16], who studied
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VEHL in a 2D geometry and presented asymptotic relations
between the lift force and the sliding velocity.

The plan for the rest of this paper is as follows: Sect. 2
begins by summarizing the formulation of the VEHL prob-
lem. The main result in this section is to show that the vis-
coelastic lubrication problem can be broken down into two
simpler problems: the first is the EHL problem in which
the substrate has the short time modulus. The second is the
“dry” viscoelastic problem, in which frictionless sliding
takes place in the absence of a fluid layer. Full numerical
solution is provided for the EHL problem. Highly accurate
expressions which relate the liquid profile and the pres-
sure distribution within the effective contact zone to f# are
obtained. An exact closed-form solution is obtained for the
second, dry, contact problem. We then use the solutions of
these two problems to obtain approximate expressions for
the film thickness, the pressure distribution and the friction
force in the viscoelastic lubrication sliding problem. Sec-
tion 3 uses the results in Sect. 2 to obtain a generalization of
the Stribeck curve—a Stribeck surface. We conclude with
summary and discussion in Sect. 4.

2 Theoretical Methods
2.1 Problem Statement and Formulation

Figure 1 shows a schematic of the problem. An infinitely
long rigid circular cylindrical indenter of radius R is sliding
at a constant velocity V in the positive x direction on a vis-
coelastic substrate, which is modeled as a spring foundation.
A coordinate system (x, y) is attached to the moving cylinder.
Here, y=0 is the surface of the undeformed foundation and
x=0 is the horizontal coordinate of the center of the cylin-
der. The vertical displacement of the center of the cylinder
is denoted by £, (5, <0). The surface profile of the cylinder
with respect to the moving coordinate system is A(x). A layer
of fluid lies between the cylinder and the foundation. The
thickness of fluid layer is d = h — w > 0 where w is the dis-
placement of the viscoelastic spring foundation. The com-
pressive vertical line load required to maintain the indenter
displacement A, is denoted by N. In this work compressive
load and pressure are taken to be positive.

We assume steady state sliding, and so field quantities are
independent of time and depend only on x. The Reynolds’
equation for the fluid layer is then [31]

p’x(h_w)3 _ \%4
<Tn>w— ~(3)t= ®

here, p is the fluid pressure field, # is the fluid viscosity
and a comma “,” denotes differentiation with respect to x.
The thickness of the fluid layer is d = h — w. Using Hertz’s
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Cylinder

Fig. 1 A schematic of a steadily sliding rigid cylinder on a foundation of viscoelastic springs

approximation for small contact [32], the surface of cylinder
is approximated as a parabola, so

x2

h=hy+ >R’ 2)

The springs in the foundation are assumed to be viscoe-
lastic, that is, the displacement w is related to the pressure
by a creep function c(t/to)[units m?/N] where ¢ denotes
time and ¢, is a characteristic relaxation time in a creep
test. Specifically, for a fixed material point X,, on the sur-

face of the foundation, we have

: _/\op(X,,t
w(X,,.1) =/c<t t)%dz’. 3)

to

—0

Steady state sliding implies that

ap (Xm N )

=-Vp,,. 4
= Doy 4)

Equation (4) allows us to replace the time derivative by
the spatial derivative in the moving coordinate system, so
(3) can be rewritten as

[s9)

mm=—/?<ﬂ%x>adﬁ 5)

X

In the following, we shall assume that the foundation
is a solid, so that c(t/1y > oo) =c, > 0, where c is
the long-time or relaxed compliance of the foundation.
We will also denote the instantaneous compliance by
c(t/ty = 0) = cy. Equations (1) and (5) are the governing
equations for the lubricated sliding problem on a founda-
tion of viscoelastic springs.

w h

=—=-14X% X=
|

ol

V2Rlm| ol

During sliding, as the material enters the leading edge of
the (effective) contact region, it is compressed. Conversely,
towards the rear (trailing edge) it relaxes. Thus, a typical
material point experiences cyclic deformation, which results
in hysteresis or viscoelastic dissipation. For a purely elastic
solid there is no hysteresis and, in the Hertz limit, the pres-
sure distribution and deformation are symmetrical about
x=0 and there is no net dissipation. This is not the case for
viscoelastic foundations; the pressure distribution turns out
to be asymmetrical.

2.1.1 Normalization

We normalize displacements, surface deformation w, and the
cylinder profile & by |hy|- The rest of the normalization is
guided by the corresponding elastic “Hertz” contact problem
in which the indenter is pushed vertically without sliding onto
a spring foundation with instantaneous compliance c,. For this

case, the contact width is 24 /2R|h,| and the pressure distribu-
tion is [32]

2
@Q-G/m%0>msdmm

\/ 2R o

Pu = (6)

0; |x] >

Hence, we normalize all horizontal distances by 4/2R| /|

and pressure p by ¢,/ |h0|. Then, the normalized form of
Eq. (6) (Hertz pressure) is:

P 1-X%1X]<1

H — 0,|X|21 ’ (7)
and,

H-w, P=—2

ho|"™ (8)
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The normalized governing Egs. (1, 2, 5) are [after inte-
grating Eq. (1) once]:

pPxD’=-D+C,H=-1+X* W= —/¢(a(X’ - X))=—dX’
X

V 2RIkl |ho?
a = 2 ﬁ: ?
6nVeyy/ 2R |hy|
©))

Vi,
where D =H — W is the normalized film thickness,
¢(t/ty) = c(t/1y) /cy s the dimensionless creep function and
C is a dimensionless integration constant. In the following
we will use the standard viscoelastic solid model to illustrate
ideas. In this case, the creep compliance function is given by

c(t/ty) = o — (€o — cg) ™. (10)

where 1, is the characteristic relaxation time in a creep test.
With this model, the normalized solution depends on three
dimensionless parameters (instead of one, f, for the cor-
responding elastic foundation hydrodynamic lubrication
problem); these are «, ff and ¢, /c,,. Note that the integration
constant C depends on all three parameters.

2.1.2 Physical Meaning of Parameters

The parameter ¢, /c, controls the amount of viscoelastic-
ity; for a non-dissipative elastic solid, ¢, /¢, = 1. It is typi-
cally much greater than 1 for highly dissipative solids. The
parameter a represents the time to move the indenter by
one contact zone length divided by the creep relaxation
time. When it is very large/small compared to unity, the
material behaves like a soft/stiff elastic solid. Dissipation
is maximized when « takes intermediate values. The
parameter f is the ratio of the pressure gradient due to

elastic deformation, which scales as (|ho|/c,)/+/2R|hq|,
to the hydrodynamic pressure gradient in the film which
scales as (nV/|h0|2>. Alternatively, 1/ can be viewed as
a normalized sliding velocity. It is the ratio of the sliding
velocity and the average rate of fluid flow at a given inden-
tation depth. To see this, we recall that in lubrication the-
ory, the average flow rate in the film scales with the pres-
sure gradient multiplied by the square of the fluid film
thickness and divided by the viscosity. In our problem, the
pressure gradient scales with (|/|/cy)/1/2R]|ho| and the
film thickness scales with || [see Eq. (8)]. Hence the
average flow rate scales with |h0|2(|h0|/c0)/r/ 2R|he|. It
is interesting to note that f§ carries little information about

viscoelasticity whereas the parameters @ and ¢ /c, are
independent of fluid flow.

@ Springer

2.2 Friction Force Due to Fluid Flow (Hydrodynamic
Friction, F;) and Friction Force Due
to Viscoelastic Dissipation, F;

Two important quantities are the friction due to fluid flow
(Fy) and that due to viscoelastic dissipation F,;;. The hydro-
dynamic friction F (force per unit length) is computed by
integrating the shear stress 7, acting on the indenter (see
SI, Section 1). ’

_[7 ol pmopy _ |mol’
Ff_</_°or".xy=hdx_ % [m T+6ﬂ_D dX = < Ff'

an

The viscoelastic friction force is the total dissipation (the

area of the hysteresis loop) experienced by a material point
as it moves from co — —oo (see argument below)

Fooe [T g Wl paw Il
viAv__'/_oopax__c_()‘/_oo E =C_0 vis®

12)
here we emphasize that both these friction forces are nor-
malized in the same way, that is, by |h0|2/co.

2.3 Two Special Problems

Important insights can be gained by examining two related,
simpler, problems. The first is the special case of lubricated
sliding on a purely elastic foundation. The second case is the
non-lubricated (or ‘dry’, but still frictionless) limit where
there is no fluid but the foundation is viscoelastic. As we
shall see later, combination of the solutions to these simpler
problems provides a useful approximation to the full viscoe-
lastic lubrication problem.

2.3.1 Elastic Foundation

We identify foundation compliance with ¢, so Eq. (9)
reduces to W = —P and Eq. (9) becomes a first order non-
linear ordinary differential equation (ODE) in P:

PPy (P—1+X*) = —(P-1+X°) +C, (13)

Equation (13) implies that the solution depends on a sin-
gle parameter f. The integration constant associated with
the solution of Eq. (9) and C are determined by the bound-
ary conditions that the pressure vanishes at X = +oc0. There
is little difficulty finding the solution numerically (see for
example the closely related problem of two rotating cyl-
inders [32].) However, these solutions by themselves do
not provide enough insight, especially in the “Hertz” limit
where f >> 1. For example, the corresponding problem in
3D, of a sphere undergoing lubricated sliding on an elastic
foundation, is much harder to solve numerically as the ODE
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Fig.2 Slope field of Eq. (13) 1.2 :
for C=0.0877 (f=10). The red

line (yy) is the Hertz pressure.

For X € (-1, 1), the slope

on yy is positive infinity as P 1
approaches y, from above. The

red arrows indicate infinite

slope. Thus, solution is repelled

from y,. The slope field on the 0.8
blue curve indicates that the
solution is trapped inside the
“funnel”. The grey line shows

the numerically computed solu- 0.6
tion (Color figure online) Qq
04
0.2
0
-0.2 :

Numerical

—_—YH
-0
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becomes a nonlinear partial differential equation (PDE) [19,
30, 33, 34]. In the literature, this PDE is usually solved by
a relaxation method [19] which requires an initial guess for
the pressure profile. However, the numerical solution is very
sensitive to this initial guess when f >> 1. Intuitively, one
may think that the Hertz pressure Eq. (7) would be a good
initial guess. However, if one makes that choice, the numeri-
cal procedure diverges rapidly after a few iterations. Even
with the “right” initial guess, it takes thousands of iterations
for the numerical procedure to converge.

Here we highlight two ways to think about this limit. The
first is geometrical and sheds light on the aforementioned
numerical difficulty. Figure 2 plots the slope field of Eq. (13)
in the (X, P) plane for § = 10. The normalized Hertz pres-
sure (Eq. 7) (Hertz curve, yy) is indicated in Fig. 2 by a red
solid line. We divide yy into two parts: the first is
P, =1-X? where Xe€(-1,1); the second is
Py =0,X € (—o00,—1] U [1, 00). Note that the slope field on
vy 1s positive infinity as P approaches y;; from the top side
for any integration constant C>0.! This means that the solu-
tion is always repelled from the Hertz curve for X € (-1, 1)
—this is the source of numerical instability. A scaling analy-

sis (see SI, Section 2) shows that C ~ O(l/\/ﬁ) for f >> 1.

! There is no solution if C is negative, since the boundary conditions
P(X — +00) = 0 cannot be satisfied.

-0.5 0 0.5 1
X

We solve Eq. (13) using an ODE solver and find that
c=1/ \/ﬁ for § > 10. The curve y, where the slope field
is exactly zero (nullcline) is readily determined using
Eq. (13) and is

1
— — 2

V135

For f >> 1, y, is extremely close to y, the gap between
them is (13/3)_1/ 2. We also plot another curve y; where the
slope is -1. We plotted this curve to indicate that the exact
solution is trapped between y, where the slope is +o0o0 and
the curve where the slope is negative such as y;.

Since the slope field for any curve above y, is negative,
the solution is attracted to y, This means that the solution
is slightly above y, and y, for X € (-1, 1)- a very narrow
region (see Fig. 2). In dynamical systems, such a region is
called a funnel. The numerical solution is the grey line in
Fig. 2.

A different approach is to treat the ODE Eq. (13) as a
boundary layer problem, governed by the large parameter f.
Figure 3b, ¢ show the numerical pressure profile and the nor-
malized fluid layer thickness D = H — W for f = 100, 500.
The normalized Hertz pressure, Py = 1 — X2 for [X| < 1
is plotted in the same figure. Note that as f§ increases, the

@ Springer
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Fig.3 a Pressure profile for # = 100. Numerical result is given by the
grey line, Hertz pressure by the red line, Eqs. (7), and the approxi-
mate solution (16) by the black line. b The gap between Hertz pres-

pressure approaches the Hertz profile, consistent with slope
field analysis.

Note that D approaches zero and P approaches P in
Q. C (—=1,1)as fincreases. We will call Q. the contact zone
even though there is no physical solid—solid contact due to
the lubrication layer. Note that, since the pressure must be
continuously differentiable everywhere, the convergence to
the Hertz pressure cannot be uniform (the gradient of P is
discontinuous at | X| = 1). This means that there exist two
internal boundary layers, one at the leading edge at X=1,
which we denote by Q, , and the other Q, at the trailing edge
at X = —1 (see Figs. 3a or 2). Inside these boundary layers,
the pressure gradient is continuous (see Fig. 3b). Outside
these boundary layers and Q, i.e., |X| > 1, P goes to zero
as (see derivation in SI, Section 3)

1
3px3°

~
~

s)

Figure 3b shows that, for large f, the pressure profile
inside the contact zone is well approximated by (see SI for
a derivation, Section 3)

X  3x?

P=1—X2+C<1+—+—+...>. (16)

5 25
Equation (16) shows that the pressure inside the contact
zone is always greater than the Hertz pressure for X > 0
and slightly above the nullcline [compare Eq. (16) with
Eq. (14)], consistent with the slope field analysis. Figure 3a
plots P versus X; the grey line is the numerical solution for
p = 100, and the solid black line is (16). We also plot the
Hertz pressure (red line) in Fig. 3a as a comparison. Clearly,
the approximate solution, Eq. (16), is extremely accurate as
long as X is inside the contact zone.

@ Springer

sure and the numerical solution decreases with increasing f. ¢ Nor-
malized film thickness D versus position; the dotted line corresponds
to Eq. (18) (Color figure online)

Note that the pressure distribution at the trailing edge is
slightly negative. The maximum negative pressure, P,

min>
0397 . .
occurs at X;, ~ —1 — == and is well approximated by

Vb

a7

where B = 0.611 (see SI, Section 4). The existence of a
region of negative pressure is frequent in lubrication prob-
lems [32]. For large negative pressure, the solution becomes
unrealistic as the fluid often cavitates. However, cavitation
is unlikely in our case since the maximum negative pressure
goes to zero for large f as indicated by Eq. (17).
The normalized film thickness D inside the contact zone
is given by Eq. (16) and W = —P, so
X | 3x?

D%C<1+—+—+...

575 (18)

1
> C T 35
V13
in the contact zone and we assume that the minimum film
thickness occurs at X, ;. = —1, so’

23|

min \/ﬁ 5 25 min "~ 25 13ﬂ (]9)

Figure 3c shows that Eq. (18) is an excellent approxi-
mation for the film thickness inside the contact zone. The
normalized friction force is calculated using Eqs. (11)

2 The actual minimum should occur at X, = —5/6 (as noted by an

min
anonymous reviewer). However, the expression for the film thickness
is an approximation and we found numerically that the minimum
occurs closer to X, =—1. In any case, the difference in D,

min h min
between X,;, = =5/6and X,;, = —lis = 0V which is negligibly

small for large f.
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and (18). In SI (Section 5), we show that it is very well
approximated by:

— 1084 03261
F,o= 1088 05201 5 )
"B p (20)

Equations (19), (20) and (14) show that the maximum
contact pressure, and friction force can be expressed in
terms of minimum fluid layer thickness, the indentation

depth and the compliance of the foundation; they are, for
p > 10:

ol 25 dyin
Pmax = co <1+§|h0|>’ (21)
254/1 - h 254/1 .
Ff = S—Bﬂmlnﬂ 1.084 — 0.3261 ﬂ ~
23 ¢ 23|

V1

v=2
=y

H
1
5 / V,dY = —pP,yD* - 1/2 (26)
w

Using Egs. (16) and (18), the leading order behavior of the
average flow velocity inside the contact zone is

2X 1

V(X <1, N
(X< 1L,p>>1) G5 27

The average flow (with respect to the cylinder) is approxi-
mately linear and is —9V /26 at the leading edge (X = 1) and
—17V /26 at the trailing edge (X = —1).

2.3.2 Dry Limit

2
”_ (2R|ho|)"* onViho|. (22)

" co\/z Co

Equation (22) shows that friction due to flow is directly
proportional to fluid layer thickness and the indentation
depth (which is independent of the radius of the cylinder).

In addition, since the “effective” contact width is
— 3/2
aeﬁ = off

Since the cylinder is infinite in the out-of-plane direction,
a,y is also the effective area of contact per unit length of
cylinder. In the SI Section 6, we give an expression for the
thickness of the boundary layer near the exit. It turns out the
friction force due to this boundary layer is small in compari-
son with the friction force given by (16), which ignores the
effect of this layer.
Finally, the normal force N is related to |i | by

coN _4+
lholy/2RIRe| 2 25V138 @9

Combining Egs. (22) and (23), we can express the friction
as a function of the normal force,

2R|hy|, the friction force is proportional to a

N 52

Ff o~ > 2nVN. (24)

Thus, in force control sliding where N is fixed, the friction
force is independent of the radius of the indenter and the
stiffness of the foundation. In contrast to Coulomb friction,
the friction force is proportional to \/]T] and increases as the
square root of the sliding velocity.

The average through thickness velocity \_/1 (relative to the
moving frame) is obtained by integrating the velocity field

V, = V_Vl =Y —H)|6pP,y (Y — W) + zl)] (25)

and dividing the result by D, i.e.,

Just as the Hertz limit provides an excellent approximation to
the pressure distribution for the elastic foundation lubrication
problem, the contact pressure of a rigid cylinder sliding on a
non-lubricated and frictionless viscoelastic foundation turns
out to be an excellent approximation to the viscoelastic contri-
bution to friction. Note for this case F;; = 0 since the resistance
to sliding is due entirely to viscoelastic dissipation. This is
because we assume frictionless contact between the indenter
and the surface of the viscoelastic foundation. For this case,
the horizontal force resisting motion, denoted by F,,, comes
entirely from ploughing due to the asymmetry of the pressure
distribution. This is illustrated schematically in Fig. 4. Thus,
within the small contact approximation of Hertz

 dw
F.=- —dbx.
vis /b p i X (28)

Note that Eq. (28) is identical to Eq. (12) except that the
limits of integration are replaced by the position of the leading
and trailing edges, which are denoted by @ and b, respectively.
These positions are well defined due to the absence of the fluid
layer—the pressure field vanishes outside [b, a]. At a and b, the
pressure is exactly zero. The solution of the “dry” problem can
be obtained in closed form. Details are given in the SI, Sec-
tion 7. Here we summarize the key results, they are:

1. The solution depends only on two dimensionless param-
eters,a and ¢, /¢.

2. The normalized positions of the leading and trailing
edges are, respectively

@ Springer
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Fig.4 Since the surface is
frictionless, the traction acting
on the indenter surface, ¢, must
be normal to the surface (red
arrow). The horizontal

component of this traction is
p‘i—’; so F,; is given by Eq. (28)

(Color figure online)

(,13 + 1) )G

_ 2
a=a/\/2R|hy| =1, 2 = =

()

29

\/ 2R ||

=—. (30)
o V]coty/ceo]

The position of the leading edge given by the first
expression of Eq. (29) is exact and independent of veloc-
ity, while Eq. (29) is a transcendental equation for the
normalized position of the trailing edge b.In general,
—1<b<0.Noteb — —las ¢o/Cs — 1, recovering the
Hertz solution for a spring foundation. The asymptotic
solution of b for the cases of A >> land 0 < A << 1is
given in the SI, Section 8.

3. The normalized pressure distribution inside the contact
zone [E, 1] is

- _%)\2 _ A iX So
P(X)_[<1 . >/12[(,1x+1) et A+ D]+ —]

[~ COO

1—x2]], a= =l
o

5. The normal force acting on the cylinder,
1
N= <|h0| 2R|h0|/c0>ﬁ where N = /Pdg, (33)
b

is the normalized normal force. Using Eq. (31), it is

N 2({_% -7 A AN _U+D b

N—,12<1 Cm>[(l b)<1+2+2b) 2 <1 ¢ )]
(34)
An important observation is that only A4 (instead of

a) appears in Eqs. (29-34). This suggests that the rel-
evant time scale is t; = ¢yt /c,, [see Eq. (30)] which is

€19

It is easy to verify that pressure profile given
by Eq. (31) approaches the Hertz profile Py, when
co/Ce — L.

4. The normalized “ploughing” force is

-2
= 1 =2 b Co 4 Co /1< -3
Fo=(=-p 12| )2y Z(1-20)2(1-

e (2 b l 2]>CW+AZ< c°o> 3 b

)+ ( _25 ) _ @D [(/1— - (- 1){‘(“”)]

the characteristic relaxation time in a relaxation tension
test. Hence, the dimensionless parameter A = ca/c is
the time for the indenter to move one contact zone divided
by t. For A > 1, the foundation is fully relaxed with com-

= (32)

Equation (28) implies that FW»S is the area of the hys-
teresis loop experience by a material point after it enters
the leading edge. In the next section, we will compare
the “dry” solution with the full solution of the lubricated
viscoelastic sliding problem.
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pliance c¢,. For A < 1, the foundation behaves as a stiff
elastic foundation with compliance c,. Since the transition
from soft to stiff occurs at 4 ~ 1, one expects maximum
dissipation to occur at A = 1 (see Fig. 5 below).
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Fig.5 Normalized pressure 1.2 T

versus normalized displacement

for a viscoelastic foundation

with ¢, /¢, = 100 and g = 10.

F,;, is the area enclosed by each 1
curve. Note for large and small

A this area is zero as loading and

unloading coincides

0.8

A, 06

0.4

0.2

—ﬂ=I1O;COO/CO ~100:A=10000
——3=10,C_/C, =100;A=1000
#=10;C_/C,=100;A=100
——3=10,C_/C, =100;A=10
—— B=10;C_/C, =100;\=1 -
#=10;C_/C, =100;1=0.1
—— $=10;C_/C, =100;3=0.01 |.

coo/c()

2.4 Numerical and Approximate Solution
of the Viscoelastic Lubrication Problem

The integro-differential Eq. (9) are solved numerically for
a foundation that obeys Eq. (10). Details of the numerical
method are provided in the SI, Section 9. Figure 5 plots the
hysteresis loop for a material point as it moves from x = oo
to x = —oo. The area of the hysteresis loop is Fm. defined
by Eq. (12). In Fig. 5, we vary 4 while keeping ¢, /c, and
fixed at 100 and 10, respectively. As expected, the loading
and unloading curves lie on top of each other for small and
large A indicating that the foundation behaves like an elastic
solid with compliances ¢, and c, respectively. Figure 5 also
confirms our expectation that maximum energy dissipation
occurs at A = 1.

Figure 6 plots the pressure distribution for different values
of pand A with ¢, /¢, = 100. The dry solution Eq. (31) (dot-
ted line) is plotted in the same figure as a comparison. It is
seen that for large g, there is very little difference between
the dry and the lubricated solutions. Indeed, as long as
p > 20, the agreement between the dry solution and the full
lubrication solution is independent of A and c_, /c).

Figure 7 compares Fm, obtained by solving the full lubri-
cation problem with the “dry” analytical solution given by
Eq. (32). Figure 7 shows that Eq. (32) is an excellent approx-
imation for § > 1.

The asymmetry of the pressure distribution is reflected
in b, the position of the trailing edge. Numerical results

15 2 2.5
-W

of b versus A are presented in Fig. 8. The dry solution
Eq. (29) corresponds to the limit where f — oo (solid black
line). As shown in Fig. 8, the dry solution provides a rea-
sonable approximation to b for > 10. The approximation
is especially good where viscoelasticity is significant, that
is, for 0.1 < 1 < 10. In this regime, f > 10 is sufficient
to ensure excellent agreement between the full and dry
solution.

Next, we plot the normalized hydrodynamic friction
Ff against A in Fig. 9. We also plot fw.s in the same plot
as a comparison. Figure 9 shows that the maximum fric-
tion force due to both mechanisms are comparable for
Cs/Co = 100. The maximum friction due to viscoelastic
dissipation occurs at 4 & 1. Although the maximum of
the hydrodynamic friction occurs at A = 0, there is a wide
range of A where I?f deviates little from its maximum.

2.4.1 Approximate Expressions for D and Ff

In the section above, we have demonstrated that the dry
solution provides an excellent approximation for Fm,. Here
we highlight an approximate method that combines the dry
and the elastic lubrication solution to find the film thick-
ness D and ff for the full lubrication solution. The basic
idea is that scaling analysis implies that for large g, C in
Eq. (9) has the form:

@ Springer
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W - dry friction
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————— dry friction
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Fig.6 Comparison of the normalized pressure of the viscoelastic lubrication problem with dry friction solution, ¢, /c, = 100, § = 10 — 100 are

same for (a—c) while A is different. a4 =0.1,bA=1,c¢A1=10

3 p(A co/cy)

C =
VB
Recall that for an elastic substrate, p is a numerical con-

stant. Substituting Eq. (35) into Eq. (9) and making the
transformation D = CD, (9) becomes:

(35)

pPPy= —é + é (36)

Next, we note that, within the contact zone, P,y in
Eq. (36) is well approximated by the dry solution and can
be computed using Eq. (31). Since Eq. (36) is a cubic in
z = 1/D, it can be solved in closed form. Since the algebra
is quite messy, the solution is given in the SI. Once D is
found, Ff can be evaluated using Eqs. (11) and (31). The

@ Springer

only unknown in this procedure is p which depends on A and
¢o/C- Since small and large values of A correspond to an
elastic foundation with compliance ¢, and c, , respectively,

Co 1 Co 1 Coo
plA=0—)=——=plio00,— |=—=4/—.
‘«/ /13 ‘«/ 13V %

(37

Also, p(/l,co/coo = 1) = 1/\/B A plot of C versus
A for ¢ /cy = 100 is shown in Fig. 10. The symbols are
numerical results and the grey curves are obtained using
the approximation:

C= ! + 0.03 where f* = fc, [Kk(a)lzl) +(1 - K)k(a)zzl)],

V13pgs B

(38)
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—e—Coo/co = 100, 5 = 10

Fig.7 Numerical solution of 0.4 —
F,; versus A for =10, 50 and
100. The dry analytical solution
given by Eq. (32) is the solid 0.35 - 05
black line A,

0.3

—=—Coo /cop = 100, 3 = 50 | 7
coo /o = 100, 8 = 100

——dry friction

0.25 .
-2
0.15 .
0.1 i
0.5 1
0.05 W \
( o i i m i m — A
1073 1072 107" 10° 10" 102 103 10*
Fig. 8 Numerical results for 0 e I R r ™ I
b versus A for f = 10,50 and _ —
100 and ¢, /c, = 100 The dry —o—Co /o = 100, 3 = 10
solution is the solid black line, —8— Cxo / cy = 100, ﬁ =50
Eq. (29
e (29) Coo/Co = 100, 3 = 100
——dry friction
0.5 ,
IS
-1 o
_15 bl saaal bl n saaal saaaal n ol ‘
107 1072 107" 10° 10" 102 10% 10*
where k(1/1p) = (1/c,,) + [(1/¢) = (1/cs )] €™/ is the -1 -1
relaxation modulus, k = 0.15; @, = 0.025 and w, = 0.25. = (CO Vi3) " [ick(@2) + (1 = ok(@2)) . (39)

Comparing Egs. (38) with (35), we find

The approximation Eq. (38) is based on the simple idea
that g is proportional to the foundation stiffness 1/¢,. In
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Fig.9 Comparison of hydro- 0.4 R —
dynamic friction and friction ——F visy Coo / Cy = 100, ﬁ =10
due to viscoelastic dissipation o 7 _ —
for different values of B, with 0.35 - Ef’ COO/CO o 100’ ﬁ =10
co/co = 100 Ff,coo/co =100, 6 =50
¢ n — —
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0.25 7
[
5 02f -
JeSy
0.15 = T
0.14 1
0.05 °
— {
1l il il il saaaal PR AR AT
10 102 107 10° 10’ 102 10° 10*
Fig. 10 Numerical results of C 1.2 I I I r r r r r
versus f for different values of
A (symbols). The grey lines are o )=0.001
obtained using Eq. (39) ° o )=0.01
Tr A=01 | ]
o )\=1
° A=10
0.8 i \ A=100 | ]
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o
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the viscoelastic problem the stiffness of the foundation is ~ Figure 11a plots the spatial distribution of normalized film
a function of position, hence we replace 1 /¢, by the relaxa-  thickness D for g = 10, 50, 100 and ¢ /c, = 100. The
tion modulus k(t/ tR) evaluated at t/f, = wA, where w isa  asymptotic solution obtained by solving the cubic Eq. (36)
numerical factor of order one to account for the fact that a  is plotted in the same figure as dashed lines. There is good
material point experiences different stiffness during sliding. agreement between the asymptotic and the numerical
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— X =1;¢00/co = 100; 8 = 10
—— X = 1;¢00/co = 100; 8 = 50

0.5
A =1;¢00/co = 100; 3 = 100
—-=- Asymptotic solution

0.4
Q o3
0.2
0.1

0 s s ‘ ‘

-0.5 0 0.5 1

X

Fig. 11 a Comparison of the full lubrication solution and approxi-
mate expression for the film thickness [by solving Eq. (36)]. b Com-
parison of hydrodynamic friction obtained by numerical method and

solution. Figure 11b plots the hydrodynamic friction I_ff ver-
sus A for f = 10,50, 100 and ¢, /c, = 100. The asymptotic
solutions [by solving D from cubic and using Eq. (11)] are
plotted as solid lines. Again, there is very good agreement
between the asymptotic solution and the numerical result.

3 Friction Coefficient

Since friction is split into F; and F,;;, we define two friction
coefficients:

= E — |h0| Ff o = Fvis — MF\AS (40)
=N 2Ry TN 2R N’
with
ol Fy + Fi
Hiotal = Ky + Uy = ﬁT (@1

The factor 4/ || /2R in Egs. (40, 41) appears due to dif-

ferent normalization for the friction and normal forces [see
Egs. (11) and (33)]. The normal load N in Egs. (40, 41) is
obtained by integrating the hydrodynamic pressure over the
whole domain:

|ho|\/ 2R|hy| / _ [l

The dry friction solution serves as a lower bound for the
normal load as shown in Fig. 12. Similar to b, the dry

2R|ho| _ 0
— Y N 42)
Co

(b)o.ss -
AAAAAA —— I}, co0/co =100, 3 = 10
03— ——Fy,cxc/co = 100, 3 = 50 |
Ff7coc/c[) - 1007ﬁ =100
0.25 \\, |— Asymptotic solution
0.2
=~

102 10° 102 104

asymptotic solution. Results are for three normalized sliding veloci-
ties with ¢, /¢, = 100

solution is very accurate where viscoelasticity is relevant,
0.1 < 4 < 10. Figure 13a—c plot the friction coefficients y,,
Hy and p,,,, against A for different . For convenience, the

\/|ho|- Since the area of

\/|o| and both F,;, /N and I?f/ZT/

|| through the parameters 4 and §. These

vertical axis is multiplied by 2R/

contact is proportional to vis

depend on

friction coefficients in general depend on the area of contact
and hence friction does not obey the Coulomb model. Inter-
estingly, the maximum friction coefficient for both mecha-
nisms occurs at 4 between 10 and 100. Note that, when
A < 1, the friction coefficient due to hydrodynamic flow ( yf)

increases linearly with area (recall 4 « 4/ |h|), which sug-
gests that fatter tires have higher friction for the same normal
force. Figure 13a shows that, for1 < A < 102, He increases
faster than the area of contact since y; increases with 4 in
this range. It is interesting to note that the maximum friction
coefficient does not occur at A ~ 1, instead, it occurs near
A= Apear & 50.

A convenient way of presenting results for an elastic sub-
strate is to plot the Stribeck curve, that is, the friction coef-
ficient against the Hersey number. Note, even for an elastic
substrate, the solution of our problem cannot be expressed
solely in terms of the Hersey number. Indeed, as shown
above and by others [3, 30, 35], friction depends on the sin-
gle parameter f, which one can view as a generalized Hersey
number. For viscoelastic substrates, the friction coefficient
depends on three dimensional parameters,f, 4, ¢,/c.,. This
means that the generalization of the Stribeck curve is a sur-
face in four-dimensional space. Here we present a slice of
this surface by fixing ¢, /c,, to be 100, and plot the friction

@ Springer
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Fig. 12 N versus A for the dry
case (¢4, /¢y, f = o0) and the
viscoelastic hydrodynamic
lubrication cases (¢, /¢, 14
f =10 -100)

|2 0.8

0.6 -
04 r

0.2

T — T T

—e—Coo/cy = 100,68 =1

—=—Coo/Co = 100,53 =50 | 1
Coo/co = 100, 8 = 100

——dry friction

O Lol
107 1072

coefficient y,,,, against § and A. These results are shown
in Fig. 14. In Fig. 14a, we plotted the special case where
¢o/Cs = 1, which corresponds to an elastic substrate, as a
reference. Clearly, in all cases viscoelasticity enhances fric-
tion. More interesting, the friction coefficient varies slowly
for a fixed A.

4 Discussion and Summary

We have used a 1D model to study lubricated sliding on
a viscoelastic substrate with focus on the large g regime.
Three dimensionless parameters are needed to determine the
solution despite the simplicity of our model. Although the
underlying physics are the same, 1D models are much easier
to solve numerically. In 2D or 3D, numerical calculations
are much more difficult even for elastic substrates. In addi-
tion to numerical difficulties, the large number of parameters
requires many calculations and impedes understanding of
the basic physics. Our analysis suggests an approach that
can alleviate these difficulties. A key result is that many
features of the full viscoelastic lubrication problem can be
obtained by combining the solution of two simpler problems.
The first is to replace the viscoelastic substrate by an elastic

@ Springer

substrate; the second is the solution of dry (no lubricant)
problem with a viscoelastic substrate. One simply solves the
dry problem to find the pressure field and the friction force
due to viscoelastic dissipation. In the large f regime, this
“dry” pressure field and corresponding viscoelastic friction
differ little from the pressure and friction of the full viscoe-
lastic lubrication problem. The thickness of the lubrication
layer can be obtained using perturbation theory using the dry
pressure and this allows one to compute the hydrodynamic
friction force without solving the full viscoelastic lubrication
problem. We expect these insights are applicable to lubrica-
tion problems with more complex geometries such as such
as sphere or ellipsoid.
In summary, we have accomplished the following:

e A detailed analysis of the elastic lubrication problem in
the Hertz regime (large ). Accurate expressions for the
hydrodynamic friction and film thickness are provided.

e A detailed analysis of the dry viscoelastic sliding con-
tact problem. Accurate expressions for friction caused by
viscoelastic dissipation are provided for a standard solid.
Furthermore, the dry problem can be solved exactly
(within quadrature) for any relaxation function.
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Fig. 13 Friction coefficient components from: a the hydrodynamic part y,; b the part of substrate viscoelasticity p,;, ¢ the total frictional coef-

ficient y,,,, versus different A. ¢, /¢, = 100 and § = 10 ~ 100. The dry friction case corresponds to ¢, /¢, = 100 and f = oo
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Fig. 14 The generalized Stribeck surface: a total friction coefficient 4, as a function of g and A with ¢,/c,, = 100; b—c friction coefficient

component g, and

e A detailed numerical study of the full viscoelastic lubri-
cation problem in the large f regime. We demonstrated
that many features of these numerical solutions can be
obtained using the solutions of the first two problems.

Supplementary Information The online version of this article (https://
doi.org/10.1007/s11249-020-01396-5) contains supplementary mate-
rial, which is available to authorized users.
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