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Anomalous sound attenuation in Weyl semimetals in magnetic and pseudomagnetic fields
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We evaluate the sound attenuation in a Weyl semimetal subject to a magnetic field or a pseudomagnetic field
associated with a strain. Due to the interplay of intra- and internode scattering processes as well as screening, the
fields generically reduce the sound absorption. A nontrivial dependence on the relative direction of the magnetic
field and the sound wave vector, i.e., the magnetic sound dichroism, can occur in materials with nonsymmetric
Weyl nodes (e.g., different Fermi velocities and/or relaxation times). It is found that the sound dichroism inWeyl
materials can also be activated by an external strain-induced pseudomagnetic field. In view of the dependence
on the field direction, the dichroism may lead to a weak enhancement of the sound attenuation compared with
its value at vanishing fields.
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I. INTRODUCTION

Weyl and Dirac semimetals are novel materials with un-
usual electronic properties related to their relativisticlike
energy spectrum and nontrivial topology [1–7]. Conduction
and valence bands in Dirac semimetals touch at Dirac points.
Each Dirac point can be viewed as a composition of two
Weyl nodes of opposite topological charges or chiralities.
The Weyl nodes in Weyl semimetals are separated in mo-
mentum and/or energy spaces. Since the total topological
charge in the system vanishes, the Weyl nodes always ap-
pear in pairs of opposite chiralities [8–10]. One of the most
remarkable properties of Dirac and Weyl semimetals is their
ability to reproduce various effects previously accessible only
in high-energy physics [11] including the celebrated chiral
anomaly [12,13].

In essence, the chiral anomaly is the violation of the
classical conservation law of chiral or imbalance charge in
quantum theory when fermions interact with electromagnetic
fields. This process is often referred to as the chirality pump-
ing between the Weyl nodes of opposite chiralities. In the
high-energy physics context, the anomaly is crucial for the
description of the neutral pion decay into two photons. The
chiral anomaly plays an important role in condensed matter
physics too. For example, it leads to the “negative” longitu-
dinal magnetoresistance observed in Dirac (Na3Bi, Cd3As2,
and ZrTe5) and Weyl (transition metal monopnictides TaAs,
NbAs, TaP, and NbP) semimetals (see Refs. [14–18] for re-
views on anomalous transport properties). In these materials,
the resistivity decreases with a magnetic field if an electric
current is driven along the field.

In addition to the anomalous transport in conventional
electromagnetic fields, Dirac and Weyl semimetals allow
one to realize unusual chirality-dependent pseudoelectromag-
netic or axial gauge fields [19–22] (see also Ref. [23] for
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a review). Unlike electromagnetic fields, the pseudoelectro-
magnetic ones act on the fermions of opposite chiralities with
different sign. Pseudoelectromagnetic fields allow for several
interesting effects such as anomalous transport [21,22,24–30],
quantum oscillations [31], and collective excitations [32–36],
to name a few. Of particular interest are effects related to dy-
namical deformations, which, for example, could be induced
by sound. Such effects include the sound attenuation [22,37–
39], the acoustogalvanic effect [40], the torsion-induced chiral
magnetic effect current [41], and the axial magnetoelectric
effect [42]. It is worth noting that not only do deformations
affect electron quasiparticles, but also phonons could receive
feedback from electrons under certain conditions. In particu-
lar, the chiral anomaly for fermions is manifested in phonon
dynamics [43–46].

While the sound attenuation in Weyl semimetals was
already investigated before, the corresponding analysis is in-
complete. For example, Ref. [37] captures only the effect of
the anomaly in a narrow parametric regime. In particular,
the background contribution to the attenuation coefficient in
the absence of magnetic fields, which is similar to the case
of conventional multivalley semiconductors [47–49], was not
taken into account. Furthermore, the effects of the intran-
ode scattering and the electrostatic screening associated with
the internode electron dynamics were also neglected. Indeed,
while it is common to screen the regular deformation poten-
tial [50–52], it was assumed that the axial or chiral one, which
has opposite signs at the Weyl nodes of opposite chiralities,
is insensitive to the screening since it does not lead to electric
charge deviations. We show that, while this is true in the ab-
sence of magnetic fields, the chiral anomaly eventually allows
for the oscillating electric charge even for the chiral defor-
mation potential. Therefore the electric screening plays the
crucial role and should be taken into account. This provided
one of the main motivations for the present work.

By using the chiral kinetic theory (CKT) [53–56], we
calculate the attenuation coefficient in an effective low-
energy model of Weyl semimetals subject to a scalar
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chirality-dependent deformation potential as well as external
magnetic and strain-induced pseudomagnetic fields. Accord-
ing to Refs. [43–45], such a deformation potential could
originate from the coupling to a pseudoscalar phonon. Indeed,
the conventional momentum-independent deformation poten-
tial is strongly screened allowing only for the valley-sensitive
part to survive. In the absence of magnetic fields, our final
expression for the sound attenuation coefficient agrees with
that for usual multivalley semiconductors [47–49]. Therefore,
to activate nontrivial features of Weyl semimetals, one needs
to apply external fields. Due to the chiral anomaly, the elec-
trostatic screening, and the intranode scattering, the sound
attenuation becomes suppressed in a magnetic field. This
suppression is monotonic for symmetric Weyl nodes, which
are characterized by the same parameters, and could reach
several percent for sufficiently strong fields. On the other
hand, in the case where the Weyl nodes have different Fermi
velocities or are characterized by different relaxation times,
the dependence on the magnetic field becomes nonmonotonic,
and magnetic sound dichroism can be realized. Due to this
effect, the attenuation is different for the sound propagating
along or opposite to the magnetic field. A similar nonmono-
tonic and directional dependence occurs also if an external
pseudomagnetic field is applied to the semimetal. We notice
that pseudomagnetic sound dichroism appears even if theWeyl
nodes are symmetric. For realistic model parameters, sound
dichroism is weak. Its value for optimal (pseudo)magnetic
fields is about a few percent of the attenuation coefficient at
zero fields.

Recently, a study addressing the sound attenuation in Weyl
semimetals in a magnetic field [39] appeared. The authors
of Ref. [39] took a somewhat different route in deriving
their results, but there is a partial overlap with our findings.
Specifically, the decrease in the attenuation coefficient with
the magnetic field for a scalar deformation potential was also
predicted in Ref. [39]. On the other hand, the mechanism of
the sound dichroism uncovered in our work differs. Unlike
Refs. [38,39], it relies on the difference between the Fermi
velocities and the intranode relaxation times for the nodes of
opposite chiralities. Furthermore, we show that the dichroism
is also allowed by the strain-induced static pseudomagnetic
field.

The paper is organized as follows. We introduce the model
and the sound attenuation coefficient in Sec. II. Section III is
devoted to the chiral kinetic theory and the effect of propa-
gating sound waves on the electron quasiparticle distribution
function. The sound attenuation is analyzed and the numerical
estimates are provided in Sec. IV. The results are discussed
and summarized in Secs. V and VI, respectively. Technical
details concerning the derivation of the energy dissipation rate
and the collision integral are given in Appendixes A and B,
respectively. Throughout this paper, we use kB = 1.

II. MODEL AND SOUND ATTENUATION COEFFICIENT

A. Model of Weyl semimetal

The effective low-energy Weyl Hamiltonian in the vicinity
of the Weyl node α reads as

Hα = χαvF,α (pα · σ), (1)

where χα = ± is the chirality or, equivalently, the topological
charge of the Weyl node, vF,α is the Fermi velocity, pα is the
momentum, and σ is the vector of the Pauli matrices acting in
the pseudospin space. As we show in Secs. III B 3 and IVC,
the difference between the Weyl nodes, e.g., different Fermi
velocities, plays an important role in the sound attenuation in
a magnetic field.

To realize a Weyl semimetal, the time-reversal (TR) and/or
parity-inversion (PI) symmetries should be broken. In the case
of the broken TR symmetry but preserved PI symmetry, the
minimal model contains two Weyl nodes separated in mo-
mentum space by 2b. On the other hand, the minimal number
of Weyl nodes for a TR-symmetric but PI-symmetry-broken
model is 4. In the case where both symmetries are broken, the
Weyl nodes in the minimal model could be separated in energy
by 2b0 and in momentum by 2b. In material realizations of
Weyl semimetals, the number of Weyl nodes could be signif-
icantly larger. For example, there are 24 Weyl nodes of two
types in transition metal monopnictides (see, e.g., Ref. [4]).

To describe the effects of weak dynamical strains, we intro-
duce the deformation potential [57]. For the sake of simplicity,
we consider only its scalar part, i.e.,

Hstrain = λ
(α)
i j (pα )ui j (t, r). (2)

Here, λ
(α)
i j (pα ) quantifies the strength of the scalar deforma-

tion potential for the node α, ui j (t, r) = (∂iu j + ∂ jui )/2 is
the strain tensor, and u(t, r) is the displacement vector that
depends on time and coordinates. In this paper, we consider
the case of plane sound waves

u(t, r) = u0e−iωt+iq·r, (3)

where ω and q are the sound angular frequency and the
wave vector, respectively. Henceforth, for simplicity, we
suppress the arguments of the strain tensor. In general,
λ
(α)
i j (pα ) depends on momentum. This corresponds to the

higher-order multipole modes of Fermi surface oscillations,
which are the main source of the sound attenuation in usual
single-valley metals [52]. In this paper, we focus on the
momentum-independent deformation potential, i.e., we as-
sume that λ(α)

i j (pα ) = λ
(α)
i j . This approximation is sufficient in

order to capture the leading-order contribution to the sound
absorption in multivalley systems.

It is well known [52] that, in the case of momentum-
independent deformation potential, its valley-even component
is strongly screened in conventional metals since it causes
electric charge oscillations. On the other hand, the valley-odd
component of the deformation potential in a multivalley con-
ductor does not lead to electric charge oscillations, as it creates
opposite-in-sign perturbations of electron distributions in the
respective valleys. The electron scattering between the valleys
results in the sound attenuation mechanism, similar to that
of Debye relaxation losses in dielectrics [58]; it remains ef-
fective even at perfect screening [47–49]. Electron transitions
between the valleys are usually associated with a large (on the
order of a Brillouin vector) momentum transfer. An external
magnetic field does not considerably alter the corresponding
matrix elements, as long as the magnetic length far exceeds
the lattice parameter; this condition is satisfied by a large mar-
gin for any realistic field strength. The effect of magnetic field
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is qualitatively different in a Weyl semimetal, if the pattern
of the odd-in-valley component of the deformation potential
coincides with the pattern of nodes of opposite chirality. Mag-
netic field induces anomalous drift with opposite velocities
for left- and right-handed electron quasiparticles. Due to the
drifts, the perturbation of electron distribution caused by the
valley-odd component of the deformation potential ceases to
be charge neutral. That, in turn, activates the screening and
suppresses the sound attenuation. We present a fuller quali-
tative explanation and interpretation of our results in Sec. V.
As was noted in Ref. [26], the chiral deformation potential
can be induced in Weyl semimetals with broken PI symmetry
where Weyl nodes are separated in energy. From the sym-
metry point of view, this part of the deformation potential
requires coupling to phonon modes which are invariant under
proper rotations (pseudoscalar phonons) [43–45]. Regardless
of its origin, the chiral deformation potential corresponds to
the antiphase motion of the Weyl nodes of opposite chiralities
in energy space.

The energy spectrum in each Weyl node reads as

ε̃α = εα + χαb0 + λ
(α)
i j ui j, (4)

where εα = εα (pα ) is the energy dispersion in the absence of
deformations at the node α and b0 quantifies the separation be-
tween the Weyl nodes in energy space. For example, the Weyl
nodes of opposite chiralities are located at different energies
in SrSi2 [59,60]. In the case of the effective Hamiltonian given
in Eq. (1), εα = vF,α pα . Finally, as in semiconductors [48], in
the absence of electron transition between the valleys, each of
the nodes establishes its own effective Fermi energy

μα = μ + λ
(α)
i j ui j, (5)

where μ is the equilibrium Fermi energy measured from the
Weyl nodes. This corresponds to the case where the local
equilibrium charge density within each valley is conserved
even in the presence of dynamical deformations. It is worth
noting that such a configuration cannot exist in equilibrium
for static deformations in real materials where even weak
internode scattering processes eventually equalize the Fermi
levels across all Weyl nodes.

A replica of the band structure displaying two represen-
tative Weyl nodes at nonzero chiral deformation potential
λ
(α)
i j ui j = χαλ

(5)
i j ui j is sketched in Fig. 1. As we demonstrate

below, the energy shift induced by λ
(5)
i j ui j leads to a nontrivial

scattering between Weyl nodes of opposite chiralities.

B. Sound attenuation coefficient

In this section, we discuss the sound absorption in Weyl
semimetals. The sound attenuation coefficient � is defined
as [50–52,61]

� = Q

V I
. (6)

It quantifies the decay of the sound energy flux

I = vs
ρm〈|∂tu|2〉T

2
= vs

ρmω2u20
2

(7)

within the sample. Here, vs is the sound velocity, ρm is the
mass density, u0 is the magnitude of the displacement vector,
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FIG. 1. Schematic band structure of a Weyl semimetal with two
nodes subject to the node-dependent or chiral deformation potential
λ
(α)
i j ui j = χαλ

(5)
i j ui j . In the absence of deformations, the Weyl nodes

are separated by 2b0 in energy.

〈· · · 〉T denotes the time average, and V is the system’s vol-
ume. Furthermore, Q is the dissipated energy per unit time. It
can be conveniently expressed (see Appendix A) in terms of
the dynamical deformation potential λ

(α)
i j ui j associated with

the sound wave equation (2) and the perturbed electron distri-
bution evaluated to the first order in ui j ,

Q

V
=

NW∑
α

να (μ)

2
Re

{
iω

(
λ
(α)
i j ui j

)∗
nα

}
. (8)

Here, NW is the total number of Weyl nodes, and nα is the
perturbed-by-the-deformation-potential electron distribution
nα (pα ) ∼ λ

(α)
i j ui j in the valley α averaged over the respective

Fermi surface,

nα = 1

να (μ)

∫
d3pα

(2π h̄)3
δ(εα + χαb0 − μ)nα (pα ). (9)

We assume that temperature is small compared with the Fermi
energyμ throughout this paper. The density of states (DOS) in
the general equation (8) for the specific model of Weyl nodes
given in Eqs. (1) and (4) is

να (μ) ≡
∫

d3pα

(2π h̄)3
δ(εα + χαb0 − μ) = (μ − χαb0)

2

2π2h̄3v3
F,α

.

(10)
Since we focus on the case of classically weak magnetic fields
ωcτ � 1 with ωc being the cyclotron frequency and τ being
the intranode relaxation time, we neglect the dependence of
the DOS on (pseudo)magnetic fields.

The full nonequilibrium distribution function for the quasi-
particles from the Weyl node α reads

fα (pα ) = f (0)α (pα ) − (
∂εα

f (0)α

)
nα (pα ), (11)
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where f (0)α (pα ) is the Fermi-Dirac distribution function, which
describes electron quasiparticles in local equilibrium, and(

∂εα
f (0)α

) ≈ −δ(εα + χαb0 − μ) (12)

for temperatures low compared with the Fermi energy.

In the case of equal densities of states να (μ) in all Weyl
nodes, να (μ) = ν(μ), and the deformation potential λ

(α)
i j =

λi j + χαλ
(5)
i j uniform across the nodes of same chirality,

Eq. (8) simplifies to

Q

V
= −ν(μ)ω

2
Im

{
(λi jui j )

∗n + (
λ
(5)
i j ui j

)∗
n5

}
at να (μ) = ν(μ), λ

(α)
i j = λi j + χαλ

(5)
i j . (13)

Here, the averaged distribution functions n = ∑NW
α nα and

n5 = ∑NW
α χαnα are linear combinations of the perturbed elec-

tron distributions in valleys α averaged over the respective
Fermi surfaces. The local charge density is suppressed in the
limit of strong screening, n = 0, and the first term in the curly
brackets in Eq. (13) vanishes.

Finally, we notice that the energy dissipation rate in Eq. (8)
agrees with that in Ref. [51]. We would like to emphasize that
using Eq. (8) is equivalent to the conventional way of evalu-
ation of Q via entropy production [50,62]. However, we find
the form of Eq. (8) better suited for our purposes, as it allows
us to see the effect of symmetries between the valleys on the
energy dissipation and spares us from a separate evaluation of
the Joule and intervalley contributions to Q. As we show in
Sec. IVA, our results for the sound absorption in a magnetic
field agree (in the appropriate limits) with the recent findings
in Ref. [39], where the entropy production was calculated.

For our qualitative estimates, we ignore the anisotropy of
the deformation potential in the attenuation coefficient and
estimate it as λ

(α)
i j ui j ∼ iλ(α)u0q. Then, the final expression for

the sound attenuation coefficient in Eq. (6) reads as

� = q

vsρmωu0

NW∑
α

να (μ)Re{λ(α)nα}. (14)

Thus the sound attenuation is determined by the DOS να (μ),
the deformation potential ∝λ(α), and the averaged nonequi-
librium part of the distribution function nα . Under the
simplifying assumptions regarding the DOS in Weyl nodes
and the chiral deformation potential used in Eq. (13), the
attenuation coefficient reduces to

� = ν(μ)q

vsρmωu0
Re{λn + λ(5)n5} at να (μ) = ν(μ),

λ
(α)
i j = λi j + χαλ

(5)
i j . (15)

To describe the deviations from the equilibrium caused by
dynamical deformations and determine nα , we employ the
chiral kinetic theory (CKT) in the next section.

III. CHIRAL KINETIC THEORY

A. General equations of chiral kinetic theory

The semiclassical kinetic equation for Weyl quasiparticles
reads as [54–56]

∂t fα + 1

�α

{(
−eẼα − e

c
[vα × Bα] + e2

c
(Ẽα · Bα )�α

)
· ∂pα

fα +
(
vα − e[Ẽα × �α] − e

c
(vα · �α )Bα

)
· ∇ fα

}

= Iintra[ fα] + Iinter[ fα]. (16)

Here, fα is the distribution function for electron quasiparticles
at the node α defined in Eq. (11), vα = ∂pα

ε̃α is the quasipar-
ticle velocity, −eẼα is the force acting on an electron (e > 0),

eẼα = eE + ∇ε̃α , (17)

the energy spectrum ε̃α is defined in Eq. (4) and depends on
spatial coordinates via the deformation potential λ

(α)
i j ui j , and

vector Bα combines the external magnetic and pseudomag-
netic fields; see Eq. (33) for an explicit expression for Bα in
a symmetric case. The Berry curvature �α = �α (pα ) for the
Hamiltonian of Eq. (1) takes the form

�α (pα ) = χα h̄
pα

2p3α
(18)

for electrons with energies above the Weyl point, and �α =
[1 − e(Bα · �α )/c] is the renormalization of the phase-space
volume. The sound attenuation is determined by the Fermi

surface properties, so, in the following, we will encounter
only �α (pF,α ), where pF,α parametrizes points on the Fermi
spheres around the respective Weyl nodes α. In the case of
a linear energy spectrum discussed in Sec. II A, pF,α = (μ −
χαb0)/vF,α . The collision integral on the right-hand side in
Eq. (16) is a sum of the intra- and internode terms Iintra[ fα]
and Iinter[ fα], respectively. Their explicit form in the τ approx-
imation is given in Appendix B; see Eqs. (B2) and (B10).

The kinetic equation (16) should also be amended with
Maxwell’s equations. Since the sound and Fermi velocities
are much smaller than the speed of light, we use a quasistatic
approximation in which dynamical magnetic and solenoidal
electric fields are neglected. Then, only the Gauss law should
be taken into account. It reads as

∇ · E = −4πe
NW∑
α

να (μ)nα (19)
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and is determined by the nonequilibrium part of the distri-
bution function [see also Eq. (11)]. The combination of the
kinetic equation (16) and the Gauss law (19) comprise the
full formulation of the self-consistent problem for the re-
sponse of a Weyl semimetal to acoustic waves propagating in
it.

As is shown in Sec. II B, the energy dissipation rate and the
sound attenuation coefficient are determined by the averaged-
over-the-Fermi-surface nonequilibrium part of the distribution
function nα . To calculate this function, we linearize Eq. (16) in
weak strains ui j and use the ansatz in Eq. (11). Then, Eq. (16)
reads

{∂t + [vα − e

c
[vα · �α (pF,α )]Bα] · ∇}n(pF,α ) +

[
e(vα · E) − e2

c
[vα · �α (pF,α )](E · Bα ) +

NW∑
β

n(pF,α ) − nβ

τα,β

]

= −
[
λ
(α)
i j (vα · ∇ui j ) − λ

(α)
i j

e

c
[vα · �α (pF,α )](Bα · ∇ui j ) + ui j

NW∑
β

λ
(α)
i j − λ

(β )
i j

τα,β

]
. (20)

Here, n(pF,α ) is the nonequilibrium part of the distribution
function at the Fermi level. We used the dispersion relation
of Eq. (4) and the explicit form of the collision integrals in the
τ approximation given in Eqs. (B2) and (B11) in Appendix B.
The relaxation rates

1

τα,β

= 2π

h̄
|Aα,β |2νβ (μ) (21)

are determined by the intra- and internode scattering am-
plitudes Aα,β . In the following, we abbreviate the notation
for the intranode relaxation time: τα,α ≡ τα . In addition, in
the derivation of Eq. (20), we neglected the phase-space
volume renormalization �α = [1 − e(Bα · �α )/c] and the
contribution of the magnetic moment to the energy dispersion.
Accounting for it is equivalent [53,54] to the replacement
εα → εα[1 + e(�α · Bα )/c]. As is estimated at the end of
Sec. IVA, these terms lead only to a small contribution to the
sound attenuation coefficient compared with the effect of the
chiral anomaly.

B. Solutions to the kinetic equation

In this section, we consider the case of weak internode
(α �= β) scattering, τα � τα,β , and ταω � 1. We checked that
the above assumptions hold well for realistic numerical values
presented in Sec. IVA. The short intranode relaxation time al-
lows us to retain only the first two harmonics in the expansion
of the nonequilibrium part of the distribution function:

nα (pα ) ≈ n(0)α + n(1)α cos θα, (22)

where θα is the angle between vα and ∇ and n(0)α ≈ nα . By
following the standard procedure, we use Eq. (20), separate
the contributions with different powers of cos θα , and solve
for n(1)α . Then, by using the obtained solution, we calculate the
current density

jα = j(CME)
α + j(diff)α . (23)

In the above equation, we separated the chiral
(pseudo)magnetic effect (CME) j(CME)

α [63,64] and diffusion
intranode j(diff)α currents. They read as

j(CME)
α = e2

c

∫
d3pα

(2π h̄)3
[vα · �α (pF,α )]Bαn

(0)
α δ(εα + χαb0 − μ) = χα

e2

4π2h̄2c
Bαnα, (24)

j(diff)α = −e
∫

d3pα

(2π h̄)3
vαn

(1)
α cos θαδ(εα + χαb0 − μ) = eνα (μ)Dα

[∇nα + eE + λ
(α)
i j ∇ui j

]
, (25)

where

Dα = v2
F,ατα

3
(26)

is the diffusion coefficient. Notice that the term [Ẽα × �α (pF,α )] present in electron velocity [see Eq. (16)] does not contribute
to the current density in the linear order in ui j .

By averaging Eq. (20) over the Fermi surface and using Eq. (23), we derive the following kinetic equation:

∂t nα − 1

eνα (μ)
(∇ · jα ) − e2

c

([
E + 1

e
λ
(α)
i j ∇ui j

]
· Bα

)
(�α · vα ) = −

NW∑
β

nα − nβ

τα,β

− ui j

NW∑
β

λ
(α)
i j − λ

(β )
i j

τα,β

, (27)

which together with Eqs. (23)–(25) as well as the Gauss
law (19) defines the response nα to the dynamic strain ui j .

The first two terms on the left-hand side of Eq. (27) cor-
respond to the conventional continuity equation. The chiral

anomaly is described by the third term, where

(�α · vα ) = |�α (pF,α )|vF,α = χα

4π2 h̄2να (μ)
; (28)
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cf. Eq. (18). The collision integral on the right-hand side contains the term describing usual internode scattering (the first term).
The second term in the collision integral originates from the different effective Fermi energies of the Weyl nodes of opposite
chiralities (see also Fig. 1 for the schematic band structure). It is worth noting that this term and the diffusion current were not
accounted for in Ref. [37].

In the case of sound-induced dynamical strains, the deformation potential and the nonequilibrium part of the distribution
function have a plane-wave dependence on time and coordinates; see Eq. (3). Therefore, by using the explicit form of the
currents given in Eqs. (24) and (25), we rewrite Eq. (27) as

[q2Dα − i(v�,α · q) − iω]nα − ieDα (q · E) − (v�,α · E) +
NW∑
β

nα − nβ

τα,β

= −ui j

[
λ
(α)
i j q

2Dα − iλ(α)
i j (v�,α · q) +

NW∑
β

λ
(α)
i j − λ

(β )
i j

τα,β

]
. (29)

Here, to simplify the notations, we omitted the overbar in the averaged distribution function, i.e., nα → nα , and introduced the
anomalous velocity

v�,α = χα|�α (pF,α )|vF,α

c
eBα = χα

e

4π2ch̄2να (μ)
Bα. (30)

In an external magnetic field, Bα = B, it corresponds to the drift of electrons with opposite chiralities in opposite directions.
As one can see from Eq. (29), diffusion [see the second term in Eq. (29)] and the chiral anomaly [see the third term in Eq. (29)]

introduce the dependence on the electric field E. The Gauss law (19) allows one to express E as a linear combination of nα , thus
completing the formulation of the linear response problem. We will provide its explicit solution under simplifying assumptions.

Let us consider Weyl semimetals where there is a symmetry between the pairs (α,−α) of Weyl nodes. Specifically, we assume
that the deformation potential can be parametrized as

λ
(α)
i j = λi j + χαλ

(5)
i j , (31)

the two relaxation times

1

τ5,±α

=
NW∑
β

|χ±α − χβ |
τ±α,β

(32)

are the same for all pairs, and

Bα = B + χαB5. (33)

Here, the pseudomagnetic field B5 can be generated by static strains such as bending or torsion [19–22] (see also Ref. [23] for
a review). As an example of the corresponding system with such a symmetry, we mention Weyl semimetals where the pairs of
Weyl nodes are well separated in momentum space. Then, only the scattering rates between the nodes α and −α of opposite
chiralities inside each pair α contribute to τ5,α , i.e., τ5,α ≈ τα,−α . In the presence of said symmetry, the matrix of the linear
system in Eq. (29) becomes block diagonal, and one can consider kinetic equations only for a single pair of Weyl nodes with
chiralities χ−α = −χα .

To shorten the notations, we introduce the square of the inverse length [65]

q2TF = 4πe2
NW∑
α

να (μ) (34)

of the Thomas-Fermi screening in Eq. (29). By expressing the electric field in terms of nα with the help of the Gauss law (19)
and using Eq. (34), we rewrite the kinetic equations for a single pair α = ±1 of Weyl nodes as

[
1

τ5,α
+ q2Dα − i(v�,α · q) − iω

]
nα + [q2Dα − i(v�,α · q)]q

2
TF

q2
να (μ)nα + ν−α (μ)n−α

να (μ) + ν−α (μ)

− nα + n−α

2τ5,α
= −λi jui j[q

2Dα − i(v�,α · q)] − χαλ
(5)
i j ui j

[
1

τ5,α
+ q2Dα − i(v�,α · q)

]
. (35)

In what follows, we solve Eq. (35) for symmetric Weyl nodes (b0 = 0, vF,α = vF , τα = τ , and τ5,α = τ5) in two cases: (i)
B �= 0 and B5 = 0 as well as (ii) B = 0 and B5 �= 0. In addition, the solutions for nonsymmetric nodes (b0 �= 0, vF,α �= vF,−α ,
τα �= τ−α , and τ5,α �= τ5,−α) at B �= 0 and B5 = 0 are also considered.
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1. Solution of the kinetic equations at a finite magnetic field

In the case of symmetric Weyl nodes and B5 = 0, one can simplify Eq. (35) to[
1

τq
− iχα (v� · q) − iω

]
nα −

[
1

τ5
− q2TFD + iχα (v� · q)q

2
TF

q2

]
(nα + n−α )

2

= −λi jui j[q
2D − iχα (v� · q)] − χαλ

(5)
i j ui j

[
1

τq
− iχα (v� · q)

]
, (36)

where v� = χαv�,α and the effective scattering rate

1

τq
= 1

τ5
+ q2D (37)

includes both intra- and internode scattering processes. Notice that v� ∝ B is a TR-odd axial vector. The full solution to Eq. (36)
reads

nα = −λi jui j
M

[
q2D

(
1

τq
− iω

)
− χαω(v� · q) + (v� · q)2

]

−χα

λ
(5)
i j ui j

M

[(
q2TF + q2

)
D − iω

τq
− χαω(v� · q) + (

q2TF + q2
)
(v� · q̂)2

]
, (38)

where q̂ = q/q and

M = [(
q2TF + q2

)
D − iω

]
(1/τq − iω) + (

q2TF + q2
)
(v� · q̂)2 (39)

is proportional to the determinant of the system in Eq. (36).
In material realizations of Weyl semimetals, the Fermi energy μ is small compared with that in metals. For example, μ =

10–30 meV in a typical Weyl semimetal TaAs [66,67]. Still the free-carrier density is high enough to result in a fairly short
Thomas-Fermi screening length, so that the conditions

qTF � q, σ � ω, σ � τ5ω
2 (40)

are easily satisfied. Here, σ = q2TFD/(4π ) is the electric conductivity at B = B5 = 0. The first of the conditions (40) allows one
to disregard the effect of the valley-even part of the deformation potential λi j in Eq. (38): In agreement with expectations [47]
(see also Refs. [48,51]), its contribution to nα scales as (q/qTF)2. Using Eq. (40), we simplify the general solution in Eqs. (38)
and (39) and find nα as

nα = −χαλ
(5)
i j ui j

1/τq + (v� · q̂)2/D
1/τq + (v� · q̂)2/D − iω

, n =
NW∑
α

nα = 0, n5 =
NW∑
α

χαnα = NWχαnα. (41)

As we showed in Sec. II B, since the attenuation coefficient is determined by the real part of n5 [see Eq. (15)], it is already
evident that the combination of the electrostatic screening and the intranode momentum relaxation has a profound effect on how
the magnetic field affects the sound dissipation. We discuss this in detail in Sec. IVA.

2. Solution of the kinetic equation at a finite pseudomagnetic field

Let us now consider the case in which the system is subject only to a pseudomagnetic field B5. The kinetic equation (35) at
B = 0 and symmetric Weyl nodes reads as[

1

τq
− i(v�,5 · q) − iω

]
nα −

[
1

τ5
− q2TFD + i(v�,5 · q)q

2
TF

q2

]
(nα + n−α )

2

= −λi jui j
[
q2D − i(v�,5 · q)] − χαλ

(5)
i j ui j

[
1

τq
− i(v�,5 · q)

]
, (42)

where v�,5 = v�,α is a TR-odd polar vector. Indeed, v�,5 ∝ B5, where B5 breaks both TR and PI symmetries. Under the
conditions of Eq. (40), its solution is

nα = −χαλ
(5)
i j ui j

1/τq − i(v�,5 · q)
1/τq − i(v�,5 · q) − iω

, n =
NW∑
α

nα = 0, n5 =
NW∑
α

χαnα. (43)

Notice that the direction of the pseudomagnetic field depends on the pattern of Weyl node pairs. Therefore the summation over
all Weyl nodes should be performed with care. We discuss a few corresponding examples in Sec. IVB.

By comparing Eqs. (41) and (43), it is evident that the magnetic and pseudomagnetic fields affect the distribution functions
differently. In particular, the distribution function nα in Eq. (43) depends on the direction of the pseudomagnetic field B5. This
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observation is not surprising because B5, which can be induced by static strains such as torsion or bending, breaks both the
symmetry between the Weyl nodes and crystal symmetries. As we show in Sec. IVB, the pseudomagnetic field has a profound
effect on the sound attenuation in Weyl semimetals leading to distinct attenuation coefficients for the sound propagating along
and opposite to the pseudomagnetic field.

3. Solution of the kinetic equations at a finite magnetic field: Nonsymmetric Weyl nodes

Finally, we analyze the case of nonsymmetric Weyl nodes, i.e., b0 �= 0, vF,α �= vF,−α , τα �= τ−α , and τ5,α �= τ5,−α . The solution
to Eq. (35) reads

nα = −χαλ
(5)
i j ui j

2ν−α (μ)

να (μ) + ν−α (μ)

1

M̃
{τ5,α[q2D−α − i(v�,−α · q)] + τ5,−α[q

2Dα − i(v�,α · q)]

+ 2τ5,ατ5,−α[q
2Dα − i(v�,α · q)][q2D−α − i(v�,−α · q)]}, (44)

with

M̃ = τ5,α[q
2D−α − i(v�,−α · q)] + τ5,−α[q

2Dα − i(v�,α · q)]

+ 2τ5,ατ5,−α

να (μ) + ν−α (μ)
{να (μ)[q2Dα − i(v�,α · q)][q2D−α − i(v�,−α · q) − iω]

+ ν−α (μ)[q2Dα − i(v�,α · q) − iω][q2D−α − i(v�,−α · q)]}. (45)

In deriving Eqs. (44) and (45), we used Eq. (40) and retained only the terms surviving [68] in the limit 1/qTF → 0. The solution
remains cumbersome even at 1/qTF → 0. Therefore, in the following, we consider small deviations from the symmetry:

Dα = D + χαδD = D

[
1 − χα

δν(μ)

ν(μ)

]
+ χαδD̃, να (μ) = ν(μ) + χαδν(μ). (46)

Here, D = (Dα + D−α )/2, while the difference δD = χα (Dα − D−α )/2 is assumed to be small, δD � D. Notice also that while
D is a true scalar, δD is a pseudoscalar. Similar definitions and assumptions are made for other variables.

In particular, δτ5 and δv� depend only on the DOS deviations δν(μ) similarly to the second term in the square brackets
in Eq. (46). [We assume also the case of well-separated Weyl node pairs, as discussed after Eq. (33).] It is important that δD
contains an additional term δD̃, which is determined by different Fermi velocities and/or intranode scattering amplitudes in the
nodes α and −α. As we show below, this term is responsible for the odd-in-magnetic-field term in nα .

Expanding the solution (44) up to the first order in δν(μ) and δD̃, nα = n(0)α + n(1)α + · · · , we obtain

n(1)α = −χαn
(0)
α

δν(μ)

ν(μ)
− 2χαλ

(5)
i j ui j

(v� · q)ω
[1/τq + (v� · q̂)2/D − iω]2

δD̃

D
, (47)

n(1)5 =
NW∑
α

χαn
(1)
α = −2NWλ

(5)
i j ui j

(v� · q)ω
[1/τq + (v� · q̂)2/D − iω]2

δD̃

D
, (48)

where the zeroth-order solution n(0)α is given by Eq. (41) found in the limit of symmetric Weyl nodes. While the zeroth-order
solution is even in B · q̂, odd powers of B · q̂ appear in the first-order correction given in Eq. (47) at δD̃ �= 0. The corresponding
component survives the summation over the nodes; see Eq. (48). It is easy to check that, as expected for the strong screening
conditions (40), deviations of the resulting electric charge vanish, i.e.,

∑NW
α να (μ)n(0)α + ∑NW

α ν(μ)n(1)α = 0.
In the next section, by using the obtained solutions, we discuss the sound attenuation in Weyl semimetals.

IV. SOUND ATTENUATION

In parallel with Sec. III B, we evaluate the sound attenu-
ation in three limits. We start with the results for symmetric
Weyl nodes and nonzero magnetic field (while B5 = 0), then
consider the effect of the pseudomagnetic field (at B = 0), and
conclude this section with the results specified for nonsym-
metric Weyl nodes at B5 = 0.

A. Sound attenuation in a magnetic field

By using Eqs. (15) and (41), we find the following at-
tenuation coefficient for the nonzero magnetic field B and

symmetric Weyl nodes:

�(B, ω, q̂) = NW ν(μ)|λ(5)|2
vsρm

q2[1/τq + (v� · q̂)2/D]
[1/τq + (v� · q̂)2/D]2 + ω2

,

(49)

where q = ω/vs. In the absence of magnetic fields,
B = 0 (i.e., v� = 0), the sound attenuation coefficient
reads as �(ω) = [NW ν(μ)|λ(5)|2/(vsρm)]{τqq2/[1 + (τqω)2]}.
It agrees with the results obtained in Refs. [47–49] for multi-
valley semiconductors and in Ref. [39] for Weyl semimetals.
At τqω � 1, it scales as ω2. The same scaling is valid also
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for single-valley conductors with momentum-dependent de-
formation potential [50,52].

As one can see from Eq. (49), the sound attenuation coef-
ficient monotonically decreases with the increase in magnetic
field B. By using the typical parameter values [see Eq. (51)
below], it is easy to check that the condition τqω � 1 holds
well for a wide range of intra- and internode relaxation times.
This allows us to simplify Eq. (49),

�(B, ω, q̂) = NW ν(μ)|λ(5)|2
vsρm

q2

1/τq + (v� · q̂)2/D , (50)

where the dependence of v� on B is given by Eq. (30). Further
expansion of Eq. (50) in B would reproduce the result of
Ref. [39].

We used semiclassical kinetic equations to derive Eqs. (49)
and (50). Therefore we confine our consideration to nonquan-
tizing magnetic fields. Furthermore, we did not account for the
effect of magnetic field on the intravalley electron dynamics.
At an arbitrary angle between B and q̂, this limits our con-
sideration to classically weak magnetic fields; cf. Ref. [39].
The latter constraint is eased for the field B aligned with q̂, as
we are considering spherical Fermi surfaces. In that respect,
there is a similarity between the evaluation of �(B) and the
evaluation of the conductivity tensor component along the
direction of a nonquantizing magnetic field [69]: In a metal
with a spherical Fermi surface, cyclotron motion of electrons
does not affect these two quantities.

We present the dependence of the normalized magnetic-
field-dependent part of the sound attenuation coefficient in
Fig. 2. In plotting it, we used Eqs. (49) and (50) as well as
parameters

vF ≈ 3 × 107 cm/s, μ ≈ 20 meV, τ5 ≈ 6 × 10−11 s,

τ ≈ 3.8 × 10−13 s, vs ≈ 2.8 × 105 cm/s, (51)

quoted [67,70,71] for the Weyl semimetal TaAs. As one can
see from Fig. 2, the suppression of the sound attenuation coef-
ficient by the magnetic field is significant for experimentally
feasible frequencies of ultrasound and for B approaching the
regime of classically strong magnetic fields.

Our Eqs. (49) and (50) differ substantially from the sound
attenuation predictions of Ref. [37]. There are two major
differences distinguishing the current work from the simplifi-
cations accepted in Ref. [37], as we account for (i) a small but
finite intranode relaxation time and (ii) electrostatic screening
of the electric fields accompanying sound waves in a Weyl
semimetal subject to a magnetic field. It is the combination
of these effects that leads to the discrepancy. To demonstrate
this explicitly, let us consider the model case of a very fast
intranode relaxation,D → 0. Then, the attenuation coefficient
due to the valley-dependent part of the deformation potential
reads

lim
D→0

�(B, ω, q̂) = NW ν(μ)|λ(5)|2
vsρm

τ5q2

(τ5ω)2
[
1 − (

q2TF + q2
)
(v� · q̂)2/ω2

]2 + 1
, (52)

where we used Eqs. (38) and (39) without any assumption
about the ratio q/qTF. The magnetic field dependence first
appears here in the second order in the magnetic field:

lim
D→0

�(B, ω, q̂) = lim
D→0

�(ω) + δ�(B, ω, q̂),

δ�(B, ω, q̂) = 2NW ν(μ)|λ(5)|2
vsρm

(τ5ω)2

v2
s

τ5
(
q2TF + q2

)
(v� · q̂)2.

(53)

To obtain the final form of δ�(B, ω, q̂) in the above equation,
we considered the limit of low frequency, τ5ω � 1. Without
screening, qTF = 0, we find a qualitative [72] agreement with
the conclusions of Ref. [37]: magnetic field would enhance
sound attenuation. Furthermore, as follows from Eq. (53),
screening (qTF �= 0) strengthens the chiral anomaly effect.
Thus the qualitative difference between the results in Eqs. (49)
and (52) stems from the intranode diffusion at finite D, along
with the presence of electric fields accompanying nonuniform
chiral currents. We provide a more detailed discussion of the
interplay of the chiral anomaly, screening, and diffusion in
Sec. V. Regretfully, even in a strongly disordered material
with the mean free path of the order of the Fermi wavelength,
the diffusion coefficient is high enough to invalidate Eq. (52).
By the same token, the associated with the chiral anomaly
propagating collective mode [37] turns into an overdamped

one due to diffusion. One can see this by examining the roots
of the polynomial M(ω) in Eq. (39).

Finally, to justify our approximation in Eq. (20), let us
estimate the effects related to the magnetic moment and the
renormalization of the phase-space volume �α . To start with,
we notice that there is a profound qualitative difference be-
tween the effects of the chiral anomaly on one side and the
effects of the phase-space renormalization and the orbital
magnetic moment on the other. Indeed, the phase-space vol-
ume renormalization provides a correction to the density of
states [53,54] [see also Eq. (A7)], which modifies the distri-
butions in each of the nodes separately. On the other hand, the
chiral anomaly leads to the relative drift of the distributions
at nodes of opposite chiralities. To quantify the comparison
between the two types of the magnetic field effects, we turn
to Eq. (50). According to it, the role of the chiral anomaly in
the sound absorption is governed by the parameter τqv

2
�/D.

On the other hand, the effect of the magnetic field due to the
renormalization of the phase-space volume and the magnetic
moment is controlled by the parameter v2

�/v2
F [see, e.g., the

definition of �α after Eq. (18)] [73]. Comparing the respec-
tive parameters, we see that the chiral anomaly dominates in
the magnetic field dependence of the sound attenuation for
τ/τ5 + (vFτq)2 � 1. Since the internode scattering time τ5
is much larger than the intranode one τ and the mean free
path vFτ � 1/q for a low-frequency sound, the effects of
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FIG. 2. The magnetic-field-dependent part of the sound attenua-
tion coefficient for the field B‖ applied along the sound propagation
direction. For the parameters given in Eq. (51), one may use Eq. (50)
at frequencies ν ≡ ω/(2π ) � 100MHz (red solid line). For illustra-
tion, we also plot the attenuation coefficient given in Eq. (49) for
a much higher frequency, ν = 1GHz (blue dashed line), at which
q2Dτ5 > 1. The gray shaded area corresponds to a classically strong
magnetic field ωcτ � 1. Here, ωc = eBαv

2
F,α/[c(μ − χαb0)] is the

cyclotron frequency for the node α. The crossover to a quantizing
magnetic field region with h̄ωc/(

√
2μ) � 1 is indicated by the black

short-dashed line.

the phase-space renormalization and the magnetic moment
could be indeed neglected compared with the chiral anomaly
contribution in the sound attenuation. We provide a detailed
qualitative discussion of the chiral anomaly effect on the
sound attenuation in Sec. V.

B. Sound attenuation in a pseudomagnetic field

In this section, we consider the sound attenuation in the
pseudomagnetic field B5. As in Sec. III B 2, we assume that
the Weyl nodes are symmetric. Furthermore, since the pseu-
domagnetic field depends on the configuration of the Weyl
nodes, we focus on a system with a single pair of nodes. The
extension to the case of multiple Weyl nodes is discussed at
the end of this section. By using Eqs. (15) and (43), we derive

�(B5, ω, q̂) = 2ν(μ)|λ(5)|2
vsρm

q2/τq
1/τ 2

q + [ω + (v�,5 · q)]2 . (54)

Here, (v�,5 · q) is a true scalar because v�,5 ∝ B5 is a polar
vector. Among the most notable features of �(B5, ω, q̂) is
its dependence on the direction of the pseudomagnetic field
with respect to the sound wave vector; see also Eq. (30)
for the dependence of v�,5 on B5. Indeed, depending on the
sign of (v�,5 · q), the pseudomagnetic field can either reduce
or enhance the sound absorption. Furthermore, �(B5, ω, q̂)

is a nonmonotonic function of B5 which has a maximum,
�max(ω, q̂) = 2ν(μ)|λ(5)|2τqω2/(v3

s ρm), at ω = −(v�,5 · q).
One can easily extract the odd-in-pseudomagnetic-field

part of the attenuation coefficient. The result at τq|ω + (v�,5 ·
q)| � 1 reads

�(B5, ω, q̂) − �(B5, ω,−q̂)

≈ −8ν(μ)|λ(5)|2
v3
s ρm

(τqω)3(v�,5 · q). (55)

The above equation clearly shows that the sound attenuation
is different when the sound propagates along or opposite to
the pseudomagnetic field. Therefore we dub this effect the
pseudomagnetic sound dichroism.

To estimate the effects of the pseudomagnetic field on
the sound absorption, we show the odd- and even-in-
pseudomagnetic-field parts of the attenuation coefficient in
Figs. 3(a) and 3(b), respectively. Our numerical estimates
suggest that the dichroism is weak and reaches∼4% for a field
B5 ∼ 1 T. The dependence of the even-in-pseudomagnetic-
field part is qualitatively similar to that for B; cf. Figs. 2
and 3(b). Indeed, the pseudomagnetic field generally reduces
the sound attenuation coefficient. The reduction is strong for
large fields comparable to classically strong B5. It is worth
noting that attainable values of strain-induced pseudomag-
netic fields are estimated to be about 0.3 T in a twisted
wire [22] and about 15 T for a bent film [31].

Finally, let us comment on the sound absorption in a system
with multiple Weyl nodes. Unlike the case with a nonzero
magnetic field considered in Sec. IVA, the pseudomagnetic
field itself depends on the configuration of Weyl nodes. There-
fore, in general, one needs to use Eqs. (14) and (29) to obtain
the sound attenuation coefficient. However, as we discussed
after Eq. (30), certain symmetries can be used to identify the
pairs of Weyl nodes and the corresponding pseudomagnetic
fields. For example, in the simplest model of TR-symmetric
Weyl semimetals, there are two pairs of Weyl nodes such
that the pseudomagnetic fields in each pair have opposite
directions. Therefore the sound attenuation coefficient is given
by the sum of the attenuation coefficients obtained in Eq. (54)
with the opposite signs of the field B5. No pseudomagnetic
sound dichroism appears in this case. The dichroism could be
observed if the TR symmetry is broken, e.g., in an intrinsically
magnetic material such as EuCd2As2 [74,75].

C. Sound attenuation dichroism in a magnetic field

In this section, we calculate the sound attenuation in
Weyl semimetals with nonsymmetric Weyl nodes subject to
a magnetic field. As in Sec. III B 3, we focus on the stem-
ming from the difference between the Weyl nodes first-order
correction �(1)(B, ω, q̂) to the attenuation coefficient. In par-
ticular, we assume that the differences between the densities
of states [να (μ) − ν−α (μ)]/ν(μ) � 1, the Fermi velocities
(vF,α − vF,−α )/vF � 1, and the diffusion constants (Dα −
D−α )/D � 1 are small. This is sufficient to capture the odd-
in-magnetic-field part of �. We use the sound attenuation
coefficient in Eq. (14) and the solution given in Eq. (48). The

214310-10



ANOMALOUS SOUND ATTENUATION IN WEYL … PHYSICAL REVIEW B 103, 214310 (2021)

=100 MHz
=1 GHz

0.001 0.010 0.100 1 10
10−5

10−4

0.001

0.010

0.100

1

B5, [T]

|
(B

5)
+

(−
B
5)

|/[
2

(0
)]

−1

=20 meV
5=60 ps
=0.4 ps

=100 MHz
=1 GHz

0.001 0.010 0.100

(a) (b)

1 10
10−5

10−4

0.001

0.010

0.100

B5, [T]

|
(B

5)
−

(−
B
5)

|/[
2

(0
)] =20 meV

5=60 ps
=0.4 ps

FIG. 3. Dependence of the (a) odd- and (b) even-in-pseudomagnetic-field parts of the attenuation coefficient on the pseudomagnetic field
applied along the sound propagation direction B5,‖. We used the following sound frequencies ν ≡ ω/(2π ): ν = 100 MHz (red solid line) and
ν = 1 GHz (blue dashed line), which correspond to the regimes q2Dτ5 < 1 and q2Dτ5 > 1, respectively. In addition, we used the parameters
of Eq. (51). The gray shaded area corresponds to a classically strong pseudomagnetic field. The crossover to a quantizing pseudomagnetic field
region is indicated by the black short-dashed line.

resulting first-order correction is

�(1)(B, ω, q̂)

= 2NW |λ(5)|2ν(μ)ω

vsρm

q2[1/τq + (v� · q̂)2/D]
{[1/τq + (v� · q̂)2/D]2 + ω2}2

× δD̃

D
(v� · q), (56)

where δD̃ is determined by the difference of the Fermi ve-
locities and/or the intranode scattering amplitudes around the
Weyl nodes α and −α. Because δD̃ and (v� · q) are pseu-
doscalars, the resulting attenuation coefficient is a scalar. As
one can see from Eq. (56), there is a dependence of the sound
absorption on the relative orientation of the magnetic field
and the sound wave vector. Indeed, the sign of the coefficient
�(1)(B, ω, q̂) is flipped together with the direction of the mag-
netic field with respect to the sound wave vector, resulting in
the magnetic sound dichroism. A similar effect was predicted
in Refs. [38,39], whose origin, however, relies on the differ-
ence of the deformation potentials between different nodes. In
the limit τqω � 1 and for small magnetic fields, the scaling
with ω and τ5 agrees with that of Ref. [39].

It is interesting to compare the odd-in-magnetic-field atten-
uation coefficient with its pseudomagnetic counterpart. Upon
expanding Eq. (56) in τqω � 1 and weak magnetic fields
(q̂ · v�)2 � D/τq, its comparison with Eq. (55) yields

�(1)(B, ω, q̂) − �(1)(B, ω,−q̂)
�(B5, ω, q̂) − �(B5, ω,−q̂)

= − (v� · q)
(v�,5 · q)

δD̃

D
. (57)

Therefore the magnetic sound dichroism is expected to be
weaker than its pseudomagnetic counterpart at equal respec-
tive fields.

V. DISCUSSION

The effect of magnetic or pseudo-magnetic field on the
sound attenuation in Weyl semimetals uncovered in this paper
has a simple explanation. To understand this and clarify the
crucial role of screening and intranode relaxation, let us recall
the well established in the 1950s and 1960s theory of sound
attenuation in metals, semimetals, and doped semiconductors.
In a “single-valley” metal, a momentum-independent defor-
mation potential does not produce sound attenuation [52].
Indeed, under strong screening conditions, the deformation
potential is fully compensated by the self-consistent electric
potential. This compensation results in a spatially uniform
electron density. Therefore there is no perturbation that would
create excitations at the Fermi surface.

Strong screening requires the Thomas-Fermi length to be
much shorter than the sound wavelength 2π/q. This condi-
tion is easily satisfied in conventional and Weyl semimetals.
The presence of several valleys in a semimetal allows for a
new mechanism of the sound absorption if the deformation
potential is valley dependent, even if it remains independent
of momentum in each of the valleys and the screening is
strong [47–49]. The reason is that the sound wave may create
electron density perturbations of opposite signs in two valleys
without violating the electric charge neutrality condition. In
the case of Weyl semimetals, this would correspond to the chi-
ral charge density. To illustrate this, we consider perturbations
of densities of opposite signs, n+(r, 0) = −n−(r, 0) = n(r, 0),
with the length scales δr ∼ 2π/q created at time t = 0 in
two valleys. See Fig. 4 for a schematic illustration. The ini-
tial spread of the densities would roughly double after time
t ∼ τq = (Dq2)−1 elapses. (For brevity, we assume here that
q2Dτ5 � 1.) In the absence of magnetic field, the densities in
respective valleys would remain of opposite signs, n+(r, t ) =
−n−(r, t ) = n(r, t ), at all times. Therefore the neutrality
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r

n±

δr

δr

B=0

B≠0

n+(r,0)

n−(r,0)

t=0

2δr

2δr

t∼τq

2δr

2δrt∼τq

2v τq

FIG. 4. Schematic illustration of the magnetic field effect on the
electron quasiparticle density perturbations caused by the valley-
dependent deformation potential. The initial spread of the density
deviations δr ∼ 2π/q at t = 0 increases to ∼2δr at t ∼ τq =
(Dq2)−1. The magnetic field leads to the drift of the quasiparti-
cles of opposite chiralities in opposite directions quantified by the
anomalous velocity v�. This drift results in the spatially nonuniform
electric charge density, which triggers screening effects and reduces
the sound attenuation.

condition remains satisfied, making the valley-dependent de-
formation potential effective for sound absorption.

Until now, there is no difference between conventional
multivalley and Weyl semimetals. A qualitative difference
appears with the application of a magnetic field. The clas-
sically weak magnetic field (ωcτ � 1) does not affect the
kinetic coefficients or relaxation times and, consequently,
does not change the sound attenuation in a conventional
semimetal [52]. In view of their relativisticlike spectrum and
nontrivial topological properties, the effects of a magnetic
field in Weyl semimetals are profoundly different. The combi-
nation of the magnetic field and the Berry curvature, which is
opposite in the two valleys with different chiralities, results
in the drift of the corresponding quasiparticle densities in
opposite directions, n±(r, t ) = ±n(r ∓ v�t, t ). This leads to
the CME current [63,64] with a nonzero divergence and, as
a result, to the spatially nonuniform electric charge density
n+(r, t ) + n−(r, t ) �= 0. Therefore the magnetic field provides
a link between the seemingly independent electric and chiral
charges. Of course, the nonuniform electric charge density is
screened. As a result, the valley-imbalance perturbations are
also suppressed. This is the reason for the sound attenuation
decrease in the presence of a magnetic field. The drift becomes
important if its effect exceeds the effect of spreading, i.e., at
v�τq � δr; see Fig. 4. In the opposite case of large spread-
ing, v�τq � δr, the overlap of the densities prevails, and the
deviations from the charge neutrality are weak. The effect of

the magnetic field on the sound attenuation is small in this
regime. The drift-diffusion competition is clearly seen in the
denominator of Eq. (50).

Finally, let us provide intuitive symmetry arguments
explaining the appearance of the sound dichroism. The
dependence of the sound attenuation coefficient on a
(pseudo)magnetic field can be described via terms ∝ (v�,α ·
q). Depending on the relevant symmetries, both odd and even
or only even powers of such terms are allowed. Let us start
with a pseudomagnetic sound dichroism. The pseudomag-
netic field B5 breaks both symmetry between the Weyl nodes
and crystal symmetries. Since v�,5 ∝ B5 is a polar vector,
(v�,5 · q) is a scalar. Therefore the attenuation coefficient
�(B5, ω, q̂), which is a scalar, can contain odd powers of
(v�,5 · q). The magnetic sound dichroism relies on the dif-
ferent velocities and/or intranode relaxation rates for Weyl
nodes of opposite chiralities resulting in different diffusion
constants. Notice that the corresponding difference δD is a
pseudoscalar. Therefore terms odd in δD(v� · q) are also al-
lowed in the attenuation coefficient �(B, ω, q̂). Hence the
sound dichroism originates from certain symmetry properties
of the semimetal activated by an external (pseudo)magnetic
field.

VI. SUMMARY

We investigated the anomalous sound attenuation in Weyl
semimetals in external magnetic and pseudomagnetic fields.
It was found that the nontrivial topology of Weyl semimetals
activated by these fields has an unusual manifestation in the
sound absorption. In addition to presenting these results, our
work extends, corrects, and provides alternative derivation for
some of the conclusions reached in the literature.

We develop an effective way of evaluating the sound at-
tenuation coefficient, by directly relating it to the solution of
a linearized kinetic equation; see Eqs. (14), (15), and (29).
Under rather natural assumptions regarding the symmetry of
Weyl nodes, a compact form of the solutions to kinetic equa-
tions allows us to elucidate the dependence on the material
parameters as well as the field strength and orientation; see
Eqs. (41), (43), (47), and (48).

The expression for the sound attenuation coefficient for
vanishing magnetic and pseudomagnetic fields agrees with
that in multivalley semiconductors [47–49]. However, unlike
the earlier studies in Ref. [37], we found that the sound
attenuation coefficient is generically suppressed by the mag-
netic field; see Eqs. (49) and (50). Indeed, the chiral anomaly
activated by this field necessarily leads to the deviations in
electric charge density and, consequently, to the appearance
of induced electric field. This electric field alone, however,
cannot explain the suppression of the sound absorption. As
we explicitly showed, the other important ingredient is a
nonvanishing intranode relaxation time τ . The combination
of finite τ and the electrostatic screening strongly affects the
sound absorption and, contrary to Ref. [37], leads to a negative
signs of the anomalous part of the sound attenuation coeffi-
cient. These findings agree with the recent results presented
in Ref. [39]. Our estimates suggest that the suppression could
be noticeable and reaches several percent of the attenuation
coefficient at zero field for sufficiently strong magnetic fields;
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see Fig. 2. This finding clearly distinguishes Weyl semimetals
from conventional multivalley conductors, where the effects
of classically weak magnetic fields on the sound attenuation
are negligible.

The nontrivial dependence on the magnetic field direction
with respect to the sound wave vector appears when the Weyl
nodes of opposite chiralities are nonsymmetric. In particular,
different Fermi velocities and/or intranode scattering ampli-
tudes for the Weyl nodes of opposite chiralities make the
dependence on the magnetic field nonmonotonic and lead to
the magnetic sound dichroism; see Eq. (56). This effect, how-
ever, is estimated to be weak. For optimal magnetic fields and
small difference between the nodes, it reaches a few percent
of the attenuation coefficient at zero field; see Fig. 3. The
magnetic sound dichroism for nonsymmetric Weyl nodes is
one of our main results.

The sound absorption in an external strain-induced pseu-
domagnetic field, which is unique for a relativisticlike energy
spectrum, is also nontrivial. Similar to the case of a mag-
netic field, the sound attenuation coefficient decreases in
large pseudomagnetic fields. The dependence is, however,
nonmonotonic and demonstrates the pseudomagnetic sound
dichroism even when the Weyl nodes in the undeformed ma-
terial are symmetric; see Eqs. (54) and (55). Like magnetic
sound dichroism, its pseudomagnetic counterpart is estimated
to be weak. The decrease in the sound attenuation coefficient
and the sound dichroism in an external pseudomagnetic field
is another major result of our study.

The proposed effects provide a way to probe the anomalous
properties of Weyl semimetals and the effects of magnetic
and strain-induced pseudomagnetic fields via sound absorp-
tion experiments. It would be especially interesting to see
both the magnetic and pseudomagnetic sound dichroism by
flipping the direction of the sound propagation with respect
to the field, as well as to observe the reduction of the atten-
uation coefficient for the sound propagating along the field.
As possible material candidates, transition metal monopnic-
tides TaAs, TaP, NbAs, and NbP [4], the magnetic compound
EuCd2As2 [74,75], and SrSi2 [59,60] could be used. The
magnetic material EuCd2As2 is a promising candidate for the
investigation of the pseudomagnetic sound dichroism since it
breaks the time-reversal symmetry and contains only a single
pair of Weyl nodes. As for the magnetic sound dichroism,
transition metal monopnictides could be useful since they con-
tain two types of Weyl nodes with different Fermi velocities.
The Weyl nodes of opposite chiralities are separated in energy
in SrSi2 also leading to nonsymmetric nodal parameters.
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APPENDIX A: ENERGY DISSIPATION RATE

In this Appendix, we calculate the energy dissipation
rate required for the sound attenuation coefficient defined in

Eq. (6). The energy dissipation rate is defined as

Q = 1

T

∫ T

0
dt

〈
d

dt
Ĥ

〉
. (A1)

Here, T is the period of sound waves and Ĥ = Ĥee + Ĥep is
the full Hamiltonian that includes the electron-electron Ĥee

and the electron-phonon Ĥep parts. We use the standard defi-
nition of the ensemble averaging〈

d

dt
Ĥ

〉
= Tr

{
ρ̂

∂

∂t
Ĥ

}
. (A2)

In the case of the sound attenuation, only Ĥep explicitly de-
pends on time. Therefore

〈∂t Ĥ〉 = 〈∂t Ĥep〉 =
NW∑
α

∫
d3r

∫
d3pα

(2π h̄)3
λ
(α)
i j (pα )

× [∂t ui j (t, r)] fα (r,pα ), (A3)

where the sum runs over all NW Weyl nodes, the
valley-dependent deformation potential is λ

(α)
i j (pα )ui j (t, r),

ui j (t, r) = (∂iu j + ∂ jui )/2 is the strain tensor, and u(t, r) is
the displacement vector.

The distribution function fα (r,pα ) = f (0)α (pα ) + δ fα
(r,pα ) contains the time- and coordinate-independent
equilibrium part f (0)α (pα ) and the oscillating nonequilibrium
correction determined by the deformation potential

δ fα (r,pα ) ≈ δ(εα + χαb0 − μ)nα (r,pα ). (A4)

Here, μ is the equilibrium Fermi energy measured from
the Weyl nodes, and we assume that temperature is small
compared with μ. In addition, εα = εα (pα ) is the energy dis-
persion relation, and b0 quantifies the separation between the
Weyl nodes of opposite chiralities in energy.

Due to the time averaging in Eq. (A1), only the
nonequilibrium part of the distribution function δ fα (r,pα ) ∝
λ
(α)
i j (pα )ui j (t, r) contributes to the dissipation rate. The final

expression for the energy dissipation rate is

Q

V
=

NW∑
α

1

2
Re

{∫
d3pα

(2π h̄)3
iω

[
λ
(α)
i j ui j

]∗
δ fα (pα )

}

=
NW∑
α

να (μ)

2
Re

{
iω

[
λ
(α)
i j ui j

]∗
nα

}
. (A5)

Here, we used the plane-wave dependence for the displace-
ment vector u(t, r) = u0e−iωt+iq·r, where ω and q are the
sound frequency and wave vector, respectively, u0 is the dis-
placement magnitude, andV is the spatial integration volume.
In addition, we defined the averaged over the Fermi surface
solution of the kinetic equations (at given q) as nα ,

nα = 1

να (μ)

∫
d3pα

(2π h̄)3
�α (pα )δ

{
εα

[
1 + e

c
(�α · Bα )

]

+ χαb0 − μ

}
nα (pα ). (A6)

Here,

να (μ) =
∫

d3pα

(2π h̄)3
�α (pα )δ

{
εα

[
1 + e

c
(�α · Bα )

]

+ χαb0 − μ

}
(A7)
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is the density of states (DOS) per Weyl node. For the sake of
generality, we restored the renormalization of the phase-space
volume �α (pα ) = [1 − e(Bα · �α )/c] and the magnetic mo-
ment in the energy dispersion εα → εα[1 + e(�α · Bα )/c] in
Eqs. (A6) and (A7). Here, Bα is an external (pseudo)magnetic
field, and �α = �α (pα ) is the Berry curvature defined in
Eq. (18). In the case of weak (nonquantizing) magnetic fields,
the main contribution in the magnetic field dependence of the

sound attenuation coefficient is given by the chiral anomaly;
see the discussion at the end of Sec. IVA. Therefore we can
neglect the magnetic moment in the energy dispersion and set
�α (pα ) ≈ 1 [37,56].

The dissipation rate in Eq. (A5) agrees with the result in
Ref. [61] if the external electric field in that paper is ignored. It
is in agreement also with the general definition of the absorbed
power in Ref. [51].

APPENDIX B: COLLISION INTEGRALS

In this Appendix, we consider the collision integral on the right-hand side of the kinetic equation (16). It is convenient to split
the integral into the intra- and internode parts that are discussed in Appendixes B 1 and B 2, respectively.

1. Intranode scattering

By using the Fermi golden rule (see, e.g., Ref. [52]), the collision integral for the intranode scattering processes is defined as

Iintra[ fα (pα )] = −
∫

d3p′
α

(2π h̄)3
�α (p′

α )
2π

h̄
|Aα,α|2δ[ε̃α (pα ) − ε̃α (p′

α )][ fα (pα ) − fα (p′
α )], (B1)

where fα (pα ) is the distribution function for the electron quasiparticles at the node α (we suppressed the explicit dependence
on spatial coordinates) and |Aα,β | is the scattering amplitude between the Weyl nodes α and β. In the approximation where the
magnetic moment and phase-space volume renormalization are neglected, the equilibrium distribution function depends only on
the absolute value of momentum, i.e., f (0)α (pα ) ≈ f (0)α (pα ), and is given by the standard Fermi-Dirac distribution. Then, we can
use Eq. (A4) for the deviations from the equilibrium state δ fα (pα ). This allows us to rewrite the intranode collision integral as

Iintra[ fα (pα )] ≈ −
∫

d3p′
α

(2π h̄)3
2π

h̄
|Aα,α|2δ[εα (pα ) − εα (p

′
α )][δ fα (pα ) − δ fα (p′

α )]

= −n(pα ) − nα

τα

δ[εα (pα ) + χαb0 − μ]. (B2)

Here, we introduced the intranode relaxation time

1

τα

≡ 1

τα,α

=
∫

d3pα

(2π h̄)3
2π

h̄
|Aα,α|2δ[εα (pα ) + χαb0 − μ] = 2π

h̄
|Aα,α|2να (μ). (B3)

2. Internode scattering

Furthermore, we proceed to the internode collision integral Iinter[ fα (pα )]. Because the deformation potential depends on the
chirality of the Weyl nodes (see the discussion in Sec. II A), there are two types of contributions in the collision integral, i.e.,

Iinter[ fα (pα )] =
NW∑
β �=α

|χα − χβ |
2

I (1)α,β +
NW∑
β �=α

|χα + χβ |
2

I (2)α,β, (B4)

where
∑NW

β �=α runs over all nodes excluding β = α. Here, I (1)α,β corresponds to the scattering between the Weyl nodes of the

opposite chiralities, and I (2)α,β describes the transfer between the nodes of the same chirality χα . Let us begin with the former part,

I (1)α,β = −
∫

d3pβ

(2π h̄)3
�β (pβ )

2π

h̄
|Aα,β |2δ[ε̃α (pα ) − ε̃β (pβ )][ fα (pα ) − fβ (pβ )]

≈ −
∫

d3pβ

(2π h̄)3
2π

h̄
|Aα,β |2δ(εα (pα ) − εβ (pβ ) + 2χαb0 + λ

(α)
i j ui j − λ

(β )
i j ui j

)

× [
δ fα (pα ) − δ fβ (pβ ) + f (0)α (pα ) − f (0)β (pβ )

] ≈ −
∫

d3pβ

(2π h̄)3
2π

h̄
|Aα,β |2δ[εα (pα ) − εβ (pβ ) + 2χαb0]

× [
δ fα (pα ) − δ fβ (pβ ) − (

λ
(α)
i j − λ

(β )
i j

)
ui j

(
∂εβ

f (0)β

)]
, (B5)

where we used

δ
(
εα (pα ) − εβ (pβ ) + 2χαb0 + λ

(α)
i j ui j − λ

(β )
i j ui j

)[
f (0)α (pα ) − f (0)β (pβ )

]
≈ δ[εα (pα ) − εβ (pβ ) + 2χαb0]

[
f (0)α (pα ) − f (0)β (pα ) − (

λ
(α)
i j − λ

(β )
i j

)
ui j (∂εβ

f (0)β )
]

(B6)
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and neglected the second-order terms ∝ (λ(α)
i j ui j )

2 in the last line in Eq. (B5).
By introducing the internode relaxation time

1

τα,β

=
∫

d3pβ

(2π h̄)3
2π

h̄
|Aα,β |2δ[εβ (pβ ) + χβb0 − μ] = 2π

h̄
|Aα,β |2νβ (μ), (B7)

we rewrite Eq. (B5) as

I (1)α,β = −nα (pα ) − nβ

τα,β

δ(εα + χαb0 − μ) −
(
λ
(α)
i j − λ

(β )
i j

)
ui j

τα,β

δ(εα + χαb0 − μ). (B8)

The result for the internode scattering integral between the nodes of the same chirality can be obtained in the same way. It
reads as

I (2)α,β = −nα (pα ) − nβ

τα,β

δ(εα + χαb0 − μ). (B9)

Then, the internode collision integral in the τ approximation is

Iinter[ fα (pα )] = −
NW∑
β �=α

nα (pα ) − nβ

τα,β

δ(εα + χαb0 − μ) − ui j

NW∑
β

λ
(α)
i j − λ

(β )
i j

τα,β

δ(εα + χαb0 − μ). (B10)

After averaging over the Fermi surface, one obtains

Iinter[ fα (pα )] = −
NW∑
β

nα − nβ

τα,β

− ui j

NW∑
β

λ
(α)
i j − λ

(β )
i j

τα,β

. (B11)

This collision integral is used in Eq. (27) in the main text.
For the deformation potential that depends only on the chirality of Weyl nodes, i.e., λ

(α)
i j = λi j + χαλ

(5)
i j , it is convenient to

introduce the following internode scattering time for the Weyl nodes of opposite chiralities:

1

τ5,α
=

NW∑
β

|χα − χβ |
τα,β

. (B12)

[1] A. M. Turner and A. Vishwanath, Beyond band insulators:
Topology of semi-metals and interacting phases, in Topological
Insulators, edited by M. Franz and L. Molenkamp (Elsevier
Science, Amsterdam, 2013), Chap. 11, pp. 293–322.

[2] T. Wehling, A. Black-Schaffer, and A. Balatsky, Dirac materi-
als, Adv. Phys. 63, 1 (2014).

[3] B. Yan and C. Felser, Topological materials: Weyl semimetals,
Annu. Rev. Condens. Matter Phys. 8, 337 (2017).

[4] M. Z. Hasan, S.-Y. Xu, I. Belopolski, and S.-M. Huang, Dis-
covery of Weyl fermion semimetals and topological Fermi arc
states, Annu. Rev. Condens. Matter Phys. 8, 289 (2017).

[5] A. Burkov, Weyl metals, Annu. Rev. Condens. Matter Phys. 9,
359 (2018).

[6] N. P. Armitage, E. J. Mele, and A. Vishwanath, Weyl and Dirac
semimetals in three-dimensional solids, Rev. Mod. Phys. 90,
015001 (2018).

[7] E. V. Gorbar, V. A. Miransky, I. A. Shovkovy, and P. O.
Sukhachov, Electronic Properties of Dirac andWeyl Semimetals
(World Scientific, Singapore, 2021).

[8] H. B. Nielsen and M. Ninomiya, Absence of neutrinos on a
lattice. (I). Proof by homotopy theory, Nucl. Phys. B 185, 20
(1981).

[9] H. B. Nielsen and M. Ninomiya, Absence of neutrinos on a
lattice. (II). Intuitive topological proof, Nucl. Phys. B 193, 173
(1981).

[10] H. B. Nielsen and M. Ninomiya, A no-go theorem for regular-
izing chiral fermions, Phys. Lett. B 105, 219 (1981).

[11] A notable exception is the superfluid 3He-A, where the presence
of the chiral anomaly and the applicability of the Adler-Bell-
Jackiw equation [12,13] were demonstrated [76].

[12] S. L. Adler, Axial-vector vertex in spinor electrodynamics,
Phys. Rev. 177, 2426 (1969).

[13] J. S. Bell and R. Jackiw, A PCAC puzzle: π0 → γ γ in the σ -
model, Nuovo Cimento A 60, 47 (1969).

[14] P. Hosur and X. Qi, Recent developments in transport phenom-
ena in Weyl semimetals, C. R. Phys. 14, 857 (2013).

[15] A. A. Burkov, Chiral anomaly and transport in Weyl metals, J.
Phys.: Condens. Matter 27, 113201 (2015).

[16] E. V. Gorbar, V. A. Miransky, I. A. Shovkovy, and P. O.
Sukhachov, Anomalous transport properties of Dirac and
Weyl semimetals (Review Article), Low Temp. Phys. 44, 487
(2018).

[17] J. Hu, S.-Y. Xu, N. Ni, and Z. Mao, Transport of topological
semimetals, Annu. Rev. Mater. Res. 49, 207 (2019).

[18] N. P. Ong and S. Liang, Experimental signatures of the
chiral anomaly in Dirac-Weyl semimetals, arXiv:2010.08564
[Nat. Rev. Phys. (to be published)].

[19] J.-H. Zhou, H. Jiang, Q. Niu, and J.-R. Shi, Topological invari-
ants of metals and the related physical effects, Chin. Phys. Lett.
30, 027101 (2013).

214310-15

https://doi.org/10.1080/00018732.2014.927109
https://doi.org/10.1146/annurev-conmatphys-031016-025458
https://doi.org/10.1146/annurev-conmatphys-031016-025225
https://doi.org/10.1146/annurev-conmatphys-033117-054129
https://doi.org/10.1103/RevModPhys.90.015001
https://doi.org/10.1016/0550-3213(81)90361-8
https://doi.org/10.1016/0550-3213(81)90524-1
https://doi.org/10.1016/0370-2693(81)91026-1
https://doi.org/10.1103/PhysRev.177.2426
https://doi.org/10.1007/BF02823296
https://doi.org/10.1016/j.crhy.2013.10.010
https://doi.org/10.1088/0953-8984/27/11/113201
https://doi.org/10.1063/1.5037551
https://doi.org/10.1146/annurev-matsci-070218-010023
http://arxiv.org/abs/arXiv:2010.08564
https://doi.org/10.1088/0256-307X/30/2/027101


P. O. SUKHACHOV AND L. I. GLAZMAN PHYSICAL REVIEW B 103, 214310 (2021)

[20] A. Cortijo, Y. Ferreirós, K. Landsteiner, and M. A. H.
Vozmediano, Elastic Gauge Fields in Weyl Semimetals, Phys.
Rev. Lett. 115, 177202 (2015).

[21] A. G. Grushin, J. W. F. Venderbos, A. Vishwanath, and R. Ilan,
InhomogeneousWeyl and Dirac Semimetals: Transport in Axial
Magnetic Fields and Fermi Arc Surface States from Pseudo-
Landau Levels, Phys. Rev. X 6, 041046 (2016).

[22] D. I. Pikulin, A. Chen, and M. Franz, Chiral Anomaly from
Strain-Induced Gauge Fields in Dirac and Weyl Semimetals,
Phys. Rev. X 6, 041021 (2016).

[23] R. Ilan, A. G. Grushin, and D. I. Pikulin, Pseudo-
electromagnetic fields in 3D topological semimetals, Nat. Rev.
Phys. 2, 29 (2020).

[24] K. Landsteiner, Anomalous transport of Weyl fermions in Weyl
semimetals, Phys. Rev. B 89, 075124 (2014).

[25] M. N. Chernodub, A. Cortijo, A. G. Grushin, K. Landsteiner,
and M. A. H. Vozmediano, Condensed matter realization of the
axial magnetic effect, Phys. Rev. B 89, 081407(R) (2014).

[26] A. Cortijo, D. Kharzeev, K. Landsteiner, and M. A. H.
Vozmediano, Strain-induced chiral magnetic effect in Weyl
semimetals, Phys. Rev. B 94, 241405(R) (2016).

[27] M. N. Chernodub and M. A. Zubkov, Chiral anomaly in Dirac
semimetals due to dislocations, Phys. Rev. B 95, 115410 (2017).

[28] Z.-M. Huang, J. Zhou, and S.-Q. Shen, Topological responses
from chiral anomaly in multi-Weyl semimetals, Phys. Rev. B
96, 085201 (2017).

[29] Y. Ferreiros, Y. Kedem, E. J. Bergholtz, and J. H. Bardarson,
Mixed Axial-Torsional Anomaly in Weyl Semimetals, Phys.
Rev. Lett. 122, 056601 (2019).

[30] J. Behrends, R. Ilan, and J. H. Bardarson, Anomalous conduc-
tance scaling in strained Weyl semimetals, Phys. Rev. Research
1, 032028(R) (2019).

[31] T. Liu, D. I. Pikulin, and M. Franz, Quantum oscillations with-
out magnetic field, Phys. Rev. B 95, 041201(R) (2017).

[32] E. V. Gorbar, V. A. Miransky, I. A. Shovkovy, and P. O.
Sukhachov, Consistent Chiral Kinetic Theory in Weyl Materi-
als: Chiral Magnetic Plasmons, Phys. Rev. Lett. 118, 127601
(2017).

[33] E. V. Gorbar, V. A. Miransky, I. A. Shovkovy, and P. O.
Sukhachov, Chiral magnetic plasmons in anomalous relativistic
matter, Phys. Rev. B 95, 115202 (2017).

[34] E. V. Gorbar, V. A. Miransky, I. A. Shovkovy, and P. O.
Sukhachov, Pseudomagnetic helicons, Phys. Rev. B 95, 115422
(2017).

[35] E. V. Gorbar, V. A. Miransky, I. A. Shovkovy, and P. O.
Sukhachov, Second-order chiral kinetic theory: Chiral magnetic
and pseudomagnetic waves, Phys. Rev. B 95, 205141 (2017).

[36] M. N. Chernodub and M. A. H. Vozmediano, Chiral sound
waves in strained Weyl semimetals, Phys. Rev. Research 1,
032040(R) (2019).

[37] B. Z. Spivak and A. V. Andreev, Magnetotransport phenomena
related to the chiral anomaly in Weyl semimetals, Phys. Rev. B
93, 085107 (2016).

[38] S. Sengupta, M. N. Y. Lhachemi, and I. Garate, Phonon Magne-
tochiral Effect of Band-Geometric Origin in Weyl Semimetals,
Phys. Rev. Lett. 125, 146402 (2020).

[39] O. Antebi, D. A. Pesin, A. V. Andreev, and R. Ilan, Anomaly-
induced sound absorption in Weyl semimetals, Phys. Rev. B
103, 214309 (2021).

[40] P. O. Sukhachov and H. Rostami, Acoustogalvanic Effect in
Dirac and Weyl Semimetals, Phys. Rev. Lett. 124, 126602
(2020).

[41] L.-L. Gao, S. Kaushik, D. E. Kharzeev, and E. J. Philip, Chi-
ral kinetic theory of anomalous transport induced by torsion,
arXiv:2010.07123.

[42] L. Liang, P. O. Sukhachov, and A. V. Balatsky, Axial magneto-
electric effect in Dirac semimetals, Phys. Rev. Lett. 126, 247202
(2021).

[43] Z. Song, J. Zhao, Z. Fang, and X. Dai, Detecting the chiral
magnetic effect by lattice dynamics in Weyl semimetals, Phys.
Rev. B 94, 214306 (2016).

[44] P. Rinkel, P. L. S. Lopes, and I. Garate, Signatures of the Chiral
Anomaly in Phonon Dynamics, Phys. Rev. Lett. 119, 107401
(2017).

[45] P. Rinkel, P. L. S. Lopes, and I. Garate, Influence of Landau
levels on the phonon dispersion of Weyl semimetals, Phys. Rev.
B 99, 144301 (2019).

[46] X. Yuan, C. Zhang, Y. Zhang, Z. Yan, T. Lyu, M. Zhang, Z.
Li, C. Song, M. Zhao, P. Leng, M. Ozerov, X. Chen, N. Wang,
Y. Shi, H. Yan, and F. Xiu, The discovery of dynamic chiral
anomaly in a Weyl semimetal NbAs, Nat. Commun. 11, 1259
(2020).

[47] G. Weinreich, T. M. Sanders, and H. G. White, Acoustoelectric
effect in n-type germanium, Phys. Rev. 114, 33 (1959).

[48] V. L. Gurevich and A. L. Efros, The theory of the acoustoelec-
tric effect, J. Exp. Theor. Phys. 17, 1432 (1963).

[49] S. V. Gantsevich and V. L. Gurevich, Theory of sound ampli-
fication in many-valley semiconductors, Phys. Rev. 161, 736
(1967).

[50] G. Akhiezer, A. I. Kaganov, and M. I. Liubarskii, Ultrasonic
absorption in metals, J. Exp. Theor. Phys. 5, 685 (1957).

[51] Y. M. Galperin, V. L. Gurevich, and V. I. Kozub, Nonlinear
effects in the propagation of high-frequency sound in normal
conductors, Phys.-Usp. 22, 352 (1979).

[52] A. Abrikosov, Fundamentals of the Theory of Metals (Courier
Dover, New York, 2017).

[53] D. Xiao, M. C. Chang, and Q. Niu, Berry phase effects on
electronic properties, Rev. Mod. Phys. 82, 1959 (2010).

[54] D. T. Son and N. Yamamoto, Kinetic theory with Berry cur-
vature from quantum field theories, Phys. Rev. D 87, 085016
(2013).

[55] M. A. Stephanov and Y. Yin, Chiral Kinetic Theory, Phys. Rev.
Lett. 109, 162001 (2012).

[56] D. T. Son and B. Z. Spivak, Chiral anomaly and classical nega-
tive magnetoresistance ofWeyl metals, Phys. Rev. B 88, 104412
(2013).

[57] J. Ziman, Principles of the Theory of Solids (Cambridge Uni-
versity Press, Cambridge, 2014).

[58] P. Debye, Einige Resultate einer kinetischen Theorie der Isola-
toren, Phys. Z. 13, 97 (1912).

[59] S.-M. Huang, S.-Y. Xu, I. Belopolski, C.-C. Lee, G. Chang,
T.-R. Chang, B. Wang, N. Alidoust, G. Bian, M. Neupane, D.
Sanchez, H. Zheng, H.-T. Jeng, A. Bansil, T. Neupert, H. Lin,
and M. Z. Hasan, New type of Weyl semimetal with quadratic
double Weyl fermions, Proc. Natl. Acad. Sci. USA 113, 1180
(2016).

[60] B. Singh, G. Chang, T. R. Chang, S. M. Huang, C. Su, M. C.
Lin, H. Lin, and A. Bansil, Tunable double-Weyl fermion

214310-16

https://doi.org/10.1103/PhysRevLett.115.177202
https://doi.org/10.1103/PhysRevX.6.041046
https://doi.org/10.1103/PhysRevX.6.041021
https://doi.org/10.1038/s42254-019-0121-8
https://doi.org/10.1103/PhysRevB.89.075124
https://doi.org/10.1103/PhysRevB.89.081407
https://doi.org/10.1103/PhysRevB.94.241405
https://doi.org/10.1103/PhysRevB.95.115410
https://doi.org/10.1103/PhysRevB.96.085201
https://doi.org/10.1103/PhysRevLett.122.056601
https://doi.org/10.1103/PhysRevResearch.1.032028
https://doi.org/10.1103/PhysRevB.95.041201
https://doi.org/10.1103/PhysRevLett.118.127601
https://doi.org/10.1103/PhysRevB.95.115202
https://doi.org/10.1103/PhysRevB.95.115422
https://doi.org/10.1103/PhysRevB.95.205141
https://doi.org/10.1103/PhysRevResearch.1.032040
https://doi.org/10.1103/PhysRevB.93.085107
https://doi.org/10.1103/PhysRevLett.125.146402
https://doi.org/10.1103/PhysRevB.103.214309
https://doi.org/10.1103/PhysRevLett.124.126602
http://arxiv.org/abs/arXiv:2010.07123
https://doi.org/10.1103/PhysRevLett.126.247202
https://doi.org/10.1103/PhysRevB.94.214306
https://doi.org/10.1103/PhysRevLett.119.107401
https://doi.org/10.1103/PhysRevB.99.144301
https://doi.org/10.1038/s41467-020-14749-4
https://doi.org/10.1103/PhysRev.114.33
http://www.jetp.ac.ru/cgi-bin/dn/e_017_06_1432.pdf
https://doi.org/10.1103/PhysRev.161.736
http://www.jetp.ac.ru/cgi-bin/dn/e_005_04_0685.pdf
https://doi.org/10.1070/PU1979v022n05ABEH005499
https://doi.org/10.1103/RevModPhys.82.1959
https://doi.org/10.1103/PhysRevD.87.085016
https://doi.org/10.1103/PhysRevLett.109.162001
https://doi.org/10.1103/PhysRevB.88.104412
https://doi.org/10.1073/pnas.1514581113


ANOMALOUS SOUND ATTENUATION IN WEYL … PHYSICAL REVIEW B 103, 214310 (2021)

semimetal state in the SrSi2 materials class, Sci. Rep. 8, 10540
(2018).

[61] V. L. Gurevich, I. G. Lang, and S. T. Pavlov, Inductive and
deformation absorption of sound in conductors, J. Exp. Theor.
Phys. 32, 914 (1971).

[62] E. M. Lifshits and L. P. Pitaevskii, Physical Kinetics
(Butterworth-Heinemann, Oxford, 2012).

[63] A. Vilenkin, Equilibrium parity-violating current in a magnetic
field, Phys. Rev. D 22, 3080 (1980).

[64] K. Fukushima, D. E. Kharzeev, and H. J. Warringa, Chiral
magnetic effect, Phys. Rev. D 78, 074033 (2008).

[65] N.W. Ashcroft and N. D. Mermin, Solid State Physics (Cengage
Learning, Boston, 1976).

[66] X. Huang, L. Zhao, Y. Long, P. Wang, D. Chen, Z. Yang,
H. Liang, M. Xue, H. Weng, Z. Fang, X. Dai, and G. Chen,
Observation of the Chiral-Anomaly-Induced Negative Magne-
toresistance in 3D Weyl Semimetal TaAs, Phys. Rev. X 5,
031023 (2015).

[67] F. Arnold, M. Naumann, S.-C. Wu, Y. Sun, M. Schmidt, H.
Borrmann, C. Felser, B. Yan, and E. Hassinger, Chiral Weyl
Pockets and Fermi Surface Topology of the Weyl Semimetal
TaAs, Phys. Rev. Lett. 117, 146401 (2016).

[68] Notice that, as in the case of symmetric Weyl nodes considered
in Sec. III B 1, the valley-even part of the deformation potential,
λi jui j , does not contribute to the averaged distribution function
in the leading order in q/qTF.

[69] I. M. Lifshitz, M. I. Azbel, and M. I. Kaganov, The theory of
galvanomagnetic effects in metals, J. Exp. Theor. Phys. 4, 41
(1957).

[70] C.-L. Zhang, S.-Y. Xu, I. Belopolski, Z. Yuan, Z. Lin,
B. Tong, G. Bian, N. Alidoust, C.-C. Lee, S.-M. Huang,

T.-R. Chang, G. Chang, C.-H. Hsu, H.-T. Jeng, M. Neupane,
D. S. Sanchez, H. Zheng, J. Wang, H. Lin, C. Zhang
et al., Signatures of the Adler–Bell–Jackiw chiral anomaly
in a Weyl fermion semimetal, Nat. Commun. 7, 10735
(2016).

[71] F. Laliberté, F. Bélanger, N. L. Nair, J. G. Analytis, M.-E.
Boulanger, M. Dion, L. Taillefer, and J. A. Quilliam, Field-
angle dependence of sound velocity in the Weyl semimetal
TaAs, Phys. Rev. B 102, 125104 (2020).

[72] Notice that Ref. [37] misses a factor ∼(τ5ω)2, which is present
in Eq. (53). This discrepancy comes from an overly simplified
form of the collision integral used in Ref. [37]. In particular, the
last term in the collision integral (B8) is absent in that study.

[73] Notice that due to symmetry reasons, odd-in-magnetic-field
terms may not appear in the sound attenuation coefficient.

[74] J.-R. Soh, F. de Juan, M. G. Vergniory, N. B. M. Schröter, M. C.
Rahn, D. Y. Yan, J. Jiang, M. Bristow, P. A. Reiss, J. N. Blandy,
Y. F. Guo, Y. G. Shi, T. K. Kim, A. McCollam, S. H. Simon, Y.
Chen, A. I. Coldea, and A. T. Boothroyd, Ideal Weyl semimetal
induced by magnetic exchange, Phys. Rev. B 100, 201102(R)
(2019).

[75] J.-Z. Ma, S. M. Nie, C. J. Yi, J. Jandke, T. Shang, M. Y. Yao,
M. Naamneh, L. Q. Yan, Y. Sun, A. Chikina, V. N. Strocov,
M. Medarde, M. Song, Y.-M. Xiong, G. Xu, W. Wulfhekel,
J. Mesot, M. Reticcioli, C. Franchini, C. Mudry et al., Spin
fluctuation induced Weyl semimetal state in the paramagnetic
phase of EuCd2As2, Sci. Adv. 5, eaaw4718 (2019).

[76] T. D. C. Bevan, A. J. Manninen, J. B. Cook, J. R. Hook, H. E.
Hall, T. Vachaspati, and G. E. Volovik, Momentum creation by
vortices in superfluid 3He as a model of primordial baryogene-
sis, Nature (London) 386, 689 (1997).

214310-17

https://doi.org/10.1038/s41598-018-28644-y
http://jetp.ac.ru/cgi-bin/dn/e_032_05_0914.pdf
https://doi.org/10.1103/PhysRevD.22.3080
https://doi.org/10.1103/PhysRevD.78.074033
https://doi.org/10.1103/PhysRevX.5.031023
https://doi.org/10.1103/PhysRevLett.117.146401
http://www.jetp.ac.ru/cgi-bin/dn/e_004_01_0041.pdf
https://doi.org/10.1038/ncomms10735
https://doi.org/10.1103/PhysRevB.102.125104
https://doi.org/10.1103/PhysRevB.100.201102
https://doi.org/10.1126/sciadv.aaw4718
https://doi.org/10.1038/386689a0

