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The interface between two surfaces patterned with complementary shapes
such as arrays of ridge–channel structures or pillars accommodates relative
misorientation and lattice mismatch by spontaneous production of dislo-
cation arrays. Here, we show that the relative sliding of such an interface
is accomplished by dislocation glide on the interfacial plane. An exception
is the singular case where the lattices are perfectly matched across the
sample dimension, in which case sliding is accompanied by motion of
edge-nucleated defects. These are meso-scale analogues of molecular sliding
friction mechanisms between crystalline interfaces. The dislocations, in
addition to the long-range elastic energy associated with their Burgers
vectors, also cause significant out-of-plane dilation, which props open the
interface locally. For this reason, the sliding friction is strongly pressure
dependent; it also depends on the relative orientation of the patterns. Sliding
friction can be strongly enhanced compared with a control, showing that
shape-complementary interfaces can be engineered for strongly enhanced
pressure- and orientation-dependent frictional properties in soft solids.
1. Introduction
Modifying surface mechanical properties such as friction and adhesion by
near-surface architecture is of great interest as a paradigm for designing
unique functionality in surface mechanical properties of materials. Nature has
provided many fascinating examples of surface attachment structures in bio-
logical organisms that provide unique adhesion and friction properties [1,2].
A well-known example is the class of fibrillar surface structures found in
geckos [3,4], spiders [5] or some insects [6–8] which provide the ability of
direction-dependent and switchable friction and adhesion [9]. Experimental
and theoretical studies have revealed that the particular adhesive and frictional
properties of these surfaces come from their special geometric shape design,
contact splitting and high compliance [8,10–14]. Inspired by this, much scienti-
fic effort has been devoted to developing biomimetic and bioinspired structured
surfaces over the last two decades, and fruitful achievements have been
obtained by many research groups [2,15–17].

Although considerable progress has beenmade in designs of microstructures
for controllable adhesion and friction, it has been mostly for one-sided surface
structures, usually against a generic flat surface. In fact, all natural and almost
all artificial surfaces are rough, and interesting properties are achieved when
the microstructured surface in some sense matches the roughness [18,19]. Natu-
ral contacting surfaces also often exist as designed complementary pairs.
Examples include the interlocking between insects’ hard claws and rough sub-
strates [20,21], the attachment structures in the dragonfly head-arresting
system [22], the hydrogen bonds between two nucleotides on opposite comp-
lementary DNA or RNA [23] and the celebrated case of loop–clasp designs
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Figure 1. Three-dimensional profiles of (a) ridge–channel and (b) pillar arrays.
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that led to the development of Velcro [24]. Chen et al. [25]
showed how complementary fibrillar interfaces can be used
to control adhesion. Guduru & Bull [26,27] showed that
adhesion between a soft solid and a wavy rigid punch is
strongly enhanced compared with a flat rigid punch owing
to mechanical instabilities. Vajpayee et al. [28] demonstrated
that shape-complementary surfaces obtained by replica
moulding against rippled surfaces result in contact pairs with
recognition, adhesion enhancement owing to mechanical
instabilities and selectivity of adhesion, i.e. poor adhesion
between mismatched surfaces. Kesari & Lew [29] also
showed theoretically how a model wavy rough surface can
enhance effective adhesion as a result of mechanical instabil-
ities. Ciavarella and Papangelo [30,31] similarly studied how
rough surfaces can actually enhance adhesion for soft solids.
This finding is different from the general rule that rough
surfaces attenuate adhesion [32–35].

Our previous studies of pairs of ridge–channel surfaces
showed that for complementary shapes adhesion can be
enhanced by up to a factor of 40, while for non-complementary
surfaces it canbe reducedbya factorof about 0.25, i.e.with selec-
tivity of a factor of 160 [36]. Adhesion enhancement was shown
tobedue to acombination of crack trappingand frictional resist-
ance to pull-out of ridges from channels. Misorientation of
complementary interfaces is accommodated by line defects,
appearing as visible striations, that are essentially meso-scale
twist boundary screw dislocations. (Mismatch of periodic spa-
cing results in edge dislocation arrays.) While these
dislocations permit surfaces to adhere for small misorientation,
they carry elastic energy, the release of which attenuates the
adhesion enhancement [37]. The orientation and density of
these defects can be accurately described using the geometrical
analysis of Moiré patterns [38]. Thus, ridge–channel structures
can be used to endow a surface with high selectivity and
adhesion enhancement and strongly misorientation-dependent
adhesion via the action of interfacial dislocations.

The nature of friction between shape-complementary sur-
faces remains to be addressed. In analogy with their adhesive
properties, we here ask: How do shape-complementary struc-
tures affect the sliding friction of the interface? How do the
dislocations that accommodate misorientation control sliding
friction mechanisms?

We present a study of friction between two shape-comp-
lementary interfaces: ridge–channel and fibrillar. We show
that, in both cases, interfacial slip is accommodated by dislo-
cation glide. The exception is the singular case in which the
surfaces are sufficiently well aligned for there to be no inter-
facial dislocations, in which case slip is accommodated by
defects that nucleate at sample edges and sweep through
the sample. In this manner, friction of shape-complementary
interfaces mimics that of atomistic interfaces [39–41]. In
other ways, friction is quite different, e.g. we find that it is
strongly pressure dependent. (We separately considered a
third case in which cylindrical fibrils on one side of the inter-
face are complementary to cylindrical holes on the other [42].
In this system, the fibrils are embedded in their matching
holes only for the first separation after moulding, subsequent
to which the pillars do not easily enter their complementary
holes. That is, not all shape-complementary interfaces work
in the manner we study here.)

We present a detailed theoretical model for the ridge–
channel structure. Modelling the core structure of the screw
dislocations using the framework of fracture mechanics, we
are able to explain quantitatively how friction changes with
applied pressure and misorientation. The mechanics of the
fibrillar interface is significantly more complicated and our
discussion of the mechanisms is based on comparison with
simulations of the analogous atomistic systems.
2. Experimental section
2.1. Sample fabrication
Samples with two types of shape-complementary structures,
ridge–channel and fibrillar, were fabricated using a commer-
cial poly(dimethylsiloxane)-based elastomer (PDMS; Sylgard
184; Dow Corning) following the procedure described in
[36]. Briefly, we mixed the PDMS prepolymer and cross-
linker in a 10 : 1 ratio and then poured them onto a microfab-
ricated silicon mould, followed by curing at room
temperature for 2 days before being peeled off the mould.
Figure 1 shows images of two types of shape-complementary
structured surfaces that are three-dimensional (3D) renditions
of their profile measured via an optical profilometer (Zegage;
Zygo Corporation). For the pair of ridge–channel structures,
the ridge height or channel depth h is about 19 µm and their
width is about 10 µm, so the periodic spacing between ridge
centres, which we denote by c, is about 20 µm. The fibrils,
which are organized in a square array, have heights of about
16 µm each, diameters of 10 µm and spacing of 20 µmbetween
closest pillar centres. Flat samples with no surface structure
were also fabricated to serve as control surfaces.
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Figure 2. (a) Schematic drawing of the set-up used to measure the sliding friction of a shape-complementary interface. Representative friction versus displacement
measurements for (b) a pillar–pillar square array and (c) a ridge–channel sample pair under normal stress of 6.5, 10.8 and 16.2 × 103 N m−2, all with a mis-
orientation angle of 45°.
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2.2. Friction measurements
Friction measurements were performed using a custom-built
set-up, shown schematically in figure 2a. One each of a pair of
shape-complementary samples was fixed on the upper and
lower glass slides by double-sided sticky tape, and the relative
misorientation was precisely controlled by the rotation motor.
The vertical translation motor brought the two structured sur-
faces in contact under force feedback control, and the
horizontal motor drove the samples to slide past each other
under a constant specified normal load. The lateral (friction)
and normal (load) force values between the complementary
surfaces were sensed by the two load cells. A LabView® pro-
gram synchronized control of the motor motion, normal load
feedback control and recording of forces and displacements.
Before each experiment, the top and lower samples were
aligned by three goniometric stages to achieve independently
parallel contact between the two surfaces and alignment of
the interfacial plane with the sliding axis, both to less than
1 µm over 3 mm of travel. The lower sample dimension was
fixed to be 3.2 mm× 3.2 mm, while the upper sample was
significantly larger, usually 10 mm× 10 mm.During the exper-
iment, the top samplewasmoved at 5 µm s−1 over a distance of
3 mm under normal loads of 67–225 mN. (A full set of friction
measurements were also performed under normal displace-
ment control, which gave very similar results to those
described below.) The structure of the interface and its evol-
ution was recorded by a CCD camera attached to an optical
microscope objective. Figure 2b,c shows representative friction
force measurements for the two types of complementary sur-
faces under normal loads of 67, 111 and 166 mN with a
misorientation angle of 45°.
3. Results and discussion
3.1. Interfacial structure: meso-scale dislocation arrays
Figure 3 shows optical images of the interfacial plane for
ridge–channel (figure 3a–d ) and fibrillar (figure 3e–h)
sample pairs for a misorientation angle, θ, in the range
0–45° under a normal stress of 10.8 kPa, captured before
frictional sliding begins. As we have described previously
[36–38], misorientation is accommodated by arrays of screw
dislocations, as indicated in figure 3 by the blue dashed
lines for ridge–channel samples and the white lines for the
pillar–pillar samples. For perfect alignment, θ = 0°, there are
no dislocations, and the sample is visibly uniform. Ridges
are fully inserted into channels (figure 3a) and pillars
(figure 3e) are in perfect synchrony, either tip on tip or tip
in gaps in the complementary surface. (As soon as relative
sliding begins, however, most of the tips fall into the gaps
on the complementary surface.) On increasing the misorienta-
tion angle to 5°, we observe two forms of light intensity
patterns on the interface. With increasing misorientation
angle, the density of these patterns also increases.

As reported previously [37], for the ridge–channel pair, the
dark regions are where ridges on one side of the interface are
aligned with, and have entered into, channels on the other
side. Lighter regions are where ridges climb over a ridge on
the other side to enter the adjacent channel, which can be con-
sidered as a screw dislocation with a Burgers vector of
magnitude equal to the periodic lattice spacing. For the
array of fibrils, the dark regions are where the pillars from
the two sides of the interface are in synchrony. These are sep-
arated by two mutually orthogonal sets of lighter strips
(marked by white dashed lines in figure 3f ). In these light
regions, the pillars of two side interfaces are out of synchrony;
these lines comprise pairs of screw dislocation arrays.

As discussed previously [38], the orientation α and den-
sity ρ of these dislocation arrays correspond to those of the
Moiré patterns formed by the structures on the two surfaces.
Specifically, for the ridge–channel structure

a ¼ tan�1 sin u
l� cos u

� �
¼ p=2� u=2 (for l ¼ 1), ð3:1Þ

r ¼ 1
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2 � 2l cos u

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(1� cos u)

p

c
(for l ¼ 1), ð3:2Þ
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Figure 3. Optical micrographs of complementary (a–d ) ridge–channel interfaces and (e–h) square array of pillars interfaces with a misorientation angle of 0–45°at
a load of 10.8 kPa.
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where c is the periodic spacing, λ is the relative biaxial stretch
between the two surface patterns (equal to unity for the
experiments reported here) and θ is the misorientation
angle. We can see from equation (3.1) that, for the ridge–
channel structure, the orientation of the dislocation array is
orthogonal to the average orientation of the ridges on the
two surfaces.

3.2. Sliding friction of shape-complementary interfaces
We have previously shown that well-aligned ridge–channel
interfaces result in strongly enhanced adhesion [38]. Adhesion
is attenuated both by an increase in periodic spacing (Burgers
vector) and by misalignment, the latter endowing the interface
with additional orientationdependence of adhesion. Both these
effects arise as a result of the releaseof energystored in the inter-
facial dislocation array and can be modelled quantitatively as
such. We now seek to understand the mechanisms for relative
sliding of these interfaces and how the attendant frictional
force depends on structure and external conditions.

3.2.1. Ridge–channel interface: observations
Figure 4a presents the results of frictional stress as a function
of normal stress for the ridge–channel structure as well as a
control sample. In the control sample, one of the structured
surfaces is retained while the other is replaced by a flat,
unstructured surface. For the control sample, friction is only
weakly dependent on normal stress. The frictional stress is
about 25 kPa; since only half the nominal area is in contact,
the true frictional stress is about 50 kPa. The gradual increase
in friction with increasing applied pressure can be explained
by an increase in area of the contact owing to lateral
Poisson expansion of the ridges. For well-aligned structured
shape-complementary samples, the frictional stress is
strongly enhanced, by up to a factor of about 6 compared
with the control sample. Above a critical pressure, which
increases with increasing misorientation, we observe strong
dependence of friction on pressure and misorientation.

Figure 4b shows optical micrographs of the interface
before and during sliding for a misorientation of 5o. Video
RT20RT20_-82.883dg_down12_partial_compressed.mp4 in
the electronic supplementary material shows how the
structure of the interface evolves during the initiation of rela-
tive sliding. It shows that, for sliding in the vertical direction,
the dislocation array translates horizontally. As the pattern
translates horizontally for one period, it deposits one Burgers
vector (magnitude c) worth of slip in the vertical direction.

For sufficiently large misorientation, below a critical
pressure, ridges do not enter the channels at all; for these
cases, the friction is no greater than that of the control. Con-
sider, for example, the case of 30° misorientation. For the two
lower pressures, the ridges remain on top of the ridges of the
opposing surface and friction is about the same as that of the
control. For the higher four pressures, the ridges increasingly
enter into the channels and friction increases significantly
above that of the control. Figure 4c shows a magnified view
of the dislocation structure during sliding, where we also
sketch a diagramof the cross-section of an interface. It indicates
that, during sliding, a ridge has to switch sides with its equiv-
alent ridge on the opposite surface. This necessarily requires an
intermediate state in which the dislocation core is dilated.

The foregoing discussion suggests that the dislocation
core can be treated as a crack under mixed-mode loading,
and that the misorientation and load dependence of friction
can perhaps both be explained in terms of partially opened
cracks near the dislocation core. This idea is further devel-
oped below, generalizing our previous approach to this
problem in which we accounted for the mode III component
(screw dislocation) but not for dilation or external pressure
and shear loading [37,38].
3.2.2. Model for friction of a complementary ridge–channel
interface

It is instructive to compare the screw dislocation described
above with the Volterra screw dislocations in the continuum
theory [43,44]. The structure of the screw dislocations of our
experiments is shown schematically in figure 4d and a mag-
nified view of the dislocation core is presented in figure 4e.
At the interface, ridges (white) of the top sample (blue) rise
out of their complementary channels, cross over the ridges
of the other surface (shaded) of the bottom sample (green)
and enter into the adjacent channels. The regions where
ridges fail to fully insert into channels are the dislocation
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cores; each core occupies a width of 2a [37]. The regions
where ridges are completely inserted into channels appear
featureless in optical micrographs. From the viewpoint of
the Volterra theory, the size of the ridges and channels
would be taken to be sufficiently small so that they could
be neglected in the analysis. In addition, the core size 2a
would be taken to be zero, resulting in a singular stress
field. The dislocation line lies in the x3 direction. The Burgers
vector is the sudden jump in displacement as one moves
along a circuit (Burgers circuit) that encloses the dislocation
core and, for a screw dislocation, it is parallel to the dislo-
cation line. Specifically, as depicted in figure 4d, the Burgers
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vector can be obtained by moving from point A to point A0 in
the bottom sample (green), and from point A0 to point A00 in
the top sample (blue). It is evident that the Burgers vector is

B ¼ A00A
��! ¼ ce3.
In the continuum theory, when a screw dislocation is

subjected to a shear stress t1 and normal pressure p1, the
energetic force (or Peach–Koehler force FPK) acting on the
dislocation is given by [43,45]

FPK ¼ (s � B)� j, ð3:3Þ

where s is the remote stress field, B is the Burgers vector and
j is a unit vector along the dislocation direction. Taking
B ¼ ce3, j ¼ e3 and s ¼ �t1e2 � e3 � t1e3 � e2 � p1e2 � e2,
the Peach–Koehler force is

FPK ¼ �t1e1: ð3:4Þ

Note that FPK is in the negative x1 direction, which is per-
pendicular to the direction of the applied shear. This is
consistentwith the experimental observations that vertical rela-
tive sliding is accommodated by horizontal glide of the
dislocation (see videos in the electronic supplementary
material). However, according to (3.4), the Peach–Koehler
force, FPK, for a screw dislocation is independent of the
normal pressure—this contradicts the observations (figure 4a).
Additionally, the dislocations are typically modelled as line
defects, ignoring the structure of the core, and the results are
independent of structural parameters such as the ridge
height or width. In previous work, we have shown how
adhesion can be adequately modelled based on classical dislo-
cation theory [37,38]. However, since normal pressure and
details of the core structure have a significant impact on fric-
tion, the classical Volterra theory alone cannot adequately
address how these control friction. To understand how friction
depends on the applied pressure and misorientation, it is,
therefore, necessary to study the interaction of the dislocation
core with the applied pressure and shear, and this is what we
will do next.

Our approach to model such a structure is to treat these
dislocation cores as mode I and mode III periodic cracks of
width 2a, wedged open by the dilation due to the ridges
crossing on top of each other (mode I), under applied
normal pressure p1 (mode I) and applied shear stress t1
(mode III). To account for the screw dislocation, a screw dis-
location density m3 is applied on the cracks (mode III). m3 is
unknown and should be determined by the boundary
conditions. In addition, one expects considerable resistance
to deformation by the dislocation cores where the ridges
cross; for example, bending and torsion of ridges and fric-
tional stress on the contacting interfaces. For simplification,
we replace such complicated resistance to the motion of the
screw dislocation by an internal shear stress tI on the crack
faces (mode III), as shown in figure 4f. Note that tI could
depend on the local deformation, stress state, contact area
and surface architecture. These cracks are infinitely long in
the x3 direction. The spacing between crack centres or
period is denoted by w. Equation (3.2) is equivalent to

w ¼ c
2 sin (u=2)

: ð3:5Þ

The mode III stress intensity factors Kð1Þ
III due to the screw

dislocation density m3 can be found as (derivation is provided
in the electronic supplementary material)

Kð1Þ
III ¼ Gc

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w tan (pa=w)

p : ð3:6aÞ

The mode III intensity factors at each crack tip due to the
applied shear stress t1 and the internal shear stress tI are
simply given by The Stress Analysis of Cracks Handbook [46],

Kð2Þ
III ¼ t1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w tan

pa
w

r
, ð3:6bÞ

Kð3Þ
III ¼ tI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w tan

pa
w

r
: ð3:6cÞ

The stress intensity factor of the mode I model at the
crack tip is approximately given by The Stress Analysis of
Cracks Handbook [46],

KI ¼ [E�h=2� p1a(K(k)� E(k))]
1

kK(k)

ffiffiffiffi
p

a

r
, ð3:7aÞ

where E� is the plane-strain Young’s modulus,

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� (b=a)2

q
(2b is the wedge width; figure 4f ), h is the

wedge opening displacement (i.e. ridge height) and K(k)
and E(k) are complete elliptic integrals of the first and
second kind, respectively. The first term in the square bracket
represents crack opening due to the dilation, and the second
term implies crack closure due to the applied pressure. How-
ever, this model overestimates KI since it assumes that the
wedge is rigid at the crossovers. Thus, to compensate the
compliance of ridges at the crossovers, we replace E � h=2
with a fitting parameter PI in (3.7a), i.e.

KI ¼ [PI � p1a(K(k)� E(k))]
1

kK(k)

ffiffiffiffi
p

a

r
: ð3:7bÞ

How to determine PI will be discussed later.
The energy release rate, which is denoted by G, is

G ¼ K2
I

E� þ
K2
III

2G
, where KIII ¼ Kð1Þ

III þ Kð2Þ
III þ Kð3Þ

III : ð3:8Þ

The condition for quasi-static sliding is that the applied
energy release rate should equal the work of adhesion

G ¼ Wad, ð3:9Þ
whereWad is the work of adhesion. Note that this condition is
applied at the opening end of the crack that represents the dis-
location core. At the closing end of the crack, there is no energy
release rate. While in the far field we have a screw dislocation
with a well-defined Burgers vector, in the near field we have a
dislocation core that propagates following a fracture criterion,
instead of the usual singularity at the core of a Volterra dislo-
cation. In one dimension, the ridge smoothly goes from one
channel to the other and there are no special instabilities.

We now turn to the experiments. Using our model, we
first explain the observation that, when the applied pressure
p1 is greater than a critical value pc, the applied shear stress is
significantly above that of the control. The values of pc can be
obtained graphically in figure 4a—they are either the last data
points remaining on the control curve (black line) as one
increases the applied pressure or the intersection of the con-
trol curve (black line) and the extrapolation of the points
above the control (dashed lines). Physically, p1 ¼ pc is the
pressure above which the near-surface structures start to
insert into each other. If p1 , pc, the ridges remain on top
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of the ridges of the opposing surface so that the applied shear
stress t1 is about the same as the control. We assume that the
energy release rate KI owing to mode I is zero (or negligible)
at p1 ¼ pc. This assumption is consistent with Jin et al. [37]
and Dillen et al. [38], who demonstrated that the energy
release rate owing to dilation is negligibly small under no
applied pressure, and the applied pressure would further
reduce the value of KI. Setting (3.7b) to zero, the critical
pressure pc is

pc ¼ PI

a[K(k)� E(k)]
: ð3:10Þ

To fit the data, based on experimental observation, we set
the ratio b=a to be 0.2. The crack length 2a is an unknown, albeit
bounded by w. However, from figure 3, it appears that a
decreases rapidly with increasing misorientation angles u,
and is equal to 0.25–0.3w. We set a ¼ 0:3w ¼ 0:15c=sin (u=2)
in the following calculations. Thus, the critical pc in our sliding
system is

pc � 38:56 sin (u=2) kPa, ð3:11Þ
with the fitting parameter PI ¼ 268:5 mN m−1. We plot the
critical pressure pc predicted by our model in figure 4g. It
shows good agreement with the experimental data (squares).

Next,we complete ouranalysis byproviding an approximate
formula for the p1 – t1 relation at different misorientations. As
mentioned, the contribution from mode I is small as long as
p1 . pc, thus the quasi-static condition for sliding becomes

[Kð1Þ
III þ Kð2Þ

III � Kð3Þ
III ]

2

2G
¼ Wad, for p1 . pc: ð3:12Þ

As the sliding system is found to be pressure sensitive, we
assume that tI is linearly related to the applied pressure p1
(i.e. a first-order approximation),

tI ¼ ap1 þ b, ð3:13Þ
where a and b are the friction coefficients. a and b can
depend on the work of adhesion, pressure and misorienta-
tion. Substituting (3.6a–3.6c) and (3.13) into (3.12) leads to

t1 ¼ ap1 þ bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2GWad

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w tan (pa=w)

p � Gc
2w tan (pa=w)

: ð3:14Þ

Therefore, the following formula can be used to predict
the applied shear stress for 5�	 u 	 45�:

t1 ¼ ap1 þ bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2GWad

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w tan (pa=w)

p � Gc
2w tan (pa=w)

p1 
 pc,

fcontrol( p1) p1 , pc,

8><
>:

ð3:15Þ
where f control is the friction stress of the control sample. The
work of adhesion, Wad, of the structure is also an unknown.
It was reported by Dillen et al. [38] that the work of adhesion
for a flat interface is of the order of 0.075 J m−2, and this value
can be enhanced by up to tens of times for a shape-
complementary ridge–channel interface. For simplification,
we assume that the work of adhesion is a constant and
independent of pressure and misorientation. We take
Wad ¼ 0:1 J m−2. Using the experimental data and enforcing
that (3.15) must pass through the point ( pc, f control( pc)), we
can fit a and b (values are given in the electronic supplemen-
tary material) and then use (3.15) to predict t1 as represented
by the dashed lines in figure 4a. Our predictions and the
experimental data agree very well.
3.2.3. Fibrillar interface
Figure 5a presents the measured sliding frictional stress
for a fibrillar shape-complementary interface as a function of
normal stress for a few different misorientation angles. As a
control, the friction of a fibrillar surface sliding against a
flat sample is also included. For normal pressure p1 less than
about 16 kPa, the control sample has an approxima-
tely pressure-independent sliding friction of about 10 kPa.
(Accounting for the actual area of contact, the sliding stress is
approx. 50 kPa, about the same value as in the ridge–channel
geometry, unsurprisingly.) A pressure-independent sliding
frictional stress for smooth contacts is consistent with previous
measurements on PDMS [47,48]. However, between 16 and
20 kPa, the sliding friction of the control increases rapidly.
Examination of the contact region reveals that this transition
corresponds to buckling of the fibrils such that their lateral
sides come into contact, significantly increasing the area of
contact, a phenomenon that has been reported previously
[48]. (See also electronic supplementary material, video
FibrilFC_Rt20fc_Down60_Partial-1_s.mp4 for an example of
a control experiment under normal stress below the transition.)

The frictional stress of the fibril–fibril interface is strongly
enhanced, again by a factor of up to 6, compared with the
(unbuckled) control. In contrast with the intrinsic friction
between the PDMS surfaces, the structured interface has
strongly pressure-dependent friction. The highest shear
stress is observed at perfect alignment and the shear stress gen-
erally drops as misalignment increases. However, the
attenuation of friction due to misorientation is much milder
than in the ridge–channel case. We propose that theweakmis-
orientation dependence is because, in the pillar–pillar case, the
interfacial arrangement changes periodically every 45° and
because the fibrils can bend nearly independently.

Figure 5c shows a comparison of two optical images of
the interface for a misorientation angle of 5° before and
during sliding. The image of the interface before sliding
shows, as mentioned previously, two regions. In the dark
region, fibrils on the two surfaces are aligned. In analogy
with twist grain boundaries, the orientation and density of
this pattern is given by the geometry of the corresponding
Moiré pattern [38,49]. Also in analogy with twist grain bound-
aries, the interface splits into two regions [50,51], in which the
fibrils on the two surfaces are aligned with each other.
These are separated by lighter regions that contain arrays of
screw dislocations.

Electronic supplementary material, video Rt20Rt20_
5dg_down12_s.mp4 shows how the pattern just described
(prior to sliding) evolves under applied shear (relative sliding
in the vertical direction). The first observation is that sliding in
the vertical direction is accompanied by motion of the pattern
in the horizontal direction. This is for the same reason as dis-
cussed for the ridge–channel structure. While the pattern
retains its overall density and orientation, it acquires direction-
ality, losing symmetry in the horizontal direction. Recognizing
pattern translation as equivalent to dislocation motion, it is
evident that sliding is accommodated by dislocation glide on
the interfacial plane. Translation of the pattern by one period
corresponds to vertical sliding by c, depositing a Burgers
vector worth of shear at the sample edges. It is also consistent
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Figure 5. (a) Frictional stress versus normal stress for the square fibrillar sample pair with different misorientation angles compared with a control. The shape-comp-
lementary interface has strongly enhanced and normal-pressure-dependent friction. (b) Optical micrographs of the contact region of pillars sliding against a flat control
with varying normal stress and (c) the shape-complementary interface captured before/during sliding at the misorientation of 5°. (d ) Because the patterns translate
horizontally for a single period for sliding vertically by one Burgers vector, the spatial horizontal variation can be viewed as the time history of a single fibril.
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with the direction of the Peach–Koehler force. Thus, we see
that the structure and kinematics of sliding can be understood
in terms of dislocation structures.

We turn now to a discussion of sliding friction stress, start-
ing with a closer examination of the deformation in figure 5d.
Because the pattern translates by one period in the horizontal
direction for one Burgers vector worth of sliding in the vertical
direction, the spatial variation depicted in figure 4d is identical
to the temporal variation of a given fibril. Follow the defor-
mation of two fibrils (coloured blue and pink, one on each
surface) from right to left. The pair begin in a state in which
the blue fibril is trapped in a gap made by four fibrils on the
other side. As we move to the left, the blue and pink fibrils
impinge on each other to accommodate relative sliding. This
is accompanied by dilation of the interface in the out-of-
plane direction. At a critical condition, the fibrils slide past
each other, now entering a gap adjacent to the original one.
The drawings below the micrograph in figure 4d depict this
sequence of events. Clearly, the force resisting and abetting
pillar motion is periodic and is in this sense analogous to
inter-atom potentials for pairs of atoms on two sides of an
interface. In fact, sliding accommodated by interfacial dislo-
cation glide is similar to that found in atomistic simulation
[39]. The detailed analysis of the dislocation core structure in
the fibrillar case is considerably more complicated and is the
subject of future work.

4. Summary and conclusion
Interfaces between soft solids with ordered shape-comp-
lementary surface features accommodate misorientation by
spontaneous formation of meso-scale dislocations. The den-
sity and orientation of the dislocation arrays depend on
misorientation and orientation of the Burgers vector. In this
work, we studied how sliding friction of such an interface
depends on the material’s parameters, geometry and external
influences such as applied pressure and misorientation. We
carried out a series of controlled friction tests on two
shape-complementary interfaces: ridge–channel and fibrillar,
with varying pressure, while progressively increasing the
misalignment angle. In both cases, we found that although
friction of control samples is low and relatively independent
of pressure, that of shape-complementary interfaces is
strongly pressure dependent and significantly enhanced com-
pared with the control for well-aligned samples. Sliding of
the interface is accommodated by dislocation glide in a
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direction orthogonal to sliding. In many ways, these meso-
scale dislocations mimic those in crystalline solids at the
atomic scale. However, in other ways they do not, specifically
in their strong sensitivity to applied pressure. For the ridge–
channel case, treating the dislocation core as a crack under
internal and external mixed-mode loading, we developed a
model that accurately captures experimental measurements.
Although the defects are well described as arrays of screw
dislocations, the core structure is very different from that
found in atomic systems. By representing the dislocation
core as a crack, we have postulated a criterion for sliding
based on external and internal forces providing sufficient
stress intensity for the crack to propagate. For the fibrillar
system, our observations are of a similar nature. However,
the system is a closer mimic of atomistic interfaces and it
may be possible to apply methods developed in that field
[52]; we leave this more complicated quantitative model for
future work. In this work, our focus has been on elastic
materials and thus the criterion for quasi-static sliding,
equation (3.9), has no dependence on rate. Phenomenologi-
cally, one could build in a rate effect by allowing work of
adhesion to depend on velocity, so that the sliding condition
of equation (3.9) becomes G ¼ Wad(v). This could be adequate
for handling near-interface rate effects. However, coupling of
the (elastic) structure effects studied in this work with bulk
viscoelasticity would be a much bigger undertaking.

Our work shows that shape-complementarity can be
used to endow interfaces between generic materials with
selectivity of adhesion and friction, and orientation/
pressure-controlled friction.
Data accessibility. Most of the data have been presented in figures in the
main text. We have also included four videos in the electronic
supplementary material.
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