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ABSTRACT 14 
Uncertainties from sampling biases present challenges to ecologists and evolutionary biologists 15 
in understanding species sensitivity to anthropogenic climate change. Here, we synthesize 16 
possible impediments that can constrain research to assess present and future seagrass response 17 
from climate change. First, our knowledge of seagrass occurrence information is prevalent with 18 
biases, gaps and uncertainties that can influence inferences on species response to global change. 19 
Second, research on seagrass diversity has been focused on species-level metrics that can be 20 
measured with data from the present - but rarely accounting for the shared phylogenetic 21 
relationships and evolutionary distinctiveness of species despite species evolved and diversified 22 
from shared ancestors. Third, compared to the mass production of species occurrence records, 23 
computational tools that can analyze these datasets in a reasonable amount of time are almost 24 
non-existent or do not scale well in terms of computer time and memory. These impediments 25 
mean that scientists must work with incomplete information and often unrepresentative data to 26 
predict how seagrass diversity might change in the future. We discuss these shortfalls and 27 
provide a framework for overcoming the impediments and diminishing the knowledge gaps they 28 
generate. 29 
 30 
INTRODUCTION 31 
Human activities, through fossil fuel emissions and widespread deforestation, have contributed 32 
to increased global temperature above pre-industrial levels (IPCC 2018). As a consequence, 33 
global increases in temperature and atmospheric carbon dioxide can influence species by altering 34 
their growth rates, physiological functions, sexual reproduction, distribution, community 35 
composition, and primary productivity (Campbell et al., 2006; Short & Neckles 1999). Such 36 
changes in environmental climate outside species’ tolerable thresholds will cause some species to 37 
relocate in order to stay within their tolerance zones (Bradshaw & Holzapfel 2001; Parmesan, 38 
2006; Miller-Rushing & Primack 2008; Anderson et al., 2012; MacLean et al., 2018). For 39 
instance, species on land generally ascend to higher elevations or latitudes as temperatures warm, 40 
but may run out of room, which can lead to local extirpation (Parmesan et al., 1999; Freeman et 41 
al., 2018). The sensitivity and responsivity of seagrasses or other marine species, whose 42 
distributional ranges lie at the land-sea margin and with very different evolutionary histories may 43 
show different responses to climate change. 44 
 45 
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Seagrasses are a major vascular plant clade of about 70 species belonging to the Alismatales, an 46 
order that includes ~4000 other non-marine species (Berry 2019). They are widely distributed 47 
across marine coastlines or estuarine environments, often growing submerged in marine water 48 
(Hemminga & Duarte 2000). Seagrasses display a wide variety of morphological diversity 49 
including turtlegrass (Thalassia testudinum) which forms long and jointed rhizomes, rhizome 50 
matts in Posidonia, ribbonlike leaves in eelgrass (Zostera marina), and paddle-shaped leaves in 51 
paddle grass (Halophila decipiens) (Figure 1). They play key ecosystem roles including primary 52 
productivity, nutrient cycling, and carbon sequestration (Hemminga & Duarte 2000; Duarte 53 
2002; Les et al., 2002; Orth et al., 2006; McGlathery et al., 2007; Nordlund et al., 2018). 54 
Seagrass meadows are an important nursery ground for many invertebrates and fishes (Beck et 55 
al., 2001), and directly provide food for marine herbivores including manatees, dugongs, and 56 
green sea turtles (Green & Short 2003; Larkum et al., 2006). As threats from global climate 57 
change intensify, the impacts across seagrass communities are mixed. Some studies have found a 58 
decline in seagrass habitats especially in Australasia with decline rates of about 110 km2 per year 59 
(Waycott et al., 2009). This pattern is not true in North America and Europe where seagrass 60 
communities are no longer in decline, but in fact show positive trajectories in some cases (de los 61 
Santos et al., 2019), perhaps as a result of the proliferation of seagrass monitoring and 62 
conservation programs such as Seagrass-Watch (https://www.seagrasswatch.org/) and 63 
SeagrassSpotter (https://seagrassspotter.org/). Indeed, the vulnerability to the impacts of climate 64 
change on seagrass communities may be scale or context dependent (Day et al., 2008).  65 
 66 
A number of studies indicate that global climate change can impact seagrass communities in a 67 
variety of ways. Short & Neckles (1999) reviewed the potential effects of climate change on 68 
seagrass growth rates, reproduction and spatial distributions; Duarte et al. (2018) explored 69 
relationships between climate change and phenotypic variation in seagrasses (including 70 
physiological variation, propagation success, and herbivore resistance); whereas Erry et al. 71 
(2019) used a mesocosm experiment to assess response of a multi-trophic seagrass ecosystem to 72 
several global change factors. The findings overwhelmingly demonstrated that these factors in 73 
unison could lead to deleterious effects on seagrass ecosystems if they are unable to rapidly 74 
adapt to changes in climate. Similar trends have been observed for specific seagrass locations 75 
e.g., Great Barrier Reef (Waycott et al., 2007), Mediterranean (Pergent et al., 2014), tropical 76 
Pacific Ocean (Waycott et al., 2011), and Western Australia (Arias-Ortiz et al., 2018; Strydom et 77 
al., 2020); or in selected species (e.g., Chefaoui et al., 2018). Other threats to seagrass 78 
populations can be attributed to overexploitation, physical modification, nutrient and sediment 79 
pollution, and introduction and spread of invasive species (Zieman 1976; Ralph et al., 2006; 80 
Moksnes et al., 2008; Bryars et al., 2011; Dewsbury et al., 2016). By contrast, research to 81 
elucidate effects of global climate change on seagrass meadows and how to improve the 82 
prediction of future risks under varying scenarios of climate change have received less attention 83 
(Pernetta et al., 1994; Bijlsma et al., 1995; Short & Neckles 1999).  84 
 85 
Here, we argue that the extension of research agenda to assess seagrasses’ response to climate 86 
change may be constrained by at least three factors. First, our knowledge of seagrass occurrence 87 
information is widespread with biases, gaps and uncertainties that can influence downstream 88 
inferences. Second, most of the research on seagrass diversity has been focused on species-level 89 
metrics (e.g., species richness, endemism or threat) that can be measured with data from the 90 
present - but rarely accounting for the shared phylogenetic relationships and evolutionary 91 
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distinctiveness of species. Species are not independent units but are lineages that evolve and 92 
diversify from shared ancestors (Diniz-Filho et al., 2013). Third, compared to the mass 93 
production of species occurrence records, computational tools that can analyze these datasets in a 94 
reasonable amount of time are almost non-existent or do not scale well in terms of computer time 95 
and memory. These impediments mean that scientists must work with incomplete information 96 
and often unrepresentative data to predict how seagrass diversity might change in the future. 97 
These shortfalls need be carefully recognized and remedied. The objectives of this review are 98 
therefore to first identify the knowledge gaps to understanding seagrasses’ response to climate 99 
change, and secondly propose strategies and tools to overcome these impediments.  100 
 101 
KNOWLEDGE GAPS IN SEAGRASS SAMPLING PRACTICES 102 
Global change has become a central focus of modern ecology. Yet, our knowledge of how 103 
anthropogenic drivers affect seagrass evolutionary diversity is limited by a lack of biological 104 
data spanning the Anthropocene that equally represents all seagrass species. We define the 105 
Anthropocene as a period of profound human impact on biodiversity, characterized by 106 
widespread migration by humans as initiated by the Columbian Exchange circa 1492 (Nunn & 107 
Qian 2010). The vast amounts of specimens of seagrasses deposited in herbaria can serve as a 108 
historical lens into the ecological processes by which present-day seagrass diversity arose, are 109 
maintained, and may evolve in the future. However, occurrence records archived in herbaria and 110 
museums are non-randomly collected over space and time, and thus present biases and 111 
uncertainties that can complicate ecological inferences (e.g., Boakes et al., 2010; Meyer et al., 112 
2016; Daru et al., 2018; Dias Tarli et al., 2018). As a consequence, the use of occurrence records 113 
has not fully permeated the field of global change biology. The gap between specimen 114 
availability and use is widening as hundreds of thousands of specimens are being mobilized 115 
through massive digitization efforts worldwide. We argue that sampling uncertainties in seagrass 116 
occurrence records can manifest in at least three ways: geographic, taxonomic, and temporal 117 
uncertainties (Figure 2). We distinguish between the uncertainties and describe how these 118 
limitations can inhibit progress in understanding seagrass response to global change. 119 
 120 
Uncertainties in geographic sampling 121 
Geographic bias is the disproportionate sampling of a species in some regions of its range 122 
relative to others (Meyer et al., 2016; Stropp et al., 2016; Daru et al., 2018; Menegotto & Rangel 123 
2019). Seagrass geographic data is commonly available as point records or polygons. Point 124 
records are commonly derived from major data hubs such as the Global Biodiversity Information 125 
Facility (GBIF; Edwards, Lane, & Nielsen 2000), United Nations Environment World 126 
Conservation Monitoring Centre (UNEP-WCMC & Short 2020) or Ocean Biodiversity 127 
Information Facility (OBIS) whereas polygons are derived from the International Union for the 128 
Conservation of Nature’s (IUCN) spatial database and United Nations Environment World 129 
Conservation Monitoring Centre (Green & Short 2003; UNEP-WCMC & Short 2020). Despite 130 
the fundamental importance of occurrence data for species distribution modeling, the sampling 131 
of seagrasses across most of their ranges are underrepresented in collections (Green & Short 132 
2003). For instance, extensive spatial gaps exist across regions that harbor high concentrations of 133 
seagrass diversity, especially in Western and Central Indo-Pacific, whereas Europe and North 134 
America are well sampled (Figure 3) (see Methods and Source Data file in Supplementary 135 
Material for details). This pattern is consistent with previous studies. For example, Waycott et al. 136 
(2009) found wide sampling gaps in West Africa, northeast South America, and the northwest 137 
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Pacific area of the United States, most of which correspond to seagrass areas of endemism. 138 
Moreover, since biogeographic patterns are scale dependent, varying along spatial grains, 139 
geographic extents and taxonomic treatments (Jarzyna et al., 2018; Daru et al., 2020), the extent 140 
to which geographic uncertainties in seagrass sampling vary with spatial extent, grain size and 141 
taxonomic treatment remains poorly explored. However, it has been predicted that as grain size 142 
decreases, the knowledge gap in geographic sampling correspondingly increases (Hortal et al., 143 
2015).  144 
 145 
The mismatch between observed seagrass diversity and maps of survey efforts can be attributed 146 
to several factors: 1) knowing data exists in the first place and where it is, 2) harvesting data 147 
collected in native languages not common to science, 3) getting permission to access data 148 
collected under commercial license or from uncooperative governments, 4) validating data both 149 
spatially and taxonomically, 5) the difficulty in sampling specimens especially species in remote 150 
and inaccessible waters e.g., Halophila decipiens occurring >70 m deep in the Central Indo-151 
Pacific (Short et al., 2007) or large parts of Northern Australia that are only accessible by 152 
helicopter, 6) lack of reliable research infrastructure e.g., West Papua and Papua New Guinea, 7) 153 
un-inhabited reef lagoons in large parts of the tropics and Western Pacific, 8) the cost of 154 
gathering long-term data (Wolfe et al., 1987), 9) perhaps a reversing trend of seagrass loss in 155 
Europe, North America, and subtropical Atlantic, e.g., increasing population trends in 156 
Cymodocea nodosa (Schäfer et al., 2021), Zostera marina and Zostera noltei (de los Santos et 157 
al., 2019; Guerrero-Meseguer et al., 2021), and 10) budget constraints for seagrass research. If 158 
seagrass species observations are made near accessible areas e.g., seaports, harbors or marine 159 
research stations, their application in analysis of species distribution modeling can compromise 160 
model performance (Kadmon et al., 2004; Lobo & Tognelli 2011; Bystriakova et al., 2012; 161 
Kramer‐Schadt et al., 2013; Varela et al., 2014). In practice, this means that most observations 162 
only reflect the climate space of accessible areas, and correspondingly areas of human activities 163 
where surface temperatures are higher than in surrounding natural areas (Kalnay & Cai 2003). 164 
Additionally, regions known to contain seagrass meadows (e.g., Canada, Indonesia, and Russia) 165 
have inadequately mapped distributions, while other currently mapped regions most likely only 166 
represent a small portion of seagrass diversity (McKenzie et al., 2020). Targeting the places that 167 
are underrepresented in future collecting expeditions could remedy these limitations and aid in 168 
evaluating how species are responding to recent and future environmental change across biomes. 169 
 170 
Uncertainties in temporal sampling 171 
The sampling of seagrasses can manifest as temporal bias—the unbalanced collecting of 172 
specimens in some years or parts of a given year. This can influence conclusions drawn from 173 
analyses of such nonrandomly sampled collections records (Syfert et al., 2013). Temporal data is 174 
increasingly used in a wide range of applications in ecology and evolutionary studies including 175 
tracking changes in phenology – the timing of seasonal events such as flowering, leafing and 176 
fruiting – and monitoring the spread of invasive species (Iler et al., 2013; Veeneklaas et al., 177 
2013; Meerdink et al., 2019). Yet, while there is general agreement that climate change can 178 
influence phenological patterns by disrupting the timing of life cycle events and consequently 179 
drive changes in fitness and population demography (Ovaskainen et al., 2013; CaraDonna et al., 180 
2014; Thackeray et al., 2016; Kharouba & Wolkovich 2020), most have been observed in 181 
terrestrial species and to a lesser extent in marine flowering plants. In a meta-analysis of GBIF 182 
occurrence records over the course of 250 years (1770-2020) to understand the nature and 183 
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evolution of seagrass sampling, sparser records were observed in earlier years and high 184 
collection densities between the 1900s and present-day (Figure 4). Although over the 250-year 185 
time span, occurrence data was absent for a total of 131 years. Seasonally, seagrass specimens 186 
were overwhelmingly biased toward spring and summer months (regardless of hemisphere 187 
location) for most marine ecoregions including Temperate Southern Africa, Temperate 188 
Australasia, Temperate Northern Pacific, and Temperate Northern Atlantic (Figure 5; see 189 
Methods and Source Data file in Supplementary Material). Interestingly, these periods are 190 
spanned by comprehensive time series data of ocean climate including sea temperature and 191 
salinity (Benway et al., 2019). This means that the time series of changes in seagrass 192 
communities across years or seasons are fewer than the available climate records (cf. Duarte et 193 
al., 1992). As a consequence, the nonrandom sampling of seagrasses in some years or parts of a 194 
year could mean that occurrence records are not reliable sources of phenological change driven 195 
by climate or population demography. If seagrasses are collected only when it is climatically 196 
convenient coupled with lack of reproductive structures on most specimens (Pearson et al., 197 
2020), botanists may miss important phenological events such as winter bud formation, which 198 
protects the embryonic shoot of species during development and elongation (van der Schoot et 199 
al., 2013). Similarly, climate change can influence population demography through range change 200 
(Hunter et al., 2010; Dalgleish et al., 2011; Hugo 2011; Gaillard et al., 2013; Selwood et al., 201 
2015) or facilitate the spread of invasive species (Hellmann et al., 2008; Clements & Ditommaso 202 
2011; Vicente et al., 2013; Hou et al., 2014; Thapa et al., 2018). However, the skewed sampling 203 
of seagrass occurrence data suggests that the data is insufficient to track demographic changes or 204 
monitor spread of invasive species. We recognize that several aspects can influence seagrass 205 
sampling across years or seasons. For instance, some seagrass species are annuals, completing 206 
their life cycle within one growing season (e.g., Halophila decipiens). Other reasons include 207 
inaccessibility to most sites in the West Indo-Pacific during monsoon times, resulting in 208 
overrepresentation of specimens during maximum growing season/flowering season.  209 
 210 
Uncertainties in taxonomic sampling 211 
The sampling and collection of seagrass data may be disproportionately higher in some taxa over 212 
others (Hortal et al., 2008). Taxonomic uncertainty can manifest as phylogenetic bias and be 213 
assessed by testing for phylogenetic signal in collection frequency. A strong phylogenetic signal 214 
– closely related species share similar collecting frequency – would suggest phylogenetic bias in 215 
collections (Daru et al., 2018). Phylogenetic bias can hamper prospects of identifying species 216 
that are climate change indicators and those most likely to be affected by future climate change, 217 
especially given that species’ response to climate change tends to be phylogenetically 218 
nonrandom (Willis et al., 2008; Davis et al., 2010; Davies et al., 2013). A phylogenetic analysis 219 
of long-term monitoring data in Concord Massachusetts, for instance, revealed a strong 220 
association between change in abundance with flowering time response such that the response 221 
traits are shared among closely related plant species (Willis et al., 2008). However, 222 
taxonomically nonrandom collection may mask such patterns and therefore bias conclusions of 223 
seagrass response to climate change. These data limitations may result from a research focus on 224 
specific seagrasses lineages over other groups or simply lack of data on some species. For 225 
example, Coyer et al. (2013) estimated divergence times in 20 species in the family Zosteraceae 226 
at 14.4 Ma, whereas Dilipan et al. (2018) assessed phylogenetic relationships by focusing on 227 
only family Hydrocharitaceae. Not only do these clade-based approaches point to different 228 
divergence times, but the phylogenetic reconstructions also used different gene regions with 229 
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likely different rates of evolution. Seagrass occurrence data on GBIF tends to display a weak 230 
phylogenetic signal in the tendency of closely related species to be sampled similarly; with an 231 
average of ~9 specimens per species representing most Halophila, and ~6-9 specimens per 232 
species representing most Zostera, whereas Halodule and Posidonia had far fewer records 233 
(Figure 6; see Methods and Source Data file in Supplementary Material for details).  234 
 235 
Another factor that can induce taxonomic bias is the lack of comprehensive phylogeny for 236 
seagrass species. Inferring evolutionary patterns based only on phylogeny of the taxa within the 237 
community of interest without fully accounting for the overall phylogenetic diversity of the 238 
entire lineage can potentially lead to spurious results (Park et al., 2018). The available DNA 239 
sequences of seagrasses in GenBank/EBI are sufficient to construct a molecular phylogenetic 240 
tree for only 55 (of 72) species (Daru & le Roux 2016). The 17 species without available DNA 241 
sequences are often manually grafted to the molecular tree in a multichotomy to the node of their 242 
close relatives using a Bayesian framework (Thomas et al., 2013). Such incomplete sampling or 243 
misplaced taxa on the phylogeny can influence the final tree topology and compromise rates of 244 
evolution (Nee et al., 1994, FitzJohn et al., 2009), especially when biases are also geographically 245 
nonrandom (Daru et al., 2018). Even with complete DNA sequences for all seagrass species, 246 
there are large uncertainties in the estimation of divergence times, and unknown evolutionary 247 
models linking phylogenies to underlying ecological traits and life history variation (Diniz-Filho 248 
et al., 2013). Moreover, the polyphyletic nature of seagrasses, drawing from several lineages 249 
within the Alismatales, might also compound our understanding of phylogenetic sampling 250 
biases. 251 
 252 
The aforementioned sampling uncertainties can combine with each other in several ways. 253 
Taxonomic uncertainty can influence all other uncertainties because it reflects knowledge gaps 254 
on the fundamental unit of ecology and evolutionary biology. Geographic uncertainty is strongly 255 
influenced by temporal uncertainty as limited accumulation of data over time can alter accurate 256 
estimations of species’ range size or population demographic history (Pybus et al., 2000, 257 
Drummond et al., 2005). Similarly, geographic uncertainty can compromise estimates of species’ 258 
phenological response to climate change or demographic change, owing to lack of geographical 259 
coverage in many regions (Poelen et al., 2014). Ultimately, these sampling uncertainties are 260 
human artefacts such that any personal preferences, biases, and proclivities of collectors can 261 
greatly skew our understanding of seagrass diversity. 262 
 263 
GAPS IN KNOWLEDGE OF SEAGRASS EVOLUTIONARY DIVERSITY 264 
Understanding what drives variation in the distribution of biodiversity can provide insights into 265 
the ecological and historical processes underlying community assembly (Cavender-Bares et al., 266 
2009) and for prioritizing conservation (Kreft & Jetz 2010; Holt et al., 2013; Daru & le Roux 267 
2016). However, data gaps in the sampling of seagrasses (as outlined above) can influence 268 
estimates of broad-scale patterns and underlying processes (e.g., extinction, speciation and niche 269 
conservatism). Traditionally, identifying broad-scale patterns in seagrasses has been based on 270 
species-level metrics (e.g., species richness, and endemism) (Short et al., 2007; Mtwana et al., 271 
2016; Duffy et al., 2019). Although indispensable in providing baseline biodiversity knowledge, 272 
these metrics alone fail to detect the substantial evolutionary and conservation implications 273 
captured by the shared phylogenetic relationships and evolutionary distinctiveness of species 274 
(Mace et al., 2003; Redding & Mooers 2006; Cadotte 2013). Recent approaches harmonized 275 
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metrics that consider evolutionary components, for example, phylogenetic diversity (Faith 1992), 276 
evolutionary distinctiveness (Redding & Mooers 2006), phylogenetic endemism (Rosauer et al., 277 
2009), or a combination of these metrics. As pressures from climate change induced by 278 
anthropogenic activity mount, we will eventually observe range shifts and losses that can erase 279 
unique evolutionary history (Waycott et al., 2009). There is some evidence that evolutionarily 280 
distinct temperate seagrass assemblages might be disproportionately at risk of extinction (Daru et 281 
al., 2017), which could elevate losses of phylogenetic diversity (Redding et al., 2008). However, 282 
the associated directionality of species’ responses to climate change and impact on phylogenetic 283 
diversity under a scenario of nonrandom extinction is unclear (Purvis et al., 2000). This means 284 
that as global temperatures increase, tropical seagrass species might be capable of expanding 285 
their distributions (Beca-Carretero et al., 2020) into regions traditionally utilized only by 286 
temperate seagrass species. This can induce selection pressures on temperate species that can 287 
result in the loss of distinct evolutionary diversity of seagrasses as the available climate space for 288 
temperate species is reduced by warming temperatures. Such pressures would inhibit our ability 289 
to understand the evolutionary history of seagrasses, as evolutionarily distinct species are lost or 290 
greatly reduced.  291 
 292 
The global decline of seagrasses along a latitudinal gradient is imbalanced, with greater declines 293 
documented in temperate than tropical regions, requiring urgent conservation action (Hauxwell 294 
et al., 2001; Orth et al., 2006; Moksnes et al., 2008; Bryars et al., 2011; Erry et al., 2019). The 295 
recent finding that temperate seagrass assemblages tend to be those that are most evolutionarily 296 
unique also warrants concern given that their extinction would result in a greater loss of 297 
phylogenetic diversity (Daru et al., 2017). In this regard, the familial membership of threatened 298 
seagrass species across marine ecoregions (see Methods and Source Data file in Supplementary 299 
Material) showed a tendency of threatened species in the Temperate Northern Pacific and 300 
Tropical Eastern Pacific clustering within similar families (Figure 7). This phylogenetic and 301 
taxonomic structuring suggests that evolutionary history is an important predictor of species 302 
decline, possibly reflecting a non-random pattern of extinction risk (Purvis et al., 2000). Van 303 
Allen et al. (2012) demonstrated the importance of life-history traits for predicting how natural 304 
assemblages are likely to be impacted by anthropogenic and climatic disturbances using modeled 305 
declines in population growth rates under simulated stochastic disturbance. With regard to 306 
species extinctions and extinction risk, an important link has been identified between the loss of 307 
species and the loss of unique evolutionary history (NRC-US, 2008). Furthermore, the extinction 308 
of evolutionarily distinct or paleoendemic species can elevate losses of evolutionary history 309 
(Veron et al., 2015). These patterns might be indicative that seagrasses are characterized by 310 
species that subtends longer phylogenetic branches perhaps representing once diverse clades that 311 
have been lost through historical extinctions. 312 
 313 
As seagrasses are increasingly threatened along their taxonomic structure spanning several 314 
marine ecoregions, we argue that seagrass extinctions are unlikely to be random. Previously, 315 
Short et al. (2011) determined that roughly 14% of seagrass species were at an elevated risk of 316 
extinction based on the IUCN’s Red List of Threatened Species criteria. Currently, the IUCN 317 
indicates that 31% (22 out of 72) of seagrass species are in global decline, and 22% lack 318 
information for proper assessment of conservation status (IUCN, 2020). Therefore, the question 319 
of why some species persist while others decline across regions will require an understanding of 320 
the shared evolutionary history underlying changes in species richness and composition 321 
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(Waycott 1999; Arnaud-Haond et al., 2010; Massa et al., 2013). With many species’ ranges 322 
greatly reduced or unknown, it is even more challenging to track patterns in seagrass population 323 
successes or failures that could be indicative of their resilience to climate change. In the absence 324 
of these key insights for the adaptive potential of seagrass species, we are unable to fully predict 325 
how individual species of seagrasses will respond to drastic, widespread environmental changes. 326 
 327 
In order to facilitate effective conservation action, it is important to accurately determine which 328 
species are currently at the greatest risk for extinction, and which species will be at risk in the 329 
future. One successful approach has been to collect expert opinion data to prioritize seagrass 330 
management actions at regional scales (Grech et al., 2012) for species that may be unequally 331 
impacted. To this end, phylogenetic information can be very useful for predicting vulnerabilities 332 
at individual or familial levels (Gallagher et al., 2015). For example, families with a high 333 
proportion of species in global decline include Zosteraceae, Hydrocharitaceae, Posidoniaceae, 334 
and Cymodoceaceae; with Zosteraceae contributing about half of the total number of species in 335 
decline (Figure 8). Therefore, Zosteraceae and other evolutionarily similar families may possess 336 
a phylogenetic signal for extinction pressures. Families with seagrasses having unknown 337 
population trends include Hydrocharitaceae, Cymodoceaceae, Ruppiaceae, Posidoniaceae, and 338 
Zosteraceae according to the IUCN (see Methods and Source Data file in Supplementary 339 
Material for details). These groups are of high conservation concern given that species associated 340 
with these families may be currently threatened or already in decline without notice. Such 341 
population trends, or lack thereof, imply that certain species of seagrasses may be too heavily 342 
impacted in the future to prevent complete losses or extinctions given the rapid pace of climatic 343 
change.  344 
 345 
SHORTFALLS IN COMPUTATIONAL TOOLS FOR ASSESSING SPECIES 346 
RESPONSE TO CLIMATE CHANGE 347 
It is possible that the aforementioned impediments can be solved by increasing biological 348 
knowledge and computational capacity. However, compared to the mass production of 349 
occurrence records and climate data, tools that can analyze these datasets in a reasonable amount 350 
of time are almost non-existent or do not scale well in terms of computer time, memory, or other 351 
resources. This is particularly true for seagrasses that have wide geographic ranges, colonizing 352 
every coastline. As a consequence, ecologists and conservationists wishing to address questions 353 
related to seagrass response to climate change may be deterred by lack of analytical tools. 354 
 355 
The occurrence data typically used for species distribution modeling is generated from massive 356 
digitization of museum records and citizen science campaigns (e.g., Seagrass-Watch, 357 
https://www.seagrasswatch.org/) and are often available as point records; whereas global 358 
oceanographic variables are measured by instruments on satellites daily (NOAA Climate.gov, 359 
2020), which increase the size of the dataset many-folds. This exponential increase in species 360 
occurrences and oceanographic information inflate the size of running time for modeling 361 
algorithms (Farley et al., 2018; Allen et al., 2019), and consequently increases the challenges for 362 
visualizing downstream patterns. In Figure 9, the number of seagrass occurrence records in GBIF 363 
has increased over time. Where there used to be access to only a few dozen records, the rapid 364 
expansion of biodiversity occurrence data has now made it common for there to be a few 365 
thousand records per species (see Source Data file in Supplementary Material). This poses 366 
computational challenges for researchers. For analysis of species distribution modeling under 367 
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different representative concentration pathway scenarios, for instance, researchers rapidly run 368 
into a spatial scale exponentiation problem. At a spatial resolution of 0.5 degrees (equivalent to 369 
~50 km at the equator) covering the geographic ranges of seagrasses, there are 201,600 possible 370 
pixels for the algorithm to evaluate from. Computing probabilities across a 201,600-possibility 371 
data frame is a challenge. Such large-scale analysis can easily reach thousands of bytes and 372 
analysis using current tools would be prohibitively expensive computationally. 373 
 374 
Presently, the software that can facilitate analysis of species distribution modeling of seagrasses 375 
includes maxent (Steven et al., 2017), dismo (Hijmans et al., 2011), biomod2 (Thuiller et al., 376 
2014), esdm (Woodman et al., 2019), ModEco (Guo & Liu 2010), SDMtoolbox 2.0 (Brown et 377 
al., 2017), ArcGIS and ARCMap. Several of these packages contain some statistical capabilities 378 
by integrating occurrence information and climate data. For instance, biomod2 facilitates species 379 
distribution modeling by averaging across different methods including generalized additive 380 
models, generalized linear models, generalized boosting trees, maximum entropy, and random 381 
forest (Thuiller et al., 2014). However, these packages differ in their inferences, and analytical 382 
and computational capacity to process the massively mobilized occurrence records spanning tens 383 
of thousands of pixels across the globe (depending on the measurement scale). Some of these 384 
packages are developed for use in command-line while others are graphical user-interface (GUI). 385 
Most packages are developed to address a specific biological question and may have restricted 386 
analytical options that can limit computational flexibility. Ultimately, scientists wishing to 387 
address more complex hypotheses will have to use a compilation of multiple computational 388 
workflows. 389 
 390 
More recent approaches to scale existing software to handle the exponential growth of 391 
biodiversity datasets include developing parallel algorithms (McCallum 2011) and using modern 392 
computational architectures, such as multicore systems, graphics processing units, and 393 
supercomputers (Maruyama et al., 2011). The advantages of these methods are that they provide 394 
reproducible source codes. However, they might require the user to have a good background in 395 
high performance computing. These limitations should not detract from exploring other 396 
outstanding questions that remained to be addressed with the available tools: 1) What are the 397 
effects of reduced area and increased isolation of marine habitats? 2) Where will seagrass species 398 
disperse to under alternative scenarios of climate change? and 3) How have anthropogenic 399 
activities e.g., marine pollution, sedimentation, and coastal urbanization changed the geography 400 
of seagrasses? 401 
 402 
OVERCOMING THE IMPEDIMENTS 403 
Seagrass occurrence records are increasingly being utilized in biogeographical investigations and 404 
prioritizing conservation (Valle et al., 2014; Chefaoui et al., 2018; Jayathilake & Costello 2018; 405 
Beca-Carretero et al., 2020; Heck et al., 2020). As possible solutions for the geographic 406 
uncertainty, we suggest enhanced funding for local, regional, and global inventories such as 407 
SeagrassNet for seagrass habitats in the Western Pacific (Short et al., 2006), Seagrass-Watch in 408 
Australasia (McKenzie et al., 2000, 2009), ResilienSEA (http://resiliensea.org/) in West Africa, 409 
Texas Seagrass Monitoring program (http://www.texasseagrass.org/), SeagrassSpotter 410 
(https://seagrassspotter.org/) a global tool for locating seagrasses, or Zostera Experimental 411 
Network (http://zenscience.org) for eelgrass (Zostera marina). Overcoming gaps in geographic 412 
sampling can also include collectors using best practices for collecting and vouchering 413 
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specimens such as capturing accurate geolocations. It could also require the digitization and 414 
mobilization of vouchered seagrass specimens stored in herbaria and museums across the world. 415 
The iNaturalist project is a platform for sharing species observations along with geographic 416 
coordinates for terrestrial organisms and can be leveraged for filling in the data gaps in seagrass 417 
sampling. Kew’s Plants of the World Online portal (POWO) provides distribution information 418 
on the seed-bearing plants of the world based on level 3 of the Taxonomic Diversity Working 419 
Group distribution scheme which corresponds to country borders (POWO 2019) and can be 420 
extended to cover seagrasses as well. High resolution cameras attached to unmanned aerial 421 
vehicles can be deployed to survey seagrasses in remote and inaccessible waters; however, 422 
special permits can often be required to access some sites (Johnston 2019).  423 
 424 
Species distribution models – the statistical estimation of species geographic distributions based 425 
on only some known occurrences and environmental conditions (Peterson et al., 2011) – can also 426 
provide an unbiased and easily interpretable estimate of improving representativeness and 427 
coverage of seagrass distributions. For example, a recent species distribution model predicts 428 
more than two-fold increase in the potential global distribution of seagrasses (Jayathilake & 429 
Costello 2018). However, the accuracy of this prediction has attracted particular scrutiny because 430 
of inconsistent measures and widespread sampling gaps in seagrass occurrence records 431 
(McKenzie et al., 2020). Additionally, modeling approaches can contribute other useful 432 
measurements of seagrass meadows such as assessing ecosystem services as well as estimating 433 
broad-scale seagrass resources as was exemplified by Collier et al. (2021) who used historical 434 
data to accurately predict the below-ground biomass of five seagrass species. Because 435 
geographic scale is an important consideration in ecological analyses (Jarzyna & Jetz 2018; Daru 436 
et al. 2020), a multi-scale approach varying along spatial extents (local, regional and global) and 437 
grain resolutions should be considered in assessing seagrass response to global change and 438 
model testing. Temporal uncertainty can be diminished by carrying out new field surveys that are 439 
more consistent and evenly distributed across seasons and years. Collectors should use best 440 
practices such as capturing and documenting accurate dates of collection. For the taxonomic 441 
uncertainty: increased support for marine plant taxonomy and advances in taxonomic 442 
publications could minimize biases. Next-generation DNA sequencing combined with 443 
bioinformatics (Taberlet et al., 2012) will help diminish taxonomic uncertainty such as 444 
sequencing old herbarium specimens of very rare species such as Halodule bermudensis. The 445 
rapid growth of large databases such as GenBank (http://www.ncbi.nlm.nih.gov/genbank), 446 
SeagrassDB (Sablok et al., 2018), and Treebase (http://www.treebase.org), allows researchers to 447 
download available phylogenies or DNA sequences to build their own (Morell 1996; Piel et al., 448 
2000; Page et al., 2007). Taxonomic bias can also be reduced by targeting future collecting in 449 
poorly sampled clades. 450 
 451 
Improvement of analytical and computational tools is an important priority for handling the 452 
analyses for large-scale comparative analyses of seagrass species. For instance, the US National 453 
Science Foundation-funded software BiotaPhy facilitates integration, data collection and analysis 454 
by connecting to existing data repositories such as the Open Tree of Life, iDigBio, and 455 
Lifemapper (BiotaPhy 2020), whereas the open-source package sampbias allows quantification 456 
of geographic sampling biases in species distribution data (Zizka et al., 2020). The R software 457 
package phyloregion – designed for biogeographic regionalization and macroecology – can 458 
overcome some computational challenges (Daru et al., 2020). It contains tools for 459 
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biogeographical regionalization, macroecology, conservation, and visualizing biodiversity 460 
patterns, and has potential application in diverse fields including evolution, microbial diversity, 461 
systematics, ecology, phylogenetics, and many others (Daru et al., 2020). We expect that the 462 
proliferation of more open-source analytical tools to greatly facilitate comprehensive 463 
understanding of seagrass sensitivity to ecological change driven by anthropogenic causes. 464 
 465 
CONCLUDING REMARKS 466 
Here, we outlined impediments that limit progress in understanding seagrass sensitivity to global 467 
change induced by human activities. These knowledge gaps are interconnected and represent 468 
only few of the possible issues related to research in seagrass diversity and evolution. Taxonomic 469 
uncertainty can influence all other types of uncertainties as it reflects knowledge gaps on the 470 
fundamental unit of ecology and evolutionary biology. The geographic and temporal 471 
uncertainties are strongly related and capture knowledge gaps about species distributions in 472 
space and time, respectively. Even when the aforementioned impediments are resolved, many of 473 
the critical questions about seagrass sensitivity to global change, can be out of reach for scientists 474 
without the right analytical tools. The recent development of efficient and replicable 475 
computational tools, massive mobilization of natural history collections, and increased funding 476 
for seagrass research could remedy these shortcomings. Most of the management tools designed 477 
for use in developed countries can be extended to remote areas in developing countries where 478 
most seagrass diversity resides e.g., the Central Indo-Pacific. Although research on a single 479 
taxon or selected taxa is useful to a certain extent, species are lineages that evolve and diversify 480 
from shared ancestors, suggesting an integrative approach that accounts for their shared 481 
phylogenetic relationships. 482 
 483 
 484 
AUTHOR CONTRIBUTIONS 485 
BHD conceived and designed the study. BMR ran the analyses with help from BHD. BMR wrote 486 
the paper with substantial contributions from BHD. Both authors approved the submitted 487 
version. 488 
 489 
ACKNOWLEDGEMENTS 490 
We thank Texas A&M University-Corpus Christi for logistic and financial support, and Kristen 491 
Ruggles for comments on style and language. This study was supported by a US National 492 
Science Foundation grant no. 2031928 493 
 494 
SUPPLEMENTARY MATERIAL 495 
Supplementary Methods can be found in the online version of this article. 496 
 497 
 498 
  499 



12 
 

REFERENCES 500 
 501 
Allen, J. M., Folk, R. A., Soltis, P. S., Soltis, D. E., & Guralnick, R. P. (2019). 502 
Biodiversity synthesis across the green branches of the tree of life. Nature Plants 5, 11-13, 503 
https://doi.org/10.1038/s41477-018-0322-7 504 

Anderson, J. T., Panetta, A. M., & Mitchell-Olds, T. (2012). Evolutionary and ecological 505 
responses to anthropogenic climate change. Plant Physiology, 160, 1728-1740. 506 
https://doi.org/10.1104/pp.112.206219 507 

Arias-Ortiz, A., Serrano, O., Masqué, P., Lavery, P. S., Mueller, U., Kendrick, G. A., … Duarte, 508 
C. M. (2018). A marine heatwave drives massive losses from the world’s largest seagrass carbon 509 
stocks. Nature Climate Change, 8(4), 338–344. https://doi.org/10.1038/s41558-018-0096-y 510 

Arnaud-Haond, S., Marbà, N., Diaz-Almela, E. et al. (2010). Comparative analysis of stability—511 
genetic diversity in seagrass (Posidonia oceanica) meadows yields unexpected results. Estuaries 512 
and Coasts 33, 878-889. https://doi.org/10.1007/s12237-009-9238-9 513 

Beca-Carretero, P., Teichberg, M., Winters, G., Procaccini, G., & Reuter, H. (2020). Projected 514 
rapid habitat expansion of tropical seagrass species in the mediterranean sea as climate change 515 
progresses. Frontiers in Plant Science, 11, 1762. https://doi.org/10.3389/fpls.2020.555376 516 

Beck, M., Jr, K., Able, K., Childers, D., Eggleston, D., Gillanders, B., … Weinstein, M. (2001). 517 
The identification, conservation, and management of estuarine and marine nurseries for fish and 518 
invertebrates. BioScience, 51, 633-641. https://doi.org/10.1641/0006-519 
3568(2001)051[0633:TICAMO]2.0.CO;2 520 

Benway, H. M., Lorenzoni, L., White, A. E., Fiedler, B., Levine, N. M., Nicholson, D. P., … 521 
Letelier, R. M. (2019). Ocean time series observations of changing marine ecosystems: an era of 522 
integration, synthesis, and societal applications. Frontiers in Marine Science, 6, 393. 523 
https://doi.org/10.3389/fmars.2019.00393 524 

Berry, P. E. (2019, February). Alismatales. Retrieved November 27, 2020, from 525 
https://www.britannica.com/plant/Alismatales 526 

Bijlsma, L., Ehler, C., Klein, R., Kulshrestha, S., Mclean, R., Mimura, N., … Warrick, R. (1995). 527 
Coastal zones and small islands (pp. 289-324). 528 

BiotaPhy (2020). BiotaPhy Project, https://biotaphy.github.io/  529 

Boakes, E. H., McGowan, P. J. K., Fuller, R. A., Chang-qing, D., Clark, N. E., O’Connor, K., & 530 
Mace, G. M. (2010). Distorted views of biodiversity: spatial and temporal bias in species 531 
occurrence data. PLOS Biology, 8, 1-11. https://doi.org/10.1371/journal.pbio.1000385 532 



  
 

13 
 

Bradshaw, W. E., & Holzapfel, C. M. (2001). Genetic shift in photoperiodic response correlated 533 
with global warming. Proceedings of the National Academy of Sciences, 98, 14509-14511. 534 
https://doi.org/10.1073/pnas.241391498 535 

Brown, J., Bennett, J., & French, C. (2017). SDMtoolbox 2.0: The next generation Python-based 536 
GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. PeerJ, 537 
5, e4095. https://doi.org/10.7717/peerj.4095 538 

Bryars, S., Collings, G., Miller, D. (2011). Nutrient exposure causes epiphytic changes 539 
and coincident declines in two temperate Australian seagrasses. Marine Ecology Progress Series, 540 
441, 89-103. https://doi.org/10.3354/meps09384  541 

Bystriakova, N., Peregrym, M., Erkens, R., Bezsmertna, O., & Schneider, H. (2012). Sampling 542 
bias in geographic and environmental space and its effect on the predictive power of species 543 
distribution models. Systematics and Biodiversity, 10. 544 
https://doi.org/10.1080/14772000.2012.705357 545 

Cadotte, M. W. (2013). Experimental evidence that evolutionarily diverse assemblages result in 546 
higher productivity. Proceedings of the National Academy of Sciences of the United States of 547 
America, 110, 8996. https://doi.org/10.1073/pnas.1301685110 548 
 549 
Campbell, S. J., McKenzie, L. J., & Kerville, S. P. (2006). Photosynthetic responses of seven 550 
tropical seagrasses to elevated seawater temperature. Journal of Experimental Marine Biology 551 
and Ecology, 330, 455-468. http://dx.doi.org/10.1016/j.jembe.2005.09.017 552 
 553 
CaraDonna, P. J., Iler, A. M., & Inouye, D. W. (2014). Shifts in flowering phenology reshape a 554 
subalpine plant community. Proceedings of the National Academy of Sciences of the United 555 
States of America, 111, 4916-4921. https://doi.org/10.1073/pnas.1323073111 556 

Cavender-Bares, J., Kozak, K., Fine, P., & Kembel, S. (2009). The merging of community 557 
ecology and phylogenetic biology. Ecology Letters, 12, 693-715. https://doi.org/10.1111/j.1461-558 
0248.2009.01314.x 559 

Chefaoui, R. M., Duarte, C. M., & Serrão, E. A. (2018). Dramatic loss of seagrass habitat under 560 
projected climate change in the Mediterranean Sea. Global Change Biology, 24, 4919-4928. 561 
https://doi.org/10.1111/gcb.14401 562 
 563 
Clements, D. R., Ditommaso, A. (2011). Climate change and weed adaptation: can evolution of 564 
invasive plants lead to greater range expansion than forecasted? Weed Research, 51, 227-240. 565 
https://doi.org/10.1111/j.1365-3180.2011.00850.x 566 

Collier, C. J., Langlois, L. M., McMahon, K. M., Udy, J., Rasheed, M., Lawrence, E., … 567 
McKenzie, L. J. (2021). What lies beneath: Predicting seagrass below-ground biomass from 568 
above-ground biomass, environmental conditions and seagrass community composition. 569 
Ecological Indicators, 121, 107156. 570 
https://doi.org/https://doi.org/10.1016/j.ecolind.2020.107156 571 



14 
 

 572 
Coyer, J. A., Hoarau, G., Kuo, J., Tronholm, A., Veldsink, J., & Olsen, J. L. (2013). Phylogeny 573 
and temporal divergence of the seagrass family Zosteraceae using one nuclear and three 574 
chloroplast loci. Systematics and biodiversity, 11, 271-284. 575 
https://doi.org/(...)14772000.2013.821187 576 
 577 
Dalgleish, H. J., Koons, D. N., Hooten, M. B., Moffet, C. A., & Adler, P. B. (2011). Climate 578 
influences the demography of three dominant sagebrush steppe plants. Ecology, 92, 75-85. 579 
https://doi.org/10.1890/10-0780.1 580 

Daru, B. H., & le Roux, P. C. (2016). Marine protected areas are insufficient to conserve global 581 
marine plant diversity. Global Ecology and Biogeography, 25, 324-334. 582 
https://doi.org/https://doi.org/10.1111/geb.12412 583 

Daru, B. H., Holt, B. G., Lessard, J.-P., Yessoufou, K., & Davies, T. J. (2017). Phylogenetic 584 
regionalization of marine plants reveals close evolutionary affinities among disjunct temperate 585 
assemblages. Biological Conservation, 213, 351-356. 586 
https://doi.org/10.1016/j.biocon.2016.08.022 587 
 588 
Daru, B. H., Park, D. S., Primack, R. B., Willis, C. G., Barrington, D. S., Whitfeld, T. J. S., … 589 
Davis, C. C. (2018). Widespread sampling biases in herbaria revealed from large-scale 590 
digitization. New Phytologist, 217, 939-955. https://doi.org/10.1111/nph.14855 591 
 592 
Daru, B. H., Farooq, H., Antonelli, A. & Faurby, S. (2020). Endemism patterns are scale 593 
dependent. Nature Communications, 11, 2115. https://doi.org/10.1038/s41467-020-15921-6 594 
 595 
Daru, B.H., Karunarathne P. & Schliep K. (2020). phyloregion: R package for biogeographic 596 
regionalization and macroecology. Methods in Ecology and Evolution 11, 1483-1491. 597 
https://doi.org/10.1111/2041-210X.13478 598 
 599 
Davis, C. C., Willis, C. G., Primack, R. B., & Miller-Rushing, A. J. (2010). The importance of 600 
phylogeny to the study of phenological response to global climate change. Philosophical 601 
transactions of the Royal Society of London. Series B, Biological sciences, 365, 3201-3213. 602 
https://doi.org/10.1098/rstb.2010.0130 603 

Davies, T. J., Wolkovich, E. M., Kraft, N. J. B., Salamin, N., Allen, J. M., Ault, T. R., … 604 
Travers, S. E. (2013). Phylogenetic conservatism in plant phenology. Journal of Ecology, 101, 605 
1520-1530. https://doi.org/https://doi.org/10.1111/1365-2745.12154 606 

Day, J. W., Christian, R. R., Boesch, D. M., Yáñez-Arancibia, A., Morris, J., Twilley, R. R., 607 
Naylor, L. and Schaffner, L., (2008). Consequences of climate change on the ecogeomorphology 608 
of coastal wetlands. Estuaries and Coasts, 31, 477-491. 609 
 610 
Dewsbury, B. M., Bhat, M., & Fourqurean, J. W. (2016). A review of seagrass economic 611 
valuations: Gaps and progress in valuation approaches. Ecosystem Services, 18, 68-77. 612 
https://doi.org/10.1016/j.ecoser.2016.02.010 613 



  
 

15 
 

Dias Tarli, V., Grandcolas, P., & Pellens, R. (2018). The informative value of museum 614 
collections for ecology and conservation: A comparison with target sampling in the Brazilian 615 
Atlantic forest. PLOS ONE, 13, 1-17. https://doi.org/10.1371/journal.pone.0205710 616 

Dilipan, E., Lucas, C., Papenbrock, J., & Thangaradjou, T. (2018). Tracking the Phylogeny of 617 
Seagrasses: Inferred from 18S rRNA Gene and Ancestral State Reconstruction of Morphological 618 
Data. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 619 
88, 497-504. https://doi.org/10.1007/s40011-016-0780-5 620 

Diniz-Filho, J. A. F., Loyola, R. D., Raia, P., Mooers, A. O., & Bini, L. M. (2013). Darwinian 621 
shortfalls in biodiversity conservation. Trends in Ecology & Evolution, 28, 689-695. 622 
https://doi.org/10.1016/j.tree.2013.09.003 623 

Drummond, A. J., Rambaut, A., Shapiro, B., & Pybus, O. G. (2005). Bayesian coalescent 624 
inference of past population dynamics from molecular sequences. Molecular Biology and 625 
Evolution, 22, 1185-1192. https://doi.org/10.1093/molbev/msi103 626 

Duarte, C. M. (1992). Nutrient concentration of aquatic plants: Patterns across species. 627 
Limnology and Oceanography, 37, 882-889. 628 
https://doi.org/https://doi.org/10.4319/lo.1992.37.4.0882 629 

Duarte, C. (2002). The future of seagrass meadows. Environmental Conservation, 29, 192-206. 630 
doi:10.1017/S0376892902000127 631 
 632 
Duarte, B., Martins, I., Rosa, R., Matos, A. R., Roleda, M. Y., Reusch, T. B. H., … Jueterbock, 633 
A. (2018). Climate change impacts on seagrass meadows and macroalgal forests: An integrative 634 
perspective on acclimation and adaptation potential. Frontiers in Marine Science, 5. 635 
https://doi.org/10.3389/fmars.2018.00190 636 

Duffy, J. E., Benedetti-Cecchi, L., Trinanes, J., Muller-Karger, F. E., Ambo-Rappe, R., Boström, 637 
C., … Yaakub, S. M. (2019). Toward a coordinated global observing system for seagrasses and 638 
marine macroalgae. Frontiers in Marine Science, 6, 317. 639 
https://doi.org/10.3389/fmars.2019.00317 640 

Edwards, J., Lane, M. A., & Nielsen, E. (2000). Interoperability of biodiversity databases: 641 
biodiversity information on every desktop. Science (New York, N.Y.), 289, 2312-2314. 642 

Erry, D. I. P., Taveley, T. H. S., Eyanova, D. I. D., Aden, S. U. B., Upont, S. A. M. D., & Al, P. 643 
E. T. (2019). Global environmental changes negatively impact temperate seagrass ecosystems. 644 
Ecosphere, 10, e02986. https://doi.org/https://doi.org/10.1002/ecs2.2986 645 

Faith, D. P. (1992). Conservation evaluation and phylogenetic diversity. Biological 646 
Conservation, 61, 1-10. https://doi.org/https://doi.org/10.1016/0006-3207(92)91201-3 647 



16 
 

Farley, S. S., Dawson, A., Goring, S. J., & Williams, J. W. (2018). Situating ecology as a big-648 
data science: current advances, challenges, and solutions. BioScience 68, 563-576, 649 
https://doi.org/10.1093/biosci/biy068 650 
 651 
FitzJohn, R. G., Maddison, W. P., & Otto, S. P. (2009). Estimating trait-dependent speciation 652 
and extinction rates from incompletely resolved phylogenies. Systematic biology, 58, 595-611. 653 
https://doi.org/10.1093/sysbio/syp067 654 

Freeman, B. G., Scholer, M. N., Ruiz-Gutierrez, V., & Fitzpatrick, J. W. (2018). Climate change 655 
causes upslope shifts and mountaintop extirpations in a tropical bird community. Proceedings of 656 
the National Academy of Sciences, 115, 11982-11987. https://doi.org/10.1073/pnas.1804224115 657 

GBIF.org (17 January 2020) GBIF Occurrence Download https://doi.org/10.15468/dl.t7xgct 658 

Gaillard, J.-M., Mark Hewison, A. J., Klein, F., Plard, F., Douhard, M., Davison, R., & 659 
Bonenfant, C. (2013). How does climate change influence demographic processes of widespread 660 
species? Lessons from the comparative analysis of contrasted populations of roe deer. Ecology 661 
Letters, 16, 48-57. https://doi.org/https://doi.org/10.1111/ele.12059 662 

Gallagher, A. J., Hammerschlag, N., Cooke, S. J., Costa, D. P., & Irschick, D. J. (2015). 663 
Evolutionary theory as a tool for predicting extinction risk. Trends in Ecology & Evolution, 30, 664 
61-65. https://doi.org/10.1016/j.tree.2014.12.001 665 
 666 
Grech, A., Chartrand, K., Erftemeijer, P., Fonseca, M., McKenzie, L., Rasheed, M., … Coles, R. 667 
(2012). A comparison of threats, vulnerabilities and management approaches in global seagrass 668 
bioregions. Environmental Research Letters, 7. https://doi.org/10.1088/1748-9326/7/2/024006 669 

Green E. P, Short F.T. (2003). World atlas of seagrasses. Prepared by UNEP World 670 
Conservation Monitoring Centre. Berkeley (California, USA): University of California. 332 pp. 671 
URL: https://archive.org/details/worldatlasofseag03gree 672 

Guerrero-Meseguer, L., L., Veiga, P., & Rubal, M., Sampaio. (2021). Resurgence of Zostera 673 
marina in the Ria de Aveiro lagoon, Portugal. Aquatic Botany, 169, 103338. 674 
https://doi.org/10.1016/j.aquabot.2020.103338 675 

Guo, Q., & Liu, Y. (2010). ModEco: An integrated software package for ecological niche 676 
modeling. Ecography, 33, 637-642. https://doi.org/10.1111/j.1600-0587.2010.06416.x 677 

Hauxwell, J., Cebrián, J., Furlong, C., & Valiela, I. (2001). Macroalgal canopies contribute to 678 
eelgrass (Zostera marina) decline in temperate estuarine ecosystems. Ecology 82, 1007-1022. 679 
https://doi.org/https://doi.org/10.1890/0012-9658(2001)082[1007:MCCTEZ]2.0.CO;2 680 

Heck, K. L., Samsonova, M., Poore, A. G. B., & Hyndes, G. A. (2020). Global patterns in 681 
seagrass herbivory: Why, despite existing evidence, there are solid arguments in favor of 682 
latitudinal gradients in seagrass herbivory. Estuaries and Coasts. https://doi.org/10.1007/s12237-683 
020-00833-x 684 



  
 

17 
 

Hellmann, J.J., Byers, J.E., Bierwagen, B.G. and Dukes, J.S. (2008). Five potential consequences 685 
of climate change for invasive species. conservation biology. 22, 534-543. 686 
https://doi.org/10.1111/j.1523-1739.2008.00951.x 687 
 688 
Hemminga, M., & Duarte, C. (2000). Seagrass Ecology. Cambridge: Cambridge University 689 
Press. doi:10.1017/CBO9780511525551 690 
 691 
Hijmans, R. J, Phillips, S., Leathwick, J. and Elith, J. (2011), Package ‘dismo’. Available online 692 
at: http://cran.r-project.org/web/packages/dismo/index.html. 693 

Holt, B., Lessard, J.-P., Borregaard, M., Fritz, S., Araújo, M., Dimitrov, D., … Rahbek, C. 694 
(2013). An update of wallace’s zoogeographic regions of the world. Science, 339, 74-78. 695 
https://doi.org/10.1126/science.1228282 696 

Hortal, J. (2008). Uncertainty and the measurement of terrestrial biodiversity gradients. Journal 697 
of Biogeography, 35, 1335-1336. https://doi.org/https://doi.org/10.1111/j.1365-698 
2699.2008.01955.x 699 

Hortal, J., de Bello, F., Diniz-Filho, J. A. F., Lewinsohn, T. M., Lobo, J. M., & Ladle, R. J. 700 
(2015). Seven shortfalls that beset large-scale knowledge of biodiversity. Annual Review of 701 
Ecology, Evolution, and Systematics, 46, 523-549. https://doi.org/10.1146/annurev-ecolsys-702 
112414-054400 703 

Hugo, G. (2011). Future demographic change and its interactions with migration and climate 704 
change. Global Environmental Change, 21, S21-S33. 705 
https://doi.org/https://doi.org/10.1016/j.gloenvcha.2011.09.008 706 

Hunter, C.M., Caswell, H., Runge, M.C., Regehr, E.V., Amstrup, S.C. and Stirling, I. (2010), 707 
Climate change threatens polar bear populations: a stochastic demographic analysis. Ecology, 91, 708 
2883-2897. https://doi.org/10.1890/09-1641.1 709 
 710 
Hou, QQ., Chen, BM., Peng, SL. et al. (2014). Effects of extreme temperature on seedling 711 
establishment of nonnative invasive plants. Biological Invasions 16, 2049-2061. 712 
https://doi.org/10.1007/s10530-014-0647-8 713 
 714 
Iler, A.M., Høye, T.T., Inouye, D.W. and Schmidt, N.M. (2013), Long‐term trends mask 715 
variation in the direction and magnitude of short‐term phenological shifts. American Journal of 716 
Botany, 100, 1398-1406. https://doi.org/10.3732/ajb.1200490 717 

IPCC. (2018). Summary for policymakers of IPCC special report on global warming of 1.5°C 718 
approved by governments. (2018, October 8). Retrieved December 03, 2020, from 719 
https://www.ipcc.ch/2018/10/08/summary-for-policymakers-of-ipcc-special-report-on-global-720 
warming-of-1-5c-approved-by-governments/ 721 

IUCN 2020. The IUCN Red List of Threatened Species. Version 2020-2. 722 
https://www.iucnredlist.org. Downloaded on 03 August 2020. 723 
 724 



18 
 

Jarzyna, M. A., & Jetz, W. (2018). Taxonomic and functional diversity change is scale 725 
dependent. Nature Communications, 9, 2565. https://doi.org/10.1038/s41467-018-04889-z 726 

Jayathilake, D. R. M., & Costello, M. J. (2018). A modelled global distribution of the seagrass 727 
biome. Biological Conservation, 226, 120-126. 728 
https://doi.org/https://doi.org/10.1016/j.biocon.2018.07.009 729 

Johnston, D. W. (2019). Unoccupied aircraft systems in marine science and conservation. Annual 730 
Review of Marine Science, 11, 439-463. https://doi.org/10.1146/annurev-marine-010318-095323 731 

Kadmon, R., Farber, O., & Danin, A. (2004). Effect of roadside bias on the accuracy of 732 
predictive maps produced by bioclimatic models. Ecological Applications, 14, 401-413. 733 
https://doi.org/10.1890/02-5364 734 

Kalnay, E., & Cai, M. (2003). Impact of urbanization and land-use change on climate. Nature 735 
423, 528-531. https://doi.org/10.1038/nature01675 736 
 737 
Kharouba, H. M., Wolkovich, E. M. (2020). Disconnects between ecological theory and data in 738 
phenological mismatch research. Nature Climate. Change, 10, 406-415. 739 
https://doi.org/10.1038/s41558-020-0752-x 740 

Kramer-Schadt, S., Niedballa, J., Pilgrim, J. D., Schröder, B., Lindenborn, J., Reinfelder, V., … 741 
Wilting, A. (2013). The importance of correcting for sampling bias in MaxEnt species 742 
distribution models. Diversity and Distributions, 19, 1366-1379. 743 
https://doi.org/https://doi.org/10.1111/ddi.12096 744 

Kreft, H., & Jetz, W. (2010). A framework for delineating biogeographical regions based on 745 
species distributions. Journal of Biogeography, 37, 2029-2053. 746 
https://doi.org/https://doi.org/10.1111/j.1365-2699.2010.02375.x 747 

Larkum, W. D., Orth, R. J., Duarte, C. M., eds (2006). Seagrasses: Biology, Ecology and 748 
Conservation. Dordrecht (The Netherlands), Springer. 749 
 750 
Les, D. H., Moody, M. L., Jacobs, S. W. L., & Bayer, R. J. (2002). Systematics of seagrasses 751 
(Zosteraceae) in Australia and New Zealand. Systematic Botany, 27, 468-484. Retrieved from 752 
https://doi.org/10.1043/0363-6445-27.3.468 753 

Lobo, J., & Tognelli, M. (2011). Exploring the effects of quantity and location of pseudo-754 
absences and sampling biases on the performance of distribution models with limited point 755 
occurrence data. Journal for Nature Conservation, 19. https://doi.org/10.1016/j.jnc.2010.03.002 756 

Mace, G. M., Gittleman, J. L., & Purvis, A. (2003). Preserving the Tree of Life. Science 300, 757 
1707. https://doi.org/10.1126/science.1085510 758 
 759 



  
 

19 
 

MacLean, S. A., Rios Dominguez, A. F., de Valpine, P., Beissinger, S. R. (2018). A century of 760 
climate and land‐use change cause species turnover without loss of beta diversity in California’s 761 
Central Valley. Global Change Biology, 24, 5882- 5894. https://doi.org/10.1111/gcb.14458  762 

Maruyama, N., Nomura, T., Sato, K., & Matsuoka, S. (2011). Physis: an implicitly parallel 763 
programming model for stencil computations on large-scale GPU-accelerated supercomputers. In 764 
Proceedings of 2011 International Conference for High Performance Computing, Networking, 765 
Storage and Analysis. New York, NY, USA: Association for Computing Machinery. 766 
https://doi.org/10.1145/2063384.2063398 767 

Massa, S. I., Paulino, C. M., Serrão, E. A. et al. (2013). Entangled effects of allelic and clonal 768 
(genotypic) richness in the resistance and resilience of experimental populations of the seagrass 769 
Zostera noltii to diatom invasion. BMC Ecology 13, 39. https://doi.org/10.1186/1472-6785-13-39 770 
 771 
McCallum, E., & Weston, S. (2011). Parallel R.  O'Reilly Media, Inc. 772 

McGlathery, K. J., Sundbäck, K., & Anderson, I. (2007). Eutrophication in shallow coastal bays 773 
and lagoons: The role of plants in the coastal filter. Marine Ecology-Progress Series, 348, 1-18. 774 
https://doi.org/10.3354/meps07132 775 

McKenzie, L. J., Long, L., Coles, R. G., & Roder, C. A. (2000). Seagrass-Watch: Community 776 
based monitoring of seagrass resources. Biologia Marina Mediterranea, 7, 393-396. 777 
 778 
McKenzie, L. J., Yoshida, R. L., Mellors, J. E., & Coles, R. G. (2009). Seagrass-watch. In 779 
Proceedings of a Workshop for Monitoring Seagrass Habitats in Indonesia. The Nature 780 
Conservancy, Coral Triangle Center, Sanur, Bali (ID), 9th Mei. 781 

McKenzie, L., Nordlund, L., Jones, B., Cullen-Unsworth, L., Roelfsema, C., & Unsworth, R. 782 
(2020). The global distribution of seagrass meadows. Environmental Research Letters, 15. 783 
https://doi.org/10.1088/1748-9326/ab7d06 784 

Meerdink, S. K., Roberts, D. A., Roth, K. L., King, J. Y., Gader, P. D., & Koltunov, A. (2019). 785 
Classifying California plant species temporally using airborne hyperspectral imagery. Remote 786 
Sensing of Environment, 232. https://doi.org/https://doi.org/10.1016/j.rse.2019.111308 787 

Menegotto, A., Rangel, T., Schrader, J., Weigelt, P., & Kreft, H. (2019). A global test of the 788 
subsidized island biogeography hypothesis. Global Ecology and Biogeography, 29. 789 
https://doi.org/10.1111/geb.13032 790 

Meyer, C., Weigelt, P., & Kreft, H. (2016). Multidimensional biases, gaps and uncertainties in 791 
global plant occurrence information. Ecology Letters, 19, 992-1006. 792 
https://doi.org/10.1111/ele.12624 793 

Miller-Rushing, A. J., & Primack, R. B. (2008). Global warming and flowering times in 794 
Thoreau’s concord: A Community Perspective. Ecology, 89, 332-341. 795 
https://doi.org/https://doi.org/10.1890/07-0068.1 796 



20 
 

Moksnes, P., Gullstro, M., Tryman, K., & Baden, S. (2008). Trophic cascades in a temperate 797 
seagrass community. Oikos, 117, 763-777. https://doi.org/10.1111/j.2008.0030-1299.16521.x 798 
 799 
Morell, V. (1996). TreeBASE: the roots of phylogeny. Science, 273, 569. 800 
 801 
Mtwana Nordlund, L., Koch, E. W., Barbier, E. B., & Creed, J. C. (2016). Seagrass ecosystem 802 
services and their variability across genera and geographical regions. PLOS ONE, 11. 803 
https://doi.org/10.1371/journal.pone.0163091 804 
 805 
National Research Council (NRC-US); Avise JC, Hubbell S.P., Ayala F.J., editors. (2008). In the 806 
Light of Evolution: Volume II: Biodiversity and Extinction. Washington (DC): National 807 
Academies Press (US); 9, Extinction as the Loss of Evolutionary History. Available from: 808 
https://www.ncbi.nlm.nih.gov/books/NBK214889/ 809 
 810 
Nee, S., May, R. M., & Harvey, P. H. (1994). The reconstructed evolutionary process. 811 
Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 344, 812 
305-311. https://doi.org/10.1098/rstb.1994.0068 813 

NOAA Climate.gov: Science & information for a climate-smart nation. (2020, December 01). 814 
Retrieved December 03, 2020, from https://www.climate.gov/ 815 

Nordlund, L. M., Jackson, E. L., Nakaoka, M., Samper-Villarreal, J., Beca-Carretero, P., & 816 
Creed, J. C. (2018). Seagrass ecosystem services – What’s next? Marine Pollution Bulletin, 134, 817 
145-151. https://doi.org/https://doi.org/10.1016/j.marpolbul.2017.09.014 818 

Nunn, N., & Qian, N. (2010). The Columbian Exchange: A History of Disease, Food, and Ideas. 819 
Journal of Economic Perspectives, 24, 163–188. https://doi.org/10.1257/jep.24.2.163 820 

Orth, R., Harwell, M., & Inglis, G. (2006). Ecology of seagrass seeds and seagrass dispersal 821 
processes. In Seagrasses: Biology, Ecology and Conservation (pp. 111-133). 822 
https://doi.org/10.1007/1-4020-2983-7_5 823 

Orth, R. J., Carruthers, T. J. B., Dennison, W. C., Duarte, C. M., Fourqurean, J. W., Heck, K. L., 824 
… Williams, S. L. (2006). A global crisis for seagrass ecosystems. BioScience, 56, 987-996. 825 
https://doi.org/10.1641/0006-3568(2006)56[987:AGCFSE]2.0.CO;2 826 

Ovaskainen, O., Skorokhodova, S., Yakovleva, M., Sukhov, A., Kutenkov, A., Kutenkova, N., 827 
… Delgado, M. del M. (2013). Community-level phenological response to climate change. 828 
Proceedings of the National Academy of Sciences, 110. https://doi.org/10.1073/pnas.1305533110 829 

Page, R. D. (2007). TBMap: a taxonomic perspective on the phylogenetic database TreeBASE. 830 
Bmc Bioinformatics, 8, 158. https://doi.org/10.1186/1471-2105-8-158 831 

Park, D. S., Worthington, S., & Xi, Z. (2018). Taxon sampling effects on the quantification and 832 
comparison of community phylogenetic diversity. Molecular Ecology, 27, 1296-1308. 833 
https://doi.org/https://doi.org/10.1111/mec.14520 834 



  
 

21 
 

Parmesan, C., Ryrholm, N., Stefanescu, C. et al. (1999). Poleward shifts in geographical ranges 835 
of butterfly species associated with regional warming. Nature, 399, 579-583. 836 
https://doi.org/10.1038/21181  837 

Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. Annual 838 
Review of Ecology, Evolution, and Systematics, 37, 637-669. 839 
https://doi.org/10.1146/annurev.ecolsys.37.091305.110100 840 

Pearson, K. D., Nelson, G., Aronson, M. F. J., Bonnet, P., Brenskelle, L., Davis, C. C., … Soltis, 841 
P. S. (2020). Machine learning using digitized herbarium specimens to advance phenological 842 
research. BioScience, 70, 610-620. https://doi.org/10.1093/biosci/biaa044 843 

Pergent, G., Bazairi, H., Bianchi, C., Boudouresque, C., Buia, M., Calvo, S., … Verlaque, M. 844 
(2014). Climate change and Mediterranean seagrass meadows: A synopsis for environmental 845 
managers. Mediterranean Marine Science, 15, 462-473. https://doi.org/10.12681/mms.621 846 

Pernetta, J. C., Leemans, R., Elder, D., Humphrey, S., Brouns, J. J. (1994). Impacts of climate 847 
change on ecosystems and species: Marine and coastal ecosystems, eds Pernetta JC, Leemans R, 848 
Elder D, Humphrey S (International Union for Conservation of Nature, Gland, Switzerland), 2, 849 
59-72. https://portals.iucn.org/library/sites/library/files/documents/1994-028.pdf 850 
 851 
Peterson A. T., Soberón J., Pearson R. G., Anderson R. P., Martínez-Meyer E., Nakamura M., 852 
Araújo M. B. (2011). Monographs in population biology, 49. Princeton, NJ: Princeton University 853 
Press. 854 
 855 
Piel, W. H., Donoghue, M. J., Sanderson, M. J., & Netherlands, L. (2000). TreeBASE: a 856 
database of phylogenetic information. In Proceedings of the 2nd International Workshop of 857 
Species 2000. 858 

Poelen, J. H., Simons, J. D., & Mungall, C. J. (2014). Global biotic interactions: An open 859 
infrastructure to share and analyze species-interaction datasets. Ecological Informatics, 24, 148-860 
159. https://doi.org/https://doi.org/10.1016/j.ecoinf.2014.08.005 861 

Poloczanska, E. S., Burrows, M. T., Brown, C. J., García Molinos, J., Halpern, B. S., Hoegh-862 
Guldberg, O., … Sydeman, W. J. (2016). Responses of Marine Organisms to Climate Change 863 
across Oceans. Frontiers in Marine Science, 3, 62. https://doi.org/10.3389/fmars.2016.00062 864 

POWO (2019). "Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. 865 
Published on the Internet; http://www.plantsoftheworldonline.org/ Retrieved 07 December 866 
2020." 867 
 868 
Purvis, A., Agapow, P.-M., Gittleman, J. L., & Mace, G. M. (2000). Nonrandom extinction and 869 
the loss of evolutionary history. Science, 288, 328-330. 870 
https://doi.org/10.1126/science.288.5464.328 871 



22 
 

Pybus, O. G., Rambaut, A., & Harvey, P. H. (2000). An integrated framework for the inference 872 
of viral population history from reconstructed genealogies. Genetics, 155, 1429-1437. Retrieved 873 
from https://www.genetics.org/content/155/3/1429 874 

R Core Team (2020). R: A language and environment for statistical computing. R Foundation for 875 
Statistical Computing, Vienna, Austria. URL: https://www.R-project.org/ 876 
 877 
Ralph, P., Tomasko, D., Moore, K., Seddon, S., Macinnis-Ng, C., Larkum, A., … Duarte, C. 878 
(2006). Human impacts on seagrasses: eutrophication, sedimentation, and contamination. In 879 
Seagrasses: Biology, Ecology and Conservation, 567-593. https://doi.org/10.1007/1-4020-2983-880 
7_24 881 
 882 
Redding, D. W., & Mooers, A. Ø. (2006). Incorporating evolutionary measures into conservation 883 
prioritization. Conservation Biology 20, 1670-1678.  https://doi.org/10.1111/j.1523-884 
1739.2006.00555.x 885 

Redding, D., Hartmann, K., Mimoto, A., Bokal, D., Devos, M., & Mooers, A. (2008). 886 
Evolutionarily distinct species capture more phylogenetic diversity than expected. Journal of 887 
Theoretical Biology, 251, 606-615. https://doi.org/10.1016/j.jtbi.2007.12.006 888 

Rosauer, D. A. N., Laffan, S. W., Crisp, M. D., Donnellan, S. C., & Cook, L. G. (2009). 889 
Phylogenetic endemism: a new approach for identifying geographical concentrations of 890 
evolutionary history. Molecular Ecology, 18, 4061-4072. https://doi.org/10.1111/j.1365-891 
294X.2009.04311.x 892 

Sablok, G., Hayward, R. J., Davey, P. A., Santos, R. P., Schliep, M., Larkum, A., … Ralph, P. J. 893 
(2018). SeagrassDB: An open-source transcriptomics landscape for phylogenetically profiled 894 
seagrasses and aquatic plants. Scientific Reports, 8(1), 2749. https://doi.org/10.1038/s41598-017-895 
18782-0 896 

de los Santos, C. B., Krause-Jensen, D., Alcoverro, T., Marbà, N., Duarte, C. M., van Katwijk, 897 
M. M., … Santos, R. (2019). Recent trend reversal for declining European seagrass meadows. 898 
Nature Communications, 10, 3356. https://doi.org/10.1038/s41467-019-11340-4 899 

Selwood, K.E., McGeoch, M.A. and Mac Nally, R. (2015), The effects of climate change and 900 
land‐use change on demographic rates and population viability. Biological Reviews, 90, 837-901 
853. https://doi.org/10.1111/brv.12136 902 
 903 
Schäfer, S., Monteiro, J., Castro, N., Gizzi, F., Henriques, F., Ramalhosa, P., ... & Canning-904 
Clode, J. (2021). Lost and found: A new hope for the seagrass Cymodocea nodosa in the marine 905 
ecosystem of a subtropical Atlantic Island. Regional Studies in Marine Science, 41, 101575. 906 
https://doi.org/10.1016/j.rsma.2020.101575 907 

van der Schoot, C., Paul, L., & Rinne, P. (2013). The embryonic shoot: A lifeline through winter. 908 
Journal of Experimental Botany, 65. https://doi.org/10.1093/jxb/ert413 909 



  
 

23 
 

Short, F. T., & Neckles, H. A. (1999). The effects of global climate change on seagrasses. 910 
Aquatic Botany, 63, 169-196. https://doi.org/https://doi.org/10.1016/S0304-3770(98)00117-X 911 
 912 
Short, F., Koch, E., Creed, J., Magalhães, K., Fernandez, E., & Gaeckle, J. (2006). SeagrassNet 913 
monitoring across the Americas: Case studies of seagrass decline. Marine Ecology, 27, 277-289. 914 
https://doi.org/10.1111/j.1439-0485.2006.00095.x 915 
 916 
Short, F., Carruthers, T., Dennison, W., & Waycott, M. (2007). Global seagrass distribution and 917 
diversity: A bioregional model. Journal of Experimental Marine Biology and Ecology, 350, 3-20. 918 
https://doi.org/10.1016/j.jembe.2007.06.012 919 
 920 
Short, F. T., Polidoro, B., Livingstone, S. R., Carpenter, K. E., Bandeira, S., Bujang, J. S., … 921 
Zieman, J. C. (2011). Extinction risk assessment of the world’s seagrass species. Biological 922 
Conservation, 144, 1961-1971. https://doi.org/https://doi.org/10.1016/j.biocon.2011.04.010 923 
 924 
Steven J. Phillips, Miroslav Dudík, Robert E. Schapire. (2017). MaxEnt software for modeling 925 
species niches and distributions (Version 3.4.1). Available from url: 926 
http://biodiversityinformatics.amnh.org/open_source/maxent/. Accessed on 2020-12-1. 927 

Stropp, J., Ladle, R. J., M. Malhado, A. C., Hortal, J., Gaffuri, J., H. Temperley, W., … Mayaux, 928 
P. (2016). Mapping ignorance: 300 years of collecting flowering plants in Africa. Global 929 
Ecology and Biogeography, 25, 1085-1096. https://doi.org/https://doi.org/10.1111/geb.12468 930 

Strydom, S., Murray, K., Wilson, S., Huntley, B., Rule, M., Heithaus, M., … Zdunic, K. (2020). 931 
Too hot to handle: Unprecedented seagrass death driven by marine heatwave in a World Heritage 932 
Area. Global Change Biology, 26, 3525–3538. https://doi.org/https://doi.org/10.1111/gcb.15065 933 

Syfert M. M., Smith M. J., Coomes D. A. (2013). The effects of sampling bias and model 934 
complexity on the predictive performance of MaxEnt species distribution models. PLOS ONE, 8. 935 
https://doi.org/10.1371/journal.pone.0055158 936 
 937 
Taberlet, P., Coissac, E., Pompanon, F., Brochmann, C., & Willerslev E. (2012). Towards next-938 
generation biodiversity assessment using DNA metabarcoding. Molecular ecology (21), 2045-939 
2050. https://doi.org/10.1111/j.1365-294X.2012.05470.x 940 
 941 
Thackeray, S. J., Henrys, P. A., Hemming, D., Bell, J. R., Botham, M. S., Burthe, S., Helaouet, 942 
P., Johns, D. G., Jones, I. D., Leech, D. I., Mackay, E. B., Massimino, D., Atkinson, S., Bacon, 943 
P. J., Brereton, T. M., Carvalho, L., Clutton-Brock, T. H., Duck, C., Edwards, M., Elliott, J. M., 944 
… Wanless, S. (2016). Phenological sensitivity to climate across taxa and trophic levels. Nature, 945 
535, 241-245. https://doi.org/10.1038/nature18608 946 

Thapa, S., Chitale, V., Rijal, S. J., Bisht, N., & Shrestha, B. B. (2018). Understanding the 947 
dynamics in distribution of invasive alien plant species under predicted climate change in 948 
Western Himalaya. PLOS ONE, 13, 1-16. https://doi.org/10.1371/journal.pone.0195752 949 



24 
 

Thomas, J., Lonsdale, J., Salvatore, M., Phillips, R., Lo, E., Shad, S., … Moore, H. F. (2013). 950 
The Genotype-Tissue Expression (GTEx) project. Nature Genetics, 45, 580-585. 951 
https://doi.org/10.1038/ng.2653 952 

Thuiller, W., Georges, D., & Engler, R. (2014). biomod2: Ensemble platform for species 953 
distribution modelling, 2. 954 
https://www.researchgate.net/publication/309762991_biomod2_Ensemble_Platform_for_Species955 
_Distribution_Modeling 956 

UNEP-WCMC, Short F. T. (2020). Global distribution of seagrasses (version 7.0). Seventh 957 
update to the data layer used in Green and Short (2003). Cambridge (UK): UN Environment 958 
World Conservation Monitoring Centre. URL: http://data.unep-wcmc.org/datasets/7 959 

Valle, M., Chust, G., del Campo, A., Wisz, M. S., Olsen, S. M., Garmendia, J. M., & Borja, Á. 960 
(2014). Projecting future distribution of the seagrass Zostera noltii under global warming and sea 961 
level rise. Biological Conservation, 170, 74-85. 962 
https://doi.org/https://doi.org/10.1016/j.biocon.2013.12.017 963 

Van Allen, B. G., Dunham, A. E., Asquith, C. M., & Rudolf, V. H. (2012). Life history predicts 964 
risk of species decline in a stochastic world. Proceedings. Biological sciences, 279, 2691-2697. 965 
https://doi.org/10.1098/rspb.2012.0185 966 

Varela, S., Anderson, R. P., García-Valdés, R., & Fernández-González, F. (2014). Environmental 967 
filters reduce the effects of sampling bias and improve predictions of ecological niche models. 968 
Ecography, 37, 1084-1091. https://doi.org/https://doi.org/10.1111/j.1600-0587.2013.00441.x 969 

Veeneklaas, R. M., Dijkema, K. S., Hecker, N. and Bakker, J. P. (2013), Spatio‐temporal 970 
dynamics of the invasive plant species Elytrigia atherica on natural salt marshes. Applied 971 
Vegetation Science, 16, 205-216. https://doi.org/10.1111/j.1654-109X.2012.01228.x 972 

Veron, S., Davies, T., Cadotte, M., Clergeau, P., & Pavoine, S. (2015). Predicting loss of 973 
evolutionary history: Where are we? Biological Reviews of the Cambridge Philosophical Society, 974 
92. https://doi.org/10.1111/brv.12228 975 

Vicente, J. R., Fernandes, R. F., Randin, C. F., Broennimann, O., Gonçalves, J., Marcos, B., … 976 
Honrado, J. P. (2013). Will climate change drive alien invasive plants into areas of high 977 
protection value? An improved model-based regional assessment to prioritise the management of 978 
invasions. Journal of Environmental Management, 131, 185-195. 979 
https://doi.org/https://doi.org/10.1016/j.jenvman.2013.09.032 980 

Waycott, M. (1999). Genetic factors in the conservation of seagrasses. Pacific Conservation 981 
Biology, 5, 269-276. Retrieved from https://doi.org/10.1071/PC000269 982 
 983 
Waycott, M., Collier, C., McMahon, K., Ralph, P., McKenzie, L., Udy, J., & Grech, A. (2007). 984 
Vulnerability of seagrasses in the Great Barrier Reef to climate change (pp. 193-236). Great 985 
Barrier Reef Marine Park Authority and Australian Greenhouse Office. 986 



  
 

25 
 

http://www.gbrmpa.gov.au/corp_site/info_services/publications/misc_pub/climate_change_vulne987 
rability_assessment/climate_change_vulnerability_assessment 988 
 989 
Waycott, M., Duarte, C. M., Carruthers, T. J. B., Orth, R. J., Dennison, W. C., Olyarnik, S., …  990 
Williams, S. L. (2009). Accelerating loss of seagrasses across the globe threatens coastal 991 
ecosystems. Proceedings of the National Academy of Sciences, 106, 12377-12381. 992 
https://doi.org/10.1073/pnas.0905620106 993 
 994 
Waycott, M., McKenzie, L. J., Mellors, J. E., Ellison, J. C., Sheaves, M. T., Collier, C., & 995 
Schwarz, A. M. (2011). Vulnerability of mangroves, seagrasses and intertidal flats in the tropical 996 
Pacific to climate change. https://hdl.handle.net/20.500.12348/1069 997 

Willis, J. K., Chambers, D. P., & Nerem, R. S. (2008). Assessing the globally averaged sea level 998 
budget on seasonal to interannual timescales. Journal of Geophysical Research: Oceans, 113. 999 
https://doi.org/https://doi.org/10.1029/2007JC004517 1000 

Willis, C. G., Ruhfel, B., Primack, R. B., Miller-Rushing, A. J., & Davis, C. C. (2008). 1001 
Phylogenetic patterns of species loss in Thoreau's woods are driven by climate change. 1002 
Proceedings of the National Academy of Sciences of the United States of America, 105, 17029-1003 
17033. https://doi.org/10.1073/pnas.0806446105 1004 

Wolfe, K. H., Li, W. H., & Sharp, P. (1987). Rates of nucleotide substitution vary greatly among 1005 
plant mitochondrial, chloroplast and nuclear DNA. Proceedings of the National Academy of 1006 
Sciences of the United States of America, 84, 9054-9058. 1007 
https://doi.org/10.1073/pnas.84.24.9054 1008 

Woodman, S. M., Forney, K. A., Becker, E. A., et al. (2019). esdm: A tool for creating and 1009 
exploring ensembles of predictions from species distribution and abundance models. Methods in 1010 
Ecology and Evolution, 10, 1923-1933. https://doi.org/10.1111/2041-210X.13283 1011 
 1012 
Zieman, J. C. (1976). The ecological effects of physical damage from motorboats on turtle grass 1013 
beds in Southern Florida. Aquatic Botany, 2, 127-139. 1014 
https://doi.org/https://doi.org/10.1016/0304-3770(76)90015-2 1015 
 1016 
Zizka, A., Antonelli, A. and Silvestro, D. (2020). sampbias, a method for quantifying geographic 1017 
sampling biases in species distribution data. Ecography. https://doi.org/10.1111/ecog.05102  1018 



26 
 

FIGURE LEGENDS: 1019 

Fig. 1 Morphological diversity of selected species of seagrasses. (A) Thalassia testudinum 1020 
(turtle grass) bed with view of jointed rhizomes, San Salvador Island, Bahamas. (B) Posidonia 1021 
oceanica (Neptune grass) meadow with view of rhizome matts, Portofino, Italy. (C) Zostera 1022 
marina (eelgrass) with ribbon-like blades. (D) Halophila decipiens (paddle grass) with paddle-1023 
shaped blades. (https://commons.wikimedia.org and https://calphotos.berkeley.edu/). 1024 
 1025 
Fig. 2 Interactions between sampling uncertainties indicating the extent of influence of each 1026 
uncertainty on the others. Taxonomic uncertainty affects all other uncertainties whereas arrows 1027 
indicate direction of influence between the other two. However, all three types of uncertainty 1028 
ultimately reflect the personal preferences, biases, and proclivities of collectors. 1029 

Fig. 3 Gaps in geographic sampling of seagrasses. (A) Seagrass occurrence records showed 1030 
strong density of sampling in temperate regions, while sampling within the tropics was generally 1031 
low. (B) Geographic distribution of seagrass known species richness based on expert delineated 1032 
polygons. Source data are provided as a Source Data file. 1033 
 1034 
Fig. 4 Temporal sampling of seagrasses reveal drastic increases midway throughout the 1035 
18th century. Temporal data from seagrass records over the course of three centuries (roughly 1036 
1700-2000) display dense amount of sampling records accumulating after 1850. Each dot 1037 
represents an occurrence record of a seagrass in Julian day of year format, with the color gradient 1038 
representing recent years with colder color tones, and older years represented by warmer color 1039 
tones. These data also support the previously identified global trend of increased sampling 1040 
occurring predominantly within the summer months (early June through early October). Source 1041 
data are provided as a Source Data file. 1042 
 1043 
Fig. 5 Temporal trends in seagrass sampling are not consistent across seasons within 1044 
marine ecoregions of the world (MEOWs). Temporal data from seagrass occurrence records 1045 
were converted into Julian day of year format in order to analyze trends in the monthly sampling 1046 
of seagrasses for all MEOWs. The blue line around each temporal sampling plot represents 1047 
seagrass sampling density in monthly intervals over an extensive time period (1770-2019), with 1048 
corresponding temporal sampling plot for each MEOW. Seagrass sampling rates increase during 1049 
summer seasons associated with northern and southern hemispheres. The central plot provides a 1050 
reference for the geographic location of each MEOW included in the analysis. Source data are 1051 
provided as a Source Data file. 1052 
 1053 
Fig. 6 Phylogenetic bias in seagrass sampling. Phylogenetic distribution of the number of 1054 
specimens sampled per seagrass species to assess the tendency of closely related species to be 1055 
similarly collected. No statistically significant phylogenetic signals were detected, although there 1056 
was slight favoring for sampling of the Thalassia, Enhalus, and Halophila genera over other 1057 
seagrass genera. Source data are provided as a Source Data file. 1058 
 1059 
Fig. 7 Correlations of family ranks possessing threatened seagrass species across marine 1060 
ecoregions of the world (MEOWs). The pairwise correlational analysis assigned values based 1061 
on the level of overlap of seagrass families across MEOWs that possessed seagrass species 1062 
classified as threatened by the International Union for Conservation of Nature. Low correlation 1063 
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values were generally reported between temperate and tropical MEOWs, indicating that the 1064 
threatened seagrass species in these regions are unique to those areas. Source data are provided 1065 
as a Source Data file. 1066 
 1067 
Fig. 8 Taxonomic distribution of extinction risk in seagrass. Population status of seagrasses 1068 
were assessed using the classifications set forth by the International Union for Conservation of 1069 
Nature. Proportion of threatened species was assessed as number of threatened species in a 1070 
family divided by the total number of species assessed within that family. When comparing the 1071 
proportions of threatened species per family to the calculated 95% confidence interval, 3 families 1072 
were significant: Zosteraceae, Posidoniaceae, and Hydrocharitaceae. Source data are provided as 1073 
a Source Data file. 1074 
 1075 
Fig. 9 Temporal change in the amount of seagrass occurrence records over time. Seagrass 1076 
point records downloaded from GBIF were mapped over time based on the chronological date 1077 
listed in the occurrence data for each record to demonstrate that seagrass occurrences have 1078 
greatly increased within recent decades. This indicates that analyses with these data will be 1079 
computationally expensive. Source data are provided as a Source Data file. 1080 


	Fig. 1 Morphological diversity of selected species of seagrasses. (A) Thalassia testudinum (turtle grass) bed with view of jointed rhizomes, San Salvador Island, Bahamas. (B) Posidonia oceanica (Neptune grass) meadow with view of rhizome matts, Portof...

