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ABSTRACT

Uncertainties from sampling biases present challenges to ecologists and evolutionary biologists
in understanding species sensitivity to anthropogenic climate change. Here, we synthesize
possible impediments that can constrain research to assess present and future seagrass response
from climate change. First, our knowledge of seagrass occurrence information is prevalent with
biases, gaps and uncertainties that can influence inferences on species response to global change.
Second, research on seagrass diversity has been focused on species-level metrics that can be
measured with data from the present - but rarely accounting for the shared phylogenetic
relationships and evolutionary distinctiveness of species despite species evolved and diversified
from shared ancestors. Third, compared to the mass production of species occurrence records,
computational tools that can analyze these datasets in a reasonable amount of time are almost
non-existent or do not scale well in terms of computer time and memory. These impediments
mean that scientists must work with incomplete information and often unrepresentative data to
predict how seagrass diversity might change in the future. We discuss these shortfalls and
provide a framework for overcoming the impediments and diminishing the knowledge gaps they
generate.

INTRODUCTION

Human activities, through fossil fuel emissions and widespread deforestation, have contributed
to increased global temperature above pre-industrial levels (IPCC 2018). As a consequence,
global increases in temperature and atmospheric carbon dioxide can influence species by altering
their growth rates, physiological functions, sexual reproduction, distribution, community
composition, and primary productivity (Campbell et al., 2006; Short & Neckles 1999). Such
changes in environmental climate outside species’ tolerable thresholds will cause some species to
relocate in order to stay within their tolerance zones (Bradshaw & Holzapfel 2001; Parmesan,
2006; Miller-Rushing & Primack 2008; Anderson et al., 2012; MacLean et al., 2018). For
instance, species on land generally ascend to higher elevations or latitudes as temperatures warm,
but may run out of room, which can lead to local extirpation (Parmesan et al., 1999; Freeman et
al., 2018). The sensitivity and responsivity of seagrasses or other marine species, whose
distributional ranges lie at the land-sea margin and with very different evolutionary histories may
show different responses to climate change.
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Seagrasses are a major vascular plant clade of about 70 species belonging to the Alismatales, an
order that includes ~4000 other non-marine species (Berry 2019). They are widely distributed
across marine coastlines or estuarine environments, often growing submerged in marine water
(Hemminga & Duarte 2000). Seagrasses display a wide variety of morphological diversity
including turtlegrass (Thalassia testudinum) which forms long and jointed rhizomes, rhizome
matts in Posidonia, ribbonlike leaves in eelgrass (Zostera marina), and paddle-shaped leaves in
paddle grass (Halophila decipiens) (Figure 1). They play key ecosystem roles including primary
productivity, nutrient cycling, and carbon sequestration (Hemminga & Duarte 2000; Duarte
2002; Les et al., 2002; Orth et al., 2006; McGlathery et al., 2007; Nordlund et al., 2018).
Seagrass meadows are an important nursery ground for many invertebrates and fishes (Beck et
al., 2001), and directly provide food for marine herbivores including manatees, dugongs, and
green sea turtles (Green & Short 2003; Larkum et al., 2006). As threats from global climate
change intensify, the impacts across seagrass communities are mixed. Some studies have found a
decline in seagrass habitats especially in Australasia with decline rates of about 110 km? per year
(Waycott et al., 2009). This pattern is not true in North America and Europe where seagrass
communities are no longer in decline, but in fact show positive trajectories in some cases (de los
Santos et al., 2019), perhaps as a result of the proliferation of seagrass monitoring and
conservation programs such as Seagrass-Watch (https://www.seagrasswatch.org/) and
SeagrassSpotter (https://seagrassspotter.org/). Indeed, the vulnerability to the impacts of climate
change on seagrass communities may be scale or context dependent (Day et al., 2008).

A number of studies indicate that global climate change can impact seagrass communities in a
variety of ways. Short & Neckles (1999) reviewed the potential effects of climate change on
seagrass growth rates, reproduction and spatial distributions; Duarte et al. (2018) explored
relationships between climate change and phenotypic variation in seagrasses (including
physiological variation, propagation success, and herbivore resistance); whereas Erry et al.
(2019) used a mesocosm experiment to assess response of a multi-trophic seagrass ecosystem to
several global change factors. The findings overwhelmingly demonstrated that these factors in
unison could lead to deleterious effects on seagrass ecosystems if they are unable to rapidly
adapt to changes in climate. Similar trends have been observed for specific seagrass locations
e.g., Great Barrier Reef (Waycott et al., 2007), Mediterranean (Pergent et al., 2014), tropical
Pacific Ocean (Waycott et al., 2011), and Western Australia (Arias-Ortiz et al., 2018; Strydom et
al., 2020); or in selected species (e.g., Chefaoui et al., 2018). Other threats to seagrass
populations can be attributed to overexploitation, physical modification, nutrient and sediment
pollution, and introduction and spread of invasive species (Zieman 1976; Ralph et al., 2006;
Moksnes et al., 2008; Bryars et al., 2011; Dewsbury et al., 2016). By contrast, research to
elucidate effects of global climate change on seagrass meadows and how to improve the
prediction of future risks under varying scenarios of climate change have received less attention
(Pernetta et al., 1994; Bijlsma et al., 1995; Short & Neckles 1999).

Here, we argue that the extension of research agenda to assess seagrasses’ response to climate
change may be constrained by at least three factors. First, our knowledge of seagrass occurrence
information is widespread with biases, gaps and uncertainties that can influence downstream
inferences. Second, most of the research on seagrass diversity has been focused on species-level
metrics (e.g., species richness, endemism or threat) that can be measured with data from the
present - but rarely accounting for the shared phylogenetic relationships and evolutionary
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distinctiveness of species. Species are not independent units but are lineages that evolve and
diversify from shared ancestors (Diniz-Filho et al., 2013). Third, compared to the mass
production of species occurrence records, computational tools that can analyze these datasets in a
reasonable amount of time are almost non-existent or do not scale well in terms of computer time
and memory. These impediments mean that scientists must work with incomplete information
and often unrepresentative data to predict how seagrass diversity might change in the future.
These shortfalls need be carefully recognized and remedied. The objectives of this review are
therefore to first identify the knowledge gaps to understanding seagrasses’ response to climate
change, and secondly propose strategies and tools to overcome these impediments.

KNOWLEDGE GAPS IN SEAGRASS SAMPLING PRACTICES

Global change has become a central focus of modern ecology. Yet, our knowledge of how
anthropogenic drivers affect seagrass evolutionary diversity is limited by a lack of biological
data spanning the Anthropocene that equally represents all seagrass species. We define the
Anthropocene as a period of profound human impact on biodiversity, characterized by
widespread migration by humans as initiated by the Columbian Exchange circa 1492 (Nunn &
Qian 2010). The vast amounts of specimens of seagrasses deposited in herbaria can serve as a
historical lens into the ecological processes by which present-day seagrass diversity arose, are
maintained, and may evolve in the future. However, occurrence records archived in herbaria and
museums are non-randomly collected over space and time, and thus present biases and
uncertainties that can complicate ecological inferences (e.g., Boakes et al., 2010; Meyer et al.,
2016; Daru et al., 2018; Dias Tarli et al., 2018). As a consequence, the use of occurrence records
has not fully permeated the field of global change biology. The gap between specimen
availability and use is widening as hundreds of thousands of specimens are being mobilized
through massive digitization efforts worldwide. We argue that sampling uncertainties in seagrass
occurrence records can manifest in at least three ways: geographic, taxonomic, and temporal
uncertainties (Figure 2). We distinguish between the uncertainties and describe how these
limitations can inhibit progress in understanding seagrass response to global change.

Uncertainties in geographic sampling

Geographic bias is the disproportionate sampling of a species in some regions of its range
relative to others (Meyer et al., 2016; Stropp et al., 2016; Daru et al., 2018; Menegotto & Rangel
2019). Seagrass geographic data is commonly available as point records or polygons. Point
records are commonly derived from major data hubs such as the Global Biodiversity Information
Facility (GBIF; Edwards, Lane, & Nielsen 2000), United Nations Environment World
Conservation Monitoring Centre (UNEP-WCMC & Short 2020) or Ocean Biodiversity
Information Facility (OBIS) whereas polygons are derived from the International Union for the
Conservation of Nature’s (IUCN) spatial database and United Nations Environment World
Conservation Monitoring Centre (Green & Short 2003; UNEP-WCMC & Short 2020). Despite
the fundamental importance of occurrence data for species distribution modeling, the sampling
of seagrasses across most of their ranges are underrepresented in collections (Green & Short
2003). For instance, extensive spatial gaps exist across regions that harbor high concentrations of
seagrass diversity, especially in Western and Central Indo-Pacific, whereas Europe and North
America are well sampled (Figure 3) (see Methods and Source Data file in Supplementary
Material for details). This pattern is consistent with previous studies. For example, Waycott et al.
(2009) found wide sampling gaps in West Africa, northeast South America, and the northwest
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Pacific area of the United States, most of which correspond to seagrass areas of endemism.
Moreover, since biogeographic patterns are scale dependent, varying along spatial grains,
geographic extents and taxonomic treatments (Jarzyna et al., 2018; Daru et al., 2020), the extent
to which geographic uncertainties in seagrass sampling vary with spatial extent, grain size and
taxonomic treatment remains poorly explored. However, it has been predicted that as grain size
decreases, the knowledge gap in geographic sampling correspondingly increases (Hortal et al.,
2015).

The mismatch between observed seagrass diversity and maps of survey efforts can be attributed
to several factors: 1) knowing data exists in the first place and where it is, 2) harvesting data
collected in native languages not common to science, 3) getting permission to access data
collected under commercial license or from uncooperative governments, 4) validating data both
spatially and taxonomically, 5) the difficulty in sampling specimens especially species in remote
and inaccessible waters e.g., Halophila decipiens occurring >70 m deep in the Central Indo-
Pacific (Short et al., 2007) or large parts of Northern Australia that are only accessible by
helicopter, 6) lack of reliable research infrastructure e.g., West Papua and Papua New Guinea, 7)
un-inhabited reef lagoons in large parts of the tropics and Western Pacific, 8) the cost of
gathering long-term data (Wolfe et al., 1987), 9) perhaps a reversing trend of seagrass loss in
Europe, North America, and subtropical Atlantic, e.g., increasing population trends in
Cymodocea nodosa (Schifer et al., 2021), Zostera marina and Zostera noltei (de los Santos et
al., 2019; Guerrero-Meseguer et al., 2021), and 10) budget constraints for seagrass research. If
seagrass species observations are made near accessible areas e.g., seaports, harbors or marine
research stations, their application in analysis of species distribution modeling can compromise
model performance (Kadmon et al., 2004; Lobo & Tognelli 2011; Bystriakova et al., 2012;
Kramer-Schadt et al., 2013; Varela et al., 2014). In practice, this means that most observations
only reflect the climate space of accessible areas, and correspondingly areas of human activities
where surface temperatures are higher than in surrounding natural areas (Kalnay & Cai 2003).
Additionally, regions known to contain seagrass meadows (e.g., Canada, Indonesia, and Russia)
have inadequately mapped distributions, while other currently mapped regions most likely only
represent a small portion of seagrass diversity (McKenzie et al., 2020). Targeting the places that
are underrepresented in future collecting expeditions could remedy these limitations and aid in
evaluating how species are responding to recent and future environmental change across biomes.

Uncertainties in temporal sampling

The sampling of seagrasses can manifest as temporal bias—the unbalanced collecting of
specimens in some years or parts of a given year. This can influence conclusions drawn from
analyses of such nonrandomly sampled collections records (Syfert et al., 2013). Temporal data is
increasingly used in a wide range of applications in ecology and evolutionary studies including
tracking changes in phenology — the timing of seasonal events such as flowering, leafing and
fruiting — and monitoring the spread of invasive species (Iler et al., 2013; Veeneklaas et al.,
2013; Meerdink et al., 2019). Yet, while there is general agreement that climate change can
influence phenological patterns by disrupting the timing of life cycle events and consequently
drive changes in fitness and population demography (Ovaskainen et al., 2013; CaraDonna et al.,
2014; Thackeray et al., 2016; Kharouba & Wolkovich 2020), most have been observed in
terrestrial species and to a lesser extent in marine flowering plants. In a meta-analysis of GBIF
occurrence records over the course of 250 years (1770-2020) to understand the nature and
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evolution of seagrass sampling, sparser records were observed in earlier years and high
collection densities between the 1900s and present-day (Figure 4). Although over the 250-year
time span, occurrence data was absent for a total of 131 years. Seasonally, seagrass specimens
were overwhelmingly biased toward spring and summer months (regardless of hemisphere
location) for most marine ecoregions including Temperate Southern Africa, Temperate
Australasia, Temperate Northern Pacific, and Temperate Northern Atlantic (Figure 5; see
Methods and Source Data file in Supplementary Material). Interestingly, these periods are
spanned by comprehensive time series data of ocean climate including sea temperature and
salinity (Benway et al., 2019). This means that the time series of changes in seagrass
communities across years or seasons are fewer than the available climate records (cf. Duarte et
al., 1992). As a consequence, the nonrandom sampling of seagrasses in some years or parts of a
year could mean that occurrence records are not reliable sources of phenological change driven
by climate or population demography. If seagrasses are collected only when it is climatically
convenient coupled with lack of reproductive structures on most specimens (Pearson et al.,
2020), botanists may miss important phenological events such as winter bud formation, which
protects the embryonic shoot of species during development and elongation (van der Schoot et
al., 2013). Similarly, climate change can influence population demography through range change
(Hunter et al., 2010; Dalgleish et al., 2011; Hugo 2011; Gaillard et al., 2013; Selwood et al.,
2015) or facilitate the spread of invasive species (Hellmann et al., 2008; Clements & Ditommaso
2011; Vicente et al., 2013; Hou et al., 2014; Thapa et al., 2018). However, the skewed sampling
of seagrass occurrence data suggests that the data is insufficient to track demographic changes or
monitor spread of invasive species. We recognize that several aspects can influence seagrass
sampling across years or seasons. For instance, some seagrass species are annuals, completing
their life cycle within one growing season (e.g., Halophila decipiens). Other reasons include
inaccessibility to most sites in the West Indo-Pacific during monsoon times, resulting in
overrepresentation of specimens during maximum growing season/flowering season.

Uncertainties in taxonomic sampling

The sampling and collection of seagrass data may be disproportionately higher in some taxa over
others (Hortal et al., 2008). Taxonomic uncertainty can manifest as phylogenetic bias and be
assessed by testing for phylogenetic signal in collection frequency. A strong phylogenetic signal
— closely related species share similar collecting frequency — would suggest phylogenetic bias in
collections (Daru et al., 2018). Phylogenetic bias can hamper prospects of identifying species
that are climate change indicators and those most likely to be affected by future climate change,
especially given that species’ response to climate change tends to be phylogenetically
nonrandom (Willis et al., 2008; Davis et al., 2010; Davies et al., 2013). A phylogenetic analysis
of long-term monitoring data in Concord Massachusetts, for instance, revealed a strong
association between change in abundance with flowering time response such that the response
traits are shared among closely related plant species (Willis et al., 2008). However,
taxonomically nonrandom collection may mask such patterns and therefore bias conclusions of
seagrass response to climate change. These data limitations may result from a research focus on
specific seagrasses lineages over other groups or simply lack of data on some species. For
example, Coyer et al. (2013) estimated divergence times in 20 species in the family Zosteraceae
at 14.4 Ma, whereas Dilipan et al. (2018) assessed phylogenetic relationships by focusing on
only family Hydrocharitaceae. Not only do these clade-based approaches point to different
divergence times, but the phylogenetic reconstructions also used different gene regions with
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likely different rates of evolution. Seagrass occurrence data on GBIF tends to display a weak
phylogenetic signal in the tendency of closely related species to be sampled similarly; with an
average of ~9 specimens per species representing most Halophila, and ~6-9 specimens per
species representing most Zostera, whereas Halodule and Posidonia had far fewer records
(Figure 6; see Methods and Source Data file in Supplementary Material for details).

Another factor that can induce taxonomic bias is the lack of comprehensive phylogeny for
seagrass species. Inferring evolutionary patterns based only on phylogeny of the taxa within the
community of interest without fully accounting for the overall phylogenetic diversity of the
entire lineage can potentially lead to spurious results (Park et al., 2018). The available DNA
sequences of seagrasses in GenBank/EBI are sufficient to construct a molecular phylogenetic
tree for only 55 (of 72) species (Daru & le Roux 2016). The 17 species without available DNA
sequences are often manually grafted to the molecular tree in a multichotomy to the node of their
close relatives using a Bayesian framework (Thomas et al., 2013). Such incomplete sampling or
misplaced taxa on the phylogeny can influence the final tree topology and compromise rates of
evolution (Nee et al., 1994, FitzJohn et al., 2009), especially when biases are also geographically
nonrandom (Daru et al., 2018). Even with complete DNA sequences for all seagrass species,
there are large uncertainties in the estimation of divergence times, and unknown evolutionary
models linking phylogenies to underlying ecological traits and life history variation (Diniz-Filho
et al., 2013). Moreover, the polyphyletic nature of seagrasses, drawing from several lineages
within the Alismatales, might also compound our understanding of phylogenetic sampling
biases.

The aforementioned sampling uncertainties can combine with each other in several ways.
Taxonomic uncertainty can influence all other uncertainties because it reflects knowledge gaps
on the fundamental unit of ecology and evolutionary biology. Geographic uncertainty is strongly
influenced by temporal uncertainty as limited accumulation of data over time can alter accurate
estimations of species’ range size or population demographic history (Pybus et al., 2000,
Drummond et al., 2005). Similarly, geographic uncertainty can compromise estimates of species
phenological response to climate change or demographic change, owing to lack of geographical
coverage in many regions (Poelen et al., 2014). Ultimately, these sampling uncertainties are
human artefacts such that any personal preferences, biases, and proclivities of collectors can
greatly skew our understanding of seagrass diversity.

b

GAPS IN KNOWLEDGE OF SEAGRASS EVOLUTIONARY DIVERSITY
Understanding what drives variation in the distribution of biodiversity can provide insights into
the ecological and historical processes underlying community assembly (Cavender-Bares et al.,
2009) and for prioritizing conservation (Kreft & Jetz 2010; Holt et al., 2013; Daru & le Roux
2016). However, data gaps in the sampling of seagrasses (as outlined above) can influence
estimates of broad-scale patterns and underlying processes (e.g., extinction, speciation and niche
conservatism). Traditionally, identifying broad-scale patterns in seagrasses has been based on
species-level metrics (e.g., species richness, and endemism) (Short et al., 2007; Mtwana et al.,
2016; Duffy et al., 2019). Although indispensable in providing baseline biodiversity knowledge,
these metrics alone fail to detect the substantial evolutionary and conservation implications
captured by the shared phylogenetic relationships and evolutionary distinctiveness of species
(Mace et al., 2003; Redding & Mooers 2006; Cadotte 2013). Recent approaches harmonized
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metrics that consider evolutionary components, for example, phylogenetic diversity (Faith 1992),
evolutionary distinctiveness (Redding & Mooers 2006), phylogenetic endemism (Rosauer et al.,
2009), or a combination of these metrics. As pressures from climate change induced by
anthropogenic activity mount, we will eventually observe range shifts and losses that can erase
unique evolutionary history (Waycott et al., 2009). There is some evidence that evolutionarily
distinct temperate seagrass assemblages might be disproportionately at risk of extinction (Daru et
al., 2017), which could elevate losses of phylogenetic diversity (Redding et al., 2008). However,
the associated directionality of species’ responses to climate change and impact on phylogenetic
diversity under a scenario of nonrandom extinction is unclear (Purvis et al., 2000). This means
that as global temperatures increase, tropical seagrass species might be capable of expanding
their distributions (Beca-Carretero et al., 2020) into regions traditionally utilized only by
temperate seagrass species. This can induce selection pressures on temperate species that can
result in the loss of distinct evolutionary diversity of seagrasses as the available climate space for
temperate species is reduced by warming temperatures. Such pressures would inhibit our ability
to understand the evolutionary history of seagrasses, as evolutionarily distinct species are lost or
greatly reduced.

The global decline of seagrasses along a latitudinal gradient is imbalanced, with greater declines
documented in temperate than tropical regions, requiring urgent conservation action (Hauxwell
et al., 2001; Orth et al., 2006; Moksnes et al., 2008; Bryars et al., 2011; Erry et al., 2019). The
recent finding that temperate seagrass assemblages tend to be those that are most evolutionarily
unique also warrants concern given that their extinction would result in a greater loss of
phylogenetic diversity (Daru et al., 2017). In this regard, the familial membership of threatened
seagrass species across marine ecoregions (see Methods and Source Data file in Supplementary
Material) showed a tendency of threatened species in the Temperate Northern Pacific and
Tropical Eastern Pacific clustering within similar families (Figure 7). This phylogenetic and
taxonomic structuring suggests that evolutionary history is an important predictor of species
decline, possibly reflecting a non-random pattern of extinction risk (Purvis et al., 2000). Van
Allen et al. (2012) demonstrated the importance of life-history traits for predicting how natural
assemblages are likely to be impacted by anthropogenic and climatic disturbances using modeled
declines in population growth rates under simulated stochastic disturbance. With regard to
species extinctions and extinction risk, an important link has been identified between the loss of
species and the loss of unique evolutionary history (NRC-US, 2008). Furthermore, the extinction
of evolutionarily distinct or paleoendemic species can elevate losses of evolutionary history
(Veron et al., 2015). These patterns might be indicative that seagrasses are characterized by
species that subtends longer phylogenetic branches perhaps representing once diverse clades that
have been lost through historical extinctions.

As seagrasses are increasingly threatened along their taxonomic structure spanning several
marine ecoregions, we argue that seagrass extinctions are unlikely to be random. Previously,
Short et al. (2011) determined that roughly 14% of seagrass species were at an elevated risk of
extinction based on the [IUCN’s Red List of Threatened Species criteria. Currently, the [UCN
indicates that 31% (22 out of 72) of seagrass species are in global decline, and 22% lack
information for proper assessment of conservation status (IUCN, 2020). Therefore, the question
of why some species persist while others decline across regions will require an understanding of
the shared evolutionary history underlying changes in species richness and composition
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(Waycott 1999; Arnaud-Haond et al., 2010; Massa et al., 2013). With many species’ ranges

greatly reduced or unknown, it is even more challenging to track patterns in seagrass population
successes or failures that could be indicative of their resilience to climate change. In the absence
of these key insights for the adaptive potential of seagrass species, we are unable to fully predict
how individual species of seagrasses will respond to drastic, widespread environmental changes.

In order to facilitate effective conservation action, it is important to accurately determine which
species are currently at the greatest risk for extinction, and which species will be at risk in the
future. One successful approach has been to collect expert opinion data to prioritize seagrass
management actions at regional scales (Grech et al., 2012) for species that may be unequally
impacted. To this end, phylogenetic information can be very useful for predicting vulnerabilities
at individual or familial levels (Gallagher et al., 2015). For example, families with a high
proportion of species in global decline include Zosteraceae, Hydrocharitaceae, Posidoniaceae,
and Cymodoceaceae; with Zosteraceae contributing about half of the total number of species in
decline (Figure 8). Therefore, Zosteraceae and other evolutionarily similar families may possess
a phylogenetic signal for extinction pressures. Families with seagrasses having unknown
population trends include Hydrocharitaceae, Cymodoceaceae, Ruppiaceae, Posidoniaceae, and
Zosteraceae according to the [UCN (see Methods and Source Data file in Supplementary
Material for details). These groups are of high conservation concern given that species associated
with these families may be currently threatened or already in decline without notice. Such
population trends, or lack thereof, imply that certain species of seagrasses may be too heavily
impacted in the future to prevent complete losses or extinctions given the rapid pace of climatic
change.

SHORTFALLS IN COMPUTATIONAL TOOLS FOR ASSESSING SPECIES
RESPONSE TO CLIMATE CHANGE

It is possible that the aforementioned impediments can be solved by increasing biological
knowledge and computational capacity. However, compared to the mass production of
occurrence records and climate data, tools that can analyze these datasets in a reasonable amount
of time are almost non-existent or do not scale well in terms of computer time, memory, or other
resources. This is particularly true for seagrasses that have wide geographic ranges, colonizing
every coastline. As a consequence, ecologists and conservationists wishing to address questions
related to seagrass response to climate change may be deterred by lack of analytical tools.

The occurrence data typically used for species distribution modeling is generated from massive
digitization of museum records and citizen science campaigns (e.g., Seagrass-Watch,
https://www.seagrasswatch.org/) and are often available as point records; whereas global
oceanographic variables are measured by instruments on satellites daily (NOAA Climate.gov,
2020), which increase the size of the dataset many-folds. This exponential increase in species
occurrences and oceanographic information inflate the size of running time for modeling
algorithms (Farley et al., 2018; Allen et al., 2019), and consequently increases the challenges for
visualizing downstream patterns. In Figure 9, the number of seagrass occurrence records in GBIF
has increased over time. Where there used to be access to only a few dozen records, the rapid
expansion of biodiversity occurrence data has now made it common for there to be a few
thousand records per species (see Source Data file in Supplementary Material). This poses
computational challenges for researchers. For analysis of species distribution modeling under
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different representative concentration pathway scenarios, for instance, researchers rapidly run
into a spatial scale exponentiation problem. At a spatial resolution of 0.5 degrees (equivalent to
~50 km at the equator) covering the geographic ranges of seagrasses, there are 201,600 possible
pixels for the algorithm to evaluate from. Computing probabilities across a 201,600-possibility
data frame is a challenge. Such large-scale analysis can easily reach thousands of bytes and
analysis using current tools would be prohibitively expensive computationally.

Presently, the software that can facilitate analysis of species distribution modeling of seagrasses
includes maxent (Steven et al., 2017), dismo (Hijmans et al., 2011), biomod?2 (Thuiller et al.,
2014), esdm (Woodman et al., 2019), ModEco (Guo & Liu 2010), SDMtoolbox 2.0 (Brown et
al., 2017), ArcGIS and ARCMap. Several of these packages contain some statistical capabilities
by integrating occurrence information and climate data. For instance, biomod?2 facilitates species
distribution modeling by averaging across different methods including generalized additive
models, generalized linear models, generalized boosting trees, maximum entropy, and random
forest (Thuiller et al., 2014). However, these packages differ in their inferences, and analytical
and computational capacity to process the massively mobilized occurrence records spanning tens
of thousands of pixels across the globe (depending on the measurement scale). Some of these
packages are developed for use in command-line while others are graphical user-interface (GUI).
Most packages are developed to address a specific biological question and may have restricted
analytical options that can limit computational flexibility. Ultimately, scientists wishing to
address more complex hypotheses will have to use a compilation of multiple computational
workflows.

More recent approaches to scale existing software to handle the exponential growth of
biodiversity datasets include developing parallel algorithms (McCallum 2011) and using modern
computational architectures, such as multicore systems, graphics processing units, and
supercomputers (Maruyama et al., 2011). The advantages of these methods are that they provide
reproducible source codes. However, they might require the user to have a good background in
high performance computing. These limitations should not detract from exploring other
outstanding questions that remained to be addressed with the available tools: 1) What are the
effects of reduced area and increased isolation of marine habitats? 2) Where will seagrass species
disperse to under alternative scenarios of climate change? and 3) How have anthropogenic
activities e.g., marine pollution, sedimentation, and coastal urbanization changed the geography
of seagrasses?

OVERCOMING THE IMPEDIMENTS

Seagrass occurrence records are increasingly being utilized in biogeographical investigations and
prioritizing conservation (Valle et al., 2014; Chefaoui et al., 2018; Jayathilake & Costello 2018;
Beca-Carretero et al., 2020; Heck et al., 2020). As possible solutions for the geographic
uncertainty, we suggest enhanced funding for local, regional, and global inventories such as
SeagrassNet for seagrass habitats in the Western Pacific (Short et al., 2006), Seagrass-Watch in
Australasia (McKenzie et al., 2000, 2009), ResilienSEA (http://resiliensea.org/) in West Africa,
Texas Seagrass Monitoring program (http://www .texasseagrass.org/), SeagrassSpotter
(https://seagrassspotter.org/) a global tool for locating seagrasses, or Zostera Experimental
Network (http://zenscience.org) for eelgrass (Zostera marina). Overcoming gaps in geographic
sampling can also include collectors using best practices for collecting and vouchering
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specimens such as capturing accurate geolocations. It could also require the digitization and
mobilization of vouchered seagrass specimens stored in herbaria and museums across the world.
The iNaturalist project is a platform for sharing species observations along with geographic
coordinates for terrestrial organisms and can be leveraged for filling in the data gaps in seagrass
sampling. Kew’s Plants of the World Online portal (POWO) provides distribution information
on the seed-bearing plants of the world based on level 3 of the Taxonomic Diversity Working
Group distribution scheme which corresponds to country borders (POWO 2019) and can be
extended to cover seagrasses as well. High resolution cameras attached to unmanned aerial
vehicles can be deployed to survey seagrasses in remote and inaccessible waters; however,
special permits can often be required to access some sites (Johnston 2019).

Species distribution models — the statistical estimation of species geographic distributions based
on only some known occurrences and environmental conditions (Peterson et al., 2011) — can also
provide an unbiased and easily interpretable estimate of improving representativeness and
coverage of seagrass distributions. For example, a recent species distribution model predicts
more than two-fold increase in the potential global distribution of seagrasses (Jayathilake &
Costello 2018). However, the accuracy of this prediction has attracted particular scrutiny because
of inconsistent measures and widespread sampling gaps in seagrass occurrence records
(McKenzie et al., 2020). Additionally, modeling approaches can contribute other useful
measurements of seagrass meadows such as assessing ecosystem services as well as estimating
broad-scale seagrass resources as was exemplified by Collier et al. (2021) who used historical
data to accurately predict the below-ground biomass of five seagrass species. Because
geographic scale is an important consideration in ecological analyses (Jarzyna & Jetz 2018; Daru
et al. 2020), a multi-scale approach varying along spatial extents (local, regional and global) and
grain resolutions should be considered in assessing seagrass response to global change and
model testing. Temporal uncertainty can be diminished by carrying out new field surveys that are
more consistent and evenly distributed across seasons and years. Collectors should use best
practices such as capturing and documenting accurate dates of collection. For the taxonomic
uncertainty: increased support for marine plant taxonomy and advances in taxonomic
publications could minimize biases. Next-generation DNA sequencing combined with
bioinformatics (Taberlet et al., 2012) will help diminish taxonomic uncertainty such as
sequencing old herbarium specimens of very rare species such as Halodule bermudensis. The
rapid growth of large databases such as GenBank (http://www.ncbi.nlm.nih.gov/genbank),
SeagrassDB (Sablok et al., 2018), and Treebase (http://www.treebase.org), allows researchers to
download available phylogenies or DNA sequences to build their own (Morell 1996; Piel et al.,
2000; Page et al., 2007). Taxonomic bias can also be reduced by targeting future collecting in
poorly sampled clades.

Improvement of analytical and computational tools is an important priority for handling the
analyses for large-scale comparative analyses of seagrass species. For instance, the US National
Science Foundation-funded software BiotaPhy facilitates integration, data collection and analysis
by connecting to existing data repositories such as the Open Tree of Life, iDigBio, and
Lifemapper (BiotaPhy 2020), whereas the open-source package sampbias allows quantification
of geographic sampling biases in species distribution data (Zizka et al., 2020). The R software
package phyloregion — designed for biogeographic regionalization and macroecology — can
overcome some computational challenges (Daru et al., 2020). It contains tools for

10



460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499

biogeographical regionalization, macroecology, conservation, and visualizing biodiversity
patterns, and has potential application in diverse fields including evolution, microbial diversity,
systematics, ecology, phylogenetics, and many others (Daru et al., 2020). We expect that the
proliferation of more open-source analytical tools to greatly facilitate comprehensive
understanding of seagrass sensitivity to ecological change driven by anthropogenic causes.

CONCLUDING REMARKS

Here, we outlined impediments that limit progress in understanding seagrass sensitivity to global
change induced by human activities. These knowledge gaps are interconnected and represent
only few of the possible issues related to research in seagrass diversity and evolution. Taxonomic
uncertainty can influence all other types of uncertainties as it reflects knowledge gaps on the
fundamental unit of ecology and evolutionary biology. The geographic and temporal
uncertainties are strongly related and capture knowledge gaps about species distributions in
space and time, respectively. Even when the aforementioned impediments are resolved, many of
the critical questions about seagrass sensitivity to global change, can be out of reach for scientists
without the right analytical tools. The recent development of efficient and replicable
computational tools, massive mobilization of natural history collections, and increased funding
for seagrass research could remedy these shortcomings. Most of the management tools designed
for use in developed countries can be extended to remote areas in developing countries where
most seagrass diversity resides e.g., the Central Indo-Pacific. Although research on a single
taxon or selected taxa is useful to a certain extent, species are lineages that evolve and diversify
from shared ancestors, suggesting an integrative approach that accounts for their shared
phylogenetic relationships.
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FIGURE LEGENDS:

Fig. 1 Morphological diversity of selected species of seagrasses. (A) Thalassia testudinum
(turtle grass) bed with view of jointed rhizomes, San Salvador Island, Bahamas. (B) Posidonia
oceanica (Neptune grass) meadow with view of rhizome matts, Portofino, Italy. (C) Zostera
marina (eelgrass) with ribbon-like blades. (D) Halophila decipiens (paddle grass) with paddle-
shaped blades. (https://commons.wikimedia.org and https://calphotos.berkeley.edu/).

Fig. 2 Interactions between sampling uncertainties indicating the extent of influence of each
uncertainty on the others. Taxonomic uncertainty affects all other uncertainties whereas arrows
indicate direction of influence between the other two. However, all three types of uncertainty
ultimately reflect the personal preferences, biases, and proclivities of collectors.

Fig. 3 Gaps in geographic sampling of seagrasses. (A) Seagrass occurrence records showed
strong density of sampling in temperate regions, while sampling within the tropics was generally
low. (B) Geographic distribution of seagrass known species richness based on expert delineated
polygons. Source data are provided as a Source Data file.

Fig. 4 Temporal sampling of seagrasses reveal drastic increases midway throughout the
18" century. Temporal data from seagrass records over the course of three centuries (roughly
1700-2000) display dense amount of sampling records accumulating after 1850. Each dot
represents an occurrence record of a seagrass in Julian day of year format, with the color gradient
representing recent years with colder color tones, and older years represented by warmer color
tones. These data also support the previously identified global trend of increased sampling
occurring predominantly within the summer months (early June through early October). Source
data are provided as a Source Data file.

Fig. 5 Temporal trends in seagrass sampling are not consistent across seasons within
marine ecoregions of the world (MEOWs). Temporal data from seagrass occurrence records
were converted into Julian day of year format in order to analyze trends in the monthly sampling
of seagrasses for all MEOWs. The blue line around each temporal sampling plot represents
seagrass sampling density in monthly intervals over an extensive time period (1770-2019), with
corresponding temporal sampling plot for each MEOW. Seagrass sampling rates increase during
summer seasons associated with northern and southern hemispheres. The central plot provides a
reference for the geographic location of each MEOW included in the analysis. Source data are
provided as a Source Data file.

Fig. 6 Phylogenetic bias in seagrass sampling. Phylogenetic distribution of the number of
specimens sampled per seagrass species to assess the tendency of closely related species to be
similarly collected. No statistically significant phylogenetic signals were detected, although there
was slight favoring for sampling of the Thalassia, Enhalus, and Halophila genera over other
seagrass genera. Source data are provided as a Source Data file.

Fig. 7 Correlations of family ranks possessing threatened seagrass species across marine
ecoregions of the world (MEOWs). The pairwise correlational analysis assigned values based
on the level of overlap of seagrass families across MEOWs that possessed seagrass species
classified as threatened by the International Union for Conservation of Nature. Low correlation
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values were generally reported between temperate and tropical MEOWs, indicating that the
threatened seagrass species in these regions are unique to those areas. Source data are provided
as a Source Data file.

Fig. 8 Taxonomic distribution of extinction risk in seagrass. Population status of seagrasses
were assessed using the classifications set forth by the International Union for Conservation of
Nature. Proportion of threatened species was assessed as number of threatened species in a
family divided by the total number of species assessed within that family. When comparing the
proportions of threatened species per family to the calculated 95% confidence interval, 3 families
were significant: Zosteraceae, Posidoniaceae, and Hydrocharitaceae. Source data are provided as
a Source Data file.

Fig. 9 Temporal change in the amount of seagrass occurrence records over time. Seagrass
point records downloaded from GBIF were mapped over time based on the chronological date
listed in the occurrence data for each record to demonstrate that seagrass occurrences have
greatly increased within recent decades. This indicates that analyses with these data will be
computationally expensive. Source data are provided as a Source Data file.
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