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Abstract 

There is a growing demand for large market natural and biotechnological products, for example, 

consumer preferences drive plant-based meat alternatives, health risks of sugar overconsumption 

continue to motivate alternative sweeteners, and the COVID-19 pandemic has reinvigorated 

interest in countries developing in-house vaccine and medication production capabilities. The 

current paradigm of bioreactor-based biomanufacturing faces difficulties of scalability and a high 
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entry barrier of capital intensity and workforce specialization. Field-grown plant-based 

manufacturing, as an inexpensive and readily scalable platform, is a promising strategy to meet 

this emerging demand. Despite some successes in field-grown bioproducts manufacturing by 

companies such as Ventria Biosciences, concerns of product variability have largely stymied 

growth in this area. Here we report on the development and use of techno-economic modeling 

coupled with Monte Carlo-based uncertainty quantification as an effective tool to quantify and 

mitigate the impact of crop variation on product quality and supply for field-grown plant-based 

manufacturing.    
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1. Introduction 

Recent times have brought to the forefront of attention the need for large and reliable source of 

medication and other biologically-derived products. In these times, world leaders are more 

concerned than ever with the global biotechnology manufacturing capability. Current 

manufacturing strategies often depend on bioreactors that require complex equipment 

infrastructure, large time and capital investments to construct them, and a highly trained 

specialized workforce to operate them. The ability of this current biotechnology manufacturing 

paradigm to scale to meet projected global needs across the breath of medical, agricultural, and 

industrial products is yet unproven. Biotechnology, as a set of emerging industries within which 

is contained high-profit margin of production, has been traditionally averse to manufacturing 

platform risks for established product categories such as biopharmaceuticals. This in turn generates 

vulnerabilities as one considers projections of demand for biologically-derived products, such as 

biopolymers (Van Beilen and Poirier, 2008), plant-based protein (Ismail et al., 2020) and oils 

(Kojima et al., 2016), natural sugar alternatives (Sylvetsky and Rother, 2016), and 

biopharmaceuticals (Kesik-Brodacka, 2018), increasing several orders of magnitude while 

sometimes also demanding several orders of magnitude shorter product cycle time. In a recent 

perspective, we highlighted these vulnerabilities and proposed one solution of how to tackle both 

the immediate need to address COVID-19 diagnostic reagent shortages and crop surpluses using 

plant molecular farming (McDonald and Holtz, 2020).  

Plant molecular farming, the production of high-value natural or recombinant products in plants, 

has been heralded as an accessible platform for expanding manufacturing globalization with lower 

infrastructure costs and workforce specialization than traditional bioreactor-based systems (Ma et 

al., 2003). Stainless steel bioreactors with advanced control systems for a suite of online process 
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variables are replaced by plants, within which a portion of the control systems are absorbed by the 

natural supracellular regulation systems.  

The most advanced efforts in commercialization of molecular farming currently utilize advanced 

infrastructure, controlled environment facilities containing artificial lighting, controlled 

atmospheric composition and flow rate, and hydroponic systems to produce recombinant products 

with demands of 10’s to 1,000’s of kilograms per year (Holtz et al., 2015). However, even the 

complexity and cost of indoor plant cultivation may be prohibitive to broaching larger market 

products and generally meeting a growing global need across different biotechnological product 

classes.  

Molecular farming of recombinant products in an outdoor agricultural field setting has been an 

alluring and aspirational target for as long as molecular farming has been an area of research. 

Despite some early successes with companies like Large Scale Biology Corporation (Pogue et al., 

2002), and continued successes of companies like Ventria Biosciences (Chen et al., 2018; Laffan 

et al., 2011; Nandi et al., 2005), molecular farming of recombinant products in an outdoor 

agricultural field setting has faced setbacks including regulatory backlash from Prodigene’s 

pharmaceutical crop mishandling (Kermode and Jiang, 2018) and from mixed public perception, 

in part as it is lumped with genetically modified food crops (Ma et al., 2005). It is prudent to note 

that the regulation of transgenic crops outdoors has matured significantly, as exemplified by the 

clear language in the U.S. Department of Agriculture (USDA) Animal and Plant Health Inspection 

Service Biotechnology Regulatory Services and comfort of the agency to drop requirements for 

annual USDA permit renewal in some cases where the transgenic lines are declared safe after years 

of evaluation. Recent publications on molecular farming in an outdoor agricultural field setting 

highlight the significance of the pitfalls, but also detail a path forward into commercial success 
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driven by the low cost, production scale, and accessibility (Ma et al., 2013; McDonald and Holtz, 

2020; McNulty et al., 2020).  

Perhaps the largest blocker to development of outdoor molecular farming is the crop variation, 

both intra- and inter-batch, that arises from exposure to natural soil and climate variation and is 

perceived as a concern for consistency of product critical quality attributes (Moustafa et al., 2016). 

If concerns of product consistency are alleviated, it is likely that there will be a subsequent need 

to also address the intertwined concern of crop yield fluctuation (Iizumi and Ramankutty, 2016).  

In manufacturing products, such as commodity goods, for which ensuring consistent supply can 

be critical, the evaluation of risks associated with meeting target throughput and variation in 

product cost of manufacturing should be evaluated and communicated to stakeholders to 

complement the decision-making process when assessing the feasibility of processes under 

uncertainty and strategic planning. 

All biomanufacturing introduces a degree of variation in the production. There is a myriad of 

external factors that can influence production rate and product quality. For example, consider that 

in biopharmaceutical production, where the product attributes are highly controlled to ensure 

efficacy and safety to the patient, there are some raw material changes (e.g., source of certain 

culture media components) can be made by the vendor without the biopharmaceutical 

manufacturer being notified. Manufacturers and regulators understand the potential variation, and 

the product is validated with process and product ranges to accommodate this uncertainty. Outdoor 

plant molecular farming is no different in this respect, but there are concerns that the magnitude 

or unpredictability of variation is greater than can be absorbed by either downstream processing 

or a given threshold of an attribute within the quality target product profile. However, to our 

knowledge, there has not been in-depth evaluation of crop variation that quantifies and propagates 
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the impact to key performance metrics such as cost of goods sold, facility throughput, and product 

critical quality attributes (e.g., product purity).  

Earlier studies have established the concept of uncertainty quantification using techno-economic 

models to capture production variation of biomanufacturing processes. These investigations have 

focused primarily on biofuel (Batan et al., 2016; J. Zhuang et al., 2007) and biopharmaceutical 

(Martagan et al., 2018; Papavasileiou et al., 2007) production systems with limitations of coarse 

techno-economic models and/or limited uncertainty quantification analyses. Notably rigorous, the 

uncertainty analysis of penicillin V production using fermentation processes includes a detailed 

model and robust inclusion of uncertainty parameters (Biwer et al., 2005). However, this report 

does lack scenario analysis and optimization under uncertainty, both of which are important 

methodology considerations for plant molecular farming-based manufacturing.    

Kelada and coauthors recently published the first techno-economic analysis of plant molecular 

farming to manufacture a target commodity product at a rate of 50,000 kg per year (Kelada et al., 

2020). In this analysis, the authors simulate a larger production-scale facility than has been 

commercially realized to date to provide perspective on the feasibility and benefits of plant 

molecular farming for large demand products. The findings indicate that outdoor field cultivation 

is one manufacturing strategy to reduce costs compared with the traditional indoor cultivation to 

meet the price points of commodity and industrial products. In the work by Kelada and in all other 

molecular farming techno-economic studies to date, a fixed and constant production rate is 

assumed in designing and sizing the facility. 

Other molecular farming techno-economic studies have explored technical and economic viability 

of primarily indoor production of monoclonal antibodies (Nandi et al., 2016), antiviral proteins 

(Alam et al., 2018), biodefense agents (Tusé et al., 2014), and antimicrobial proteins (McNulty et 
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al., 2020), although the latter two studies did compare indoor growth to outdoor field growth 

scenarios but at much smaller production scales.  

Here we present an introductory investigation into uncertainty quantification in outdoor field-

grown plant-made products. We use Monte Carlo-based simulation to augment a techno-economic 

model of an ultra-large-scale manufacturing facility producing 50 MT per year of 98% pure 

commodity product. The primary objective of this work is to present a foundational tool for 

quantifying uncertainty to reduce stakeholder concerns and to optimize outdoor field-grown plant 

molecular farming facilities.  

 

2. Materials and Methods 

2.1 Process simulation 

This work builds on our recently published techno-economic model of ultra-large-scale field-

grown production of the recombinant sweetener, thaumatin II, in ethanol-inducible transgenic 

Nicotiana tabacum using a process simulation tool, SuperPro Designer® version 10 build 7 

(Intelligen, Inc.), and Microsoft Excel-based calculations. The published model, as well as the 

modified model used for this work, is publicly available at http://mcdonald-

nandi.ech.ucdavis.edu/tools/techno-economics/. A free trial version of SuperPro Designer 

(http://www.intelligen.com/demo.html) can be used to view the model and run the simulation. The 

previously published model has been generalized for the production of high-value recombinant 

proteins, the upstream and downstream processing process flowsheets have been merged, and the 

process scheduling is defined by rated throughput of the equipment when applicable (Figure 1). 

The generalized model can be readily adapted for production of natural protein products by 
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omission of the tractor spraying procedure, which serves as the induction of ethanol-inducible 

transgenic production.  
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Figure 1. Process flowsheet for the field-grown production of recombinant proteins in Nicotiana 

tabacum in the SuperPro Designer® model. Process flowsheet has been adapted from the work of 

Kelada et al. 2020 (Kelada et al., 2020).  

 

Our previous work did not include profitability analysis. For this analysis, we selected three selling 

prices of $1,138/kg, $2,275/kg (base case), and $4,225/kg based the cost of goods sold of our 

previously reported base case techno-economic model ($591/kg, without depreciation) and on 

previously reported average of gross margins from 1994 to 2005 for an aggregate of companies 

qualified as generic pharmaceuticals (48%), brand-name pharmaceuticals (74%), and 

biotechnology (86%) (Basu et al., 2008). Lower gross margins, as are typical for other relevant 

sectors (agriculture (11%); food processing (26%); specialty chemicals (31%)), have also been 

considered in the analysis (retrieved from New York University’s Stern School of Business; 

http://pages.stern.nyu.edu/~adamodar/ New_Home_Page/datafile/margin.html). 

 

2.2 Uncertainty quantification  

We combine Monte Carlo-based stochastic simulation analysis using Oracle® Crystal Ball with 

deterministic techno-economic process simulation in SuperPro Designer. We have written custom 

Visual Basic for Applications (VBA) scripts in Microsoft Excel to interact with SuperPro Designer 

using SuperPro Designer’s built-in Component Object Module library, which is expressly 

designed for this purpose. The Crystal Ball plug-in to Microsoft Excel generates stochastic input 

parameter values based on a pre-determined probability distribution and the VBA script then sets 
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the SuperPro Designer facility model performance accordingly and records the results of selected 

forecast variables (e.g., cost of goods sold, annual throughput). 

The facility model equipment is sized for maximal equipment utilization according to the static 

average base case values. As such, equipment throughput and capacity are exceeded for input 

parameter values that result in higher stream volume or product mass than the base case model. In 

these instances, SuperPro Designer triggers a warning or error notification, but regardless still 

sends the full process stream (including any capacity exceeding that of the equipment) to the next 

unit operation by default. We implemented a simple Microsoft Excel-based algorithm to correct 

the facility model in these cases. For exceeded stream volume capacity, biomass from field growth 

yield, which dictates stream volume, is reduced from the stochastically determined value to a value 

corresponding to the “effective” field growth yield, defined as the maximal yield that the facility 

can process based on equipment capacity. Physically, this is designed to be representative of 

plowing excess biomass back into the fields for soil enrichment. For exceeded product mass 

capacity, as only chromatography performance is assumed to be sensitive to this value, it is 

assumed that there will be negligible impact to chromatography binding capacity and that excess 

will be diverted to the flow-through, resulting in a reduction of the stochastically determined cation 

exchange chromatography (CEX) recovery of product value to a value corresponding to the 

“effective” CEX recovery of product, defined as the maximal recovery that the resin binding 

capacity can accommodate.  

One known disadvantage of Monte Carlo-based simulation is the high trial number needed to 

closely approximate the distributions. We chose to run each uncertainty analysis for 20,000 trials. 

Profitability-related forecast variables include 20,000 trials for each plot, while process-related 

variables include 60,000 trials (combined 20,000 trials for each of the three selling prices analyzed 
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for profitability-related forecasts). Each trial returns the facility forecast variables values 

calculated for a full facility lifetime of 25 years. For process performance forecast variables, each 

trial can also be interpreted on a batch-basis, while profitability forecast variables would need to 

be calculated differently for a batch-basis interpretation, rather than facility lifetime, of trial results. 

We were able to run each set of 20,000 trials of combined stochastic-deterministic evaluation on 

a personal computing machine on the order of several hours running time.  

 

2.3 Input parameter uncertainty 

We selected a set of input parameters for uncertainty analysis (Table 1). Input parameters were 

screened and selected on the basis of known uncertainty, techno-economic impact, and relevance 

to outdoor field growth. Supporting information for determination of the input parameter 

probability distributions, and graphical depictions of these distributions, are included in 

Supplementary Information (S1. Assessment of assumption distributions; S2. Assumption 

distributions & trial data). Probability distributions are defined such that the mean is equal to the 

static value assigned in the base case model.  

Variable Procedure Base Case 
Value Distribution Variation [Range] 

Field growth yield 
(% maximal*/100) 
 

*132 g FW/plant 

P-2 0.76 scaled beta alpha = 2.57, beta = 4.80 
[0.63, 1.0] 

Field growth time  
(days) 

P-2 34.83 triangular likeliest = 34.83, ± 5% likeliest 
[33.09, 36.57] 

Expression level  
(g product/kg FW) 

P-4 1.5 logistic mean = 1.5, scale = 0.08 
[0.95. 2.05] 
 

Harvesting time  
(hours) 

P-5 8 scaled beta alpha = 1, beta = 8 
[4, 40] 

P&F filtration removal 
(% product lost) 

P-11 5.15 normal mean = 5.15, SD = 0.52  
[3.55, 6.75] 
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P&F filtration removal 
(% impurities removed) 

P-11 5.15 normal mean = 5.15, SD = 0.52 
[3.55, 6.75] 

P&F filtration flux 
(L/m2·h) 

P-11 180 triangular likeliest = 180, ± 20% likeliest 
[144, 216] 

P&F filtration removal 
(% product lost) 

P-13 5.43 normal mean = 5.43, SD = 0.54 
[3.75, 7.11] 

P&F filtration removal 
(% impurities removed) 

P-13 95.0 normal mean = 95.0, SD = 0.54  
[93.32, 96.68] 

P&F filtration flux 
(L/m2·h) 

P-13 200 triangular likeliest = 200, ± 20% likeliest  
[160, 240] 

P&F filtration removal 
of product 
(% product lost) 

P-17 1.72 normal mean = 1.72, SD = 0.17  
[1.08, 2.26] 

P&F filtration removal 
of impurities 
(% impurities removed) 

P-17 1.72 normal mean = 1.72, SD = 0.17  
[1.08, 2.26] 

P&F filtration flux 
(L/m2·h) 

P-17 30 triangular likeliest = 30, ± 20% likeliest 
[24, 36] 

UF/DF filtration flux 
(L/m2·h) 

P-19 30 triangular likeliest = 30, ± 20% likeliest 
[24, 36] 

CEX recovery  
(% product recovered) 

P-20 88.5 triangular ± 10% base case  
[80, 97] 

CEX recovery  
(% impurities recovered) 

P-20 5.0 triangular ± 10% base case 
[4.5, 5.5] 

UF/DF filtration flux 
(L/m2·h) 

P-22 40 triangular likeliest = 40, ± 20% likeliest 
[32, 48] 

Table 1. Input parameters selected for uncertainty quantification and the defined probability distributions. 

FW, fresh weight; P&F, plate and frame; UF/DF, ultrafiltration/diafiltration. 

 

2.3 Input parameter correlations 

Input parameter values are by default generated independent of each other using random selection 

from the given probability distribution. However, parameter-parameter interactions and 

correlations are to be expected during manufacturing. We consider several parameter correlations 

in the uncertainty quantification analysis by defining Pearson correlation coefficients in Crystal 

Ball to establish a degree of linear relationship between two variables. The Pearson correlation 
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coefficients used in the model are primarily based on the reported findings in Knödler and 

colleagues (Knödler et al., 2019). We also assume on the basis of working process knowledge that 

there is a moderate positive correlation (r = 0.7) between product loss and impurities removal in 

the plate and frame filtration procedure P-11.  

 Field growth 
yield 
(P-2) 

Field growth 
time 
(P-2) 

Expression 
level 
(P-4) 

P&F removal of 
product  
(P-11) 

P&F removal 
of impurities 
(P-11) 

CEX recovery 
of product 
(P-20) 

Field growth 
yield 
(P-2) 

-- r = 0.8842  r = -0.6321   

Field growth 
time 
(P-2) 

r = 0.8842 --     

Expression 
level 
(P-4) 

  --   r = 0.6042 

P&F removal 
of product  
(P-11) 

 r = -0.6321  -- r = 0.7 r = 0.9432 

P&F removal 
of impurities 
(P-11) 

   r = 0.7 
 

--  

CEX recovery 
of product 
(P-20) 

  r = 0.6042 r = 0.9432  -- 

Table 2. Pearson correlation coefficients 

 

2.4 Forecast variable selection 

We selected a set of forecast variables to capture the value in uncertainty quantification as a tool 

to identify parameters that are likely to impact the bottom line and to optimize field-grown plant-

made product facilities. Table 3 provides a list of all forecast variables measured in the uncertainty 

quantification analysis. The cost of goods sold (COGS) forecast variable is calculated with 

depreciation included.     
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Forecast Variable Justification Desired Output 
Internal rate of return, after tax  
(% discount rate) 

Represents a measure of the project 
profitability based on future cash flows 
in present dollar value, while taking in 
consideration the initial investment, 
operating costs, revenues, and taxes. 

≥ 30% 

Cost of goods sold  
($/kg product) 

Represents the production cost and 
serves as a key determinant of 
profitability. 

≤ $850/kg product 

Annual throughput  
(kg product/year) 

Represents the product supply and can 
inform supply chain management and 
market penetration strategies.  

≥ 4.0 x 104 kg/year 
≤ 6.5 x 104 kg/year 

Product purity  
(% purity) 

Represents the product quality and can 
inform manufacturing strategies to 
ensure standards for the product critical 
quality attributes are met. 

≥ 97.5% 

Table 3. The selected forecast variables, a brief justification of their inclusion/significance, and 

hypothesized desired output ranges are included for the sake of illustrating richness of analysis 

capabilities. 

 

2.5 Sensitivity Analysis 

Sensitivity analysis is generated by Crystal Ball for each forecast variable using simulation run 

data. A rank correlation coefficient is calculated between every forecast and assumption. Percent 

contribution to variance is calculated from the rank correlation coefficient. Correlation among the 

input parameters was not included while considering the Monte Carlo-based simulations runs for 

sensitivity analysis.  

 

3. Results 

3.1 Uncertainty quantification 
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Individual forecast variable uncertainty quantification is shown by histogram, cumulative 

probability distribution, and top input parameter contributions to variance in Figure 2. Expression 

level (P-4), field growth yield (P-2), field growth time (P-2), P&F removal of product (P-13), and 

CEX recovery of product (P-20) have been generally identified as top contributors to variance for 

the selected set of forecast variables analyzed. Additional information on the forecast variable 

outputs, including graphical assessment of normality and a list of contributions to variance for all 

input parameters, is included in Supplementary Information (S4. Forecast contributions to 

variance; S6. Forecast variable normality). 
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Figure 2. Probability distributions and top five assumption contributions to forecast variance for 

internal rate of return (a, b), cost of goods sold (c, d), annual throughput (e, f), and final product 

purity (g, h).  

 

Relationships between the forecast variables are shown in Figure 3, highlighting the interplay 

between the process performance and profitability forecast variables. As can be generally 
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expected, high Annual Throughput and low COGS are associated with high internal rate of return 

(IRR). The density plots (Figure 3, E-H) show a negative skewness for all three process 

performance forecast variables. Based on the desired forecast target ranges listed in Table 3, we 

project the manufacturing, as given by the model simulation, meeting desired COGS output 

specifications with 86.5% certainty (17,299/20,000 trials), annual throughput with 93.7% certainty 

(18,747/20,000 trials), product purity with 92.6% certainty (18,529/20,000 trials), IRR with 82.5% 

certainty (16,490/20,000 trials), and meeting all four output specifications with 80.8% certainty 

(16,161/20,000 trials).  

 

Figure 3. Relationship between the forecast parameter outputs as a function of internal rate of 

return and data density. Contour plots display overall and pairwise relationships (A – D). A 3D-

scatter plot displays the overall relationship (E) and binned scattered plots display pairwise 

relationships (F – H). 



19 
 

 

3.2 Facility oversizing 

The equipment of the base case facility model is sized to maximize equipment utilization for the 

nominal static average input parameters. Here we investigate the impact of oversizing equipment 

(base case = 0% oversize) to reduce or eliminate probability of process stream waste for above 

average throughput trials on techno-economics. A facility model with 100% oversizing is defined 

as a scenario with equipment sized to process the maximum stream volume possible within the 

selected input parameter ranges. Simulations were performed at 0% (base case), 25%, 50%, 75%, 

and 100% oversizing. The following equipment were re-sized for this analysis: heat tank (V-101), 

evaporator (EV-101), tangential flow filtration hold tank (V-102), CEX column (C-101) (S5. 

Equipment oversizing specifications). All other equipment were capable of processing the 

maximum stream volume without re-sizing using a rated throughput.  

Simulation trials in which the equipment capacity is exceeded operate according to what we are 

terming as effective assumptions. The effective assumption is the defined assumption probability 

distribution constrained by the equipment capacity, as described in the Materials & Methods 

section. An effective assumption constrained by equipment capacity is observed for field growth 

yield and CEX recovery of product, as shown in Figure 4. There is a pronounced difference 

between the effective field growth yield and the governing field growth yield probability 

distributions under the 0% and 25% equipment oversize scenarios, the differences being 

statistically significant from all other equipment oversize scenarios. The hypotheses being tested 

here are about the equality of the means of the two probability distributions, and the tests used are 

the standard two-sample t-tests with two-sided alternatives, at level of significance α = 0.05. Means 

of these two probability distributions under 50%, 75%, and 100% oversizing scenarios were not 
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statistically different. Subsequent statistical evaluation of the probability distributions of these 

scenarios illustrated that the 50% scenario output is not borne of an equal distribution to that of 

the 75% and 100% oversizing scenarios (tests for equality of pairs of probability distributions are 

performed using the two-sample Kolmogorov-Smirnov test, at significance level α = 0.05). The 

difference between the mean effective CEX recovery of product for the 0% oversizing scenario 

and all other scenarios is statistically significant. Means, and more generally, the distributions, 

under the 25%, 50%, 75%, and 100% oversizing scenarios were not statistically different. 

Additional details of the two-sample statistical analyses are included in Supplementary 

Information (S7. Two-sample t-tests for means; S8. Kolmogorv-Smirnov tests for distributions).  
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Figure 4. Impact on input variables due to extent of equipment oversizing is displayed using 

histograms, scatter plots of the mean simulation values, and box plots for field growth yield (a, b, 

c) and CEX recovery of product (d, e, f). Error bars represent the 95% confidence interval of the 

mean.  

 

Individual forecast variable uncertainty quantification is shown across the equipment oversize 

scenarios by histogram and scatter plots of the mean values in Figure 5. The profitability of the 

facility model, as given by IRR, is inversely related to extent of equipment oversizing. The mean 

IRR values for the different scenarios are significantly different. We postulate that this can be 

largely explained by the monotonically increasing mean value of COGS (the mean COGS value 

for each scenario is also statistically distinct). The mean value of annual throughput also increases 

with extent of equipment oversizing up until 50% oversizing, whereupon additional oversizing 

does not contribute a statistically significant difference in the mean (or distribution) of throughput. 

For perspective on the relative cost of increased throughput for these scenarios, consider that the 

mean value of the 100% equipment oversizing scenario results in 3.85% greater annual throughput 

and 21.4% greater COGS than the 0% scenario values. In contrast, product purity is more 

comparable across scenarios; only in the 0% oversizing scenario, the mean and the distribution of 

purity are statistically distinct from those in the other scenarios.  
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Figure 5. Impact on forecast variables due to extent of equipment oversizing is displayed using 

histograms and scatter plots of the mean simulation values for internal rate of return after tax (a, 

b), annual throughput (c, d), cost of goods sold (e, f), and product purity (g, h). Error bars represent 

the 95% confidence interval of the mean.  
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A comparison of cost breakdowns for the equipment oversizing scenarios is shown in Figure 6. 

Consumables are the most sensitive cost items to the extent of equipment oversizing, increasing 

the relative contribution to operating expenditures (OPEX) by ~20% from the 0% to 100% 

oversizing scenario. The UF/DF process section is the most sensitive to extent of equipment 

oversizing, increasing relative contribution to OPEX by ~15% from the 0% to 100% oversizing 

scenario. This is primarily due to the contribution of the CEX procedure. The ratio of upstream-

to-downstream OPEX generally decreases with extent of equipment oversizing, while the capital 

intensity, the ratio of OPEX to capital expenditures (CAPEX), generally increases. This is 

consistent with the generally accepted notion that downstream processing is higher capital 

intensity than upstream processing.  

 

Figure 6. A comparison of cost breakdowns and equipment oversizing of the facility for the mean 

simulation values shown by (a) cost item, (b) process section, (c) total upstream contribution, and 

(d) the ratio between operating and capital expenditures. Data points represent the cost breakdowns 

of the simulation trials with the mean internal rate of return, while error bars represent those of the 

minimum and maximum internal rate of return. QC, quality control; QA, quality assurance; 

UF/DF, ultrafiltration/diafiltration; OPEX, operating expenditures; CAPEX, capital expenditure.s  
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3.3. Optimization scenario: chromatography retrofit 

Here, we demonstrate how the process simulation model representing an existing facility can be 

used to aid in a retrofitting process. We suppose that the facility, represented by the base case 

scenario (0% oversizing), is fixed and fully constructed except for the CEX chromatography step, 

which is anticipated to be added to the floor as the facility manufacturing switches to a new target 

protein product. In this case, the process simulation model can be used to optimize the sizing of 

the CEX chromatography step in the context of the otherwise existing facility.  

The base case scenario CEX column size, which was calculated using static average values, is used 

as the optimization starting point. We fixed the bed height and allow the CEX resin volume to vary 

with bed diameter for CEX size optimization. Oracle Crystal Ball’s OptQuest tool was used to 

determine the CEX diameter that maximizes the mean value IRR of simulations of 20,000 trials in 

the range of 0.7 – 1.7 m diameter (base case = 1.2 m) discretized in 0.01 m increments.  

The results of the CEX optimization are show in Figure 7. The optimal value was determined to 

be a diameter of 1.2 m, which is consistent with the value in the base case scenario.  
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Figure 7. Uncertainty-based optimization of cation exchange chromatography sizing in the 0% 

oversize scenario set to maximize the mean internal rate of return given the assumed input 

parameter probability distributions. The mean internal rate of return is calculated using 20,000 

simulation trials at each diameter value tested. Diameter range of 0.7 – 1.7 m is discretized in 0.01 

m increments.   

 

4. Discussion 

The uncertainty quantification analysis of techno-economic process simulation in this work 

presents a range of potential technical and business insights that can be gained for production of 

natural and recombinant products in biotechnology manufacturing. In this work, we have 

specifically focused on field-grown plant molecular farming as a high-priority target to benefit 

from the quantification and management of uncertainty in driving commercial manufacturing. 

Field-grown molecular farming is a critical manufacturing platform for key commercial products 
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including artemisinin for malaria treatment (Su and Miller, 2015), vinca alkaloids for multiple 

health indications including diabetes and cancer (Moudi et al., 2013), and stevia as a food 

sweetener (Singh et al., 2019), and provides distinct advantages in the future of biotechnological 

integration in a range of global markets. Addressing the uncertainty associated with plant-based 

production is one promising strategy to approach supply stabilization and to develop compelling 

plant-based manufacturing schemes.   

 

4.1 Positioning plant molecular farming with outdoor field cultivation 

A recent paper on scaling-up plant molecular farming does an excellent job in summarizing 

blockers and opportunities in the industry from the perspective of key stakeholders working on the 

Pharma-Factory project (https://pharmafactory.org) and the Newcotiana project 

(https://newcotiana.org) (Menary et al., 2020). Plant molecular farming has faced a slower 

technological maturation compared to traditional biotechnology manufacturing platforms. This has 

been attributed to a variety of factors – from being constrained to existing regulatory frameworks 

that are not amenable to assessing plant-based product manufacturing (Sparrow et al., 2013, 2007), 

to a lack of landscape-level pressures like policy driving sustainable manufacturing (Faye and 

Gomord, 2010), to being locked out of the market from past ventures whose failures are 

independent of the technology potential/value (Kermode and Jiang, 2018), to a lack of public 

acceptance of genetically modified crops (Pei and Schmidt, 2019). Plant molecular farming has 

responded to these factors by focusing on reducing public concerns, seeking niche-innovation, and 

establishing legitimacy through positive discourse. The industry is working to reduce public 

concern of contamination using non-food status crops (e.g., Nicotiana benthamiana) (Bally et al., 

2018; Tremblay et al., 2010), manufacturing in indoor controlled environment facilities, and 
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employing non-germline editing transient expression platforms (Holtz et al., 2015; Pogue et al., 

2010; Spiegel et al., 2018). Niche-innovations with plant molecular farming to aid technological 

development outside of the normal market pressures focuses on spaces including orphan diseases, 

emergency treatments, and inexpensive vaccines (Kermode and Jiang, 2018). And finally, 

legitimation of plant molecular farming clusters around comparisons to traditional biotechnology 

manufacturing platforms that emphasize the safety advantages, low cost, sustainability or 

scalability (Buyel, 2018; Moustafa et al., 2016; Yao et al., 2015) and the opportunities for low- 

and middle-income countries with minimal existing pharmaceutical production capacity and 

expertise (Murad et al., 2020; Tsekoa et al., 2020).  

These strategies have served well to move plant molecular farming towards technological 

maturation (Fischer and Buyel, 2020). However, the direction of plant molecular farming 

technological development borne of these strategies can appear to be at cross-purpose with itself. 

For example, the response to public concerns emphasizes indoor cultivation and transient 

expression platforms, while legitimation-facing strategies emphasize low cost, simple scalability, 

and accessibility, all of which may be better suited to outdoor field cultivation and transgenic 

expression platforms. Additionally, consider that while niche-innovation in plant molecular 

farming has usually targeted small to moderate market size products to break into the commercial 

space, there are new and promising food and industrial markets well-suited to plant molecular 

farming with considerably larger market sizes and considerably smaller gross margins that would 

be greatly benefited by outdoor field cultivation; in fact, perhaps the most alluring feature of plant 

molecular farming is its potential to manufacture high-value protein products at a larger scale than 

is feasible with traditional culture-based systems (Buyel et al., 2017).  
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In recent years, the plant molecular farming community has renewed investigation of glass 

greenhouse cultivation as an in-between manufacturing platform that provides adequate 

containment and control with minimal cost and infrastructure complexity (Knödler et al., 2019; 

Ma et al., 2015). However, the complexity of greenhouse cultivation may still prohibit the pursuit 

of ultra-large-scale manufacturing for commodity goods that demand lean manufacturing costs. In 

our perspective, it is critical to re-visit outdoor field cultivation as a platform to enable plant 

molecular farming to re-position for larger food, industrial, and pharmaceutical markets.   

 

4.2 Quantifying uncertainty in facility performance  

Here it is important to re-iterate that the probability distributions selected are not based on 

commercial-scale data and are primarily based on working process knowledge, however the 

uncertainty framework developed, coupled with detailed process modelling, can be generally 

applied to assess commercial risks of plant molecular farming. Thus, the results are not necessarily 

representative of an existing or prospective outdoor field-based facility, but may instead be 

leveraged in development, improvement, or monitoring of such projects.  

Our investigation of uncertainty in IRR shows that, given the selected probability distribution 

assumptions, this facility (in the 0% oversize scenario) is calculated to produce a mean IRR (selling 

price: $2,275/kg) of 33.8%, a 6.63% decrease from the static average base case of 36.2%. 

Expression level was found to be the major contributor (75.6%) to IRR variance. The 100% 

oversize scenario decreased the mean IRR by 24.9% to 27.2% due to the imbalance of the more 

greatly increased capital investment costs and lesser increase in revenue at the selling prices, and 

thus profit margins, established in this analysis. Additionally, the distribution is increasingly 
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platykurtic (i.e., flat-shaped, or thinner tailed) with extent of oversizing and inversely so with the 

selling price.  

The simulation resulted in a mean throughput of 48,046 kg product/year, a 3.88% decrease from 

the static average base case of 49,983 kg product/year. Annual throughput spans from 58.8% 

capacity (28,248 kg product/year) up to 124% capacity (59,467 kg product/year) of the mean. 

Expression level was found to be the major contributor (75.6%) to annual throughput variance. 

The 100% oversize scenario increased the mean throughput by 3.85% (49,893 kg product/year) to 

match the base case static average. This intuitive shift is a result of the 0% oversizing scenario 

resulting in over-capacity stream volumes that are accounted for in the 100% oversizing scenario, 

thus restoring the effective mean value to that of the governing distribution mean.  

The simulated facility is projected to produce the main product (including depreciation) at a mean 

COGS of $762/kg, an 8.7% increase from the static average base case of $701/kg. COGS spans as 

low as 79.8% ($608/kg) and as high as 169% ($1,284/kg) of the mean value. Expression level was 

also the major contributor (77.1%) to variance in this case. The 100% oversize scenario results in 

an increased mean COGS by 21.4% ($925/kg). The quantification of uncertainty in COGS is 

critical for understanding which product markets are economically accessible for a given facility. 

Conversely, this provides information that can be used to inform the target product selling price.  

The simulated facility product purity mean value is equal to the base case static average of 98.0%. 

The product purity ranges from 97.9% lower (95.9%) to 102% higher (99.0%) purity than the mean 

value. The plate and frame filtration product loss was the most significant contributor (at 56.5%) 

to product purity variance. The 100% oversizing scenario resulted in a mean value equal to the 0% 

oversizing scenario mean. The quantification of uncertainty in product purity obtained in this study 

shows that there is considerable variation in extent of purity, which may or may not be problematic 
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for a specific product, which is also largely dependent on the impurities profile (e.g., variation in 

native allergen or microbial toxin levels would present a larger obstacle). Realistically, annual 

product purity variation is not particularly useful for designing a facility. This process performance 

metric, which in preparation for an actual facility construction would be split into its meaningful 

constituents, would be better suited to analysis at a level of batch-to-batch variation.  

 

4.3 Batch-to-batch uncertainty in facility performance 

The analysis thus far has focused on uncertainty in the annual average values for input 

assumptions. This is representative of a project planning or preliminary engineering estimate, 

classified as level 2 or level 3 in some systems (Petrides et al., 2019), where design errors are 

expected to be in the range of ±20-30%. When the product development and commercialization 

life cycle is sufficiently advanced, there is greater value in detailed engineering estimates 

(classified as a level 4 design estimate). At that juncture, it is probable that the expected facility 

performance is better characterized, with more preliminary data available, and that batch-to-batch 

variance may more appropriately describe the questions around uncertainty. In these situations, we 

can treat each process performance simulation trial result as a single batch output, rather than an 

annual average value. It is important to note that the probability distributions for batch-level and 

annual average-level descriptions will most likely be designed using different sets of assumptions. 

For the sake of illustration in comparing annual- to batch-level uncertainty in this analysis, we 

perform a brief exercise in describing batch-level uncertainty, assuming that the input assumptions 

previously defined for annual-level uncertainty are instead describing batch-level uncertainty. To 

understand the annual facility behavior given batch-level uncertainty, we randomly group trial 
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outputs into sets whose size corresponds to the affordable number of batches per year, which is 

calculated based on scheduling. Performing such a calculation, the range of uncertainty in process 

performance metric outputs is much more controlled, as would be expected; for the 0% oversizing 

scenario the annual throughput uncertainty spans 93.8 – 98.3% of the base case static average 

capacity, COGS uncertainty spans 106.0 – 111.3% of the base case static average cost, and product 

purity uncertainty spans 99.9 – 100.1% of the base case static average level. 

Future analysis of batch-to-batch variance and uncertainty has the potential to play an instrumental 

role in aiding development of processing strategies to that take in to account noisy quality attributes 

of the processing input material (i.e., field-grown crop) and translate that into a product meeting 

well-defined quality attributes. This is of particular importance for outdoor molecular farming, for 

which the input material noise may be expected to be more variable than other production 

platforms. One particularly valuable aspect of batch-to-batch variance research would be to include 

scenario analyses of lot pooling considerations of the facility.  

 

4.4 Managing uncertainty in facility performance 

In this work we considered management of uncertainty by investigating the impact of equipment 

oversizing on select process performance metrics. It is clear that the 0% oversizing scenario is the 

most profitable, based on the IRR results. In large part, this can be attributed to the shape of the 

field growth yield probability distribution used. The positive skewness dictates that the oversizing 

captured a smaller fraction of the field growth yield integral for a given increment above 0% 

oversizing (i.e. smaller throughput return for a given capital investment). For this particular model, 

there was no statistically significant increase in throughput past 50% oversizing; the additional 
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75% and 100% oversizing scenarios contributed additional costs without a significant return on 

throughput. However, it is important to point out that facility design is a complex process. In 

reality, the target industry and business strategy of the company may dictate a design based on 

transient market penetration strategies, anticipated scaling, and/or other opportunities, to name a 

few considerations. 

The other aspect of this work aimed to manage uncertainty in facility performance is the 

optimization of CEX chromatography column sizing in a facility retrofitting exercise. What we 

found in this example is that equipment utilization, which was by default maximized in the base 

case column size, was the economic driver in this scenario. Maximization of equipment utilization 

is a well-established heuristic in a facility design for manufacturing with relatively small 

perturbations in demand. In other facility simulations and input assumptions (including the balance 

between product selling price and capital investments), the optimal column sizing may have 

instead reflected those different balances in facility dynamics with a larger size, in the case of 

valuable products and positively skewed throughput distributions, or smaller size, in the inverse 

situations. 

Valuable future works to investigate the impact, and mitigation, of uncertainty in forecast variables 

include exploring commonly employed manufacturing strategies that tend to absorb localized 

fluctuations. In outdoor field cultivation this includes consideration of multi-plot or multi-site 

production and plant tissue silaging (Hamada et al., 2006). Multi-site manufacturing 

considerations would involve an optimization of the balance of production scales between multiple 

facilities based on transient performance probability distributions. It will also be valuable to 

augment uncertainty quantification of plant molecular farming manufacturing with more 

granulized and transient scheduling information to understand the impact to supply chain logistics 
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and solutions to overcome them (e.g., propagating the impact of manufacturing shutdown periods 

and lot failure).  

Perhaps most relevant to the advancement of outdoor field cultivation for plant molecular farming 

would be to consider upcoming and future manufacturing strategies to reduce variation. 

Technological advances in areas such as seed coating (Rocha et al., 2019), precision agriculture 

(Finger et al., 2019), and robotic agricultural systems (King, 2017) are all positioned on the horizon 

to drastically reduce variation and improve yield of outdoor field cultivation. It will be critical for 

the plant molecular farming community to leverage these innovations.  

From the perspective of downstream processing, consideration of lot pooling – the 

combination/pooling of multiple batches into a larger lot size, often implemented to reduce quality 

control costs or improve supply chain logistics (Avis and Wu, 1996) – and the impact on output 

variation is an important area of investigation.  

In summary, this work has aimed to provide the plant molecular farming community with 

contextual motivation and a framework and toolkit to further explore outdoor field cultivation 

through the lens of uncertainty quantification and management in manufacturing process 

simulation to drive future experimentation and inform business decisions. This was presented in 

the form of a deterministic SuperPro Designer-based techno-economic facility model integrated 

with a stochastic Monte Carlo-based simulation to propagate the impact of noisy manufacturing 

inputs through to forecast variable outputs. Scenario analysis and optimization aspects provide 

direct examples of how this toolkit can be used in decision making. 
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