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Abstract

There is a growing demand for large market natural and biotechnological products, for example,
consumer preferences drive plant-based meat alternatives, health risks of sugar overconsumption
continue to motivate alternative sweeteners, and the COVID-19 pandemic has reinvigorated
interest in countries developing in-house vaccine and medication production capabilities. The

current paradigm of bioreactor-based biomanufacturing faces difficulties of scalability and a high



entry barrier of capital intensity and workforce specialization. Field-grown plant-based
manufacturing, as an inexpensive and readily scalable platform, is a promising strategy to meet
this emerging demand. Despite some successes in field-grown bioproducts manufacturing by
companies such as Ventria Biosciences, concerns of product variability have largely stymied
growth in this area. Here we report on the development and use of techno-economic modeling
coupled with Monte Carlo-based uncertainty quantification as an effective tool to quantify and
mitigate the impact of crop variation on product quality and supply for field-grown plant-based

manufacturing.
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1. Introduction

Recent times have brought to the forefront of attention the need for large and reliable source of
medication and other biologically-derived products. In these times, world leaders are more
concerned than ever with the global biotechnology manufacturing capability. Current
manufacturing strategies often depend on bioreactors that require complex equipment
infrastructure, large time and capital investments to construct them, and a highly trained
specialized workforce to operate them. The ability of this current biotechnology manufacturing
paradigm to scale to meet projected global needs across the breath of medical, agricultural, and
industrial products is yet unproven. Biotechnology, as a set of emerging industries within which
is contained high-profit margin of production, has been traditionally averse to manufacturing
platform risks for established product categories such as biopharmaceuticals. This in turn generates
vulnerabilities as one considers projections of demand for biologically-derived products, such as
biopolymers (Van Beilen and Poirier, 2008), plant-based protein (Ismail et al., 2020) and oils
(Kojima et al., 2016), natural sugar alternatives (Sylvetsky and Rother, 2016), and
biopharmaceuticals (Kesik-Brodacka, 2018), increasing several orders of magnitude while
sometimes also demanding several orders of magnitude shorter product cycle time. In a recent
perspective, we highlighted these vulnerabilities and proposed one solution of how to tackle both
the immediate need to address COVID-19 diagnostic reagent shortages and crop surpluses using

plant molecular farming (McDonald and Holtz, 2020).

Plant molecular farming, the production of high-value natural or recombinant products in plants,
has been heralded as an accessible platform for expanding manufacturing globalization with lower
infrastructure costs and workforce specialization than traditional bioreactor-based systems (Ma et

al., 2003). Stainless steel bioreactors with advanced control systems for a suite of online process



variables are replaced by plants, within which a portion of the control systems are absorbed by the

natural supracellular regulation systems.

The most advanced efforts in commercialization of molecular farming currently utilize advanced
infrastructure, controlled environment facilities containing artificial lighting, controlled
atmospheric composition and flow rate, and hydroponic systems to produce recombinant products
with demands of 10’s to 1,000’s of kilograms per year (Holtz et al., 2015). However, even the
complexity and cost of indoor plant cultivation may be prohibitive to broaching larger market
products and generally meeting a growing global need across different biotechnological product

classes.

Molecular farming of recombinant products in an outdoor agricultural field setting has been an
alluring and aspirational target for as long as molecular farming has been an area of research.
Despite some early successes with companies like Large Scale Biology Corporation (Pogue et al.,
2002), and continued successes of companies like Ventria Biosciences (Chen et al., 2018; Laffan
et al.,, 2011; Nandi et al., 2005), molecular farming of recombinant products in an outdoor
agricultural field setting has faced setbacks including regulatory backlash from Prodigene’s
pharmaceutical crop mishandling (Kermode and Jiang, 2018) and from mixed public perception,
in part as it is lumped with genetically modified food crops (Ma et al., 2005). It is prudent to note
that the regulation of transgenic crops outdoors has matured significantly, as exemplified by the
clear language in the U.S. Department of Agriculture (USDA) Animal and Plant Health Inspection
Service Biotechnology Regulatory Services and comfort of the agency to drop requirements for
annual USDA permit renewal in some cases where the transgenic lines are declared safe after years
of evaluation. Recent publications on molecular farming in an outdoor agricultural field setting

highlight the significance of the pitfalls, but also detail a path forward into commercial success



driven by the low cost, production scale, and accessibility (Ma et al., 2013; McDonald and Holtz,

2020; McNulty et al., 2020).

Perhaps the largest blocker to development of outdoor molecular farming is the crop variation,
both intra- and inter-batch, that arises from exposure to natural soil and climate variation and is
perceived as a concern for consistency of product critical quality attributes (Moustafa et al., 2016).
If concerns of product consistency are alleviated, it is likely that there will be a subsequent need

to also address the intertwined concern of crop yield fluctuation (lizumi and Ramankutty, 2016).

In manufacturing products, such as commodity goods, for which ensuring consistent supply can
be critical, the evaluation of risks associated with meeting target throughput and variation in
product cost of manufacturing should be evaluated and communicated to stakeholders to
complement the decision-making process when assessing the feasibility of processes under

uncertainty and strategic planning.

All biomanufacturing introduces a degree of variation in the production. There is a myriad of
external factors that can influence production rate and product quality. For example, consider that
in biopharmaceutical production, where the product attributes are highly controlled to ensure
efficacy and safety to the patient, there are some raw material changes (e.g., source of certain
culture media components) can be made by the vendor without the biopharmaceutical
manufacturer being notified. Manufacturers and regulators understand the potential variation, and
the product is validated with process and product ranges to accommodate this uncertainty. Outdoor
plant molecular farming is no different in this respect, but there are concerns that the magnitude
or unpredictability of variation is greater than can be absorbed by either downstream processing
or a given threshold of an attribute within the quality target product profile. However, to our

knowledge, there has not been in-depth evaluation of crop variation that quantifies and propagates
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the impact to key performance metrics such as cost of goods sold, facility throughput, and product

critical quality attributes (e.g., product purity).

Earlier studies have established the concept of uncertainty quantification using techno-economic
models to capture production variation of biomanufacturing processes. These investigations have
focused primarily on biofuel (Batan et al., 2016; J. Zhuang et al., 2007) and biopharmaceutical
(Martagan et al., 2018; Papavasileiou et al., 2007) production systems with limitations of coarse
techno-economic models and/or limited uncertainty quantification analyses. Notably rigorous, the
uncertainty analysis of penicillin V production using fermentation processes includes a detailed
model and robust inclusion of uncertainty parameters (Biwer et al., 2005). However, this report
does lack scenario analysis and optimization under uncertainty, both of which are important

methodology considerations for plant molecular farming-based manufacturing.

Kelada and coauthors recently published the first techno-economic analysis of plant molecular
farming to manufacture a target commodity product at a rate of 50,000 kg per year (Kelada et al.,
2020). In this analysis, the authors simulate a larger production-scale facility than has been
commercially realized to date to provide perspective on the feasibility and benefits of plant
molecular farming for large demand products. The findings indicate that outdoor field cultivation
is one manufacturing strategy to reduce costs compared with the traditional indoor cultivation to
meet the price points of commodity and industrial products. In the work by Kelada and in all other
molecular farming techno-economic studies to date, a fixed and constant production rate is

assumed in designing and sizing the facility.

Other molecular farming techno-economic studies have explored technical and economic viability
of primarily indoor production of monoclonal antibodies (Nandi et al., 2016), antiviral proteins

(Alam et al., 2018), biodefense agents (Tusé¢ et al., 2014), and antimicrobial proteins (McNulty et
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al., 2020), although the latter two studies did compare indoor growth to outdoor field growth

scenarios but at much smaller production scales.

Here we present an introductory investigation into uncertainty quantification in outdoor field-
grown plant-made products. We use Monte Carlo-based simulation to augment a techno-economic
model of an ultra-large-scale manufacturing facility producing 50 MT per year of 98% pure
commodity product. The primary objective of this work is to present a foundational tool for
quantifying uncertainty to reduce stakeholder concerns and to optimize outdoor field-grown plant

molecular farming facilities.

2. Materials and Methods

2.1 Process simulation

This work builds on our recently published techno-economic model of ultra-large-scale field-
grown production of the recombinant sweetener, thaumatin II, in ethanol-inducible transgenic
Nicotiana tabacum using a process simulation tool, SuperPro Designer® version 10 build 7
(Intelligen, Inc.), and Microsoft Excel-based calculations. The published model, as well as the
modified model wused for this work, is publicly available at http://mcdonald-
nandi.ech.ucdavis.edu/tools/techno-economics/. A free trial version of SuperPro Designer
(http://www.intelligen.com/demo.html) can be used to view the model and run the simulation. The
previously published model has been generalized for the production of high-value recombinant
proteins, the upstream and downstream processing process flowsheets have been merged, and the
process scheduling is defined by rated throughput of the equipment when applicable (Figure 1).

The generalized model can be readily adapted for production of natural protein products by



omission of the tractor spraying procedure, which serves as the induction of ethanol-inducible

transgenic production.
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Figure 1. Process flowsheet for the field-grown production of recombinant proteins in Nicotiana
tabacum in the SuperPro Designer® model. Process flowsheet has been adapted from the work of

Kelada et al. 2020 (Kelada et al., 2020).

Our previous work did not include profitability analysis. For this analysis, we selected three selling
prices of $1,138/kg, $2,275/kg (base case), and $4,225/kg based the cost of goods sold of our
previously reported base case techno-economic model ($591/kg, without depreciation) and on
previously reported average of gross margins from 1994 to 2005 for an aggregate of companies
qualified as generic pharmaceuticals (48%), brand-name pharmaceuticals (74%), and
biotechnology (86%) (Basu et al., 2008). Lower gross margins, as are typical for other relevant
sectors (agriculture (11%); food processing (26%); specialty chemicals (31%)), have also been
considered in the analysis (retrieved from New York University’s Stern School of Business;

http://pages.stern.nyu.edu/~adamodar/ New Home Page/datafile/margin.html).

2.2 Uncertainty quantification

We combine Monte Carlo-based stochastic simulation analysis using Oracle® Crystal Ball with
deterministic techno-economic process simulation in SuperPro Designer. We have written custom
Visual Basic for Applications (VBA) scripts in Microsoft Excel to interact with SuperPro Designer
using SuperPro Designer’s built-in Component Object Module library, which is expressly
designed for this purpose. The Crystal Ball plug-in to Microsoft Excel generates stochastic input

parameter values based on a pre-determined probability distribution and the VBA script then sets
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the SuperPro Designer facility model performance accordingly and records the results of selected

forecast variables (e.g., cost of goods sold, annual throughput).

The facility model equipment is sized for maximal equipment utilization according to the static
average base case values. As such, equipment throughput and capacity are exceeded for input
parameter values that result in higher stream volume or product mass than the base case model. In
these instances, SuperPro Designer triggers a warning or error notification, but regardless still
sends the full process stream (including any capacity exceeding that of the equipment) to the next
unit operation by default. We implemented a simple Microsoft Excel-based algorithm to correct
the facility model in these cases. For exceeded stream volume capacity, biomass from field growth
yield, which dictates stream volume, is reduced from the stochastically determined value to a value
corresponding to the “effective” field growth yield, defined as the maximal yield that the facility
can process based on equipment capacity. Physically, this is designed to be representative of
plowing excess biomass back into the fields for soil enrichment. For exceeded product mass
capacity, as only chromatography performance is assumed to be sensitive to this value, it is
assumed that there will be negligible impact to chromatography binding capacity and that excess
will be diverted to the flow-through, resulting in a reduction of the stochastically determined cation
exchange chromatography (CEX) recovery of product value to a value corresponding to the
“effective” CEX recovery of product, defined as the maximal recovery that the resin binding

capacity can accommodate.

One known disadvantage of Monte Carlo-based simulation is the high trial number needed to
closely approximate the distributions. We chose to run each uncertainty analysis for 20,000 trials.
Profitability-related forecast variables include 20,000 trials for each plot, while process-related

variables include 60,000 trials (combined 20,000 trials for each of the three selling prices analyzed
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for profitability-related forecasts). Each trial returns the facility forecast variables values
calculated for a full facility lifetime of 25 years. For process performance forecast variables, each
trial can also be interpreted on a batch-basis, while profitability forecast variables would need to
be calculated differently for a batch-basis interpretation, rather than facility lifetime, of trial results.
We were able to run each set of 20,000 trials of combined stochastic-deterministic evaluation on

a personal computing machine on the order of several hours running time.

2.3 Input parameter uncertainty

We selected a set of input parameters for uncertainty analysis (Table 1). Input parameters were
screened and selected on the basis of known uncertainty, techno-economic impact, and relevance
to outdoor field growth. Supporting information for determination of the input parameter
probability distributions, and graphical depictions of these distributions, are included in
Supplementary Information (S1. Assessment of assumption distributions; S2. Assumption
distributions & trial data). Probability distributions are defined such that the mean is equal to the

static value assigned in the base case model.

Variable Procedure Ba\s}zlgzse Distribution Variation [Range]
Field growth yield P-2 0.76 scaled beta | alpha =2.57, beta =4.80
(% maximal*/100) [0.63, 1.0]
*132 g FW/plant
Field growth time P-2 34.83 triangular likeliest = 34.83, + 5% likeliest
(days) [33.09, 36.57]
Expression level P-4 1.5 logistic mean = 1.5, scale = 0.08
(g product/’kg FW) [0.95. 2.05]
Harvesting time P-5 8 scaled beta | alpha =1, beta=8
(hours) [4, 40]
P&F filtration removal P-11 5.15 normal mean = 5.15, SD =0.52
(% product lost) [3.55, 6.75]
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P&F filtration removal P-11 5.15 normal mean = 5.15, SD =0.52

(% impurities removed) [3.55, 6.75]

P&F filtration flux P-11 180 triangular likeliest = 180, + 20% likeliest
(L/m?h) [144, 216]

P&F filtration removal P-13 5.43 normal mean = 5.43, SD =0.54

(% product lost) [3.75,7.11]

P&F filtration removal P-13 95.0 normal mean = 95.0, SD = 0.54

(% impurities removed) [93.32, 96.68]

P&F filtration flux P-13 200 triangular likeliest = 200, + 20% likeliest
(L/m?h) [160, 240]

P&F filtration removal P-17 1.72 normal mean=1.72,SD=0.17

of product [1.08, 2.26]

(% product lost)

P&F filtration removal P-17 1.72 normal mean=1.72, SD=0.17

of impurities [1.08, 2.26]

(% impurities removed)

P&F filtration flux P-17 30 triangular likeliest = 30, + 20% likeliest
(L/m*h) [24, 36]

UF/DF filtration flux P-19 30 triangular likeliest = 30, = 20% likeliest
(L/m*h) [24, 36]

CEX recovery P-20 88.5 triangular + 10% base case

(% product recovered) [80, 97]

CEX recovery P-20 5.0 triangular + 10% base case

(% impurities recovered) [4.5,5.5]

UF/DF filtration flux P-22 40 triangular likeliest = 40, + 20% likeliest
(L/m?h) [32, 48]

Table 1. Input parameters selected for uncertainty quantification and the defined probability distributions.

FW, fresh weight; P&F, plate and frame; UF/DF, ultrafiltration/diafiltration.

2.3 Input parameter correlations

Input parameter values are by default generated independent of each other using random selection
from the given probability distribution. However, parameter-parameter interactions and
correlations are to be expected during manufacturing. We consider several parameter correlations
in the uncertainty quantification analysis by defining Pearson correlation coefficients in Crystal

Ball to establish a degree of linear relationship between two variables. The Pearson correlation
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coefficients used in the model are primarily based on the reported findings in Knodler and
colleagues (Knddler et al., 2019). We also assume on the basis of working process knowledge that
there is a moderate positive correlation (r = 0.7) between product loss and impurities removal in

the plate and frame filtration procedure P-11.

Field growth
yield

Field growth
time
(P-2)

Expression
level
(P-4)

P&F removal of
product
(P-11)

P&F removal
of impurities
(P-11)

CEX recovery
of product
(P-20)

(P-2)
Field growth --

yield
(P-2)

r=0.8842 r=-0.6321

Field growth r=0.8842
time

(P-2)

Expression
level
(P-4)

r=0.6042

P&F removal r=-0.6321 r=0.7
of product

(P-11)

r=0.9432

P&F removal r=0.7
of impurities

(P-11)

CEX recovery r=0.6042 r=0.9432
of product

(P-20)

Table 2. Pearson correlation coefficients

2.4 Forecast variable selection

We selected a set of forecast variables to capture the value in uncertainty quantification as a tool
to identify parameters that are likely to impact the bottom line and to optimize field-grown plant-
made product facilities. Table 3 provides a list of all forecast variables measured in the uncertainty
quantification analysis. The cost of goods sold (COGS) forecast variable is calculated with

depreciation included.
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Forecast Variable Justification Desired Output
Internal rate of return, after tax Represents a measure of the project >30%
(% discount rate) profitability based on future cash flows
in present dollar value, while taking in
consideration the initial investment,
operating costs, revenues, and taxes.

Cost of goods sold Represents the production cost and < $850/kg product
($/kg product) serves as a key determinant of
profitability.
Annual throughput Represents the product supply and can | > 4.0 x 10* kg/year
(kg product/year) inform supply chain management and <6.5x 10* kg/year
market penetration strategies.
Product purity Represents the product quality and can | > 97.5%
(% purity) inform manufacturing strategies to

ensure standards for the product critical
quality attributes are met.

Table 3. The selected forecast variables, a brief justification of their inclusion/significance, and

hypothesized desired output ranges are included for the sake of illustrating richness of analysis

capabilities.

2.5 Sensitivity Analysis

Sensitivity analysis is generated by Crystal Ball for each forecast variable using simulation run
data. A rank correlation coefficient is calculated between every forecast and assumption. Percent
contribution to variance is calculated from the rank correlation coefficient. Correlation among the
input parameters was not included while considering the Monte Carlo-based simulations runs for

sensitivity analysis.

3. Results

3.1 Uncertainty quantification
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Individual forecast variable uncertainty quantification is shown by histogram, cumulative
probability distribution, and top input parameter contributions to variance in Figure 2. Expression
level (P-4), field growth yield (P-2), field growth time (P-2), P&F removal of product (P-13), and
CEX recovery of product (P-20) have been generally identified as top contributors to variance for
the selected set of forecast variables analyzed. Additional information on the forecast variable
outputs, including graphical assessment of normality and a list of contributions to variance for all
input parameters, is included in Supplementary Information (S4. Forecast contributions to

variance; S6. Forecast variable normality).
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Figure 2. Probability distributions and top five assumption contributions to forecast variance for

internal rate of return (a, b), cost of goods sold (c, d), annual throughput (e, f), and final product

purity (g, h).

Relationships between the forecast variables are shown in Figure 3, highlighting the interplay

between the process performance and profitability forecast variables. As can be generally
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3.2 Facility oversizing

The equipment of the base case facility model is sized to maximize equipment utilization for the
nominal static average input parameters. Here we investigate the impact of oversizing equipment
(base case = 0% oversize) to reduce or eliminate probability of process stream waste for above
average throughput trials on techno-economics. A facility model with 100% oversizing is defined
as a scenario with equipment sized to process the maximum stream volume possible within the
selected input parameter ranges. Simulations were performed at 0% (base case), 25%, 50%, 75%,
and 100% oversizing. The following equipment were re-sized for this analysis: heat tank (V-101),
evaporator (EV-101), tangential flow filtration hold tank (V-102), CEX column (C-101) (S5.
Equipment oversizing specifications). All other equipment were capable of processing the

maximum stream volume without re-sizing using a rated throughput.

Simulation trials in which the equipment capacity is exceeded operate according to what we are
terming as effective assumptions. The effective assumption is the defined assumption probability
distribution constrained by the equipment capacity, as described in the Materials & Methods
section. An effective assumption constrained by equipment capacity is observed for field growth
yield and CEX recovery of product, as shown in Figure 4. There is a pronounced difference
between the effective field growth yield and the governing field growth yield probability
distributions under the 0% and 25% equipment oversize scenarios, the differences being
statistically significant from all other equipment oversize scenarios. The hypotheses being tested
here are about the equality of the means of the two probability distributions, and the tests used are

the standard two-sample t-tests with two-sided alternatives, at level of significance o = 0.05. Means

of these two probability distributions under 50%, 75%, and 100% oversizing scenarios were not
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the 75% and 100% oversizing scenarios (tests for equality of pairs of probability distributions are

performed using the two-sample Kolmogorov-Smirnov test, at significance level a = 0.05). The

difference between the mean effective CEX recovery of product for the 0% oversizing scenario

and all other scenarios is statistically significant. Means, and more generally, the distributions,

under the 25%, 50%,

75%, and 100% oversizing scenarios were not statistically different.

Additional details of the two-sample statistical analyses are included in Supplementary

Information (S7. Two-sample t-tests for means; S8. Kolmogorv-Smirnov tests for distributions).
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Figure 4. Impact on input variables due to extent of equipment oversizing is displayed using
histograms, scatter plots of the mean simulation values, and box plots for field growth yield (a, b,
c¢) and CEX recovery of product (d, e, f). Error bars represent the 95% confidence interval of the

mean.

Individual forecast variable uncertainty quantification is shown across the equipment oversize
scenarios by histogram and scatter plots of the mean values in Figure 5. The profitability of the
facility model, as given by IRR, is inversely related to extent of equipment oversizing. The mean
IRR values for the different scenarios are significantly different. We postulate that this can be
largely explained by the monotonically increasing mean value of COGS (the mean COGS value
for each scenario is also statistically distinct). The mean value of annual throughput also increases
with extent of equipment oversizing up until 50% oversizing, whereupon additional oversizing
does not contribute a statistically significant difference in the mean (or distribution) of throughput.
For perspective on the relative cost of increased throughput for these scenarios, consider that the
mean value of the 100% equipment oversizing scenario results in 3.85% greater annual throughput
and 21.4% greater COGS than the 0% scenario values. In contrast, product purity is more
comparable across scenarios; only in the 0% oversizing scenario, the mean and the distribution of

purity are statistically distinct from those in the other scenarios.
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Figure 5. Impact on forecast variables due to extent of equipment oversizing is displayed using
histograms and scatter plots of the mean simulation values for internal rate of return after tax (a,
b), annual throughput (c, d), cost of goods sold (e, f), and product purity (g, h). Error bars represent

the 95% confidence interval of the mean.
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% OPEX

A comparison of cost breakdowns for the equipment oversizing scenarios is shown in Figure 6.
Consumables are the most sensitive cost items to the extent of equipment oversizing, increasing
the relative contribution to operating expenditures (OPEX) by ~20% from the 0% to 100%
oversizing scenario. The UF/DF process section is the most sensitive to extent of equipment
oversizing, increasing relative contribution to OPEX by ~15% from the 0% to 100% oversizing
scenario. This is primarily due to the contribution of the CEX procedure. The ratio of upstream-
to-downstream OPEX generally decreases with extent of equipment oversizing, while the capital
intensity, the ratio of OPEX to capital expenditures (CAPEX), generally increases. This is
consistent with the generally accepted notion that downstream processing is higher capital

intensity than upstream processing.

% Eq

uipment Oversize % Equipment Oversize % Equipment Oversize

Figure 6. A comparison of cost breakdowns and equipment oversizing of the facility for the mean
simulation values shown by (a) cost item, (b) process section, (c) total upstream contribution, and
(d) the ratio between operating and capital expenditures. Data points represent the cost breakdowns
of the simulation trials with the mean internal rate of return, while error bars represent those of the
minimum and maximum internal rate of return. QC, quality control; QA, quality assurance;

UF/DF, ultrafiltration/diafiltration; OPEX, operating expenditures; CAPEX, capital expenditure.s
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3.3. Optimization scenario: chromatography retrofit

Here, we demonstrate how the process simulation model representing an existing facility can be
used to aid in a retrofitting process. We suppose that the facility, represented by the base case
scenario (0% oversizing), is fixed and fully constructed except for the CEX chromatography step,
which is anticipated to be added to the floor as the facility manufacturing switches to a new target
protein product. In this case, the process simulation model can be used to optimize the sizing of

the CEX chromatography step in the context of the otherwise existing facility.

The base case scenario CEX column size, which was calculated using static average values, is used
as the optimization starting point. We fixed the bed height and allow the CEX resin volume to vary
with bed diameter for CEX size optimization. Oracle Crystal Ball’s OptQuest tool was used to
determine the CEX diameter that maximizes the mean value IRR of simulations of 20,000 trials in

the range of 0.7 — 1.7 m diameter (base case = 1.2 m) discretized in 0.01 m increments.

The results of the CEX optimization are show in Figure 7. The optimal value was determined to

be a diameter of 1.2 m, which is consistent with the value in the base case scenario.
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Figure 7. Uncertainty-based optimization of cation exchange chromatography sizing in the 0%
oversize scenario set to maximize the mean internal rate of return given the assumed input
parameter probability distributions. The mean internal rate of return is calculated using 20,000
simulation trials at each diameter value tested. Diameter range of 0.7 — 1.7 m is discretized in 0.01

m increments.

4. Discussion

The uncertainty quantification analysis of techno-economic process simulation in this work
presents a range of potential technical and business insights that can be gained for production of
natural and recombinant products in biotechnology manufacturing. In this work, we have
specifically focused on field-grown plant molecular farming as a high-priority target to benefit
from the quantification and management of uncertainty in driving commercial manufacturing.

Field-grown molecular farming is a critical manufacturing platform for key commercial products
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including artemisinin for malaria treatment (Su and Miller, 2015), vinca alkaloids for multiple
health indications including diabetes and cancer (Moudi et al., 2013), and stevia as a food
sweetener (Singh et al., 2019), and provides distinct advantages in the future of biotechnological
integration in a range of global markets. Addressing the uncertainty associated with plant-based
production is one promising strategy to approach supply stabilization and to develop compelling

plant-based manufacturing schemes.

4.1 Positioning plant molecular farming with outdoor field cultivation

A recent paper on scaling-up plant molecular farming does an excellent job in summarizing
blockers and opportunities in the industry from the perspective of key stakeholders working on the
Pharma-Factory = project  (https://pharmafactory.org) and the Newcotiana project
(https://newcotiana.org) (Menary et al., 2020). Plant molecular farming has faced a slower
technological maturation compared to traditional biotechnology manufacturing platforms. This has
been attributed to a variety of factors — from being constrained to existing regulatory frameworks
that are not amenable to assessing plant-based product manufacturing (Sparrow et al., 2013, 2007),
to a lack of landscape-level pressures like policy driving sustainable manufacturing (Faye and
Gomord, 2010), to being locked out of the market from past ventures whose failures are
independent of the technology potential/value (Kermode and Jiang, 2018), to a lack of public
acceptance of genetically modified crops (Pei and Schmidt, 2019). Plant molecular farming has
responded to these factors by focusing on reducing public concerns, seeking niche-innovation, and
establishing legitimacy through positive discourse. The industry is working to reduce public
concern of contamination using non-food status crops (e.g., Nicotiana benthamiana) (Bally et al.,

2018; Tremblay et al., 2010), manufacturing in indoor controlled environment facilities, and
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employing non-germline editing transient expression platforms (Holtz et al., 2015; Pogue et al.,
2010; Spiegel et al., 2018). Niche-innovations with plant molecular farming to aid technological
development outside of the normal market pressures focuses on spaces including orphan diseases,
emergency treatments, and inexpensive vaccines (Kermode and Jiang, 2018). And finally,
legitimation of plant molecular farming clusters around comparisons to traditional biotechnology
manufacturing platforms that emphasize the safety advantages, low cost, sustainability or
scalability (Buyel, 2018; Moustafa et al., 2016; Yao et al., 2015) and the opportunities for low-
and middle-income countries with minimal existing pharmaceutical production capacity and

expertise (Murad et al., 2020; Tsekoa et al., 2020).

These strategies have served well to move plant molecular farming towards technological
maturation (Fischer and Buyel, 2020). However, the direction of plant molecular farming
technological development borne of these strategies can appear to be at cross-purpose with itself.
For example, the response to public concerns emphasizes indoor cultivation and transient
expression platforms, while legitimation-facing strategies emphasize low cost, simple scalability,
and accessibility, all of which may be better suited to outdoor field cultivation and transgenic
expression platforms. Additionally, consider that while niche-innovation in plant molecular
farming has usually targeted small to moderate market size products to break into the commercial
space, there are new and promising food and industrial markets well-suited to plant molecular
farming with considerably larger market sizes and considerably smaller gross margins that would
be greatly benefited by outdoor field cultivation; in fact, perhaps the most alluring feature of plant
molecular farming is its potential to manufacture high-value protein products at a larger scale than

is feasible with traditional culture-based systems (Buyel et al., 2017).
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In recent years, the plant molecular farming community has renewed investigation of glass
greenhouse cultivation as an in-between manufacturing platform that provides adequate
containment and control with minimal cost and infrastructure complexity (Knodler et al., 2019;
Ma et al., 2015). However, the complexity of greenhouse cultivation may still prohibit the pursuit
of ultra-large-scale manufacturing for commodity goods that demand lean manufacturing costs. In
our perspective, it is critical to re-visit outdoor field cultivation as a platform to enable plant

molecular farming to re-position for larger food, industrial, and pharmaceutical markets.

4.2 Quantifying uncertainty in facility performance

Here it is important to re-iterate that the probability distributions selected are not based on
commercial-scale data and are primarily based on working process knowledge, however the
uncertainty framework developed, coupled with detailed process modelling, can be generally
applied to assess commercial risks of plant molecular farming. Thus, the results are not necessarily
representative of an existing or prospective outdoor field-based facility, but may instead be

leveraged in development, improvement, or monitoring of such projects.

Our investigation of uncertainty in IRR shows that, given the selected probability distribution
assumptions, this facility (in the 0% oversize scenario) is calculated to produce a mean IRR (selling
price: $2,275/kg) of 33.8%, a 6.63% decrease from the static average base case of 36.2%.
Expression level was found to be the major contributor (75.6%) to IRR variance. The 100%
oversize scenario decreased the mean IRR by 24.9% to 27.2% due to the imbalance of the more
greatly increased capital investment costs and lesser increase in revenue at the selling prices, and

thus profit margins, established in this analysis. Additionally, the distribution is increasingly
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platykurtic (i.e., flat-shaped, or thinner tailed) with extent of oversizing and inversely so with the

selling price.

The simulation resulted in a mean throughput of 48,046 kg product/year, a 3.88% decrease from
the static average base case of 49,983 kg product/year. Annual throughput spans from 58.8%
capacity (28,248 kg product/year) up to 124% capacity (59,467 kg product/year) of the mean.
Expression level was found to be the major contributor (75.6%) to annual throughput variance.
The 100% oversize scenario increased the mean throughput by 3.85% (49,893 kg product/year) to
match the base case static average. This intuitive shift is a result of the 0% oversizing scenario
resulting in over-capacity stream volumes that are accounted for in the 100% oversizing scenario,

thus restoring the effective mean value to that of the governing distribution mean.

The simulated facility is projected to produce the main product (including depreciation) at a mean
COGS of $762/kg, an 8.7% increase from the static average base case of $701/kg. COGS spans as
low as 79.8% ($608/kg) and as high as 169% ($1,284/kg) of the mean value. Expression level was
also the major contributor (77.1%) to variance in this case. The 100% oversize scenario results in
an increased mean COGS by 21.4% ($925/kg). The quantification of uncertainty in COGS is
critical for understanding which product markets are economically accessible for a given facility.

Conversely, this provides information that can be used to inform the target product selling price.

The simulated facility product purity mean value is equal to the base case static average of 98.0%.
The product purity ranges from 97.9% lower (95.9%) to 102% higher (99.0%) purity than the mean
value. The plate and frame filtration product loss was the most significant contributor (at 56.5%)
to product purity variance. The 100% oversizing scenario resulted in a mean value equal to the 0%
oversizing scenario mean. The quantification of uncertainty in product purity obtained in this study

shows that there is considerable variation in extent of purity, which may or may not be problematic
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for a specific product, which is also largely dependent on the impurities profile (e.g., variation in
native allergen or microbial toxin levels would present a larger obstacle). Realistically, annual
product purity variation is not particularly useful for designing a facility. This process performance
metric, which in preparation for an actual facility construction would be split into its meaningful

constituents, would be better suited to analysis at a level of batch-to-batch variation.

4.3 Batch-to-batch uncertainty in facility performance

The analysis thus far has focused on uncertainty in the annual average values for input
assumptions. This is representative of a project planning or preliminary engineering estimate,
classified as level 2 or level 3 in some systems (Petrides et al., 2019), where design errors are
expected to be in the range of +20-30%. When the product development and commercialization
life cycle is sufficiently advanced, there is greater value in detailed engineering estimates
(classified as a level 4 design estimate). At that juncture, it is probable that the expected facility
performance is better characterized, with more preliminary data available, and that batch-to-batch
variance may more appropriately describe the questions around uncertainty. In these situations, we
can treat each process performance simulation trial result as a single batch output, rather than an
annual average value. It is important to note that the probability distributions for batch-level and

annual average-level descriptions will most likely be designed using different sets of assumptions.

For the sake of illustration in comparing annual- to batch-level uncertainty in this analysis, we
perform a brief exercise in describing batch-level uncertainty, assuming that the input assumptions
previously defined for annual-level uncertainty are instead describing batch-level uncertainty. To

understand the annual facility behavior given batch-level uncertainty, we randomly group trial
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outputs into sets whose size corresponds to the affordable number of batches per year, which is
calculated based on scheduling. Performing such a calculation, the range of uncertainty in process
performance metric outputs is much more controlled, as would be expected; for the 0% oversizing
scenario the annual throughput uncertainty spans 93.8 — 98.3% of the base case static average
capacity, COGS uncertainty spans 106.0 — 111.3% of the base case static average cost, and product

purity uncertainty spans 99.9 — 100.1% of the base case static average level.

Future analysis of batch-to-batch variance and uncertainty has the potential to play an instrumental
role in aiding development of processing strategies to that take in to account noisy quality attributes
of the processing input material (i.e., field-grown crop) and translate that into a product meeting
well-defined quality attributes. This is of particular importance for outdoor molecular farming, for
which the input material noise may be expected to be more variable than other production
platforms. One particularly valuable aspect of batch-to-batch variance research would be to include

scenario analyses of lot pooling considerations of the facility.

4.4 Managing uncertainty in facility performance

In this work we considered management of uncertainty by investigating the impact of equipment
oversizing on select process performance metrics. It is clear that the 0% oversizing scenario is the
most profitable, based on the IRR results. In large part, this can be attributed to the shape of the
field growth yield probability distribution used. The positive skewness dictates that the oversizing
captured a smaller fraction of the field growth yield integral for a given increment above 0%
oversizing (i.e. smaller throughput return for a given capital investment). For this particular model,

there was no statistically significant increase in throughput past 50% oversizing; the additional
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75% and 100% oversizing scenarios contributed additional costs without a significant return on
throughput. However, it is important to point out that facility design is a complex process. In
reality, the target industry and business strategy of the company may dictate a design based on
transient market penetration strategies, anticipated scaling, and/or other opportunities, to name a

few considerations.

The other aspect of this work aimed to manage uncertainty in facility performance is the
optimization of CEX chromatography column sizing in a facility retrofitting exercise. What we
found in this example is that equipment utilization, which was by default maximized in the base
case column size, was the economic driver in this scenario. Maximization of equipment utilization
is a well-established heuristic in a facility design for manufacturing with relatively small
perturbations in demand. In other facility simulations and input assumptions (including the balance
between product selling price and capital investments), the optimal column sizing may have
instead reflected those different balances in facility dynamics with a larger size, in the case of
valuable products and positively skewed throughput distributions, or smaller size, in the inverse

situations.

Valuable future works to investigate the impact, and mitigation, of uncertainty in forecast variables
include exploring commonly employed manufacturing strategies that tend to absorb localized
fluctuations. In outdoor field cultivation this includes consideration of multi-plot or multi-site
production and plant tissue silaging (Hamada et al., 2006). Multi-site manufacturing
considerations would involve an optimization of the balance of production scales between multiple
facilities based on transient performance probability distributions. It will also be valuable to
augment uncertainty quantification of plant molecular farming manufacturing with more

granulized and transient scheduling information to understand the impact to supply chain logistics
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and solutions to overcome them (e.g., propagating the impact of manufacturing shutdown periods

and lot failure).

Perhaps most relevant to the advancement of outdoor field cultivation for plant molecular farming
would be to consider upcoming and future manufacturing strategies to reduce variation.
Technological advances in areas such as seed coating (Rocha et al., 2019), precision agriculture
(Finger et al., 2019), and robotic agricultural systems (King, 2017) are all positioned on the horizon
to drastically reduce variation and improve yield of outdoor field cultivation. It will be critical for

the plant molecular farming community to leverage these innovations.

From the perspective of downstream processing, consideration of lot pooling — the
combination/pooling of multiple batches into a larger lot size, often implemented to reduce quality
control costs or improve supply chain logistics (Avis and Wu, 1996) — and the impact on output

variation is an important area of investigation.

In summary, this work has aimed to provide the plant molecular farming community with
contextual motivation and a framework and toolkit to further explore outdoor field cultivation
through the lens of uncertainty quantification and management in manufacturing process
simulation to drive future experimentation and inform business decisions. This was presented in
the form of a deterministic SuperPro Designer-based techno-economic facility model integrated
with a stochastic Monte Carlo-based simulation to propagate the impact of noisy manufacturing
inputs through to forecast variable outputs. Scenario analysis and optimization aspects provide

direct examples of how this toolkit can be used in decision making.
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