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1. Introduction

Let s 2 .0; 1/, let B1 be the unit ball in Rd , where d > 2, and let B 0
1 WD B1 \ fxd D 0g. For

any point x D .x1; : : : ; xd / 2 Rd we denote by x0 the vector of the first .d � 1/ coordinates,
x0 D .x1; : : : ; xd�1/. We consider the class of admissible functions

A WD
˚
u 2 H 1

�
B1; jxd j1�2s

L
d
�

W u > 0 on B 0
1 ;

u.x0; xd / D u.x0; �xd / for every .x0; xd / 2 B1

 
:

We say that u 2 A is a solution of the lower dimensional obstacle problem if
Z

B1

jxd j1�2sjruj2 dx 6
Z

B1

jxd j1�2sjrvj2 dx for every v 2 A such that u � v 2 H 1
0 .B1/:

(1)
For a solution u 2 A of the lower dimensional obstacle problem, we define the coincidence set as

�.u/ WD
˚
.x0; 0/ 2 B 0

1 W u.x0; 0/ D 0
 
;

and the free boundary �u of u as the topological boundary of �.u/ in B 0
1.
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We say that u has a unique blow-up limit at x0, if the family of functions

ux0;r W Br ! R; ux0;r .x/ D ku.r � Cx0/k�1
L2.@B1/

u.rx C x0/;

converges weakly in H 1.B1; jxd j1�2s
L

d / to an admissible function ux0
.

Here, building on the rectifiability of the free boundary, recently proved by Focardi and Spadaro
(see Theorem 7 below), and the classification of the two-dimensional homogeneous solutions, we
prove that, at almost-every point of the free boundary, the blow-up is unique and corresponds to
certain two-dimensional profiles with homogeneities 2m, 2m � 1 C s, or 2m C 2s. In particular, we
answer a question left open in a recent paper of Focardi and Spadaro (see [5, 6]).

Our main result is the following.

Theorem 1 Let u be a solution of the lower dimensional obstacle problem (1). Then, for H
d�2-

almost every x0 2 � .u/, the following does hold:

(i) u has a unique blow-up limit ux0
at x0;

(ii) such blow up is either 2m, 2m � 1 C s, or 2m C 2s homogeneous, for some m 2 N;
(iii) the blow-up limit ux0

W Rd ! R is of the form

ux0
.x0; xd / D Nu.x0 � e; xd / for some vector e 2 Sd�2 ⇢ Rd�1;

and Nu W R2 ! R is a homogeneous solution of the lower dimensional obstacle problem (1) in
dimension two.

REMARK 2 (Lower dimensional obstacle problem VS minimal surfaces/harmonic maps) Our proof
of Theorem 1 is based on a very general dimension-reduction lemma (Lemma 5), which allows to
reduce the question of the uniqueness of the blow-up limit to the analysis of the blow-up limits
with a maximal number of symmetries. In fact, our argument is very general and can be applied
in different contexts, for example, to the singular sets of minimal surfaces and harmonic maps. On
the other hand, we notice that, in the case of the lower-dimensional (thin) obstacle problem, the
blow-up limits with a maximal number of symmetries are completely described (for instance, in the
case of the thin-obstacle problem, the homogeneous two-dimensional solutions are explicit), while
for minimal surfaces and harmonic maps the singular blow-ups of minimal dimension (that is, with
maximal number of symmetries) are not classified. However, combining the analogous version of
Lemma 5 for minimal surfaces and harmonic maps with the work of L. Simon [14], it is still possible
to deduce uniqueness of the blow-up at almost every point of the singular set from its rectifiability
(that is from Naber–Valtorta’s result [12]). This is precisely the content of [14, Remark 1.14] and
we will briefly explain it in Appendix A.

REMARK 3 The same technique can be applied to the case when the Dirichlet integral in (1)
is replaced by the area term

R
B1

p
1 C jruj2 dx (we refer to [7] for further discussions on this

problem) and also to the case when the obstacle is nonzero (see [9] and [8]).

REMARK 4 We notice that recently in [4] it was shown that the blow-up limit at every point of
frequency 2m C 1(D 2m C 2s for s D 1=2) is unique.
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2. Main lemma and proof of Theorem 1

For every point x0 2 B1, we define the Almgren’s frequency function

N.u; x0; r/ WD
r
R

Br .x0/ jxd j1�2sjruj2 dxR
@Br .x0/ jxd j1�2su2 dHd�1

:

The function r 7! N.u; x0; r/ is monotone non-decreasing in r (see [1]), so that it is well defined
the limit

N.u; x0; 0/ WD lim
r!0

N.u; x0; r/: (2)

In particular, the free boundary can be decomposed according to the value of the frequency function
at r D 0. We denote the set of points of frequency � 2 R by

S�.u/ WD
˚
x0 2 � .u/ W N.u; x0; 0/ D �

 
:

Our main lemma is the following.

Lemma 5 (Splitting lemma) Let u be a solution of the lower dimensional obstacle problem. Let
� 2 R and x0 2 S�.u/ be a point of frequency � for which there exists a linear subspace Tx0

of Rd

satisfying the following property:

(SP) For every y0 2 Tx0
and sequence of radii rn converging to 0, there is a sequence of points yn

converging to y0 such that yn 2 S�.ux0;rn/, for every n.

Then, any blow-up limit b of u at x0 is invariant in the direction of Tx0
, that is,

b.x C y0/ D b.x/ for every x 2 Rd and every y0 2 Tx0
: (3)

REMARK 6 We notice that in the proof of Lemma 5, we use only the following properties of the
frequency function N :

✏ Monotonicity. For every x0 2 B1, the function r 7! N.u; x0; r/ is non-decreasing.
✏ Scaling. For y0 2 B1, s > 0 and r > 0, such that ux0;r is defined on the ball Bs.y0/, we have

N.ux0;r ; y0; s/ D N.u; x0 C ry0; sr/: (4)

✏ Continuity. For every fixed r > 0, the function .u; x/ 7! N.u; x; r/, defined on H 1.B1/ ⇥ Rd is
continuous in the strong H 1.B1/ ⇥ Rd topology.

✏ Characterization of the homogeneous functions. Suppose that the point x0 2 Rd and the function
u W Rd ! R are such that

N.u; x0; r/ D � for every r > 0:

Then u is �-homogeneous with respect to x0, that is,

u.x0 C rx/ D r�u.x0 C x/ for every x 2 Rd and r > 0:

We also notice that the monotonicity property gives the existence of N.u; x0; 0/ (see (2)).
Moreover, the continuity property implies the following:
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✏ Upper semicontinuity. Suppose that un W B1 ! R is a sequence of functions converging strongly
in H 1.B1/ to a function u1 2 H 1.B1/. Suppose that xn 2 B1 be a sequence converging to some
x1 2 B1. Then we have that

N.u1; x1; 0/ > lim sup
n!1

N.un; xn; 0/: (5)

Indeed, using the monotonicity of the function r 7! N.u; x; r/, we have

N.u1; x1; r/ D lim
n!1 N.un; xn; r/ > lim sup

n!1
N.un; xn; 0/:

Taking, the limit as r ! 0, we get (5).

Proof of Lemma 5. Let b be any blow-up limit of u at x0. Then, there is a sequence rn ! 0 such
that urn;x0

converges to b both strongly in H 1
loc and in C 1

loc.fxd > 0g/.
We first claim that

N.b; y0; 0/ D � for every y0 2 Tx0
: (6)

Indeed let y0 2 Tx0
be fixed and let S�.ux0;rn/ 3 yn ! y0 be the sequence of points whose

existence is guaranteed by (SP). In particular, since ux0;rn.yn/ D 0 and ux0;rn converges uniformly
to b, we have that b.y0/ D 0. By the upper semi-continuity of N we have that N.b; y0; 0/ > �.
Indeed, since yn 2 S�.uxn;rn/ and ux0;rn converges to b strongly in H 1.B1/, we have

N.b; y0; 0/ > lim sup
n!1

N.ux0;rn ; yn; 0/ D �:

On the other hand, N.b; y0; 0/ 6 �. Indeed, by (4) and the fact that b is homogeneous, we have that

N.b; y0; 0/ D lim
s!0

N.b; y0; s/ D lim
s!0

N.b0;r ; y0; s/ D lim
s!0

N.b; ry0; rs/ D N.b; ry0; 0/;

for every r > 0. In particular, this means that

N.b; y0; 0/ D lim
r!0

N.b; ry0; 0/ 6 N.b; 0; 0/ D �;

where the inequality follows by the upper semi-continuity of the frequency function. This concludes
the proof of (6).

We next prove that the function b is invariant in any direction y 2 Tx0
, that is

b.x C y/ D b.x/ for every x 2 Rd : (7)

Using the homogeneity of b and (4), for every r > 0 we have that

N.b; y; R/ D N
⇣
b0;R;

y

R
; 1

⌘
D N

⇣
b;

y

R
; 1

⌘
:

Taking the limit as R ! 1, we get that

lim
R!1

N.b; y; R/ D lim
R!1

N
⇣
b;

y

R
; 1

⌘
D N.b; 0; 1/ D �:

In particular, together with (6), this implies that

N.b; y; r/ D � for every r > 0;
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and so, b is homogeneous with respect to y:

b.y C rx/ D r�b.y C x/ for every r > 0:

Hence, for every x 2 Rd we can use the homogeneity with respect to 0 and y to obtain

b.x C y/ D 2�b
⇣x C y

2

⌘
D 2�b

⇣
y C x � y

2

⌘
D b.x/:

This concludes the proof of (7).

In the proof of Theorem 1 we will use Lemma 5 and the following recent result by Focardi and
Spadaro, which we report here for the reader’s convenience.

Theorem 7 (Focardi–Spadaro; see Theorem 1.2 and Theorem 1.3 of [6]) Let u be a solution of the
lower dimensional obstacle problem (1) in B1. Then ⇤.u/ is a set of finite perimeter and there exists
˙.u/ ✓ � .u/ with Hausdorff dimension at most n � 2 such that

N.u; x0; 0/ 2 f2m; 2m � 1 C s; 2m C 2sgm2Nnf0g for every x0 2 � .u/ n ˙.u/:

Proof of Theorem 1. Let

˙.u/ WD � .u/ n
 ✓ 1[

mD1

S2m

◆
[

✓ 1[
mD1

S2m�1Cs

◆
[

✓ 1[
mD1

S2mC2s

◆!
:

By [6, Theorem 1.3], we have that H
d�2.˙.u// D 0. Thus, it is sufficient to prove the claim for

almost-every x0 2 S�, where � D 2m; 2m � 1 C s or 2m C 2s. Moreover, by [6, Theorem 1.2],
we have that the free boundary � .u/ is C 1-rectifiable and so is each of the sets S2m�1Cs , S2m and
S2mC2s (for every m 2 N). In particular, this means that for almost every point x0 of these sets,
there exists a unique .d � 2/-dimensional approximate tangent plane Tx0

✓ Rd�1 ⇥ f0g, namely

H
d�1

ˇ̌
ˇ�S�.ur / \ B1

�
* H

d�1
ˇ̌
ˇ .Tx0

\ B1/ (8)

as locally finite measures. Hence, the splitting property hypothesis (SP) of Lemma 5 is satisfied.
Then Lemma 5 implies that every blow-up limit b of u at x0 is invariant with respect to a .d � 2/-
dimensional plane Tx0

. This means, that b depends only on two variables: x �e and the last coordinate
xd , e being (one of) the normal vector to Tx0

in the hyperplane Rd�1. Precisely, b is of the form

b.x/ D Nb.x � e; xd /; (9)

where Nb is a homogeneous solution of the lower dimensional obstacle problem in dimension two.
We now consider the three cases � D 2m, � D 2m�1C s and � D 2mC2s separately. Indeed,

we first notice that there is only one (up to a multiplicative constant) two-dimensional solution of
the lower-dimensional obstacle problem of homogeneity 2m. In particular, if � D 2m, then the
blow-up is unique and two-dimensional.

Let now � D 2m � 1 C s. In this case there are two two-dimensional homogeneous solutions
(see for instance [9]) and so, two possible blow up limits of u at x0. We call them b1 and b2. In
order to prove the uniqueness of the blow-up as in statement (i) we have to exclude that, for two
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different sequences rj ! 0 and tj ! 0, the blow-up is b1 and b2, respectively. Indeed, taking the
scalar product of ux0;r with b1 we see that

lim
j !1

Z
@B1

ux0;rj
b1 D 1 and lim

j !1

Z
@B1

ux0;tj b1 D
Z

@B1

b1b2 < 1I

hence, for every j , there exists qj 2 .rj ; tj / such that

lim
j !1

Z
@B1

ux0;qj
b1 D 1

2

⇣
1 C

Z
@B1

b1b2

⌘
:

This gives a contradiction. Indeed, up to a subsequence, ux0;qj
converges to a blow-up limit, which

by Lemma 5 should be b1 or b2.
It now remains the case � D 2m C 2s. Fix x0 2 S2mC2s.u/ that admits a .d � 2/-dimensional

approximate tangent plane Tx0
⇢ Rd�1 ⇥ f0g and such that, by (9), every blow-up limit b is of the

form b.x/ D Nb.x � e; xd /; where Nb is a .2m C 2s/-homogeneous solution in dimension two. It is
sufficient to prove that e is a normal vector to Tx0

. Let

Hb WD
˚
x0 2 Rd�1 W x0 � e D 0

 
;

and suppose that there is a point y0 2 Tx0
n Hb ⇢ Rd�1. Without loss of generality, we may

assume that jy0j D 1=2. Let ux0;rn be a blow-up sequence converging to b. By definition of the
tangent plane, there is a sequence of points yn 2 B1 \ S2mC2s.urn;x0

/ such that yn ! y0. Since,
yn are on the free boundary, there is a sequence of points zn in the non-contact set of ux0;rn (that is,
urn;x0

.zn; 0/ > 0 and, as a consequence, @urn;x0

@xd
.zn; 0/ D 0) such that zn ! y0.

When s D 1=2, we use the classification of the solutions in dimension two (see [9]), which
implies that Nb W R2 ! R can be written (up to a positive multiplicative constant) in polar coordinates
as

Nb.r; ✓/ D r2mC1 sin
�

� .2m C 1/✓
�

in fx2 > 0g; (10)

and it is reflected in an even way in the half-plane fx2 < 0g. In particular, @b
@xd

.y0; 0/ < 0. On the
other hand, the blow-up sequence ux0;rn converges in C 1 to the blow-up b (see [1]). Thus,

@b

@xd
.y0; 0/ D lim

n!1
@ux0;rn

@xd
.zn; 0/ D 0;

which is a contradiction. In conclusion, Tx0
D Hb , so the vector e and the blow-up b are uniquely

determined by the tangent plane Tx0
. This concludes the analysis of S2mC2s in the case s D 1=2.

For general s, a nice formula as (10) is not available but the two-dimensional solutions are
described in detail in [6, Appendix A.1] and the uniqueness of the blow-up follows by a similar
argument. Indeed, by [6, Equation (A.4)], up to a multiplicative constant, we have that

Nb.x1; x2/ D jx2j2s
�

� 1 C O.jx � y0j2/
�
:

This means that, at the point y0, we have

jxd j1�2s @b

@xd
.y0; 0/ WD lim

xd !0
jxd j1�2s @b.y0; xd /

@xd
< 0:
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On the other hand, by [6, Theorem 2.1] we have that

jxd j1�2s @b

@xd
.y0; 0/ D lim

n!1 jxd j1�2s @ux0;rn

@xd
.zn; 0/ D 0;

where the last inequality is due to the fact that zn is not on the contact set (see for instance [6,
Corollary 2.4]). This is a contradiction. Thus, also in the case s ¤ 1=2 and � D 2m C 2s, the
blow-up is unique (as it is uniquely determined by Tx0

). This concludes the proof.

Appendix A. About Remark 2

In this section we elaborate a bit more on Remark 2 in the particular case of minimal surfaces
(although the same holds for harmonic maps). Following the notations of [14], we denote with M a
multiplicity one class of n-dimensional minimal surfaces and we denote with Sing M , the singular
set of M 2 M. Moreover, we let

m WD maxfdim Sing M W M 2 Mg :

Thanks to a result of Naber–Valtorta [12], we know that Sing M has finite H
m-volume and it is

locally H
m-rectifiable. Next, let us denote with ⇥M .x/ the density of M 2 M at a point x, and

recall that a consequence of Łojasiewicz inequality for minimal surfaces is that the set of admissible
densities is discrete, that is,

˚
⇥C.0/ W C stationary cone with dim.Sing C/ D m

 
D f˛1; : : : ; ˛N g;

with ˛1 < � � � < ˛N (see [14, 4.3 Lemma]). Consider the sets

Sj WD
˚
x 2 Sing M W ⇥M .x/ D j̨

 
j D 1; : : : ; N ;

and notice that, by standard stratification arguments,

H
m

✓
Sing M n

⇣ N[
j D1

Sj

⌘◆
D 0 : (A1)

As a consequence (of the analogous) of Lemma 5, applied to this case, we know that

(MS) for every point x 2 Sj for which the approximate tangent space Tx to Sj at x exists, all the
tangent cones C to M at x are such that dim.Sing C/ D m and moreover Tx ⇢ C.

Thanks to the Naber–Valtorta rectifiability result, this is the case for H
m-a.e. point of Sj , that is

(MS0) for H
m-a.e. x 2 Sj , all the tangent cones C to M at x are such that

dim.Sing C/ D m and Tx ⇢ Sing C:

It follows from (MS0) and (A1), combined with standard arguments that, for H
m-a.e. x 2 Sing M ,

there is an m-dimensional subspace Lx such that, for every " > 0,

B1.0/ \ ⌘x;� .Sing M/ ⇢ the "-neighborhood of Lx ; (A2)
B1.0/ \ Lx ⇢ the "-neighborhood of ⌘x;� .Sing M / ; (A3)
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where ⌘x;� .y/ WD ��1.y � x/. Indeed, if Lx D Tx is as in (MS0), then (A3) follows immediately
by the definition of approximate tangent, while (A2) follows from (MS’), the upper semicontinuity
of the density and a simple blow-up argument.

Now, the main content of [14] is precisely to show that at H
m-a.e. x 2 Sing M , for which (A2)

and (A3) do hold, the blow-up is unique (see the second part of [14, Proof of Remark 1.14]). Indeed,
these are the points where no ı-gap nor ı-tilt happens.

Finally, we notice that, for the thin obstacle problem and the minimal surfaces, the set of points at
which the blow-up limit is unique is characterized differently. In the case if the lower-dimensional
(thin) obstacle problem, the blow-up is unique at every point at which the free boundary admits
an approximate tangent plane. On the other hand, for minimal surfaces, the blow-up is unique at
almost-every point satisfying the conditions (A2) and (A3) (this is due to the fact that the uniqueness
is achieved by an averaging process), which (as we noticed above) turn out to be fulfilled whenever
the singular set admits an approximate tangent plane. In particular, for minimal surfaces we cannot
characterize the points with unique blow-up as the ones at which the approximate tangent plane to
Sj exists. However, this would be the case if we knew a priori that the .n�m/-dimensional minimal
cones are integrable. Precisely, if the .n � m/-dimensional minimal cones were integrable, then the
blow-up would be unique at every point satisfying (A2) and (A3) (we refer to [13] for more details
on the integrability and its relation with the uniqueness of the blow-up limits).
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