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1. Introduction

Let s € (0,1), let By be the unit ball in RY, where d > 2, and let B} := By N{xg = 0}. For
any point x = (x1,...,xg7) € R? we denote by x’ the vector of the first (d — 1) coordinates,
x" = (x1,...,xq—1). We consider the class of admissible functions

@ :={u e H' (B, |xd|1_25£d) :u=0o0nB,
u(x’,xq) = u(x’, —xq) for every (x, x4) € B1}.
We say that u € R is a solution of the lower dimensional obstacle problem if

/ lxq '™ Vul?dx < / |x4|' 7> |Vv|*dx forevery v € @ suchthat u —v € Hy(By).
B, B,
(1)

For a solution # € @ of the lower dimensional obstacle problem, we define the coincidence set as
A(u) == {(x,0) € B] : u(x’,0) = 0},

and the free boundary I, of u as the topological boundary of A(u) in Bj.
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We say that u has a unique blow-up limit at x, if the family of functions
. -1
Uxor : Br = R,y (x) = |lu(r- +x0)||L2(aBl)u(rx ~+ Xo),

converges weakly in H'(By, |x4|'~2*£%) to an admissible function u X0

Here, building on the rectifiability of the free boundary, recently proved by Focardi and Spadaro
(see Theorem 7 below), and the classification of the two-dimensional homogeneous solutions, we
prove that, at almost-every point of the free boundary, the blow-up is unique and corresponds to
certain two-dimensional profiles with homogeneities 2m, 2m — 1 + s, or 2m + 2s. In particular, we
answer a question left open in a recent paper of Focardi and Spadaro (see [5, 6]).

Our main result is the following.

Theorem 1 Let u be a solution of the lower dimensional obstacle problem (1). Then, for K2,
almost every xg € I'(u), the following does hold:

(i) u has a unique blow-up limit u, at xo;
(i1) such blow up is either 2m, 2m — 1 + s, or 2m + 2s homogeneous, for some m € N;
(iii) the blow-up limit uy, : RY > Ris of the form

Uro (X', xg) = i(x" - e, x4) for some vector e € S*72 c R?71,

and it : R? — R is a homogeneous solution of the lower dimensional obstacle problem (1) in
dimension two.

REMARK 2 (Lower dimensional obstacle problem VS minimal surfaces/harmonic maps) Our proof
of Theorem 1 is based on a very general dimension-reduction lemma (Lemma 5), which allows to
reduce the question of the uniqueness of the blow-up limit to the analysis of the blow-up limits
with a maximal number of symmetries. In fact, our argument is very general and can be applied
in different contexts, for example, to the singular sets of minimal surfaces and harmonic maps. On
the other hand, we notice that, in the case of the lower-dimensional (thin) obstacle problem, the
blow-up limits with a maximal number of symmetries are completely described (for instance, in the
case of the thin-obstacle problem, the homogeneous two-dimensional solutions are explicit), while
for minimal surfaces and harmonic maps the singular blow-ups of minimal dimension (that is, with
maximal number of symmetries) are not classified. However, combining the analogous version of
Lemma 5 for minimal surfaces and harmonic maps with the work of L. Simon [14], it is still possible
to deduce uniqueness of the blow-up at almost every point of the singular set from its rectifiability
(that is from Naber—Valtorta’s result [12]). This is precisely the content of [14, Remark 1.14] and
we will briefly explain it in Appendix A.

REMARK 3 The same technique can be applied to the case when the Dirichlet integral in (1)
is replaced by the area term || B, V14 |Vu|?2dx (we refer to [7] for further discussions on this
problem) and also to the case when the obstacle is nonzero (see [9] and [8]).

REMARK 4 We notice that recently in [4] it was shown that the blow-up limit at every point of
frequency 2m + 1(= 2m + 2s for s = 1/2) is unique.
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2. Main lemma and proof of Theorem 1

For every point xo € B, we define the Almgren’s frequency function

N B rfBr(xo) |xq 1725 Vul|? dx
(u, x0.1) := 1-25,2 Jypd—1"
JoBy (xgy 1Xal' 0

The function r +— N(u, xg, r) is monotone non-decreasing in r (see [1]), so that it is well defined
the limit

N(u, x0,0) := rll_r}r}) N(u, xq,r1). 2)

In particular, the free boundary can be decomposed according to the value of the frequency function
at r = 0. We denote the set of points of frequency A € R by

8)(u) := {xo e I'(w) : N(u,x0,0) = A}.

Our main lemma is the following.

Lemma 5 (Splitting lemma) Let u be a solution of the lower dimensional obstacle problem. Let
A € Rand xg € 8, (u) be a point of frequency A for which there exists a linear subspace Ty, of R4
satisfying the following property:

(SP) For every yo € Ty, and sequence of radii r, converging to 0, there is a sequence of points y,
converging to yo such that y, € 8, (ux,.r,), for every n.

Then, any blow-up limit b of u at xg is invariant in the direction of Ty, that is,

b(x + yo) = b(x) forevery x € R and every yy € Txo- ?3)
REMARK 6 We notice that in the proof of Lemma 5, we use only the following properties of the
frequency function N:
e Monotonicity. For every xg € By, the function r — N(u, x¢, ) is non-decreasing.
e Scaling. For yo € By, s > 0 and r > 0, such that u, is defined on the ball Bs(yo), we have

N(uxgy,r, yo,8) = N(u,xo + 1y, sr). 4

e Continuity. For every fixed r > 0, the function (1, x) — N(u, x, r), defined on H'(B;) x R? is
continuous in the strong H1(B;) x R? topology.

Characterization of the homogeneous functions. Suppose that the point x¢ € R? and the function
u : R — R are such that

N(u,xo,7) = A forevery r > 0.

Then u is A-homogeneous with respect to xg, that is,
u(xo + rx) = r*u(xo + x) for every x € R¢ and r > 0.

We also notice that the monotonicity property gives the existence of N(u, xo,0) (see (2)).
Moreover, the continuity property implies the following:
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e Upper semicontinuity. Suppose that u, : B; — R is a sequence of functions converging strongly
in H'(B)) to a function us, € H'(By). Suppose that x,, € Bj be a sequence converging to some
Xoo € Bjp.Then we have that

N(Uoo, Xo0,0) = limsup N(uy, x,,0). 5)

n—>oo

Indeed, using the monotonicity of the function r +— N(u, x, r), we have

N(Uoo, Xoo, 1) = nll)n;o N(un, xp,r) = limsup N(up, x,,0).
n—>o0

Taking, the limit as r — 0, we get (5).

Proof of Lemma 5. Let b be any blow-up limit of u at xo. Then, there is a sequence r, — 0 such
that u, x, converges to b both strongly in H,!. and in C, ({xs = 0}).
We first claim that
N(b, yo,0) = A forevery yo € Tx,. 6)

Indeed let yo € Ty, be fixed and let Sy(ux,,r,) 3 Y» — Yo be the sequence of points whose
existence is guaranteed by (SP). In particular, since u ., (y») = 0 and uy, r, converges uniformly
to b, we have that b(yo) = 0. By the upper semi-continuity of N we have that N(b, yo,0) = A.
Indeed, since y, € 8, (ux,,r,) and ux, ,, converges to b strongly in H'(By), we have

N(b, yo,0) = limsup N(ux,,r,> Yn, 0) = A.
n—>o0

On the other hand, N (b, yo,0) < A. Indeed, by (4) and the fact that b is homogeneous, we have that
N(b,y9,0) = lim N(b, yg,s) = lim N(bo,, yo,s) = lim N(b,ryo,rs) = N(b,ryo,0),
s—0 s—0 s—0
for every r > 0. In particular, this means that

N, y0,0) = lin})N(b,ryo,O) < N(,0,0) =21,

where the inequality follows by the upper semi-continuity of the frequency function. This concludes
the proof of (6).
We next prove that the function b is invariant in any direction y € Ty, that is

b(x + y) = b(x) forevery x € RY. @)

Using the homogeneity of b and (4), for every r > 0 we have that

N(b.y.R) = N(bo,R, %, 1) = N(b, %, 1).

Taking the limit as R — oo, we get that
lim N(b,y,R) = lim N (b, x 1) = N(b,0,1) = A.
R—00 R—00 R

In particular, together with (6), this implies that

N, y,r) = A forevery r > 0,
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and so, b is homogeneous with respect to y:
b(y +rx) = rlb(y + x) forevery r > 0.

Hence, for every x € R? we can use the homogeneity with respect to 0 and y to obtain
b+ y) = 20( ) =20y + T2 ) = b0,

This concludes the proof of (7). O

In the proof of Theorem 1 we will use Lemma 5 and the following recent result by Focardi and
Spadaro, which we report here for the reader’s convenience.

Theorem 7 (Focardi—Spadaro; see Theorem 1.2 and Theorem 1.3 of [6]) Let u be a solution of the
lower dimensional obstacle problem (1) in By. Then A(u) is a set of finite perimeter and there exists
X (u) C I'(u) with Hausdorff dimension at most n — 2 such that

N(u,x0,0) € 2m,2m — 1 + 5,2m + 25} men\ioy  for every xo € I'(u) \ X (u).

Proof of Theorem 1. Let

S@) =W\ (( G szm) U (G szm_IH) u (G szmm)) .
m=1 m=1 m=1

By [6, Theorem 1.3], we have that ¥¢~2(X (1)) = 0. Thus, it is sufficient to prove the claim for
almost-every xo € S, where A = 2m,2m — 1 + s or 2m + 2s. Moreover, by [6, Theorem 1.2],
we have that the free boundary I"(u) is C !-rectifiable and so is each of the sets Sp;—1+5, Som and
Som+2s (for every m € N). In particular, this means that for almost every point x of these sets,
there exists a unique (d — 2)-dimensional approximate tangent plane Ty, < R~ x {0}, namely

I (81.u0) 1 Br) = R (T 0 BY) ®)

as locally finite measures. Hence, the splitting property hypothesis (SP) of Lemma 5 is satisfied.
Then Lemma 5 implies that every blow-up limit b of u at xg is invariant with respect to a (d — 2)-
dimensional plane T, . This means, that b depends only on two variables: x-e and the last coordinate
X4, e being (one of) the normal vector to Ty, in the hyperplane R?~1. Precisely, b is of the form

b(x) = b(x-e, xq), )

where b is a homogeneous solution of the lower dimensional obstacle problem in dimension two.

We now consider the three cases A = 2m, A = 2m—1+s and A = 2m + 2s separately. Indeed,
we first notice that there is only one (up to a multiplicative constant) two-dimensional solution of
the lower-dimensional obstacle problem of homogeneity 2m. In particular, if A = 2m, then the
blow-up is unique and two-dimensional.

Let now A = 2m — 1 + s. In this case there are two two-dimensional homogeneous solutions
(see for instance [9]) and so, two possible blow up limits of u at xo. We call them by and b,. In
order to prove the uniqueness of the blow-up as in statement (i) we have to exclude that, for two
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different sequences r; — 0 and ¢; — 0, the blow-up is b; and b5, respectively. Indeed, taking the
scalar product of uy, » with b; we see that

lim Uxg,r;b1 =1 and  lim Uxg,t; b1 = b1by < 1;
j—o0 JaB, j—>o0 JyB, 3B,

hence, for every j, there exists ¢; € (r;, ;) such that

1
li b= -1 bb)
J=o0 3B, Hx0.4; 01 2( +[331 e

This gives a contradiction. Indeed, up to a subsequence, iy, 4, converges to a blow-up limit, which
by Lemma 5 should be by or b,.

It now remains the case A = 2m + 2s. Fix xo € S82+425(1) that admits a (d — 2)-dimensional
approximate tangent plane Ty, C H_Qd_l x {0} and such that, by (9), every blow-up limit b is of the
form b(x) = b(x - e, xy), where b is a (2m + 2s)-homogeneous solution in dimension two. It is
sufficient to prove that e is a normal vector to T, . Let

Hy:={x'eR™" : x'-e =0},

and suppose that there is a point yg € Ty, \ Hp C R4~1, Without loss of generality, we may
assume that |yo| = 1/2. Let uy,,,, be a blow-up sequence converging to b. By definition of the
tangent plane, there is a sequence of points y, € By N 82,425 (U, x,) such that y, — yo. Since,
Yn are on the free boundary, there is a sequence of points z, in the non-contact set of uy,,,, (that is,

)
Ur,.x0(2n, 0) > 0 and, as a consequence, ug;‘j" (zn,0) = 0) such that z, — yjg.

When s = 1/2, we use the classification of the solutions in dimension two (see [9]), which
implies that b : R? — R can be written (up to a positive multiplicative constant) in polar coordinates
as

b(r,0) = r**lsin(— (2m + 1)8) in {x, = 0}, (10)

and it is reflected in an even way in the half-plane {x, < 0}. In particular, %( v0,0) < 0. On the
other hand, the blow-up sequence uy, , converges in C ! to the blow-up b (see [1]). Thus,

b ad
—(¥0.0) = lim M(Zn,O) =0,
0xgq n—oo  dxg

which is a contradiction. In conclusion, Ty, = Hj, so the vector e and the blow-up b are uniquely
determined by the tangent plane 7T,. This concludes the analysis of 8,,,425 in the case s = 1/2.

For general s, a nice formula as (10) is not available but the two-dimensional solutions are
described in detail in [6, Appendix A.1] and the uniqueness of the blow-up follows by a similar
argument. Indeed, by [6, Equation (A.4)], up to a multiplicative constant, we have that

b(x1,%2) = [%2** (=14 O(|x = yol*)).
This means that, at the point yo, we have

9b 3b(yo,
eal ™ 2 (30,00 1= tim g2 P00 g
Bxd Xq—>0 8xd
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On the other hand, by [6, Theorem 2.1] we have that

b 9
xal' ™ T (70.0) = lim |xg|' 72 R0 (2, 0) = 0,
0xy n—o00 Xy

where the last inequality is due to the fact that z, is not on the contact set (see for instance [0,
Corollary 2.4]). This is a contradiction. Thus, also in the case s # !/2 and A = 2m + 2s, the
blow-up is unique (as it is uniquely determined by T%,). This concludes the proof. O

Appendix A. About Remark 2

In this section we elaborate a bit more on Remark 2 in the particular case of minimal surfaces
(although the same holds for harmonic maps). Following the notations of [14], we denote with Til a
multiplicity one class of n-dimensional minimal surfaces and we denote with Sing M, the singular
set of M € M. Moreover, we let

m := max{dimSing M : M € M}.

Thanks to a result of Naber—Valtorta [12], we know that Sing M has finite ¥ -volume and it is
locally ®-rectifiable. Next, let us denote with ®ys(x) the density of M € Tl at a point x, and
recall that a consequence of Lojasiewicz inequality for minimal surfaces is that the set of admissible
densities is discrete, that is,

{©¢(0) : C stationary cone with dim(SingC) = m} = {a1.....an},
with ;1 < --- < apy (see [14, 4.3 Lemmal]). Consider the sets
§j:=={x€SingM : Oy(x)=co;} j=1,....N,

and notice that, by standard stratification arguments,

®m (SingM \ (}Q 3_,)) =0. (A1)

As a consequence (of the analogous) of Lemma 5, applied to this case, we know that

(MS) for every point x € 8; for which the approximate tangent space T to §; at x exists, all the
tangent cones C to M at x are such that dim(Sing C) = m and moreover 7, C C.

Thanks to the Naber—Valtorta rectifiability result, this is the case for ¥™-a.e. point of §;, that is
(MS') for K™-ae. x € §;, all the tangent cones C to M at x are such that
dim(SingC) =m and T, C SingC.

It follows from (MS’) and (A1), combined with standard arguments that, for ¥™-a.e. x € Sing M,
there is an m-dimensional subspace L, such that, for every ¢ > 0,
B1(0) N ny,&(Sing M) C the e-neighborhood of Ly, (A2)
B1(0) N Ly C the e-neighborhood of 7y »(Sing M), (A3)
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where 7x.5(¥) := 0~ 1(y — x). Indeed, if Ly = T is as in (MS’), then (A3) follows immediately
by the definition of approximate tangent, while (A2) follows from (MS’), the upper semicontinuity
of the density and a simple blow-up argument.

Now, the main content of [14] is precisely to show that at ¥-a.e. x € Sing M, for which (A2)
and (A3) do hold, the blow-up is unique (see the second part of [14, Proof of Remark 1.14]). Indeed,
these are the points where no §-gap nor §-tilt happens.

Finally, we notice that, for the thin obstacle problem and the minimal surfaces, the set of points at
which the blow-up limit is unique is characterized differently. In the case if the lower-dimensional
(thin) obstacle problem, the blow-up is unique at every point at which the free boundary admits
an approximate tangent plane. On the other hand, for minimal surfaces, the blow-up is unique at
almost-every point satisfying the conditions (A2) and (A3) (this is due to the fact that the uniqueness
is achieved by an averaging process), which (as we noticed above) turn out to be fulfilled whenever
the singular set admits an approximate tangent plane. In particular, for minimal surfaces we cannot
characterize the points with unique blow-up as the ones at which the approximate tangent plane to
§; exists. However, this would be the case if we knew a priori that the (n —m)-dimensional minimal
cones are integrable. Precisely, if the (n — m)-dimensional minimal cones were integrable, then the
blow-up would be unique at every point satisfying (A2) and (A3) (we refer to [13] for more details
on the integrability and its relation with the uniqueness of the blow-up limits).
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