

1
2
3
4
5
6
7 **Interfacial Polarization and Ionic Structure at the**
8
9
10 **Ionic Liquid-Metal Interface Studied by**
11
12
13
14 **Vibrational Spectroscopy and Molecular**
15
16
17 **Dynamics Simulations**
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Matthew J. Voegtle,[†] Tanmoy Pal,[‡] Anuj K. Pennathur,[†] Sevan
Menacheonian,[†] Joel G. Patrow,[†] Sohini Sarkar,[†] Qiang Cui,[‡] and Jahan M.
Dawlaty^{*,†}

[†]*Department of Chemistry, University of Southern California*

[‡]*Department of Chemistry, Boston University*

E-mail: dawlaty@usc.edu

Phone: 213-740-9337

Abstract

Ionic Liquids (ILs) have both fundamental and practical value in interfacial science and electrochemistry. However understanding their behavior near a surface is challenging due to strong Coulomb interactions, and large and irregular ionic sizes which affect both their structure and energetics. To understand this problem we present a combined experimental and computational study using a vibrational probe molecule, 4-mercaptobenzonitrile, inserted at the junction between a metal and a variety of ILs. The vibrational frequency of the nitrile in the probe molecule reports on the local solvation environment and electrostatic field at this junction. Within the ethylmethyl imidazolium ($EMIM^+$) cation family of ILs, we varied the anions over a range of sizes and types. Complementing our surface spectroscopy, we also ran molecular dynamics simulations of these interfaces to better understand the ionic structures that produced the measured fields. The magnitude of the frequency shifts, and thereby fields, shows a general correlation with the size of anions, with larger anions corresponding to smaller fields. We find that the source of this correlation is partial intercalation of smaller anions into the probe monolayer, resulting into tighter packing of ionic layers near the surface. Larger anions reduce the overall lateral ion packing density near the surface, which reduces the net charge per unit area and explains the smaller observed fields. The insight from this work is important for developing a fundamental picture of concentrated electrolytes near interfaces and can help with designing ILs to create tailored electric fields near an electrode.

Introduction

Ideal room temperature ionic liquids (ILs) are liquid organic salts with relatively mobile anions and cations. They have opened and continue to open new frontiers in applications^{1,2} such as in batteries, fuel cells, solar cells, electrochemistry,³ and ionic thrusters for propulsion in space missions⁴ due to their unique properties, including electrochemical and thermal stability, low vapor pressure, and the ability to dissolve a wide range of substances. Most of

1
2
3 these applications rely upon understanding and engineering the behavior of ILs at interfaces
4 with other materials.^{5,6} However, their behavior at an interface is often a far cry from the
5 dilute electrolyte interfaces. A few of the central differences are highlighted below.
6
7

8 They have strong Coulomb correlations. Even in a concentrated conventional electrolyte
9 (e.g. 1 M aqueous HCl) the ratio of ions to solvent molecules are in the order of $\sim 1:50$.
10 In a pure IL the entire liquid is made of ions and strong interaction between ions can not
11 be ignored. For example, ion pairing can change the essential properties that are of value
12 to applications such as conductivity, viscosity, and interfacial kinetics. The degree of ion-
13 pairing in ILs, especially near an interface is a subject of current research.^{5,7} Ionic liquids
14 may be thought of as “liquid plasma” and have even been suggested as a test bed for
15 understanding the complexities of plasma physics theories.⁸⁻¹⁰ Furthermore, the ions have
16 non-negligible sizes, and size difference between the cations and anions can vary largely.
17 This leads to complex structure formation near the interface. Coulomb interactions compete
18 with other specific intermolecular forces such as hydrogen bonding, van der Waals, and
19 hydrophobic/hydrophilic interactions. Such competition affects physical properties such as
20 melting point and viscosity. Albeit complicated, changing the composition of the ions can
21 promote or demote the importance of a given interaction and serve as a handle in tuning
22 their properties.
23
24

25 Given the above, it is not surprising that conventional theories of electrolytes near inter-
26 faces (analogues of Gouy-Chapman theory and its variants) do not generally hold for ILs.
27 Of the many facets of structure and dynamics of ILs, we are interested in only one: local
28 electric field near a surface, which we argue is complicated, and crucial for many applications
29 of ILs. Experimental and computational work¹¹⁻¹³ has shown the potential profile away from
30 an electrode into the IL is non-monotonic and oscillatory, reflecting the underlying layered
31 structure of ions near the electrode.
32
33

34 Ionic liquids have a vast chemical space.^{5,14} Their properties can be tuned by somewhat
35 independent choice of anions and cations, with a variety of sizes and substituent groups,
36
37

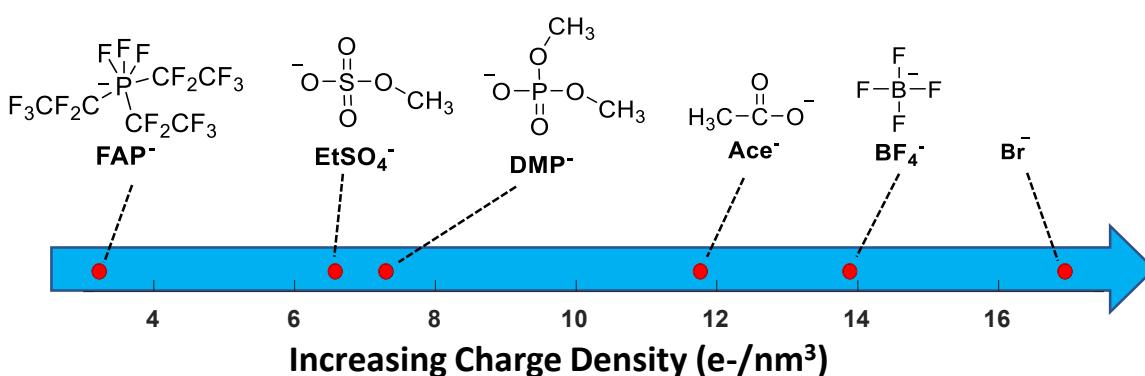


Figure 1: Chemical structure and name abbreviations of the anions studied in this work and their corresponding charge density

leading to millions of possible ILs even by conservative estimates, and thousands already reported in the literature. Rather than randomly searching the parameter space, it is necessary to identify themes and build a general understanding of their behavior at interfaces. In this study, we investigate the surface structure as a function of anion size.

Despite the importance of interfacial fields, their direct experimental measurement is nearly impossible with many conventional techniques. The usual experimental approach is the measurement of differential capacitance as a function of potential. Often such measurements fall under the general umbrella of impedance spectroscopy, in which a static background potential with an added small amplitude oscillatory potential is applied to the interface and the complex response of the interface (consisting of both resistive and capacitive components) is measured as a function of frequency. Then the data is modeled using an *assumed equivalent circuit* for the interface and the capacitance of the interface is inferred. Even if we ignore the inherent reliance of this method on an assumed equivalent circuit model, it is clear that this is a bulk measurement that probes the entire interface and necessarily averages out the intricate field variations near the surface. The interpretation of such measurements for ILs is heavily debated in the literature¹⁵⁻¹⁹ and a clear microscopic picture is yet to emerge. Nonetheless, models and some experiments lead us to believe that even such bulk and averaged out measurement of the interface yields *qualitatively* different results for ILs compared to conventional electrolytes.

Approach

Our work provides a new and independent outlook to this problem by combining a spectroscopic method, Vibrational Sum Frequency Generation (vSFG), with molecular dynamics (MD) simulations. Together, our results provide a detailed view of interfacial structure grounded in experimental observables. To understand the electrostatic polarization of molecules at the metal-IL interface, we measure the nitrile frequency of 4-mercaptobenzonitrile (4-MBN) SAMs adsorbed at the gold surface in the presence of a range of ILs. This molecule is a well-understood vibrational Stark probe and has been used by us and others to probe electric fields at the surface of electrodes.²⁰⁻²² Nitrile groups (and other Stark probes) are useful in providing a picture of the local electrostatic environment, but specific interactions such as hydrogen bonding to the nitrile shift the CN frequency in ways that are not explained by a simple mean-field picture.²³⁻²⁵ More broadly, heterogeneous polarization across the body of the probe complicates the use of Stark spectroscopy for electric field measurements. Electric fields can and do vary over molecular length scales,²⁶ but the probe only reports a single frequency reflective of an averaged field. Therefore, while the vibrational frequency of the nitrile probe is an important reporter of the local electrostatic environment, it does not imply homogeneity of field at the molecule scale. A molecular scale picture when interpreting vibrational frequencies as arising due to Stark shift is needed. For that reason, we used MD simulations to understand how the measured frequency shifts relate to a detailed picture of the ionic structure at the interface. Using MD simulations, ILs of the imidazolium family have been studied at the interface of vacuum²⁷⁻³⁰ and silica.^{31,32} Kislenko et al.³³ studied the electrical double layer in $[BMIM]^+[PF_6]^-$ IL at uncharged, positively charged, and negatively charged graphite surfaces. Recently, $[BMIM]^+[BF_4]^-$ in a confined environment between two gold electrode surfaces has been studied.³⁴

The frequency shift of nitrile has been used to report the solvation field strength in the bulk of ILs, and the field strength was found to depend on the size of the anion, but little to no dependence on the size of the cations.³⁵ In this paper, we will refer to the fields reported

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
by the nitrile probe as interfacial solvation fields. In the spirit of our earlier work, the nitrile probe is effectively solvated by the surrounding ionic environment and the metal which responds both to the probe molecule and the ions. The frequency of the probe responds to the total solvation environment. ILs structure have also been studied extensively by several groups, including those of Baldelli,³⁶⁻³⁹ Dlott,⁴⁰⁻⁴² and Fayer.⁴³⁻⁴⁵ Their work has revealed significant insight into the structure and dynamics of ILs. This work is distinct from the mentioned efforts in that we measure the change in frequency of a Stark reporter, and not the IL itself. In doing so, we gain spatial specificity, since we interact with the Stark probe only in one location, namely near the interface, as opposed to interacting with several layers of liquid, or the bulk of the liquid, all at once.

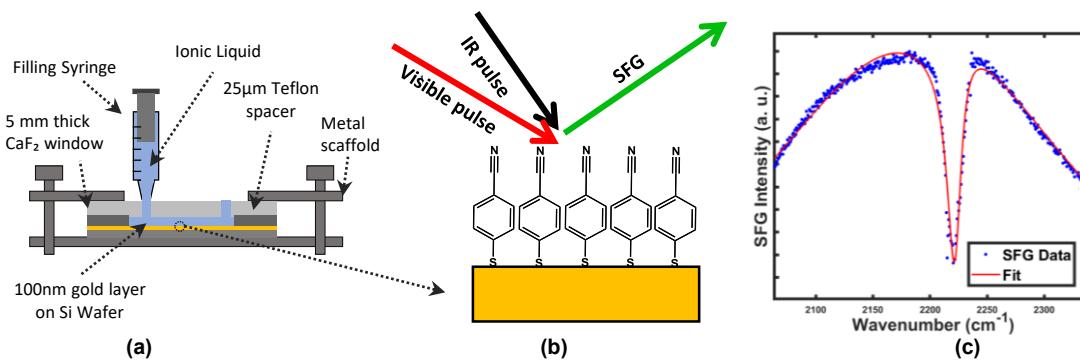


Figure 2: Overview of experimental work. Panel 2a: A diagram of the cell used to acquire SFG spectra. Panel 2b: A cartoon depicting SFG generation from the 4-MBN SAM at the gold-IL interface. Panel 2c: Representative SFG spectra of a 4-MBN SAM showing a broad non-resonant background the narrow CN stretch.

Experimental Methods

Self-assembled monolayers (SAMs) of 4-Mercaptobenzonitrile (4-MBN) were prepared on silicon wafers with a 10 nm Ti adhesion layer and 100 nm of Au purchased from LGA Thin Films, Inc. Wafers were cleaned by sonication in ethanol twice, then in methanol twice for 8 minutes each time, then immersed in a 0.03 M solution of 4-MBN in ethanol overnight. This results in a dense monolayer with full surface coverage for a reproducible spectrum with a

1
2
3 high signal to noise ratio.⁴⁶ After soaking in the 4-MBN solution, the wafers were removed
4 and again sonicated in ethanol and then methanol for 8 minutes each.
5
6

7 A 1 kHz regeneratively amplified Ti:Sapph laser (Coherent) was used to generate ultrafast
8 near IR pulses. A portion (1 W) of this was directed to an optical delay stage followed by
9 a 4f filter to significantly narrow the spectrum, while another portion (2 W) was directed
10 to an OPA (Coherent OPerA Solo) equipped with a AgGaS₂ crystal for difference frequency
11 generation of mid IR pulses. The 4f filter incorporates two volume phase gratings (BaySpec,
12 Inc), two cylindrical lenses and a variable width slit to filter the near IR pulse to a spectral
13 width of 8.0 cm⁻¹, centered at 784.62 nm. Typical spectra of both the near IR upconversion
14 pulses as well as the broadband mid IR pulses can be found in previous work.²³ Pulse energies
15 were measured at the sample position to be $\approx 8 \mu\text{J}$ for the near IR and $\approx 7.56 \mu\text{J}$ for the mid
16 IR. VSFG spectra were acquired by focusing these two pulses together on the sample using
17 a parabolic mirror and overlapping them in time. The resulting VSFG signal was collected
18 with a second parabolic mirror and passed through a short pass filter to reject the majority
19 of the scattered near-IR photons.
20
21

22 The SFG was then sent to a spectrometer (Horiba iHR320) with a CCD camera (Sycerity,
23 JY) for spectral analysis. With the input slit of the spectrometer set to 0.05 mm, and using
24 an 1800 gr/mm grating, the theoretically achievable spectral resolution was 0.05 nm (about
25 1 cm⁻¹ in the spectral range of interest), which is well below the width of the near IR
26 upconversion pulse. Spectral resolution of the SFG spectra are, thus, limited by the 8 cm⁻¹
27 width of the near IR upconversion pulses. We point out that peak shifts smaller than this
28 value can be measured as has been discussed in a previous publication.²³
29
30

31 Vibrational Sum Frequency Generation (VSFG) spectra were taken before and after ap-
32 plication of each IL to the gold wafer. Spectra were obtained from three acquisitions, each
33 integrating for 180 seconds. Final raw spectra are a simple average of the three acquisitions.
34 Experiments were conducted in a demountable liquid FTIR cell (International Crystal Lab-
35 oratories) modified for this purpose (see Figure 2). The back window of the cell was removed
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 and replaced with the SAM containing wafer and a 25 μm Teflon spacer was placed directly
4 on the sample surface. Ionic liquid was injected into the cell between the gold and a CaF_2
5 window. The entire assembly is then held firmly together using stainless steel plates and
6 screws. All SFG measurements were taken in a purged environment, free of CO_2 and wa-
7 ter. Raw SFG spectra is processed using a fitting equation described by Benderskii et al.,⁴⁷
8 which is comprised of a resonant Lorentzian, a non-resonant Gaussian, and variable phase
9 between the two signals. Temperature dependent SFG measurements were completed using
10 a Lakeshore Model 325 Temperature controller and a Lakeshore DT-670 temperature sensor
11 for temperature measurements. The normal SFG cell was slightly modified with a custom-
12 machined aluminum base which allows for good temperature contact between the heater
13 lead, cell environment and temperature probe. Final data reported from SFG experiments
14 such as center frequencies and line widths are reported from an average of three spectra.
15 Representative SFG spectra for all IL systems studied are reported in the SI (Figure S1).
16
17

18 SERS studies were carried out using a Horiba XploRA Raman Microscope System using a
19 532 nm fundamental beam. Spectra were taken using a 1800 groove/mm grating in 10 second
20 increments and averaged over six scans. SERS substrates were prepared with the following
21 method, adapted from the literature:⁴⁸ A silver strip was sonicated in distilled water for 8
22 minutes, then submerged in 60% ammonium hydroxide solution for 1 minute, followed by
23 inserting the silver strip in concentrated nitric acid for 10 seconds. The SERS substrates were
24 then sonicated in water again for 8 minutes for a final cleaning before monolayer adsorption.
25 Nitrile peaks from SERS studies were fit to Lorenzians and the error bars shown in the figure
26 are from the 95% confidence interval of the fit. Each IL measurement was taken on a fresh
27 piece of roughened silver and reported frequency shifts represent a subtraction between the
28 'neat' 4-MBN monolayer and the CN stretch of 4-MBN after application of IL. Raw SERS
29 spectra are reported in the SI (Figure S2).
30
31

32 To investigate the effect of anion size on the surface solvation environment, we used a
33 series of six ILs where the cation identity was fixed and the anion was changed. The cation
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

1
2
3 used for this series was $[EMIM]^+$. The anions used for this series are—in decreasing size or-
4
5 der— tris(pentafluoroethyl)trifluorophosphate (FAP^-), dimethylphosphate (DMP^-), ethyl
6 sulfate ($EtSO_4^-$), acetate (AcO^-), boron tetrafluoride (BF_4^-), and bromide (Br^-). Ionic
7 liquids were purchased from Sigma Aldrich with purities higher than 98%. Structural infor-
8
9 mation of the anions and cations used in this experiment are provided in Figure 1. Ionic
10 liquids were stored under moisture-free air and dried before measurement using a microwave
11 purification method adapted from Ha et al.⁴⁹ This method was shown to remove water to
12 levels below 0.5 wt% rapidly and without damage to the ions. In short, aliquots of IL were
13 heated in a lab microwave until IL temperatures reached 120°. We used a Nicolet iS50 FTIR
14 Spectrometer to confirm that this treatment removes water and does not alter IL structure
15 (associated figure is in the SI). The data show that a sample IL is not compromised or dam-
16 aged by this treatment and that our storage and purification methods result in low water
17 levels.
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Computational Methods

32
33
34 The 4-MBN functionalized slab of nanomaterial was generated in the following steps. First,
35 we used CHARMM-GUI⁵⁰ nanomaterial modeler to build a 4 nm × 4 nm × 1 nm gold
36 (100) surface with 100 % $-SCH_2CH_3$ ligand coverage (ligand density $\sim 6.25 nm^2$). An initial
37 energy minimization was performed using the Steepest Descent algorithm in the CHARMM⁵¹
38 package. Then the system was translated, rotated and minimized again to obtain a 4 nm ×
39 4 nm × 2 nm gold surface with ligands on both positive and negative Z directions. Next, the
40 ethyl part of the ligands was replaced (patched⁵¹) with 4-benzonitrile group to obtain the
41 4-MBN functionalized gold slab. Energy minimization was performed again before packing
42 the system with ILs. Detailed system dimensions and number of ions are included in SI
43 Table S3.
44
45
46
47
48
49
50
51
52
53

54 It is well known that consideration of electronic polarization is important for studying
55
56
57
58
59
60

1
2
3 the structure and dynamics of ILs. Electronic polarization is known to reduce enthalpy of
4 vaporization, and accelerate the ion diffusion.⁵² Studies have found that diffusion coefficients
5 simulated using non-polarizable force fields are smaller than the experimental values.^{53–55}
6 Yan et al.⁵⁶ showed that for $[EMIM]^+[NO_3]^-$, introducing electronic polarization increases
7 the diffusion coefficient to three times of non-polarizable model. They also observed that
8 due to higher ion mobility, the shear viscosity calculated from the polarizable model was in
9 better agreement with the experimental values.⁵⁶ However, the effect of electronic polarization
10 on IL structure is more subtle,⁵² mainly in terms of anion-anion pair correlations.^{52,56,57}
11 Polarization is shown to relax long-range ion structuring in $[BMIM]^+[BF_4]^-$, and the in-
12 fluence propagates to short-range ion-ion correlation.⁵⁷ The effect of polarization is known
13 to be more pronounced for asymmetric ions.⁵⁷ Nevertheless, non-polarizable force fields are
14 shown to reproduce IL structure quite well,^{56–60} due to the dominant effect of electrostatics.
15 Since we focus on the trends in structural features across a series of ILs in this study, we use
16 non-polarizable force fields due to their higher computational efficiency and broader range
17 of availability for different ILs.
18

19 Unless stated otherwise, non-polarizable CHARMM36^{61,62} and CHARMM General Force
20 Field^{63–66} were used to describe the ligands and the ILs. Lennard-Jones parameters for Br^-
21 anions were taken from Canongia Lopes et al.⁶⁷ The structure of BF_4^- anion was optimized
22 with B3LYP^{68–73} and the aug-cc-pVDZ⁷⁴ basis set in the Gaussian 16 program.⁷⁵ The force
23 field parameters for BF_4^- were taken from de Andrade et al.⁷⁶ The authors develop the
24 intra-molecular potential parameters using AMBER methodology,⁷⁷ and the Van der Waals
25 parameters for fluorine and boron were sourced from AMBER⁷⁸ and DREIDING⁷⁹ force
26 fields respectively. The $[DMP]^-$ anion has been modeled using the ligand modeler⁸⁰ in
27 CHARMM-GUI.⁵⁰ Finally, the geometry of $[FAP]^-$ anion was optimized using the same
28 DFT method and basis set as in BF_4^- . The force field parameters used for $[FAP]^-$ are de-
29 veloped by Shimizu et al.⁸¹ based on the OPLS-AA molecular force field. In our implemen-
30 tation, the harmonic force constant for F-P-F, C-P-F, and C-P-C angles have been increased
31

1
2
3 to 1000 $KJ mol^{-1} rad^{-2}$ for additional rigidity around the phosphorus center. The diffusion
4 coefficients calculated in this work (SI Table S4) are of the order of $10^{-11} m^2 s^{-1}$, consistent
5 with previous experimental^{82,83} and simulation studies⁸⁴⁻⁸⁷ The computed densities are also
6 in decent agreement with those reported in previous work (see SI Table S5).
7
8

9 For the gold surface, we use the INTERFACE force field,^{88,89} which has been successfully
10 applied to gold surface and gold nanoparticles. This choice is further supported by a recent
11 study from Ntim and Sulpizi,³⁴ who demonstrated that the density profiles and cation/anion
12 orientation of IL ($[BMIM]^+[BF_4]^-$) was negligibly affected by gold polarization.
13
14

15 The functionalized surface was packed with 550-1130 pairs of different IL cations and
16 anions, and molecular dynamics simulations were performed using the GPU version of the
17 GROMACS⁹⁰⁻⁹⁶ 2018 package. Position restraints of 200,000 $KJ mol^{-1} nm^{-2}$ were applied
18 on the gold atoms in all three dimensions. Periodic boundary conditions were employed in
19 three dimensions as well. After energy minimization, the systems were equilibrated for 100
20 ps in the NVT ensemble (with 0.5 fs timestep), and 200 ns in the NPT ensemble (with 2 fs
21 timestep). 200 ns of production run was performed thereafter, with a timestep of 2 fs.
22
23

24 The particle-mesh-Ewald⁹⁷ method with a Fourier spacing of 0.12 nm was used to cal-
25 culate electrostatic interactions. Real space non-bonded interactions were treated with a
26 cut-off distance of 1.2 nm and a force-switch modifier. LINCS^{98,99} algorithm was used to
27 constrain all bonds involving hydrogen atoms.
28
29

30 We used the Berendsen¹⁰⁰ thermostat with a time constant of 1 ps and a target tem-
31 perature of 400 K for equilibration NPT runs, and the Nosé-Hoover^{101,102} thermostat with
32 same parameters for production runs. Semi-isotropic pressure coupling was applied for all
33 NPT simulations with a target pressure of 1.0 atm. The Berendsen¹⁰⁰ pressure-coupling
34 scheme with a time constant of 5.0 ps and compressibility of $4.5 \times 10^{-5} bar^{-1}$ was used for
35 equilibration, while we used the Parrinello-Rahman^{103,104} method with a time constant of
36 10.0 ps and compressibility of $4.5 \times 10^{-5} bar^{-1}$ for production simulations.
37
38

39 To probe local electrostatics at the interface, we calculate the electric field at the nitrile
40
41

1
2
3 nitrogen of the 4-MBN probe. The electrostatic field at position \mathbf{r} due to point charges q_i at
4 positions \mathbf{r}_i is given by:
5
6

7
8
9
10
$$\mathcal{E}(\mathbf{r}) = \sum_{i=1}^n q_i \frac{(\mathbf{r} - \mathbf{r}_i)}{|\mathbf{r} - \mathbf{r}_i|^3} \quad (1)$$

11

12 In this study, an atom-based cut off distance of 3.5 nm is used for field calculation.
13 The choice of cut-off distance is based on the convergence of electric field components to
14 $10^{-2} \text{ V nm}^{-1}$ (SI Figure S9). We calculate the electric field exclusively from ILs, and it's
15 projection along C-N axis for all 200 nitrile nitrogens. The electric field is sampled every
16 50 ps for the last 100 ns of production run. (Histograms of electric field components and
17 projection are shown in SI Figures S10, S11). At that timescale, the components and the
18 projection of electric field are decorrelated (SI Figure S12). The component of the electric
19 field on nitrile nitrogens along C-N is averaged over space and time, and is used next to
20 calculate the estimated Stark frequency shift. Assuming a linear Stark tuning rate of $\Delta\vec{\mu} =$
21 $0.36 \text{ cm}^{-1} (\text{MV/cm})^{-1}$ for benzonitriles,^{21,105–110} we report the estimated Stark frequency
22 shift $\Delta\nu_{CN}$ (SI Figure 5a, 5b).
23
24

25 The volume of anions was estimated using the quantum chemistry package QChem 5.1.¹¹¹
26 Anion structures were optimized using the B3LYP functional and the 6-31G* basis set.
27 Following optimization, the volume corresponding to 99% of the anion's electron density
28 was extracted from the cube file associated with the final structure. The volumes estimated
29 by this method match those published in work by others.³⁵
30
31
32
33

46 Results

47
48
49

50 We first present experimental results showing the dependence of the probe vibrational fre-
51 quency on the anion charge density, followed by computational results confirming the exper-
52 imental trend. Figure 3a shows the extracted Lorenzian fits to the nitrile SFG spectra, with
53 the dotted line representing the nitrile frequency of the monolayer in contact with air (see
54
55
56
57
58

59
60

SI for details). All center frequency shifts with respect to air are plotted in Figure 3b. Our main result is the observation of a systematic shift in the central frequency with decreasing anion size (i.e. increasing charge density). Over the range of ILs studied, we observe the smallest nitrile shift ($\sim 2 \text{ cm}^{-1}$) from the IL with the largest anion ($[\text{EMIM}]^+[\text{FAP}]^-$), and the largest shift ($\sim 12.5 \text{ cm}^{-1}$) from the IL with the smallest anion ($[\text{EMIM}]^+[\text{Br}]^-$). Under the assumption of a linear Stark tuning rate (discussed in our previous work),²⁰ this corresponds to a considerable interfacial solvation field of $\sim 3.6 \text{ V/nm}$. The reason for this behavior could only be explained after our MD simulations, revealing a structure arising from a balance between size, ion packing and electrostatics near the surface, as will be explained in the discussion section below.

Because frequencies extracted from SFG are inherently convoluted with a non-resonant background and are highly dependent on reliable fitting,¹¹² we supplemented the SFG measurements with surface-enhanced Raman spectroscopy (SERS). Though the roughened surfaces required for SERS introduce additional complexity,^{113,114} it can still serve as a useful comparison and alleviates concerns regarding phase-amplitude mixing in recovering the SFG central frequencies. Our measured SERS results (shown in Figure 4) are generally in agreement with the SFG results and the overall trend with respect to anion size is consistent between the two. The agreement between these two experimental techniques indicates that $\Delta\nu_{CN}$ values extracted from SFG are not significantly impacted by fitting and background errors, thereby confirming the observed trend in frequencies with respect to anionic charge density.

As an additional experimental check, the temperature dependence of the benzonitrile monolayer's CN stretch in ($[\text{EMIM}]^+[\text{Br}]^-$) was measured using VSFG. Varying the temperature from 295K to 380K did not change the nitrile center frequency greater than an approximate bounds of $\pm 0.5 \text{ cm}^{-1}$. The results of this experiment are shown in Figure S4. This confirms that the ionic structures studied, at least in the range of temperatures studied, are not in a metastable configuration and represent an equilibrium arrangement.

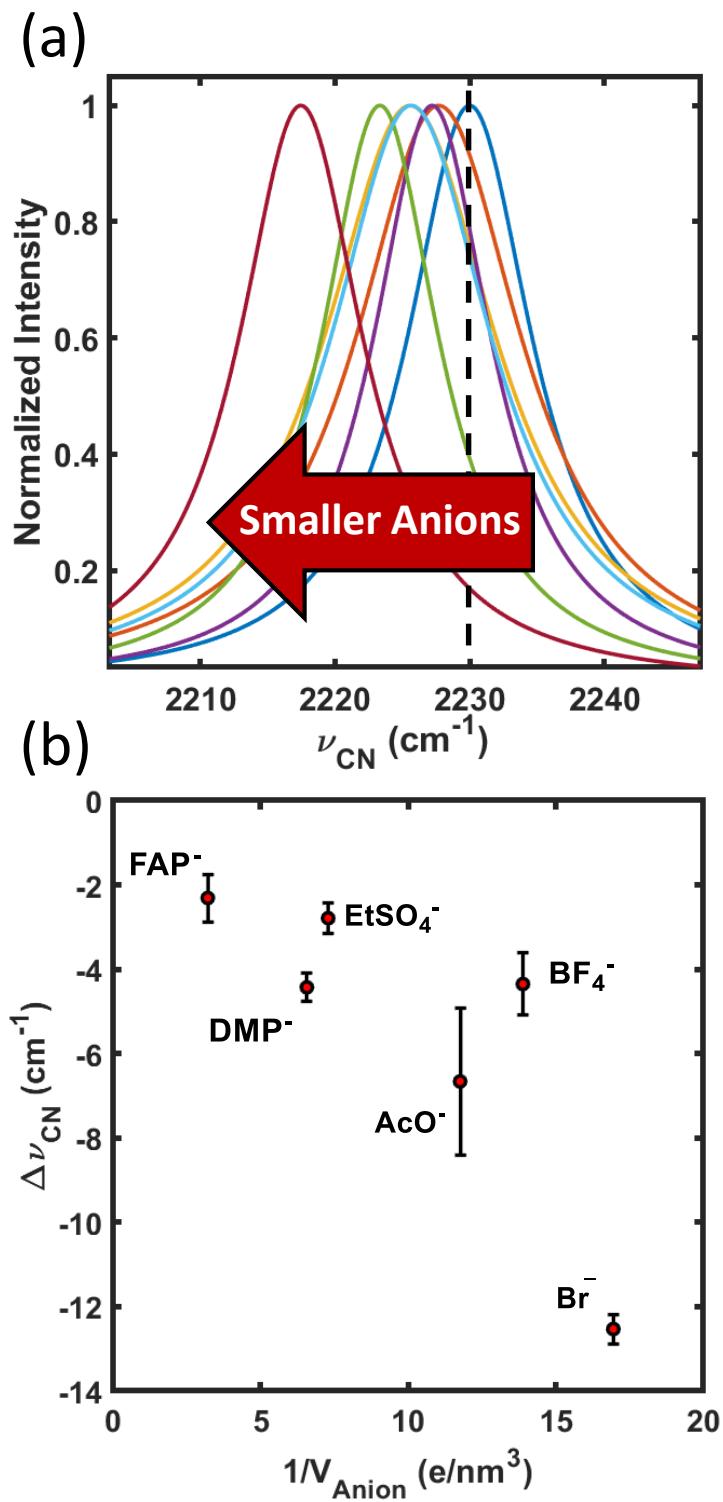


Figure 3: Room temperature frequency shifts of 4-MBN monolayer on the electrode surface in the presence of different ILs. Figure 3a shows extracted Lorenzians from raw SFG spectra, and Figure 3a shows the center nitrile frequency plotted against the charge density of the anion. The monolayer is strongly solvated in the presence of smaller anions, with a large field of $\sim 3.6 \text{ V/nm}$ observed using $[\text{EMIM}]^+[\text{Br}]^-$.

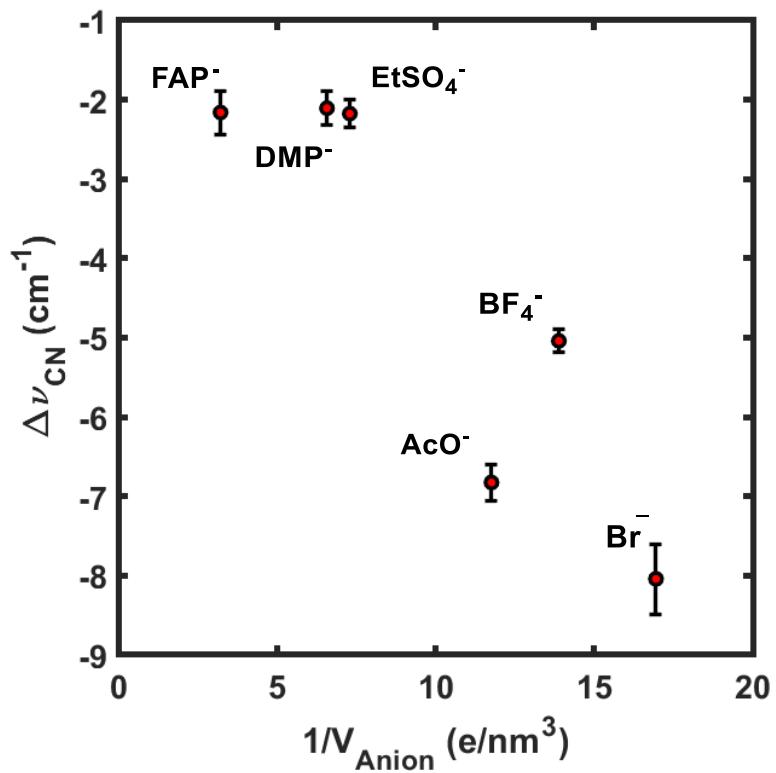


Figure 4: Surface enhanced Raman (SERS) data of the nitrile center frequency in the presence of different ILs. Chemically etched silver was used as a substrate. We observe an increase in polarization at the interface correlated with smaller anion size, in agreement with the SFG results. Point to point differences between SERS and SFG measurements may be related to heterogeneity at the SERS surface.

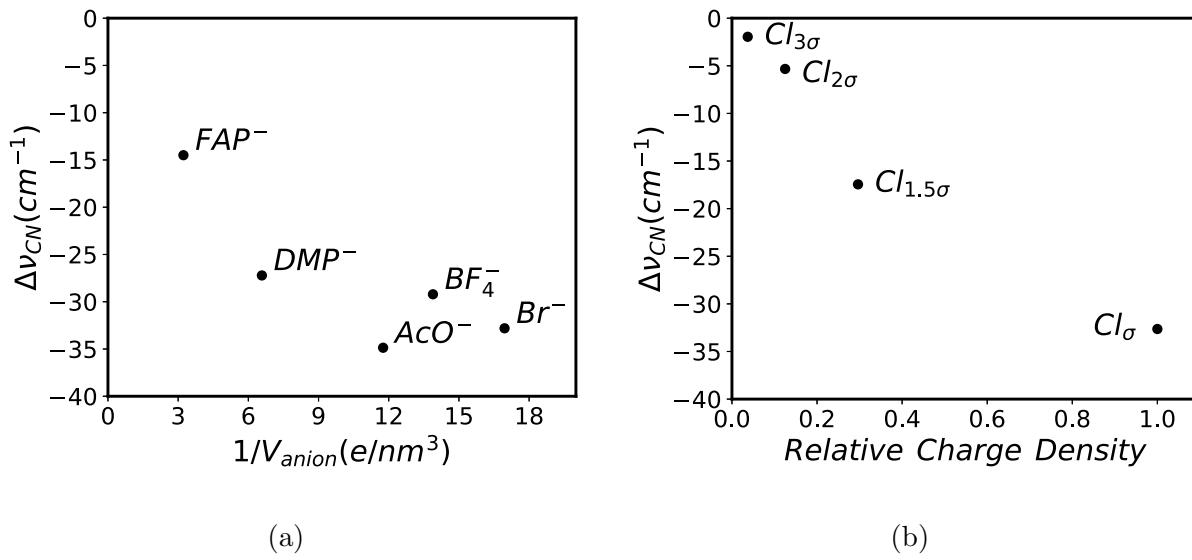


Figure 5: Calculated frequency shifts at nitrile carbon of 4-MBN monolayer on the gold slab in presence of different ILs. (a) Realistic anions with $[EMIM]^+$ cations, and (b) Modified Cl^- anions with $[EMIM]^+$ cations. Lennard-Jones σ for $Cl^- = 4.04 \text{ \AA}$.

The computational results comprise of two parts. First, the calculated frequency shift of the probe molecule in the presence of an equilibrated configurational ensemble of ILs, and second, analysis of the arrangement of ions as a function of distance from the surface.

Following procedures explained in the computational methods section, the calculated frequency shifts based on the nitrile Stark response and the field at the nitrile nitrogen are plotted against the charge density of anions in Figure 5a. Consistent with experimental results, a red shift with respect to increasing charge density is observed. Frequency shifts based on electric field values at the nitrile carbon atom are included in SI Figure S6a and show a similar trend. While the trend in experimental data is reproduced computationally, the magnitude of the computed frequency shifts is larger than experimentally observed ones. The possible origins of this will be discussed in the discussion section.

One may argue that the observed trend is not necessarily a consequence of ionic size, but rather majorly their structural and chemical details. To gain insight into this issue, we constructed a simplified model, in which only the size of the anion was varied, without affecting their shape. Model systems were constructed by starting from a Cl^- anion and

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
modifying its Lennard-Jones σ parameter, while keeping all other force field parameters the same. This gives rise to various Cl^- anions with artificially enlarged volumes. We use 1.5, 2, and 3 times the original value of σ (4.04 Å) to construct the IL systems, named $[\text{EMIM}]^+[\text{Cl}_{1.5\sigma}]^-$, $[\text{EMIM}]^+[\text{Cl}_{2\sigma}]^-$, and $[\text{EMIM}]^+[\text{Cl}_{3\sigma}]^-$ respectively. The effective radii of the anions are, therefore scaled by a factor of 1.5, 2, and 3 while maintaining the spherical shape. MD simulations are performed for this anion series, while the cation is still kept to be $[\text{EMIM}]^+$. The frequency shifts of the probe molecule, based on field at the nitrogen of nitrile, are plotted against the relative charge density of this chloride series, calculated using the ratio of ionic radii (Figure 5b). The figure shows that the trend with respect to size indeed holds when only the size of the anion is changed. The origin of this change with respect to ion size will be discussed in discussion section. Frequency shifts for the chloride series calculated based on the field on the carbon atoms of nitrile are included in the SI (Figure S6b) and show a similar behavior.

Figure 6 shows snapshots of representative systems at the end of production runs. Inspection of these snapshots for the experimental anion series (left panel) and the model chloride series (right panel) reveal the relative positions of cations and anions at the interface. We note that for anion series used in the experiments, the closest layer to the 4-MBN ligands is predominantly made of anions. Moreover, the anions show different degrees of intercalation into the 4-MBN layer. Smaller anions such as Br^- and Cl^- fully insert themselves into the 4-MBN layer and lie in the same plane as the nitrile nitrogens. Larger $[\text{BF}_4]^-$ anions show partial insertions, and even larger $[\text{FAP}]^-$ anions cannot intercalate and are excluded from the monolayer. The density of anions at the interface is also less for larger anions, as expected. A similar behavior is observed for the model chloride series (Figure 6, right panel). The normal size chloride intercalates into the monolayer, while the largest model chloride is excluded from the surface. The ionic density near the surface is also the smallest for the largest of the chloride series anion.

To rationalize the frequency shift-size trends, we calculated the symmetrized number

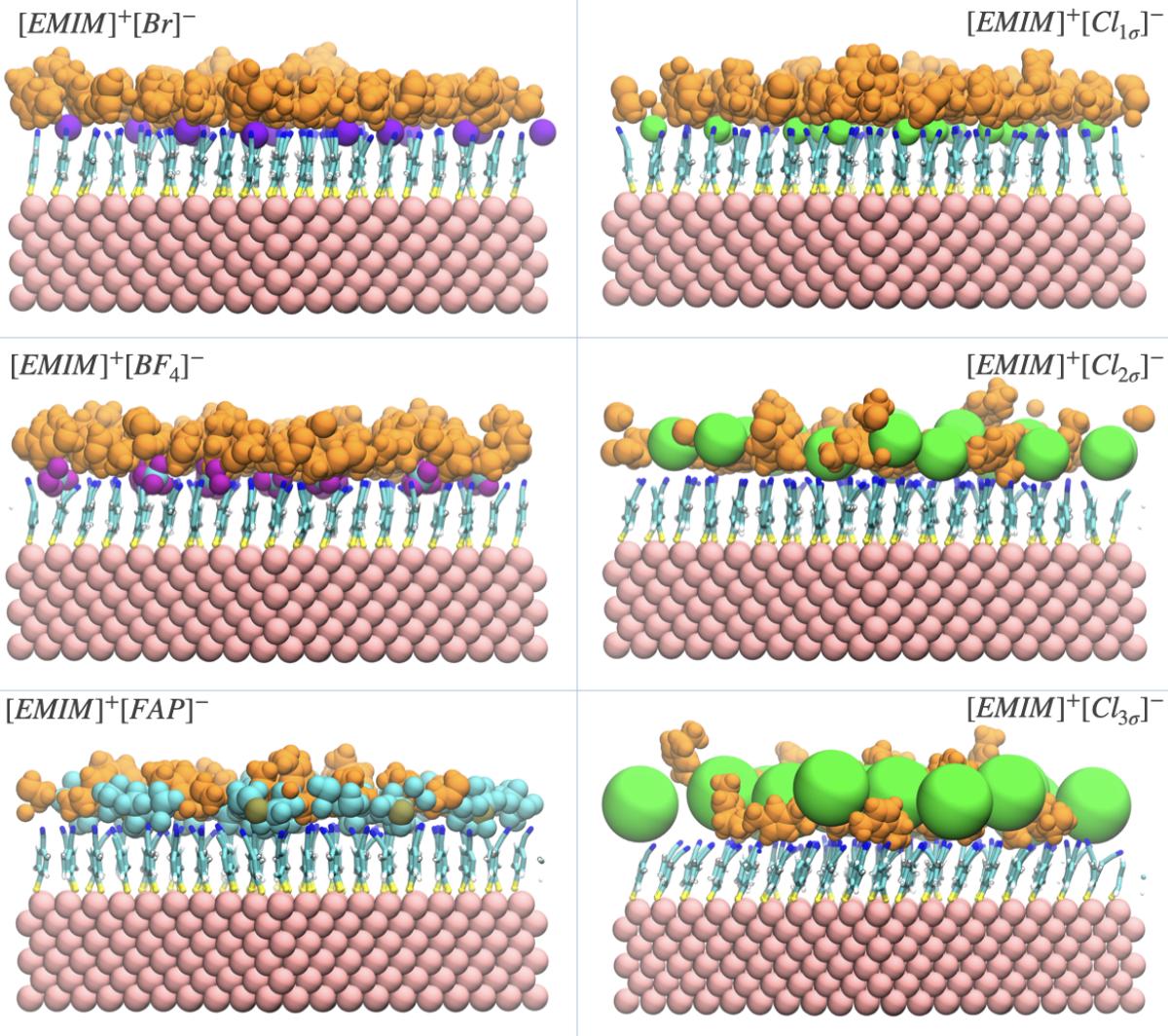


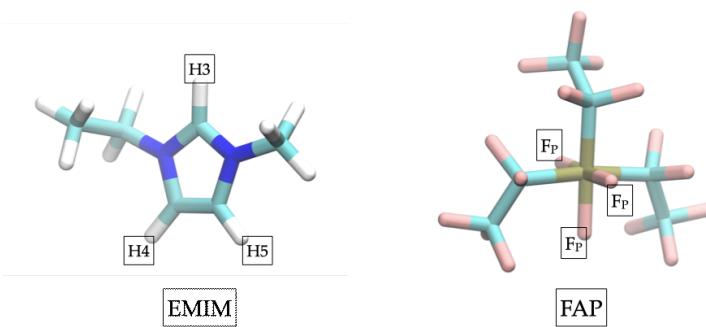
Figure 6: Snapshots of representative systems after 200 ns of production MD. Only top half of the functionalized gold slab has been shown. For realistic anions, full IL residues have been shown for atoms within 4 Å of nitrile nitrogens. For [EMIM]⁺[Cl_{2σ}]⁻ and [EMIM]⁺[Cl_{3σ}]⁻, the selection thresholds are 6 Å and 8 Å respectively.

density of a few representative atoms (see Scheme 1 for special atom names). Figure 7 shows the distribution of these atoms along the box's positive z-axis, centered around the gold slab. Symmetrized number densities and charge densities of all realistic and model systems are included in the SI (Figure S7a,S7b,S8a,S8b). We should note that the density profiles are of unique atoms in IL residues, they are not cumulative of any atom type (such as F_P in $[FAP]^-$). The position distributions of nitrile nitrogen atoms have been shaded green for reference. The overlap of the black lines (representing key anionic atoms such as Br, F, F_P , and Cl) with green region depicts the extent of anionic intercalation into the 4-MBN layer. Number density of three key imidazole hydrogens (see Scheme 1) from $[EMIM]^+$ cations have also been shown in the figure. The hydrogen with highest partial charge (H3) is shown in red; whereas the other two (H4, H5) have been shown in orange. Higher density of one type of hydrogen over others, as seen in $[EMIM]^+[Br]^-$, $[EMIM]^+[Cl]^+$, and $[EMIM]^+[BF_4]^-$ indicate preferential orientation of cations near the interface.

Discussion

The main objective of this study is to understand the organization of ILs near the interface by measuring the frequency shift of the probe molecule adsorbed on the metal. Our results show a systematic change in the vibrational frequency of the probe with increasing anion size. However, this information alone cannot provide a complete molecular picture of the local ionic structure, since ordering of ions of varying sizes is complex and not uniquely associated with a single value of frequency shift. Therefore, we complemented the experimental work with MD simulations with two purposes - first to find out whether the experimental trends were reproduced by the simulations, and second to identify the underlying structural origins of the observed trends.

The primary takeaway from these combined efforts is that IL molecular structure at the interface is dictated by the ability of ions to pack and organize near the surface. The most


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
important result from MD simulations is the tendency for the anions to partially intercalate within the SAM. The smallest anion (bromide) readily fits between the 4-MBN molecules and intercalates into the monolayer, residing at the same depth as the nitrogen atoms of the nitrile (Figure 7). This insertion, in turn, supports a high packing density of EMIM⁺ in the next layer. The large interfacial charge density strongly polarizes the SAM, resulting in a considerable shift in the nitrile frequency. However, as the size of the anions in the IL is increased, their ability to insert within the SAM is diminished. Furthermore, the large anion sizes exclude some volume near the surface and push the cation-dominated layer away from the SAM. This results in low density of the cations and larger distance between the cations and the monolayer. Therefore, a smaller field is experienced by the probe, leading to smaller frequency shifts.

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
The above scenario even holds to explain the slightly out-of-order behavior of acetate in [EMIM]⁺[AcO]⁻, which is observed experimentally (Figures 3,4) and confirmed computationally (Figure S7a,S7b). In both cases, the acetate anion causes a frequency shift in the probe that is larger than anticipated from its effective size, appearing in both the experimental and computational results as a slight non-monotonic deviation from the trend. In this case, the molecular shape of the acetate together with the intercalation description given above explains this effect. The charged portion of the acetate ion (delocalized mainly over the oxygens) is relatively compact and available for insertion in the monolayer. Similar to the behavior of [EMIM]⁺[Br]⁻ or [EMIM]⁺[Cl]⁻, this insertion supports the formation of a high-density layer of [EMIM]⁺ cations near the SAM and the resulting structure polarizes the nitrile more than anticipated based on the total net size of the acetate.

47
48
49
50
51
52
53
54
55
56
57
58
59
60
The use of the chloride model system is a way to investigate the fundamental dependence of interfacial solvation on anion size without the confounding effects of molecular structure. The results from these simulations show a similar overall trend but the calculated fields depend monotonically on anion size, thereby confirming the hypothesis that insertion and packing is at the core of this behavior. We observe the same ion intercalation structure in

1
2
3 the model chloride system as the atomistic anions (Figure 6 and 7). The center of anionic
4 charge is pushed away from the interface as the anion size increases. However, at the limit of
5 chlorides with large values of σ , the first ionic layer becomes predominantly cationic, which
6 we do not observe for ILs like $[EMIM]^+[FAP]^-$. In both cases, the packing density and the
7 induced field are small, therefore confirming that packing density may be a stronger factor
8 in dictating the interfacial field compared to solely relying on the ordering of the layers.
9
10
11
12
13
14

15 We note that some parts of the larger anions (e.g. the fluorines in $[FAP]^-$) also pen-
16 etrate the 4-MBN layer to a similar extent (Figure 7) as Br^- . However, a second fluorine
17 peak is observed for both $[EMIM]^+[BF_4]^-$ and $[EMIM]^+[FAP]^-$ outside the monolayer,
18 indicating that large anions are only partially intercalated in the monolayer and mainly
19 reside outside. This behavior is also observed for $[EMIM]^+[DMP]^-$ as seen in the SI. Due
20 to this effect, and the larger sizes of these anions, the overall charge density near the surface
21 is much smaller compared to $[EMIM]^+[Br]^-$, thereby producing a smaller field experienced
22 by the probe molecule.
23
24
25
26
27
28
29
30

Scheme 1

46 Though the overall trend between interfacial fields and anion size holds between theory
47 and experiment, the computed fields exceed the measured fields for every IL we studied.
48 This discrepancy is the greatest for larger anions (factor of ~ 7 for $[FAP]^-$). We hypothe-
49 size that this is a limitation of the fixed-charge non-polarizable nature of our force field.
50 Inclusion of polarizable force fields will modify metal-ion and ion-ion interactions and may
51 result in an overall decrease in the calculated interfacial fields. Furthermore, the location
52
53
54
55
56
57
58

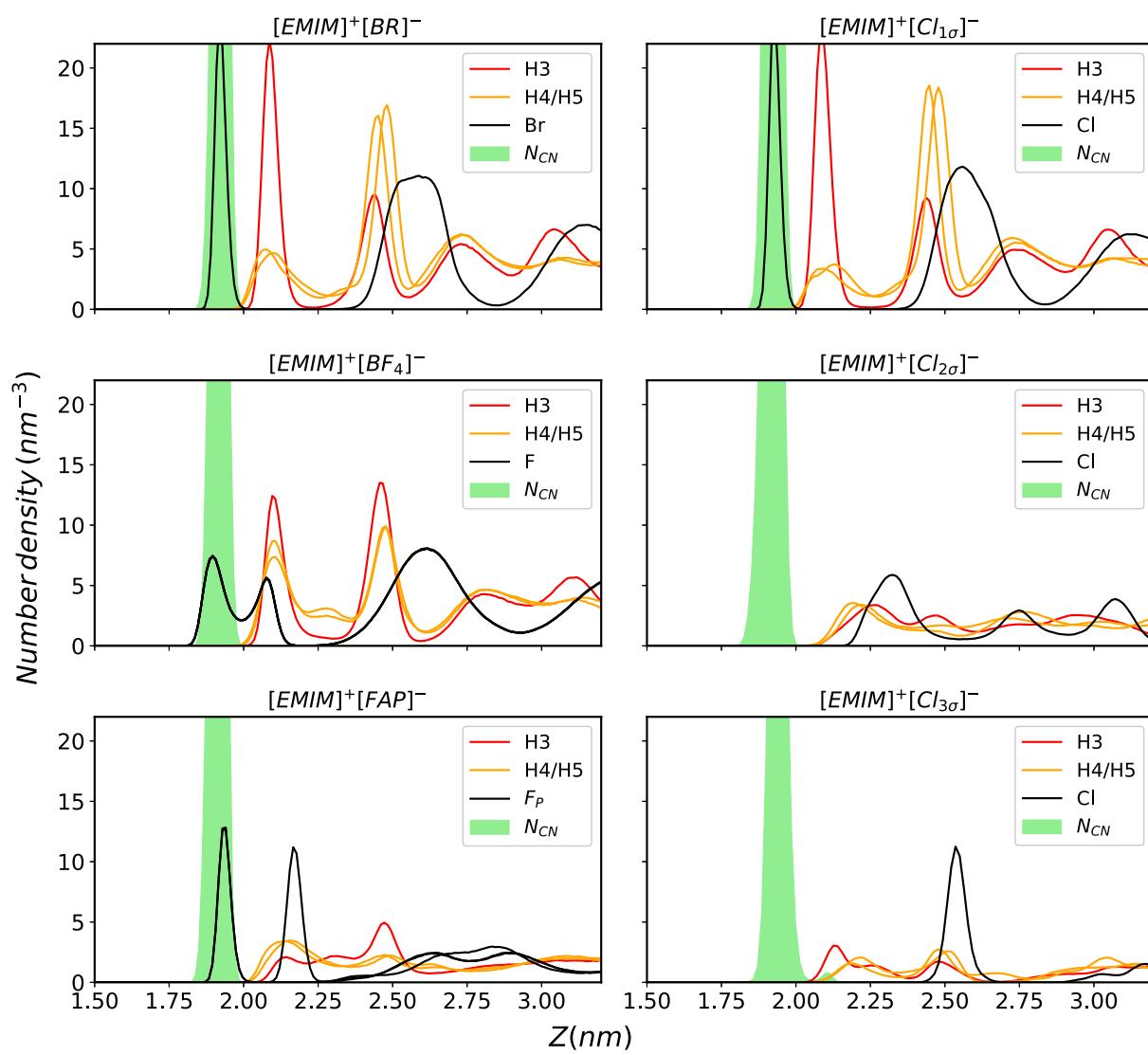


Figure 7: Symmetrized partial number density of representative atoms plotted against average relative position from the center of gold layer. As a reference, the positions of nitrile nitrogen (N_{CN}) atoms of 4-MBN monolayer are shown in green. $[EMIM]^+$ hydrogens from imidazole ring are labelled as H3 (H atom at 3rd position of imidazole ring), H4 and H5. All four F atoms of $[BF_4]^-$ anions are labelled F. The F atoms directly attached to phosphorus center in $[FAP]^-$ are labelled F_P . The atom names for larger ions are illustrated in Scheme 1.

1
2
3 at which field values are calculated is chosen at a single point within the probe molecule.
4 Our previous work shows that fields near interfaces are not uniform, and vary across the
5 length of the probe molecule.¹¹⁵ Therefore, choosing a single point within the molecule only
6 approximately emulates the homogeneous field Stark effect. For the purposes of this study,
7 which is identifying the size effects trends, this does not pose any problems.
8
9

10
11 A comment related to the water content of ILs is necessary for our work. As many
12 previous work have shown, ILs are hygroscopic and water adsorbed from the atmosphere
13 alters their properties in important ways. The partition of water between interface and bulk
14 in ILs probed by a 4-MBN SAM was reported by us recently.¹¹⁶ Based on that work, even
15 though ILs adsorb water readily, if the quantity of the water is small it is favorably solvated
16 within the bulk and it hardly appears at the interface. A significantly large critical threshold
17 (above ~ 0.8 mole fraction) must be reached before water has a significant partition at the
18 surface. As discussed in the experimental section, we have taken steps to dry the ILs studied
19 in this work and therefore the water content should be minimal. Based on the results from
20 our previous study, the measurements reported in this work are representative of water-free
21 ILs.
22
23

24
25 Further characterization of IL-metal interfaces using this joint experimental-computational
26 approach could include the measurement and simulation of charged interfaces along a similar
27 series of ion structure. We have used VSFG to probe the electrified metal-IL interface,²⁰
28 but that previous work did not cover systematic variation of ion composition. Modifying
29 particular chemical properties of ILs (such as introducing hydrophobic moieties) will also
30 provide fundamental information about ionic structure at the interface.
31
32
33

34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 **Concluding remarks**

61
62 In this study, we take a detailed look at the structure and electrostatics of ILs near a metal
63 interface functionalized by a layer of probe molecules. The main takeaway from our work is
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
77710
77711
77712
77713
77714
77715
77716
77717
77718
77719
77720
77721
77722
77723
77724
77725
77726
77727
77728
77729
77730
77731
77732
77733
77734
77735
77736
77737
77738
77739
77740
77741
77742
77743
77744
77745
77746
77747
77748
77749
77750
77751
77752
77753
77754
77755
77756
77757
77758
77759
77760
77761
77762
77763
77764
77765
77766
77767
77768
77769
77770
77771
77772
77773
77774
77775
77776
77777
77778
77779
777710
777711
777712
777713
777714
777715
777716
777717
777718
777719
777720
777721
777722
777723
777724
777725
777726
777727
777728
777729
777730
777731
777732
777733
777734
777735
777736
777737
777738
777739
777740
777741
777742
777743
777744
777745
777746
777747
777748
777749
777750
777751
777752
777753
777754
777755
777756
777757
777758
777759
777760
777761
777762
777763
777764
777765
777766
777767
777768
777769
777770
777771
777772
777773
777774
777775
777776
777777
777778
777779
7777710
7777711
7777712
7777713
7777714
7777715
7777716
7777717
7777718
7777719
7777720
7777721
7777722
7777723
7777724
7777725
7777726
7777727
7777728
7777729
7777730
7777731
7777732
7777733
7777734
7777735
7777736
7777737
7777738
7777739
7777740
7777741
7777742
7777743
7777744
7777745
7777746
7777747
7777748
7777749
7777750
7777751
7777752
7777753
7777754
7777755
7777756
7777757
7777758
7777759
7777760
7777761
7777762
7777763
7777764
7777765
7777766
7777767
7777768
7777769
7777770
7777771
7777772
7777773
7777774
7777775
7777776
7777777
7777778
7777779
77777710
77777711
77777712
77777713
77777714
77777715
77777716
77777717
77777718
77777719
77777720
77777721
77777722
77777723
77777724
77777725
77777726
77777727
77777728
77777729
77777730
77777731
77777732
77777733
77777734
77777735
77777736
77777737
77777738
77777739
77777740
77777741
77777742
77777743
77777744
77777745
77777746
77777747
77777748
77777749
77777750
77777751
77777752
77777753
77777754
77777755
77777756
77777757
77777758
77777759
77777760
77777761
77777762
77777763
77777764
77777765
77777766
77777767
77777768
77777769
77777770
77777771
77777772
77777773
77777774
77777775
77777776
77777777
77777778
77777779
777777710
777777711
777777712
777777713
777777714
777777715
777777716
777777717
777777718
777777719
777777720
777777721
777777722
777777723
777777724
777777725
777777726
777777727
777777728
777777729
777777730
777777731
777777732
777777733
777777734
777777735
777777736
777777737
777777738
777777739
777777740
777777741
777777742
777777743
777777744
777777745
777777746
777777747
777777748
777777749
777777750
777777751
777777752
777777753
777777754
777777755
777777756
777777757
777777758
777777759
777777760
777777761
777777762
777777763
777777764
777777765
777777766
777777767
777777768
777777769
777777770
777777771
777777772
777777773
777777774
777777775
777777776
777777777
777777778
777777779
7777777710
7777777711
7777777712
7777777713
7777777714
7777777715
7777777716
7777777717
7777777718
7777777719
7777777720
7777777721
7777777722
7777777723
7777777724
7777777725
7777777726
7777777727
7777777728
7777777729
7777777730
7777777731
7777777732
7777777733
7777777734
7777777735
7777777736
7777777737
7777777738
7777777739
7777777740
7777777741
7777777742
7777777743
7777777744
7777777745
7777777746
7777777747
7777777748
7777777749
7777777750
7777777751
7777777752
7777777753
7777777754
7777777755
7777777756
7777777757
7777777758
7777777759
7777777760
7777777761
7777777762
7777777763
7777777764
7777777765
7777777766
7777777767
7777777768
7777777769
7777777770
7777777771
7777777772
7777777773
7777777774
7777777775
7777777776
7777777777
7777777778
7777777779
77777777710
77777777711
77777777712
77777777713
77777777714
77777777715
77777777716
77777777717
77777777718
77777777719
77777777720
77777777721
77777777722
77777777723
77777777724
77777777725
77777777726
77777777727
77777777728
77777777729
77777777730
77777777731
77777777732
77777777733
77777777734
77777777735
77777777736
77777777737
77777777738
77777777739
77777777740
77777777741
77777777742
77777777743
77777777744
77777777745
77777777746
77777777747
77777777748
77777777749
77777777750
77777777751
77777777752
77777777753
77777777754
77777777755
77777777756
77777777757
77777777758
77777777759
77777777760
77777777761
77777777762
77777777763
77777777764
77777777765
77777777766
77777777767
77777777768
77777777769
77777777770
77777777771
77777777772
77777777773
77777777774
77777777775
77777777776
77777777777
77777777778
77777777779
777777777710
777777777711
777777777712
777777777713
777777777714
777777777715
777777777716
777777777717
777777777718
777777777719
777777777720
777777777721
777777777722
777777777723
777777777724
777777777725
777777777726
777777777727
777777777728
777777777729
777777777730
777777777731
777777777732
777777777733
777777777734
777777777735
777777777736
777777777737
777777777738
777777777739
777777777740
777777777741
777777777742
777777777743
777777777744
777777777745
777777777746
777777777747
777777777748
777777777749
777777777750
777777777751
777777777752
777777777753
777777777754
777777777755
777777777756
777777777757
777777777758
777777777759
777777777760
777777777761
777777777762
777777777763
777777777764
777777777765
777777777766
777777777767
777777777768
777777777769
777777777770
777777777771
777777777772
777777777773
777777777774
777777777775
777777777776
777777777777
777777777778
777777777779
7777777777710
7777777777711
7777777777712
7777777777713
7777777777714
7777777777715
7777777777716
7777777777717
7777777777718
7777777777719
7777777777720
7777777777721
7777777777722
7777777777723
7777777777724
7777777777725
7777777777726
7777777777727
7777777777728
7777777777729
7777777777730
7777777777731
7777777777732
7777777777733
7777777777734
7777777777735
7777777777736
7777777777737
7777777777738
7777777777739
7777777777740
7777777777741
7777777777742
7777777777743
7777777777744
7777777777745
7777777777746
7777777777747
7777777777748
7777777777749
7777777777750
7777777777751
7777777777752
77

1
2
3 that the local electric field sensed by the probes varies significantly with the size of the anions
4 in the imidazolium family of ILs, with larger anions producing smaller interfacial fields. The
5 origin of this effect was revealed by our molecular dynamics simulations. We observe that
6 small anions intercalate into the nitrile probe layer which helps with tighter packing of the
7 nearby cation layer and results in large electric fields. As the size of the anions increase, the
8 extent of surface penetration diminishes, leading to disappearance of the ordered structure
9 and looser packing of ions near the surface. We also emphasize that not only size, but
10 also the shape of the anions is important in dictating the local electric field. Finally, the
11 trends in calculated Stark frequency shifts qualitatively agree with experiments. This work
12 is a stepping stone towards understanding and modifying interfacial fields in the presence of
13 complex ionic environments.
14
15
16
17
18
19
20
21
22
23
24
25
26
27

Acknowledgement

28
29
30 The authors gratefully acknowledge support from several sources. SS and JD were sup-
31 ported by the Air Force Office of Scientific Research AFOSR award FA9550-18-1-0021. JP
32 and JD were supported by the NSF CAREER Award (1454467). MV and AP were sup-
33 ported by Air Force Office of Scientific Research AFOSR award FA9550-18-1-0420. The
34 computational component was supported by a grant from the National Science Foundation
35 to QC (CHE-1829555). Computational resources from the Extreme Science and Engineering
36 Discovery Environment (XSEDE), which is supported by NSF grant number OCI-1053575,
37 are greatly appreciated; part of the computational work was performed on the Shared Com-
38 puting Cluster which is administered by Boston University's Research Computing Services
39 (URL: www.bu.edu/tech/support/research/).
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Supporting Information Available

The supplementary information has further plots, tables and commentary relevant to the main text.

References

- (1) Patel, D. D.; Lee, J.-M. Applications of ionic liquids. *The Chemical Record* **2012**, *12*, 329–355.
- (2) Plechkova, N. V.; Seddon, K. R. Applications of ionic liquids in the chemical industry. *Chemical Society Reviews* **2008**, *37*, 123–150.
- (3) Ohno, H. *Electrochemical aspects of ionic liquids*; John Wiley & Sons, 2011.
- (4) Zhang, Q.; Shreeve, J. M. Ionic liquid propellants: Future fuels for space propulsion. *Chemistry—A European Journal* **2013**, *19*, 15446–15451.
- (5) Fedorov, M. V.; Kornyshev, A. A. Ionic liquids at electrified interfaces. *Chemical reviews* **2014**, *114*, 2978–3036.
- (6) Reichert, P.; Kjær, K. S.; van Driel, T. B.; Mars, J.; Ochsmann, J. W.; Pontoni, D.; Deutsch, M.; Nielsen, M. M.; Mezger, M. Molecular scale structure and dynamics at an ionic liquid/electrode interface. *Faraday discussions* **2017**, *206*, 141–157.
- (7) Tokuda, H.; Hayamizu, K.; Ishii, K.; Susan, M. A. B. H.; Watanabe, M. Physico-chemical properties and structures of room temperature ionic liquids. 1. Variation of anionic species. *The Journal of Physical Chemistry B* **2004**, *108*, 16593–16600.
- (8) Levin, Y. Electrostatic correlations: from plasma to biology. *Reports on progress in physics* **2002**, *65*, 1577.

1
2
3 (9) Rosenfeld, Y. Free energy model for inhomogeneous fluid mixtures: Yukawa-charged
4 hard spheres, general interactions, and plasmas. *The Journal of chemical physics* **1993**,
5 **98**, 8126–8148.
6
7
8 (10) Freyland, W. *Coulombic fluids: bulk and interfaces*; Springer Science & Business Me-
9 dia, 2011; Vol. 168.
10
11 (11) Lynden-Bell, R. M.; Frolov, A.; Fedorov, M. V. Electrode screening by ionic liquids.
12 *Physical Chemistry Chemical Physics* **2012**, *14*, 2693–2701.
13
14 (12) Nishi, N.; Uchiyashiki, J.; Ikeda, Y.; Katakura, S.; Oda, T.; Hino, M.; Yamada, N. L.
15 Potential-dependent structure of the ionic layer at the electrode interface of an ionic
16 liquid probed using neutron reflectometry. *The Journal of Physical Chemistry C* **2019**,
17 **123**, 9223–9230.
18
19 (13) Watanabe, S.; Pilkington, G. A.; Oleshkevych, A.; Pedraz, P.; Radiom, M.; Wel-
20 bourn, R.; Glavatskikh, S.; Rutland, M. W. Interfacial structuring of non-halogenated
21 imidazolium ionic liquids at charged surfaces: effect of alkyl chain length. *Physical*
22 *Chemistry Chemical Physics* **2020**, *22*, 8450–8460.
23
24 (14) Ratti, R. Ionic Liquids: Synthesis and Applications in Catalysis. *Advances in Chem-
25 istry* **2014**, *2014*.
26
27 (15) Taylor, A. W.; Licence, P.; Abbott, A. P. Non-classical diffusion in ionic liquids.
28 *Physical Chemistry Chemical Physics* **2011**, *13*, 10147–10154.
29
30 (16) Wang, H.; Pilon, L. Intrinsic limitations of impedance measurements in determining
31 electric double layer capacitances. *Electrochimica Acta* **2012**, *63*, 55–63.
32
33 (17) Gnalm, M.; Pajkossy, T.; Kolb, D. The interface between Au (111) and an ionic
34 liquid. *Electrochimica Acta* **2010**, *55*, 6212–6217.
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 (18) Drüschler, M.; Roling, B. Commentary on ‘The interface between Au (111) and an
4 ionic liquid’. *Electrochimica Acta* **2011**, *56*, 7243–7245.
5
6 (19) Roling, B.; Drüschler, M. Comments on “Intrinsic limitations of impedance measure-
7 ments in determining electric double layer capacitances” by H. Wang and L. Pilon
8 [Electrochim. Acta 63 (2012) 55]. *Electrochimica Acta* **2012**, *76*, 526–528.
9
10 (20) Sarkar, S.; Patrow, J. G.; Voegtle, M. J.; Pennathur, A. K.; Dawlaty, J. M. Elec-
11 trodes as Polarizing Functional Groups: Correlation between Hammett Parameters
12 and Electrochemical Polarization. *The Journal of Physical Chemistry C* **2019**, *123*,
13 4926–4937.
14
15 (21) Patrow, J. G.; Sorenson, S. A.; Dawlaty, J. M. Direct spectroscopic measurement of
16 interfacial electric fields near an electrode under polarizing or current-carrying condi-
17 tions. *The Journal of Physical Chemistry C* **2017**, *121*, 11585–11592.
18
19 (22) Staffa, J. K.; Lorenz, L.; Stolarski, M.; Murgida, D. H.; Zebger, I.; Utesch, T.;
20 Kozuch, J.; Hildebrandt, P. Determination of the local electric field at Au/SAM inter-
21 faces using the vibrational Stark effect. *The Journal of Physical Chemistry C* **2017**,
22 121, 22274–22285.
23
24 (23) Sorenson, S. A.; Patrow, J. G.; Dawlaty, J. M. Solvation reaction field at the inter-
25 face measured by vibrational sum frequency generation spectroscopy. *Journal of the
26 American Chemical Society* **2017**, *139*, 2369–2378.
27
28 (24) Patrow, J. G.; Wang, Y.; Dawlaty, J. M. Interfacial Lewis Acid–Base Adduct For-
29 mation Probed by Vibrational Spectroscopy. *The journal of physical chemistry letters*
30 **2018**, *9*, 3631–3638.
31
32 (25) Lewis, N. H.; Iscen, A.; Felts, A.; Dereka, B.; Schatz, G. C.; Tokmakoff, A. Vibrational
33 Probe of Aqueous Electrolytes: The Field Is Not Enough. *The Journal of Physical
34 Chemistry B* **2020**, *124*, 7013–7026.
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 (26) Goldsmith, Z. K.; Secor, M.; Hammes-Schiffer, S. Inhomogeneity of Interfacial Electric
4 Fields at Vibrational Probes on Electrode Surfaces. *ACS central science* **2020**, *6*, 304–
5 311.
6
7
8 (27) Lynden-Bell, R. Gas—liquid interfaces of room temperature ionic liquids. *Molecular*
9 *Physics* **2003**, *101*, 2625–2633.
10
11 (28) Lynden-Bell, R.; Del Popolo, M. Simulation of the surface structure of butylmethyli-
12 midazolium ionic liquids. *Physical Chemistry Chemical Physics* **2006**, *8*, 949–954.
13
14
15 (29) Sloutskin, E.; Lynden-Bell, R.; Balasubramanian, S.; Deutsch, M. The surface struc-
16 ture of ionic liquids: Comparing simulations with x-ray measurements. *The Journal*
17 *of chemical physics* **2006**, *125*, 174715.
18
19
20 (30) Yan, T.; Li, S.; Jiang, W.; Gao, X.; Xiang, B.; Voth, G. A. Structure of the liquid-
21 vacuum interface of room-temperature ionic liquids: A molecular dynamics study. *The*
22 *Journal of Physical Chemistry B* **2006**, *110*, 1800–1806.
23
24
25 (31) Pinilla, C.; Del Popolo, M. G.; Lynden-Bell, R. M.; Kohanoff, J. Structure and dy-
26 namics of a confined ionic liquid. Topics of relevance to dye-sensitized solar cells. *The*
27 *Journal of Physical Chemistry B* **2005**, *109*, 17922–17927.
28
29
30 (32) Pinilla, C.; Del Pópolo, M.; Kohanoff, J.; Lynden-Bell, R. Polarization relaxation in
31 an ionic liquid confined between electrified walls. *The Journal of Physical Chemistry*
32 *B* **2007**, *111*, 4877–4884.
33
34
35 (33) Kislenko, S. A.; Samoylov, I. S.; Amirov, R. H. Molecular dynamics simulation of the
36 electrochemical interface between a graphite surface and the ionic liquid [BMIM][PF
37 6]. *Physical Chemistry Chemical Physics* **2009**, *11*, 5584–5590.
38
39
40 (34) Ntim, S.; Sulpizi, M. Role of image charges in ionic liquid confined between metallic
41 interfaces. *Physical Chemistry Chemical Physics* **2020**, *22*, 10786–10791.
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 (35) Zhang, S.; Zhang, Y.; Ma, X.; Lu, L.; He, Y.; Deng, Y. Benzonitrile as a probe of
4 local environment in ionic liquids. *The Journal of Physical Chemistry B* **2013**, *117*,
5 2764–2772.
6
7 (36) Peñalber, C. Y.; Baker, G. A.; Baldelli, S. Sum frequency generation spectroscopy
8 of imidazolium-based ionic liquids with cyano-functionalized anions at the solid salt–
9 liquid interface. *The Journal of Physical Chemistry B* **2013**, *117*, 5939–5949.
10
11 (37) Rivera-Rubero, S.; Baldelli, S. Surface characterization of 1-butyl-3-
12 methylimidazolium Br-, I-, PF6-, BF4-, (CF3SO2) 2N-, SCN-, CH3SO3-, CH3SO4-,
13 and (CN) 2N-ionic liquids by sum frequency generation. *The Journal of Physical
14 Chemistry B* **2006**, *110*, 4756–4765.
15
16 (38) Baldelli, S. Surface structure at the ionic liquid- electrified metal interface. *Accounts
17 of chemical research* **2008**, *41*, 421–431.
18
19 (39) Rivera-Rubero, S.; Baldelli, S. Influence of water on the surface of hydrophilic and hy-
20 drophobic room-temperature ionic liquids. *Journal of the American Chemical Society*
21 **2004**, *126*, 11788–11789.
22
23 (40) García, N.; Dlott, D. Vibrational Sum Frequency Study of the Influence of Water-Ionic
24 Liquid Mixtures in the CO2 Electroreduction on Silver Electrodes. 70th International
25 Symposium on Molecular Spectroscopy: June 22-26, 2015 at The University of Illinois
26 at Urbana-Champaign. Talk FB05. 2015.
27
28 (41) García Rey, N.; Dlott, D. D. Structural Transition in an Ionic Liquid Controls CO2
29 Electrochemical Reduction. *The Journal of Physical Chemistry C* **2015**, *119*, 20892–
30 20899.
31
32 (42) Rosen, B. A.; Haan, J. L.; Mukherjee, P.; Braunschweig, B.; Zhu, W.; Salehi-
33 Khojin, A.; Dlott, D. D.; Masel, R. I. In situ spectroscopic examination of a low
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 overpotential pathway for carbon dioxide conversion to carbon monoxide. *The Journal*
4
5 *of Physical Chemistry C* **2012**, *116*, 15307–15312.
6
7
8 (43) Tamimi, A.; Bailey, H. E.; Fayer, M. D. Alkyl Chain Length Dependence of the Dy-
9 namics and Structure in the Ionic Regions of Room-Temperature Ionic Liquids. *The*
10 *Journal of Physical Chemistry B* **2016**, *120*, 7488–7501.
11
12
13
14 (44) Giannanco, C. H.; Kramer, P. L.; Yamada, S. A.; Nishida, J.; Tamimi, A.;
15 Fayer, M. D. Carbon dioxide in an ionic liquid: Structural and rotational dynam-
16 ics. *The Journal of chemical physics* **2016**, *144*, 104506.
17
18
19 (45) Fayer, M. D. Dynamics and structure of room temperature ionic liquids. *Chemical*
20 *Physics Letters* **2014**, *616*, 259–274.
21
22
23 (46) Humbert, C.; Busson, B.; Six, C.; Gayral, A.; Gruselle, M.; Villain, F.; Tadjeddine, A.
24 Sum-Frequency Generation as a Vibrational and Electronic Probe of The Electro-
25 chemical Interface and Thin Films. *J. Electroanal. Chem.* **2008**, *621*, 314–321.
26
27
28
29
30
31
32
33 (47) Shalhout, F. Y.; Malyk, S.; Benderskii, A. V. Relative phase change of nearby reso-
34 nances in temporally delayed sum frequency spectra. *The journal of physical chemistry*
35 *letters* **2012**, *3*, 3493–3497.
36
37
38
39
40 (48) Wijesuriya, S.; Burugapalli, K.; Mackay, R.; Ajaezi, G.; Balachandran, W. Chemically
41 roughened solid silver: A simple, robust and broadband SERS substrate. *Sensors*
42
43
44
45 (49) Ha, S. H.; Mai, N. L.; Koo, Y.-M. Microwave-assisted separation of ionic liquids from
46 aqueous solution of ionic liquids. *Journal of Chromatography A* **2010**, *1217*, 7638–
47 7641.
48
49
50
51
52
53
54 (50) Jo, S.; Kim, T.; Iyer, V. G.; Im, W. CHARMM-GUI: a web-based graphical user
55 interface for CHARMM. *Journal of computational chemistry* **2008**, *29*, 1859–1865.
56
57
58
59
60

1
2
3 (51) Brooks, B. R.; Brooks III, C. L.; Mackerell Jr, A. D.; Nilsson, L.; Petrella, R. J.;
4 Roux, B.; Won, Y.; Archontis, G.; Bartels, C.; Boresch, S. e. a. CHARMM: the
5 biomolecular simulation program. *Journal of computational chemistry* **2009**, *30*, 1545–
6 1614.
7
8 (52) Hansen, J.-P.; McDonald, I. R. *Theory of simple liquids*; Elsevier, 1990.
9
10 (53) Margulis, C.; Stern, H.; Berne, B. Computer simulation of a “green chemistry” room-
11 temperature ionic solvent. *The Journal of Physical Chemistry B* **2002**, *106*, 12017–
12 12021.
13
14 (54) Morrow, T. I.; Maginn, E. J. Molecular dynamics study of the ionic liquid 1-n-butyl-3-
15 methylimidazolium hexafluorophosphate. *The Journal of Physical Chemistry B* **2002**,
16 *106*, 12807–12813.
17
18 (55) Del Pópolo, M. G.; Voth, G. A. On the structure and dynamics of ionic liquids. *The*
19 *Journal of Physical Chemistry B* **2004**, *108*, 1744–1752.
20
21
22 (56) Yan, T.; Burnham, C. J.; Del Pópolo, M. G.; Voth, G. A. Molecular dynamics simu-
23 lation of ionic liquids: The effect of electronic polarizability. *The Journal of Physical*
24 *Chemistry B* **2004**, *108*, 11877–11881.
25
26
27 (57) McDaniel, J. G.; Yethiraj, A. Influence of electronic polarization on the structure of
28 ionic liquids. *The journal of physical chemistry letters* **2018**, *9*, 4765–4770.
29
30
31 (58) Bedrov, D.; Borodin, O.; Li, Z.; Smith, G. D. Influence of polarization on structural,
32 thermodynamic, and dynamic properties of ionic liquids obtained from molecular dy-
33 namics simulations. *The Journal of Physical Chemistry B* **2010**, *114*, 4984–4997.
34
35
36 (59) Fujii, K.; Soejima, Y.; Kyoshoin, Y.; Fukuda, S.; Kanzaki, R.; Umebayashi, Y.; Yam-
37 aguchi, T.; Ishiguro, S.-i.; Takamuku, T. Liquid structure of room-temperature ionic
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 liquid, 1-ethyl-3-methylimidazolium bis-(trifluoromethanesulfonyl) imide. *The Journal*
4
5 *of Physical Chemistry B* **2008**, *112*, 4329–4336.
6
7
8 (60) Canongia Lopes, J. N.; Deschamps, J.; Pádua, A. A. Modeling ionic liquids using
9 a systematic all-atom force field. *The Journal of Physical Chemistry B* **2004**, *108*,
10 2038–2047.
11
12
13 (61) MacKerell Jr, A. D.; Bashford, D.; Bellott, M.; Dunbrack Jr, R. L.; Evanseck, J. D.;
14 Field, M. J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S. e. a. All-atom empirical potential
15 for molecular modeling and dynamics studies of proteins. *The journal of physical*
16 *chemistry B* **1998**, *102*, 3586–3616.
17
18
19 (62) Huang, J.; MacKerell Jr, A. D. CHARMM36 all-atom additive protein force field:
20 Validation based on comparison to NMR data. *Journal of computational chemistry*
21 **2013**, *34*, 2135–2145.
22
23
24 (63) Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.; Kundu, S.; Zhong, S.; Shim, J.; Dar-
25 ian, E.; Guvench, O.; Lopes, P.; Vorobyov, I. e. a. CHARMM general force field: A
26 force field for drug-like molecules compatible with the CHARMM all-atom additive
27 biological force fields. *Journal of computational chemistry* **2010**, *31*, 671–690.
28
29
30 (64) Vanommeslaeghe, K.; MacKerell Jr, A. D. Automation of the CHARMM General
31 Force Field (CGenFF) I: bond perception and atom typing. *Journal of chemical in-*
32 *formation and modeling* **2012**, *52*, 3144–3154.
33
34
35 (65) Vanommeslaeghe, K.; Raman, E. P.; MacKerell Jr, A. D. Automation of the
36 CHARMM General Force Field (CGenFF) II: assignment of bonded parameters and
37 partial atomic charges. *Journal of chemical information and modeling* **2012**, *52*, 3155–
38 3168.
39
40
41 (66) Yu, W.; He, X.; Vanommeslaeghe, K.; MacKerell Jr, A. D. Extension of the CHARMM
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 general force field to sulfonyl-containing compounds and its utility in biomolecular
4 simulations. *Journal of computational chemistry* **2012**, *33*, 2451–2468.
5
6
7
8 (67) Canongia Lopes, J. N.; Pádua, A. A. Molecular force field for ionic liquids III: Imi-
9 dazolium, pyridinium, and phosphonium cations; chloride, bromide, and dicyanamide
10 anions. *The Journal of Physical Chemistry B* **2006**, *110*, 19586–19592.
11
12
13
14 (68) Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.;
15 Singh, D. J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of
16 the generalized gradient approximation for exchange and correlation. *Physical review*
17 *B* **1992**, *46*, 6671.
18
19
20
21
22
23 (69) Perdew, J. P.; Chevary, J.; Vosko, S.; Jackson, K. A.; Pederson, M. R.; Singh, D.;
24 Fiolhais, C. Erratum: Atoms, molecules, solids, and surfaces: Applications of the
25 generalized gradient approximation for exchange and correlation. *Physical Review B*
26 **1993**, *48*, 4978.
27
28
29
30
31
32 (70) Perdew, J. P.; Burke, K.; Wang, Y. Generalized gradient approximation for the
33 exchange-correlation hole of a many-electron system. *Phys. Rev. B* **1996**, *54*, 16533–
34 16539.
35
36
37
38
39 (71) Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Results obtained with the correlation
40 energy density functionals of becke and Lee, Yang and Parr. *Chemical Physics Letters*
41 **1989**, *157*, 200 – 206.
42
43
44
45
46 (72) Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti correlation-energy
47 formula into a functional of the electron density. *Phys. Rev. B* **1988**, *37*, 785–789.
48
49
50
51 (73) Becke, A. D. Density-functional exchange-energy approximation with correct asymp-
52 totic behavior. *Phys. Rev. A* **1988**, *38*, 3098–3100.
53
54
55
56
57
58
59
60

1
2
3 (74) Wilson, A. K.; van Mourik, T.; Dunning Jr, T. H. Gaussian basis sets for use in
4 correlated molecular calculations. VI. Sextuple zeta correlation consistent basis sets
5 for boron through neon. *Journal of Molecular Structure: THEOCHEM* **1996**, *388*,
6 339–349.
7
8 (75) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman,
9 Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H. et al. Gaussian[~]16 Revision C.01. 2016; Gaussian Inc. Wallingford CT.
10
11 (76) de Andrade, J.; Böes, E. S.; Stassen, H. Computational study of room temperature
12 molten salts composed by 1-alkyl-3-methylimidazolium cations force-field proposal and
13 validation. *The journal of physical chemistry B* **2002**, *106*, 13344–13351.
14
15 (77) Fox, T.; Kollman, P. A. Application of the RESP methodology in the parametrization
16 of organic solvents. *The Journal of Physical Chemistry B* **1998**, *102*, 8070–8079.
17
18 (78) Gough, C. A.; Debolt, S. E.; Kollman, P. A. Derivation of fluorine and hydrogen atom
19 parameters using liquid simulations. *Journal of computational chemistry* **1992**, *13*,
20 963–970.
21
22 (79) Mayo, S. L.; Olafson, B. D.; Goddard, W. A. DREIDING: a generic force field for
23 molecular simulations. *Journal of Physical chemistry* **1990**, *94*, 8897–8909.
24
25 (80) Kim, S.; Lee, J.; Jo, S.; Brooks III, C. L.; Lee, H. S.; Im, W. CHARMM-GUI ligand
26 reader and modeler for CHARMM force field generation of small molecules. *Journal*
27 *of Computational Chemistry* **2017**, *38*, 1879–1886.
28
29 (81) Shimizu, K.; Almantariotis, D.; Gomes, M. F. C.; Padua, A. A.; Canongia Lopes, J. N.
30 Molecular force field for ionic liquids V: Hydroxyethylimidazolium, dimethoxy-2-
31 methylimidazolium, and fluoroalkylimidazolium cations and bis (fluorosulfonyl) amide,
32 perfluoroalkanesulfonyl amide, and fluoroalkylfluorophosphate anions. *The Journal of*
33 *Physical Chemistry B* **2010**, *114*, 3592–3600.
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 (82) Noda, A.; Hayamizu, K.; Watanabe, M. Pulsed-gradient spin-echo ^1H and ^{19}F NMR
4 ionic diffusion coefficient, viscosity, and ionic conductivity of non-chloroaluminate
5 room-temperature ionic liquids. *The Journal of Physical Chemistry B* **2001**, *105*,
6 4603–4610.
7
8 (83) Every, H. A.; Bishop, A. G.; MacFarlane, D. R.; Orädd, G.; Forsyth, M. Transport
9 properties in a family of dialkylimidazolium ionic liquids. *Physical chemistry chemical*
10 *physics* **2004**, *6*, 1758–1765.
11
12 (84) Urahata, S. M.; Ribeiro, M. C. Single particle dynamics in ionic liquids of 1-alkyl-3-
13 methylimidazolium cations. *The Journal of chemical physics* **2005**, *122*, 024511.
14
15 (85) Rey-Castro, C.; Tormo, A.; Vega, L. F. Effect of the flexibility and the anion in the
16 structural and transport properties of ethyl-methyl-imidazolium ionic liquids. *Fluid*
17 *phase equilibria* **2007**, *256*, 62–69.
18
19 (86) Rey-Castro, C.; Vega, L. F. Transport properties of the ionic liquid 1-ethyl-3-
20 methylimidazolium chloride from equilibrium molecular dynamics simulation. The ef-
21 fect of temperature. *The Journal of Physical Chemistry B* **2006**, *110*, 14426–14435.
22
23 (87) Kowsari, M.; Alavi, S.; Ashrafizaadeh, M.; Najafi, B. Molecular dynamics simulation
24 of imidazolium-based ionic liquids. I. Dynamics and diffusion coefficient. *The Journal*
25 *of chemical physics* **2008**, *129*, 224508.
26
27 (88) Heinz, H.; Vaia, R.; Farmer, B.; Naik, R. Accurate simulation of surfaces and interfaces
28 of face-centered cubic metals using 12- 6 and 9- 6 Lennard-Jones potentials. *The*
29 *Journal of Physical Chemistry C* **2008**, *112*, 17281–17290.
30
31 (89) Heinz, H.; Lin, T.-J.; Kishore Mishra, R.; Emami, F. S. Thermodynamically consistent
32 force fields for the assembly of inorganic, organic, and biological nanostructures: the
33 INTERFACE force field. *Langmuir* **2013**, *29*, 1754–1765.
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 (90) Abraham, M. J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J. C.; Hess, B.; Lindahl, E.
4 GROMACS: High performance molecular simulations through multi-level parallelism
5 from laptops to supercomputers. *SoftwareX* **2015**, *1*, 19–25.
6
7 (91) Páll, S.; Abraham, M. J.; Kutzner, C.; Hess, B.; Lindahl, E. Tackling exascale soft-
8 ware challenges in molecular dynamics simulations with GROMACS. International
9 conference on exascale applications and software. 2014; pp 3–27.
10
11 (92) Pronk, S.; Páll, S.; Schulz, R.; Larsson, P.; Bjelkmar, P.; Apostolov, R.; Shirts, M. R.;
12 Smith, J. C.; Kasson, P. M.; van der Spoel, D. e. a. GROMACS 4.5: a high-throughput
13 and highly parallel open source molecular simulation toolkit. *Bioinformatics* **2013**, *29*,
14 845–854.
15
16 (93) Hess, B.; Kutzner, C.; Van Der Spoel, D.; Lindahl, E. GROMACS 4: algorithms for
17 highly efficient, load-balanced, and scalable molecular simulation. *Journal of chemical*
18 *theory and computation* **2008**, *4*, 435–447.
19
20 (94) Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A. E.; Berendsen, H. J.
21 GROMACS: fast, flexible, and free. *Journal of computational chemistry* **2005**, *26*,
22 1701–1718.
23
24 (95) Lindahl, E.; Hess, B.; Van Der Spoel, D. GROMACS 3.0: a package for molecular
25 simulation and trajectory analysis. *Molecular modeling annual* **2001**, *7*, 306–317.
26
27 (96) Berendsen, H. J.; van der Spoel, D.; van Drunen, R. GROMACS: a message-
28 passing parallel molecular dynamics implementation. *Computer physics communica-
29 tions* **1995**, *91*, 43–56.
30
31 (97) mesh Ewald, P. An N.log (N) method for Ewald sums in large systems. *J. Chem. Phys*
32 **1993**, *98*, 10089–10092.
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 (98) Hess, B.; Bekker, H.; Berendsen, H. J.; Fraaije, J. G. LINCS: a linear constraint solver
4 for molecular simulations. *Journal of computational chemistry* **1997**, *18*, 1463–1472.
5
6 (99) Hess, B. P-LINCS: A parallel linear constraint solver for molecular simulation. *Journal*
7 *of chemical theory and computation* **2008**, *4*, 116–122.
8
9 (100) Berendsen, H. J.; Postma, J. v.; van Gunsteren, W. F.; DiNola, A.; Haak, J. R.
10 Molecular dynamics with coupling to an external bath. *The Journal of chemical physics*
11 **1984**, *81*, 3684–3690.
12
13 (101) Nosé, S. A molecular dynamics method for simulations in the canonical ensemble.
14 *Molecular physics* **1984**, *52*, 255–268.
15
16 (102) Hoover, W. G. Canonical dynamics: Equilibrium phase-space distributions. *Physical*
17 *review A* **1985**, *31*, 1695.
18
19 (103) Parrinello, M.; Rahman, A. Polymorphic transitions in single crystals: A new molec-
20 ular dynamics method. *Journal of Applied physics* **1981**, *52*, 7182–7190.
21
22 (104) Nosé, S.; Klein, M. Constant pressure molecular dynamics for molecular systems.
23 *Molecular Physics* **1983**, *50*, 1055–1076.
24
25 (105) Fried, S. D.; Boxer, S. G. Measuring electric fields and noncovalent interactions using
26 the vibrational Stark effect. *Accounts of chemical research* **2015**, *48*, 998–1006.
27
28 (106) Bagchi, S.; Fried, S. D.; Boxer, S. G. A Solvatochromic Model Calibrates Nitriles'
29 Vibrational Frequencies to Electrostatic Fields. *Journal of the American Chemical*
30 *Society* **2012**, *134*, 10373–10376, PMID: 22694663.
31
32 (107) Kim, S.; Lee, J.; Jo, S.; Brooks III, C. L.; Lee, H. S.; Im, W. CHARMM-GUI ligand
33 reader and modeler for CHARMM force field generation of small molecules. *Journal*
34 *of Computational Chemistry* **2017**, *38*, 1879–1886.
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

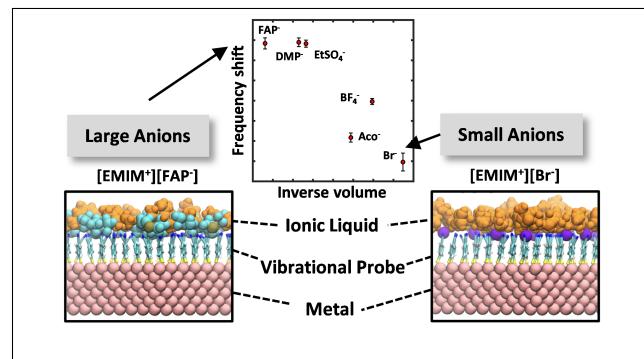
(108) Mani, T.; Grills, D. C. Nitrile Vibration Reports Induced Electric Field and Delocalization of Electron in the Charge-Transfer State of Aryl Nitriles. *The Journal of Physical Chemistry A* **2018**, *122*, 7293–7300, PMID: 30141944.

(109) Ballav, N.; Schüpbach, B.; Dethloff, O.; Feulner, P.; Terfort, A.; Zharnikov, M. Direct Probing Molecular Twist and Tilt in Aromatic Self-Assembled Monolayers. *Journal of the American Chemical Society* **2007**, *129*, 15416–15417, PMID: 18041835.

(110) Aschaffenburg, D. J.; Moog, R. S. Probing Hydrogen Bonding Environments: Solvatochromic Effects on the CN Vibration of Benzonitrile. *The Journal of Physical Chemistry B* **2009**, *113*, 12736–12743, PMID: 19711975.

(111) Shao, Y.; Gan, Z.; Epifanovsky, E.; Gilbert, A. T.; Wormit, M.; Kussmann, J.; Lange, A. W.; Behn, A.; Deng, J.; Feng, X. et al. Advances in molecular quantum chemistry contained in the Q-Chem 4 program package. *Molecular Physics* **2015**, *113*, 184–215.

(112) Ohno, P. E.; Chang, H.; Spencer, A. P.; Liu, Y.; Boamah, M. D.; Wang, H.-f.; Geiger, F. M. Beyond the Gouy-Chapman Model with Heterodyne-Detected Second Harmonic Generation. *The journal of physical chemistry letters* **2019**,


(113) Willets, K. A. Super-resolution imaging of SERS hot spots. *Chemical Society Reviews* **2014**, *43*, 3854–3864.

(114) Harvey, C. E.; Weckhuysen, B. M. Surface-and tip-enhanced Raman spectroscopy as operando probes for monitoring and understanding heterogeneous catalysis. *Catalysis letters* **2015**, *145*, 40–57.

(115) Sarkar, S.; Maitra, A.; Banerjee, S.; Thoi, V. S.; Dawlaty, J. M. Electric Fields at Metal–Surfactant Interfaces: A Combined Vibrational Spectroscopy and Capacitance Study. *The Journal of Physical Chemistry B* **2020**, *124*, 1311–1321.

1
2
3 (116) Pennathur, A. K.; Voegtle, M. J.; Menachekanian, S.; Dawlaty, J. M. Strong Propen-
4
5 sity of Ionic Liquids in Their Aqueous Solutions for an Organic-Modified Metal Surface.
6
7 *The Journal of Physical Chemistry B* **2020**, *124*, 7500–7507.
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Graphical TOC Entry

