
This paper is included in the Proceedings of the

2021 USENIX Annual Technical Conference.
July 14–16, 2021

978-1-939133-23-6

Open access to the Proceedings of the

2021 USENIX Annual Technical Conference

is sponsored by USENIX.

Argus: Debugging Performance Issues in Modern
Desktop Applications with Annotated Causal Tracing

Lingmei Weng, Columbia University; Peng Huang, Johns Hopkins University; Jason

Nieh and Junfeng Yang, Columbia University

https://www.usenix.org/conference/atc21/presentation/weng

Argus: Debugging Performance Issues in Modern Desktop Applications with

Annotated Causal Tracing

Lingmei Weng† Peng Huang‡ Jason Nieh† Junfeng Yang†

Columbia University† Johns Hopkins University‡

Abstract

Modern desktop applications involve many asynchronous, con-

current interactions that make performance issues difficult to

diagnose. Although prior work has used causal tracing for de-

bugging performance issues in distributed systems, we find

that these techniques suffer from high inaccuracies for desktop

applications. We present Argus, a fast, effective causal tracing

tool for debugging performance anomalies in desktop appli-

cations. Argus introduces a novel notion of strong and weak

edges to explicitly model and annotate trace graph ambiguities,

a new beam-search-based diagnosis algorithm to select the

most likely causal paths in the presence of ambiguities, and

a new way to compare causal paths across normal and abnor-

mal executions. We have implemented Argus across multiple

versions of macOS and evaluated it on 12 infamous spinning

pinwheel issues in popular macOS applications. Argus diag-

nosed the root causes for all issues, 10 of which were previously

unknown, some of which have been open for several years. Ar-

gus incurs less than 5% CPU overhead when its system-wide

tracing is enabled, making always-on tracing feasible.

1 Introduction

Diagnosing performance anomalies is an essential need for

all kinds of software. For modern desktop applications, perfor-

mance diagnosis can be very difficult. Such applications are

often built with assorted frameworks and libraries. For respon-

siveness, they divide handling of user interface (UI) events into

many small execution segments [30] that run concurrently on

multi-core hardware. For instance, macOS applications handle

UI events by sending messages to delegate objects that contain

code to react to these events asynchronously. The messages are

generated by the closed-source Cocoa framework [11], which

in turn interacts with the operating system (OS), daemons, and

other libraries. The asynchronous, predominantly concurrent

interactions obscure the true cause of a performance anomaly.

Traditional debugging and profiling tools are not well suited

to troubleshoot performance issues in desktop applications.

macOS tools such as spindump [10] and lldb [45] allow

users to analyze a buggy process’ stack traces. Profilers like

Gprof [28], perf [5], and macOS Instruments [12] mainly

analyze what functions take the most time. None of these

tools provide insights regarding the sequence of events that

span across the many frameworks, libraries, system daemons,

kernel, application processes/threads, and result in the

performance issue. Traditional tools excel at analyzing system

state at a specific point in time in an individual component.

They are not amenable to analyzing concurrent execution flows

over time whose interactions may cause performance issues.

To debug cross-component performance issues, causal trac-

ing has been proposed [14, 20, 27, 32, 37, 38, 40, 41, 43, 44, 46,

56], especially for distributed systems. Causal tracing utilizes a

trace graph to help developers understand performance issues

that involve complex interactions. A trace graph consists of

vertices and edges, where vertices are execution segments, such

as an operation, system event, message, etc., and edges indicate

causal relationships between vertices. To diagnose a perfor-

mance issue, these solutions usually run a critical path analysis

on the constructed trace graph that finds the sequence of ver-

tices and edges which start from the vertex where the problem

occurs and take the greatest amount of time for completion.

Unfortunately, we observe that previous causal tracing

approaches are ineffective for desktop applications because

they cannot accurately identify the boundaries of execution

segments and their causality relationships. For example, a

long-standing Google Chrome web browser performance

anomaly [2] on macOS occurs when a user enters non-English

words in the search box, causing Chrome to hang with the

infamous macOS spinning pinwheel, which appears when

an application is not responsive to user input. Using previous

approaches to construct trace graphs for the multi-threaded,

multi-process browser results in many missing execution

segments and many additional irrelevant execution segments.

Attempting to diagnose the problem using these incomplete

and inaccurate graphs would incorrectly pinpoint no events

or wrong events as the culprit. In theory, these tracing

inaccuracies could be fixed by adding instrumentation, such

as adding constraints in noisy trace points to filter irrelevant

events. However, frameworks and libraries used by desktop

applications have diverse programming idioms and are

often closed-source, making deep instrumentation difficult.

Extensive instrumentation would also incur prohibitive

overhead, resulting in unacceptable performance.

To address these problems, we have created Argus, a

causal tracing tool specially designed to help users diagnose

performance anomalies in desktop applications. Argus is

USENIX Association 2021 USENIX Annual Technical Conference 193

based on the insight that tracing inaccuracies are inherently

unavoidable in real desktop systems, so instead of trying to

eliminate all inaccuracies, we should design tracing solutions

that can accommodate some inaccuracies. Argus introduces

a new notion of annotated trace graphs, in which edges

are explicitly annotated as strong and weak edges. Strong

edges represent connections among segments based on

typical programming paradigms that must be causal, such as

sending and receiving an IPC message. Weak edges represent

ambiguous relationships among segments. For example,

when one thread wakes up another thread, it could be a causal

relation, e.g., lock/unlock, or just an artifact of regular OS

scheduling. Argus further boosts or prunes unnecessary weak

edges by leveraging operation semantics and call stacks.

Argus introduces a new beam search diagnosis algorithm

based on edge strength and a novel method of comparing

trace subgraphs across normal and abnormal executions of

an application. The algorithm is motivated by our observation

that critical path analysis used in prior work is ineffective

due to inaccuracies inherent in trace graphs. Beam search

embraces more possibilities while exploring the annotated

noisy trace graph. Our algorithm efficiently selects likely

causal paths in the massive trace graph and tolerates noises.

Comparing trace subgraphs across normal and abnormal

executions also helps with diagnosis when the problem is due

to missing operations in the abnormal execution.

Argus provides system-wide tracing by extending existing

tracing support in the OS kernel and applying binary patching

for low-level libraries. This allows Argus to easily track objects

across process boundaries, account for kernel threads involved

in communications among processes, and cover customized

programming paradigms by operating in a common low-level

substrate used by higher-level synchronization methods and

APIs that may be introduced and evolve over time. Argus does

not require any application modifications.

We have implemented and evaluated a prototype of Argus

across multiple versions of macOS. This presents a harsh test

for Argus given the many complex, closed-source frameworks,

libraries, and applications in the macOS software stack. We

evaluated Argus on 12 real-world spinning pinwheel issues in

widely-used macOS applications, such as Chrome, Inkscape,

and VLC. Argus successfully pinpoints the root cause and se-

quence of culprit events for all cases. This result is particularly

notable given that 10 of the 12 cases are open issues whose root

causes were previously unknown to developers. Argus incurs

runtime overhead low enough such that users can leave Argus

tracing always-on in production without experiencing any

noticeable performance degradation. Source code for Argus is

available at https://github.com/columbia/ArgusDebugger.

2 Motivation and Observations

We experienced first-hand the Chrome web browser perfor-

mance issue on macOS. Typing non-English words in a search

box while a web page is loading causes Chrome to freeze and

trigger a spinning pinwheel. The spinning pinwheel appears

when an application is not responsive to user input for more

than two seconds. Others have also experienced this issue

with the Chromium web browser and reported it to Chromium

developers [2]; Chrome is based on Chromium.

We study the bug in Chromium since it is open-source, so

we can verify its ground truth. Chromium is a multi-process

macOS application involving a browser process and several

renderer processes, each process having dozens of threads.

When a user types a string in the browser search box, a thread

in the browser process sends an IPC message to a thread in

the renderer process, where the rendering view code runs to

calculate the bounding box of the string, which in turn queries

fontd, the font service daemon, for font dimensions.

To diagnose the bug, we first tried using spindump [10], a

widely-used macOS debugging tool, which shows the main

thread of the browser process is blocking on a condition

variable. However,spindumpprovides no clue as to why the con-

dition variable is not signaled. Using macOS Instruments [12]

was also ineffective, as it simply analyzes what functions take

the most time, which are not the root cause in this case. These

traditional debugging and profiling tools are fundamentally

not well suited to analyzing causality in highly concurrent

execution flows across multiple components over time.

We next tried state-of-the-art causal tracing techniques.

Specifically, we use Panappticon [56], a system-wide tracing

tool originally built for Android. We reimplemented a version

for macOS with more complete tracing of asynchronous

tasks, using non-intrusive interposition to trace asynchronous

tasks, IPCs, and thread synchronizations from the system

and libraries. We use the tool when running Chromium and

reproduce the anomaly by typing non-English search strings.

After the browser handles the first few characters normally,

the remaining characters trigger a spinning pinwheel. We then

stop the tracing. The entire session took around five minutes.

Dividing up the trace graph into separate graphs each

beginning from a user input event results in 359 trace

graphs; user input events are dispatched from the macOS

WindowServer process to Chromium. The trace graphs are

highly complex, with 888,236 vertices and 751,332 edges in

total. They span across 11 applications, 79 daemons including

fontd, mdworker, nsurlsessiond, and various helper tools

started by the applications. They cover 90 processes, 1177

threads, and 644K IPC messages.

Studying the trace graphs, we observe: (i) connections

exist between graphs from different UI events; (ii) some

long execution segments have no boundaries; (iii) there

are orphaned vertices with no edges; (iv) the trace graph

that contains the anomalous event sequence triggering the

spinning pinwheel contains 12 processes—3 are clearly

unrelated to the transaction, and 6 are daemons whose

relationships are unclear without further investigation. Based

on further analysis of these graphs with call stacks and reverse

194 2021 USENIX Annual Technical Conference USENIX Association

// worker thread in fontd:

block = dispatch_mig_server;

dispatch_async(block);

1

2

3

1

2

3

4

1

2

3

4

5

6

7

// implementation of dispatch_mig_server

dispatch_mig_server()

 for (;;) { // batch processing

 mach_msg(send_reply,recv_request)

 call_back(recv_request)

 set_reply(send_reply)

 }

// main thread in fontd:

// dequeue blocks

block = dequeue();

dispatch_client_callout(

 block);

Figure 1: Dispatch message batching. dispatch_mig_server can

serve unrelated applications together.

engineering techniques, we conclude that they have significant

inaccuracies. Running diagnosis on them leads to a wild goose

chase, investigating components such as fontd, as it sends

out messages after a long execution, which turn out to be

completely unrelated to the root cause. We observe two general

inaccuracies: over-connections and under-connections.

Over-connections usually occur when intra-thread execution

segment boundaries are missing. We summarize three common

programming patterns responsible for this—dispatch message

batching, piggyback optimization, and superfluous wake-ups.

Dispatch message batching. Frameworks and daemons often

implement event loops for handling multiple events inside

callback functions. For example, Figure 1 shows two threads

from the fontd daemon in macOS; the worker thread installs

a callback function dispatch_mig_server() in a dispatch

queue and the main thread dequeues and calls the function via

dispatch_client_callout. dispatch_mig_server() has an

event loop which batch processes requests from different ap-

plications, presumably for performance. It invokes call_back

to process a message and set_reply to post a reply. However,

previous causal tracing tools like Panappticon assume the exe-

cution of a callback function is entirely on behalf of one request.

dispatch_mig_server is thus treated as a single execution

segment and edges are added between the vertex representing

dispatch_mig_server and the many unrelated applications for

which it handles requests. These edges incorrectly indicate

causal relationships that would result in misleading diagnoses.

Piggyback optimization. Frameworks and daemons may

piggyback multiple tasks in a system call to reduce kernel

boundary crossings. For example, Figure 2 shows the macOS

system daemon WindowServer uses a single system call

mach_msg_overwrite to receive data and piggyback the reply

for an unrelated event. However, previous causal tracing tools

like Panappticon treat the execution of a system call as a single

execution segment for one event, artificially making many

events appear causally related.

Non-causal wake-up. Desktop applications typically have

multiple threads synchronized via mutual exclusion, such

that a thread’s unlock operation wakes up another waiting

thread. Such a wake-up may be, but is not always, intended as

causality. For example, in Chromium, a wake-up is commonly

followed by a batch processing block, but it is unclear whether

//a thread in WindowServer

while (true){
 //postpone a reply
 CGXPostReplyMessage(msg);
 //receive requests
 CGXRunOneServicePass();
}

CGXRunOneServicePass(){
 if (_gOutMsgPending)
 mach_msg_overwrite(
 SEND|RECV,
 _gOutMsg, RecvMsg)
 else
 mach_msg(RECV,RecvMsg)
}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Figure 2: Piggyback optimization and intra-thread data dependency.

mach_msg_overwrite combines the reply of a previous event. Opera-

tions inside a thread have dependencies on _gOutMsg.

// worker thread needs

// UI update

obj->need_display = 1

//main thread

if (obj->need_display == 1)

 render(obj)

1

2

3

1

2

3

Figure 3: Shared data flag across threads.

the following events being batch processed depend on the

wake-up event. Previous causal tracing tools assume any

wake-up is causal, which may artificially make events appear

causally related when they are not.

Under-connections usually occur due to missing intra-

thread data dependencies and inter-thread shared flags.

Data dependency. Frameworks and daemons may have

internal state that causally link different execution segments

of a thread. For example, Figure 2 shows that a WindowServer

thread calls the function CGXPostReplyMessage to save the

reply message, which it internally stores in a variable _gOutMsg.

When the thread later calls CGXRunOneServicePass, it sends

out _gOutMsg if there is any pending message.

Shared data flags. Frameworks and daemons may use

shared flags that causally link different threads. Figure 3

shows a worker thread sets a field need_display inside

a CoreAnimation object whenever the object needs to be

repainted. The main thread iterates over all animation objects

and reads this flag, rendering any such object. Existing tools

do not track these kinds of shared-memory communication.

3 Overview of Argus

We have designed Argus to diagnose performance issues in

desktop applications. Argus satisfies four key requirements

not met by previous causal tracing tools: (1) use minimal

instrumentation, (2) support closed-source components, (3)

extract rich information from heterogeneous components with

minimal manual effort, and (4) incur low runtime overhead.

Central to its design is the construction of annotated trace

graphs from low-level trace events. Argus introduces the

notion of strong and weak edges in trace graphs to mitigate

inherent inaccuracies in tracing. When there is strong evidence

of causality, such as an IPC message event, Argus adds a

strong edge between vertices. When an execution segment is

created by events that may not necessarily represent causality,

such as non-causal wake-ups, Argus adds a weak edge. During

diagnosis, Argus prefers traversing through strong edges when

possible. Argus also stores extra semantic information in the

graph vertices, including user input events, system calls, and

USENIX Association 2021 USENIX Annual Technical Conference 195

instrumented core libraries

instrumented OS

Argus Tracer

third-party libraries,

frameworks, …

helper
1

daemon
1

daemon
2

Trace logs

…
tid1tid233.2 wakeUp

…

tid3

attr2

port2

tid0

attr1

port1

event_type

wakeUp

sendMsg

31.7

30.4

time

Argus Debugger

Argus Grapher
Annotated

trace graphs

beam search

diagnosis algo

(1) costly operations

(2) culprit event sequence

(3) call stacks

Figure 4: Overview of Argus.

sampled call stacks. This extra information is used to improve

weak edge annotation and align and compare trace graphs for

normal and abnormal execution to aid diagnosis.

Figure 4 shows an overview of Argus. It consists of three

main components—a tracer, a grapher, and a debugger. The

tracer runs continuously in the background on a user’s machine,

transparently logging events from low-level system libraries

and the kernel, without any need to modify applications. When

a user encounters some performance anomaly, she reports

the issue about the problematic application, along with the

timestamp of the anomaly occurrence. The reported issue and

trace logs are sent to the developer, the logs containing events

for both normal execution and abnormal execution when the

performance anomaly occurs. The developer feeds the logs

into the grapher to construct the annotated trace graphs for

both normal and abnormal execution, and runs the debugger

on the graphs to output the diagnosis results.

4 Argus Tracer

Argus traces events inside the kernel and low-level libraries,

with minimal instrumentation. This provides three advantages

over tracing in user applications. First, tracing in the kernel and

libraries ensures coverage of custom programming paradigms.

For instance, Argus traces general thread scheduling events

and wake-up and wait to ensure coverage of a variety of custom

synchronization primitives in desktop applications, because

their implementations almost always use kernel wake-up

and wait. Second, tracing in the kernel helps connect tracing

events across process boundaries, because the addresses of

the traced objects in kernel space are usually unique, while

tracing in user programs requires maintaining and propagating

unique identifiers. Third, tracing kernel threads helps bridge

communications among processes. For instance, a kernel

thread sends out a message to a process when the process

needs to execute a delayed function.

In the macOS XNU kernel, Argus traces system calls, thread

scheduling, interrupts, time-delayed calls, and Mach messages.

Argus leverages existing macOS kernel tracing support [13],

but adds enhancements to log more information and enable

always-on tracing using a ring buffer to avoid exhausting

storage. The enhancements require roughly 500 lines of

code (LOC) in the XNU kernel, which are straightforward

to add given that the kernel is open source. Trace events

are asynchronously flushed to a file with a size limit. The

limit is by default 2 GB, which can store roughly 20 million

trace events; this is about 5 minutes of tracing when running

large applications like Chrome. It can be easily adjusted to

accommodate longer execution times. We used the default

limit for all experiments in Section 7.

Argus logs kernel events to identify when threads are execut-

ing and their causal relationships. All system calls are traced to

provide high-level semantics that can be used to identify causal

relationships. Argus simply records return values for most

system calls, but call stacks are also logged for a small set of

system calls, namely those pertaining to Mach messages and

synchronization using conditional variables and semaphores.

Call stack information is later used by the Argus debugger

to provide debugging information for developers. Thread

scheduling is traced to track when a thread becomes idle and

which thread wakes it up. Argus logs three types of thread

scheduling events: wait to indicate when a thread becomes idle,

wake-up to indicate when the current thread wakes up another

thread, and preempt to indicate when a thread is preempted due

to its timeslice being used up or priority policies. Interrupts are

logged to indicate when threads are preempted by interrupts,

with call stacks also logged for interprocessor interrupts

(IPIs). Argus traces the internal kernel implementation of

time-delayed calls, which are used to implement asynchronous

calls in libraries such as Grand Central Dispatch (GCD).

Finally, Argus traces the internal kernel implementation of

Mach messages, not just their invocation via system calls, to

enabling tracing of all use of Mach messages, including use

within the kernel among kernel threads.

To aid developers in interpreting the virtual addresses in

call stacks via lldb, Argus also logs in userspace the virtual

memory layout of images for all processes. The tracer records

the virtual memory maps for all running processes when

tracing is enabled or terminated; processes launched during

tracing are also recorded. The memory layout information is

also fed to the Argus debugger.

In addition to kernel tracing, Argus traces four closed-

source macOS frameworks, AppKit, libdispatch.dylib,

CoreFoundation, and CoreGraphics, to track UI events and

batch processing paradigms used by applications. Because

these frameworks are closed source, the trace events are added

via binary instrumentation using a mechanism similar to De-

tour [31]. AppKit is used to dispatch UI events to handlers. Ar-

gus traces where a UI event is fetched from the WindowServer

and dispatched to an event handler. libdispatch.dylib imple-

ments GCD, managing dispatch queues to balance work across

the entire system. Argus adds trace events to track when objects

are pushed into a dispatch queue and popped off of the dispatch

queue and executed. CoreFoundation supports event loops for

GUI applications, which are widely used to process requests

196 2021 USENIX Annual Technical Conference USENIX Association

from timers, customized observers, and sources such as sock-

ets, ports, and files. Argus adds trace events so the handling of

different requests inside event loops can be tracked separately.

To deal with the under-connection issues (Section 2), we

annotate a handful of data flags in CoreGraphics. Given the

shared flag variable names, Argus monitors the respective

virtual addresses with watchpoint registers. Reads or writes

to the addresses will invoke a signal handler that records trace

events with the values stored in those addresses. Argus adds

code to CoreFoundation to install this signal handler.

Argus can use the same watchpoint mechanism to trace

shared data flags in applications. To assist developers in

finding these shared data flags, Argus provides a lightweight

tool that uses lldb to record the operand values of each

instruction and finds ones that lead to divergence in control

flow, which are likely data flags. The shared flag variable

names are recorded in an Argus tracer configuration file,

which are then traced using the same signal handler installed

by CoreFoundation. Since CoreFoundation is imported by

all GUI applications, Argus can trace these shared data flag

accesses without any application modifications.

Note that the annotation effort for shared data flags is

in general small. This is because execution segments that

access shared variables are usually connected already by some

types of causality, e.g., wait/signal events; developers mainly

need to provide Argus with shared flags that are accessed

through ad-hoc synchronization [49]. In our experience, only

a few shared flags need to be monitored. Also for this reason,

although hardware watchpoint registers are limited, Argus

is unlikely to exhaust them. In fact, none of the applications

we evaluated in Section 7 needed shared flags to be identified

or traced in the applications themselves. Mechanisms such

as Kprobe [3] could potentially be used to extend Argus to

support monitoring more shared flags.

5 Argus Grapher

Argus uses the trace logs to build an annotated trace graph by

first identifying the boundaries of execution segments in each

thread to determine the graph vertices, then adding annotated

edges between vertices. The annotated edges contain type

metadata to indicate strong versus weak edges, which is

used during diagnosis to mitigate inaccuracies due to over-

connections and under-connections, as discussed in Section 2.

Argus first determines the execution segments that will form

the graph vertices. Using various trace events as boundaries,

Argus splits the execution of each thread is into separate ex-

ecution segments. First, Argus splits nesting of tasks executed

from dispatch queues. If an execution of dispatch_callout

invokes several other dispatch_callout, each dispatched

task is separated. Second, Argus recognizes batch processing

patterns such as dispatch_mig_server() in Figure 1 and splits

the batch into separate execution segments. Third, when a wait

operation blocks a thread execution, Argus splits the execution

Edge Rules for Edge Annotation

Strong 1. IPC message send and receive; 2. Asynchronous calls

(work queue, delayed call); 3. Direct wake-up of a thread

on purpose; 4. Data dependency.

Weak 1. Non-causal wake-up; 2. Execution segments divided

between a wait event and a wake-up event, excluding

following cases: wait or wakeup are introduced by system

call workq_kern_return, or they are in kern_task; 3. Split

suspicious batching execution segments, except known

batching APIs: RunLoopDoObservers, CGXServer, etc.

Boosted

Weak

Continuous execution segments matching weak edge

rules but are on behalf of the same task.

Table 1: Edge annotation rules.

into separate segments at the entry of the blocking wait. The

rationale is that blocking wait is typically done as the last step

in event processing. Finally, Argus uses Mach messages to split

execution when the set of communicating peers differs. Argus

maintains a set of peers, including the direct sender or receiver

of the message and the beneficiary of the message; macOS

allows a process to send or receive messages on behalf of a

third process. Argus splits execution when two consecutive

messages have non-overlapping peer sets. By splitting thread

execution using these four criteria, Argus avoids potential over-

connections due to batching and piggyback optimizations.

Argus next determines the edges that should be added

between vertices. Edges are introduced to reveal the causality

of two execution segments and thus guide the causal path

exploration. Based on the rules in Table 1, Argus annotates

three types of edges: strong, weak, and boosted weak.

First, Argus adds strong edges by identifying Mach message,

dispatch queue, time-delayed call, and data flag trace events

associated with a vertex and finding the corresponding peer

events and peer vertices. For Mach message events, Argus adds

a strong edge from the vertex with the message send event to the

vertex with its associated receive event. If a message requires

a reply, the received message can produce a reply message,

which can be sent by a third thread, in which case Argus adds a

strong edge from the vertex with the received message event to

the one with the send event for the reply message. For dispatch

queue events, Argus adds a strong edge from the vertex where

the callback function is pushed to a dispatch queue to the vertex

where the callback function is invoked. For time-delayed calls,

Argus adds a strong edge from the vertex where the timer is

armed to the vertex where the callback function is fired. For

shared data flags, Argus adds a strong edge from the vertex

with a data flag write event to the vertex with its corresponding

read event, avoiding potential under-connections.

Second, Argus adds edges by identifying thread scheduling

trace events and finding the events and vertices corresponding

to the pair operations. Argus adds strong edges only when

the context clearly indicates causality, such as the signal and

wait operations of a condition variable. Otherwise, Argus

adds only weak edges. One hint Argus takes from macOS is

USENIX Association 2021 USENIX Annual Technical Conference 197

dispatch_

mig_server()

dispatch_

mig_server()
weak edges

split segment

split

Figure 5: The segment for batch processing in dispatch_mig_server

is split into multiple segments to distinguish different items. Weak

edges are added among the split segments.

that, if a wake-up is not followed by a specific communication

operation (e.g., message receive), and does not target a specific

thread but all threads on the wait queue, then it is likely not

causal, in which case a weak edge is added.

Third, because Argus splits the execution of a thread into

segments (graph vertices) based on heuristics that may not al-

ways be valid, Argus adds weak edges between these adjacent

execution segments, as shown in Figure 5. Argus converts a

weak edge into a boosted weak edge if two continuous execu-

tion segments are on behalf of the same task. It infers whether

the segments are for the same task by leveraging call stack

symbols. We calculate frequencies for all symbols across the

whole tracing and notice a low-frequency (bottom 10%) sym-

bol usually only appears in a task from a specific application,

compared to high-frequency symbols from system routines or

framework APIs. Thus, if the two segments share the same low-

frequency symbols, Argus infers they are collaborating on the

same task and sets a boost flag for the weak edge between them.

However, abuse of weak edges could generate excessive

false positives during diagnosis, so Argus takes advantage

of high-level semantics to avoid adding unnecessary weak

edges between adjacent execution segments. First, if the call

stacks of two segments of a thread share no common symbols

or share a recognized system library batching API, Argus does

not add a weak edge between them. Second, because wait and

wake-up events are mostly from system calls, Argus leverages

system call semantics to determine the necessity of weak

edges. For example, we find the wait event from system call

workq_kern_return indicates an end of a task in the thread,

while the wake-up event formed in workq_kern_return intends

to acquire more worker threads for concurrent tasks in the

dispatch queue. Execution segments containing such event

sequences do not need bridging with weak edges. Finally, the

kernel task in macOS acts as a delegate to provide service

for many applications, such as I/O processing and timed

delayed invocations. The kernel task threads contain execution

segments beginning with a wake-up event and ending with

a wait event. Each segment serves different requests and they

are not causally related, so weak edges are not added between

those kernel task execution segments.

6 Argus Debugger

Argus uses the constructed trace graphs to diagnose perfor-

mance issues by starting with the vertex that contains the

step

anomaly

vertex

beam width (β) = 2

lookback steps = 2

weak edge
boosted weak edge
strong edge

step

…

step… vertex
step selected state

prune prune expandexpand

1234

Figure 6: Beam search diagnosis algorithm. Search backwards from

the anomaly vertex; choose the best β states to expand next. For every

lookback steps, prune the existing states to at most β paths.

performance anomaly and traversing the graphs to identify

the causal paths including the root cause vertices. The typical

critical path analysis used in existing causal tracing solutions

cannot effectively handle the noises in the trace graphs. Argus

introduces a new diagnosis algorithm based on beam search

to efficiently explore the causal paths likely related to the

performance anomalies. It also introduces a novel subgraph

comparison mechanism to find missing vertices not present

in the trace graph for abnormal execution that are present in

the graph for normal execution. This comparison is helpful

to identify the root cause that would be otherwise unknown.

6.1 Causal Path Search—Beam Search

From a given vertex that contains the anomaly, such as the

spinning cursor, Argus finds what path “caused” the anomaly

by using beam search based on a cost function for annotated

edges. Beam search is similar to breadth-first-search, but at

each search step, it sorts the next level of graph vertices based

on a cost function and only stores β—the beam width—best

vertices to consider next. Argus customizes its beam search

with a lookback scheme such that the algorithm evaluates

the cost function for multiple levels of edges before pruning.

Argus evaluates the vertices and prunes them with β only after

the search advances the configured lookback steps to avoiding

pruning paths with weak edges too early.

Argus’s beam search algorithm provides two key advan-

tages. First, compared to brute-force search, beam search

only explores the most promising vertices, which is essential

given that trace graphs are highly complex with millions of

edges; searching all paths would be too inefficient and, given

graph inaccuracies, result in an overwhelming number of

options to consider. Second compared to local search methods

such as hill-climbing, beam search embraces more possible

causal paths because it ranks partial solutions and the ranking

changes during the exploration. For example, assuming strong

edges are preferred to weak ones, a path with a weak edge

followed by a series of strong edges is likely to get a higher

ranking and be returned by beam search, but will be missed

by a hill-climbing search algorithm.

Figure 6 illustrates the algorithm. It searches for causal paths

backwards from the anomaly vertex. For each incoming edge

of the current vertex, the algorithm computes the penalty score

for the new path. At every lookback step, the search branches

198 2021 USENIX Annual Technical Conference USENIX Association

Algorithm 1: Causal Path Search Algorithm (Beam Search).

Data: g - event graphs, curVertex - vertex inspected in current search
state, beamWidth - search branches at most, lookbackSteps -
searching steps taken before pruning current search branches

Result: paths
1 Function BeamSearch(g, curVertex, beamWidth, lookbackSteps):
2 curStates.init(curVertex);
3 curSteps← 0;
4 while curStates.incoming_edges() > 0 && beamWidth > 0 do
5 ++curSteps;
6 newStates.clear();
7 for each state ∈ curStates do
8 if beamWidth <= 0 then
9 break;

10 end
11 if state.path.reach(UI) || state.path.incoming_edges = /0

then
12 paths.add(state.path);
13 −−beamWidth;
14 end
15 for each edge ∈ state.path.incoming_edges do
16 newState.path← state.path + edge;
17 newState.score← state.score + penalty(edge.val);
18 newStates.add(newState);
19 end
20 end
21 curStates← newStates;
22 if curSteps = lookbackSteps then
23 pruneStates(curStates, beamWidth);
24 curSteps← 0;
25 end
26 end
27 pruneStates(curStates, beamWidth);
28 paths.append(curStates.paths);
29 return SortIncPenaltyScore(paths);
30 Function pruneStates(newStates, beamWidth):
31 SortIncPenaltyScore(newStates.paths);
32 while newStates.size() > beamWidth do
33 newStates.pop_back();
34 end
35 return;

are pruned: it sorts the paths by their penalty scores and only

retains at most β paths with low penalties. A path is added to

the result if a vertex is reached containing a UI event or has no

incoming edges, and the beam width decreases by one. Using

such vertices as for path termination helps developers under-

stand causality in an end-to-end request handling transaction.

Algorithm 1 lists the pseudo-code of the search algorithm.

Lines 16 – 18 compute penalty scores for new paths after

incoming edges are added to the path. Lines 22 – 25 prune the

searched branches every L lookback steps. Paths are sorted

by their penalty scores and paths with high penalties are

discarded. Penalty scores are calculated with a linear function

on edge values, where a strong edge is -1, a weak edge is 1, and

a boosted weak edge is 0. A path with n edges has a penalty

p = ∑n
i=1(a× Ei + b), where Ei is the ith edge value. This

approach guides search towards paths with stronger causality.

While more complex non-linear functions may be feasible,

this simple function works well for many diagnosis cases.

The beam width setting affects the search efficiency and

diagnosis accuracy. A setting too large would cause path

explosion and noisy paths to be returned. A setting too small

may easily miss the true causal path. We set β = 5 to strike

a good balance. Tuning this parameter is relatively easy in

practice. The lookback step setting is set based on observing

Algorithm 2: Subgraph Comparison Algorithm.

Data: anomVertex – problematic vertex, anomGraph – trace graph
for anomaly case, normGraph – trace graph for normal case

Result: ret- potential culprits of anomaly
1 Function SubGraphCompare(anomVertex, anomGraph,

normGraph):
2 ret.clear();
3 similarVertices← FindSimilarVertices(normGraph,

anomVertex);
4 baselineVertex←GetBaseLine(similarVertices, anomVertex);
5 targetVertex←woken(normGraph, baselineVertex);
6 causalPaths← BeamSearch(normGraph, targetVertex,

beamWidth, lookbackStep);
77 // sub-graph is constituted with paths;
8 for each causalPath ∈ causalPaths do
9 for each vertex ∈ causalPath do

10 expectVertex← SimilarVertex(anomGraph, vertex);
11 if expectVertex = /0 then
1212 // missing similarity to vertex ;
13 anomThr← SearchT hread(anomGraph,

vertex.thread);
1414 // get the vertex that causes the dissimilar ;
15 suspVertex←VertexInT hread(anomGraph,

anomThr);
16 else if Di f f erentVertices (expectVertex, vertex) then
1717 // vertex acts different from normal case ;
18 suspVertex← expectVertex;
19 else
20 countinue;
21 end
22 ret.push_back(suspVertex);
23 end
24 if !ret.empty() then
25 return ret;
26 end
27 end
28 return ret;

that traversal of most graphs encounters a weak edge within

five steps. We set L = 5 to tolerate weak edges. Given this

setting, a path of x strong edges, y weak edges, and z boosted

weak edges has a penalty of p =−a× (x− y)+5×b. If all

edges are strong, the penalty is negative only when b < a.

If there are weak edges, the penalty is positive only when

(x−y)×a<5×b,where−3<x−y<3. Therefore, we set the

default penalty function coefficients a=3 and b=2.

6.2 Subgraph Comparison

If we run causality analysis only on the trace graph constructed

with the anomalous performance issue, the root cause may not

be exposed in some cases. For example, a blocked function

could be caused by a missing wake-up from one of the back-

ground threads. If the thread does not perform the wake-up

during abnormal execution, there will be no execution segment

with the wake-up, and therefore no vertex in the anomalous

trace graph that can be identified correctly as the root cause.

Argus addresses this problem by first constructing the trace

graphs for both normal and abnormal execution. It then uses its

beam search method on the normal trace graph to identify the

causal paths in that graph that corresponds to the desired nor-

mal behavior that does not occur during abnormal execution.

We refer to those causal paths a subgraph.Argus then uses the

vertices in the subgraph to identify the missing root cause in the

abnormal execution. This is done by introducing a novel sub-

USENIX Association 2021 USENIX Annual Technical Conference 199

graph comparison method between the trace graphs for both

normal and abnormal execution, which is listed in Algorithm 2.

Argus first determines a baseline vertex in the normal graph

that is comparable to the anomaly vertex in the anomalous

graph. Argus computes a signature for each vertex based

on the trace event sequence in its execution segment. The

signature is composed of two parts, one that encodes the

types corresponding to the event sequence e.g. 0 for IPC

event, 1 for syscall event, etc., and another that is a hash of the

event parameters, e.g., process names of IPC events. Argus

calculates the similarity of two vertex signatures using string

edit distance. Among the vertices in the normal graph that are

similar to the anomaly vertex, Argus chooses one that behaves

differently from the anomaly vertex, based on return values of

system calls and execution times. For example, a vertex whose

last event is a blocking system call with a timed wait may

behave in two different ways, timing out or quickly woken up.

After Argus identifies a baseline vertex, it obtains its causal

paths using Algorithm 1. The result is a subgraph of the normal

trace graph rooted from the baseline vertex to some ending ver-

tex. Argus examines the subgraph from the most related causal

path. Starting with the ending vertex V , whose execution seg-

ment was executed by some thread T , Argus identifies vertices

in the abnormal trace graph that were also executed by T . For

each identified vertex, Argus checks whether it behaves differ-

ently from V , in which case it is flagged as a suspicious vertex.

If no such vertices are found, Argus repeats this procedure with

the next vertex in the subgraph. Otherwise, for each suspicious

vertex that has incoming edges, Argus recursively repeats the

subgraph comparison by treating the suspicious vertex as the

initial anomaly vertex. The recursive procedure effectively

keeps working backwards through vertices to eventually find

a set of root cause candidate vertices in the anomalous trace

graph with no incoming edges. Argus then returns the vertex

whose path to the original anomalous vertex has the lowest

penalty score, identifying that vertex as the root cause.

Figure 7 shows a simplified example of the subgraph

comparison method applied to the Chromium performance

issue discussed in Section 2. Vertex E ′ in the anomalous graph

is the initial anomaly vertex. Argus identifies vertex E in the

normal graph as having a similar signature but behaving dif-

ferently, and treats it as a baseline vertex. Argus applies beam

search to the normal graph starting with vertex E, resulting

in the subgraph A← B←C← D← E. Argus starts with A,

identifies its browser thread, and determines that A cannot

be the root cause since the same browser thread contains the

performance anomaly E ′ in the anomalous trace graph. Argus

then considers B, identifies its renderer thread, and finds all

vertices in the anomalous trace graph executed by the renderer

thread. F ′ is similar to F , so it is not considered a suspicious

vertex, but J′ is not similar to any vertex in the normal trace

graph, so it is considered suspicious. J′ has no incoming edges

and is identified as a root cause candidate. If there are no other

candidates identified, J′ is returned as the root cause.

C

D

G

timed out waitE'
semaphore wait

anomalous trace graph

normal trace graph

J'

G'

B

E A

execution segment
weak ege

boosted weak edge
strong edge

H

H'

F

F'

I

browser
renderer

fontd
SCIM

browser
renderer

fontd
SCIM

Figure 7: Chromium normal and anomalous trace graphs after user

typed in a search box (vertex G/G’). Vertex E’ (requesting a bounding

box for input) is the anomaly vertex. Sub-graph in normal trace graph

is extracted from baseline vertex E. Vertex J’(javascript processing

blocks on semaphore) is the root cause Argus reported. Trace graphs

are simplified for clarity; only processes are shown and communica-

tions with processes such as imklaunchagent are omitted.

6.3 Debug Information

Argus further provides the calling contexts of the anomaly

vertex and the root cause vertex to help developers localize

the bug in code. To do so, Argus examines the call stacks it

attaches in the graph vertices. If the anomaly or root cause

vertex has a blocking call, the call stack Argus tracer collects

would reveal the context of the blocking call directly. If the

vertex has a long runtime cost, the problematic vertex usually

contains periodic IPIs, where the Argus tracer collects call

stacks. In this case, the Argus debugger calculates the longest

common sequence of frames from those call stacks. The top

frame in the sequence reflects the costly function call.

For instance, in Figure 7, Argus reports the following

information: (i) the calling context of problematic vertex

E’ and its causal path E ′ ← G′; (ii) the calling context of

root cause vertex J’ along with its unmatched causal path in

baseline trace graph: A←B←C←D←E←G, and vertex

B is marked because its thread should have waken up the

blocking thread in the anomaly case.

6.4 Diagnosis for Spinning Pinwheel in macOS

Argus’s debugger can be used to effectively diagnose spinning

pinwheel performance issues in macOS applications. Recall

that a spinning pinwheel appears when the UI thread of an

application can not process any user inputs for over two

seconds. During normal execution, the two-second interval

may cover many vertices, but when the spinning pinwheel

appears, the main thread of the application is stalled and the

two-second interval covers only a single vertex. Leveraging

this timing information, Argus identifies the anomaly vertex

in the main thread of the targeted application and classifies

the issue as either a LongRunning and LongWait anomaly.

LongRunning. The main thread is busy performing lengthy

CPU operations and therefore its execution segment is in the

anomalous trace graph. Argus uses its beam search method

200 2021 USENIX Annual Technical Conference USENIX Association

to identify the causal path between the anomaly vertex and the

vertex with the UI event resulting in the issue. Argus reports

the costly API, event handler, and causal path to the developer.

LongWait. A UI thread is blocked, but it is hard to tell why.

Argus uses its subgraph comparison method together with its

beam search method to deduce which vertex is missing from the

anomalous trace graph. A long-wait event could be caused by

another long-wait event. Argus supports recursively diagnos-

ing “the culprit of the culprit.” Therefore, it can reveal deep root

causes. At the end of each iteration of diagnosis, the calling con-

text of problematic vertex, root cause vertices in the anomalous

trace graph, and causal paths are ranked and reported to users.

Some LongRunning issues may be diagnosed with existing

tools such as spindump if the profiling is accurate and complete.

However, Argus is better in that a call stack is usually not

enough to connect the busy processing to the event handler,

due to the prevalence of asynchronous calls. Also, call stack

profiles after the anomaly may miss the real costly operations.

LongWait issues usually involve multiple components and are

extremely hard to understand and fix with current tools. Those

issues may remain unresolved for years and significantly hurt

user experience and developer productivity.

7 Evaluation

We have implemented Argus across multiple versions of

macOS, ranging from El Capitan to Catalina. We evaluate

Argus to answer several key research questions: (1) Can Argus

effectively diagnose real-world performance anomalies for

modern desktop applications? (2) How does Argus compare

to other performance debugging tools? (3) How useful are

Argus’s weak edges and their optimizations in mitigating

tracing inaccuracies? (4) How much overhead does Argus’s

tracing tool incur? Unless otherwise indicated, all applications

and tools were run on a MacBookPro12,1 with an Intel Core

i7 CPU, 16 GB RAM, and an APPLE SM0512G SSD.

7.1 Diagnosis Effectiveness

We evaluated Argus on 12 real-world user-reported perfor-

mance issues in 11 popular desktop applications, which

we collected and reproduced, as listed in Table 2. We are

especially interested in evaluating performance issues that

have been hard to troubleshoot. Except for B11, all of these

are open issues, meaning their root causes were previously

unknown to developers. For B2, the reported issue was “fixed”

in the latest version (due to refactoring or platform upgrade)

but the root cause remained unknown. Nine applications,

or some of their components, have source code available,

whereas two applications are closed-source. Source code was

used to validate whether the correct root cause was diagnosed

for the performance issues, but all evaluation was performed

on the released application binaries. We have also used

ID App Performance Issue Age

B1 Chromium Typing non-English in searchbox, page freezes. 7 yr

B2 TeXstudio Modifying Bib file in other app gets pinwheel. 2 yr

B3 BiglyBT Launching BiglyBT installer gets pinwheel. 1 yr

B4 Sequel Pro Reconnection via ssh causes freeze. 4 yr

B5 Quiver Pasting a section from webpage as a list freezes. 5 yr

B6 Firefox Connection to printer takes a long time. 1 mo

B7 Firefox Some website triggers pinwheel in the DevTool. 3 yr

B8 Alacrity Unresponsive after a long line rendering. 6 mo

B9 Inkscape Zoom in/out shapes causes intermittent freeze. 1 yr

B10 VLC Quick quit after playlist click causes freeze. 7 mo

B11 QEMU Unable to launch on macOS Catalina. 1 mo

B12 Octave Script editing in GUI gets pinwheel. 2 yr

Table 2: Real-world performance issues in macOS applications.

Argus with proprietary applications like Microsoft Word for

macOS, but without source code, we need to wait for vendors’

confirmation and responses; in our experience, vendors are

reluctant to communicate issues with an external party.

Table 3 shows that Argus was able to diagnose all 12 perfor-

mance issues, including all longstanding open issues. As listed

in Table 4, we checked the correctness of Argus’s diagnosed

root causes in three ways: (1) inspecting the corresponding

source code if available, (2) dynamic patching with lldb based

on the diagnosed root cause to fix the problem, and (3) con-

firmation by developers. The last one is ideal, but not always

feasible; we reported our findings to developers for seven is-

sues, but only received two responses. Only the root cause of

B11 was previously known, which Argus returned correctly

(Grd). For B1, B7, and B10, we validated the diagnosed root

causes by analyzing the source code (Src). For B2 and B4, we

received confirmation from the respective application develop-

ers that Argus correctly diagnosed the root cause for these open

issues [8, 9] (Dev). For example, for B4, the Sequel Pro devel-

opers suspected a particular Cocoa Framework API does not

work as expected, but could not pinpoint the exact place to fix it.

Argus determined the defect was in their installed callback func-

tion, and we submitted a pull request [8] to fix the issue. B8 was

fixed in an official developer patch after we reported the root

cause (Fix). For the remaining issues, we confirmed the issue

was resolved by dynamically patching the application based

on the root cause (Dyn). We describe a few of the performance

issues in further detail, but omit others due to space constraints.

B1-Chromium: This is the Chromium performance issue

discussed in Section 2. Argus analyzes the trace graph,

pinpoints the circular waits between renderer main thread

and browser main thread with the interactions of daemon

processes like fontd. Argus not only localizes the problematic

execution segment (waiting on a condition variable), but also

the sequence of events leading to this issue. The same issue

occurs in Chrome. We also reported our findings to Chrome

developers, but received no reply.

B2-TeXstudio: TeXstudio [55] is an IDE for creating LaTeX

documents. Users reported when they modified a bibliography

USENIX Association 2021 USENIX Annual Technical Conference 201

ID Root Cause Identified

B1 circular wait between renderer and browser main threads.

B2 long running function calculating line indices in document.

B3 recursive invocations of accessible objects in GUI.

B4 UI event loop mishandling input causes deadlock with ssh.

B5 paragraph value never equals last paragraph inside web view.

B6 sleep waiting on chain of deamons, the last being nsurlsessiond.

B7 excessive garbage collection on the main thread.

B8 excessive copy of rendering cells when searching potential URL.

B9 excessive memory operations for trimming and compositing.

B10 termination signal before displaying thread ready; deadlocks.

B11 window adjustment before it finishes launching; deadlocks.

B12 readline thread writing tty repeatedly, main thread waiting.

Table 3: Root causes identified by Argus.

file with another application, TeXstudio froze with a spinning

pinwheel. We reproduced this case by running touch from a

terminal on a 500 entry bibliography file, which immediately

caused a spinning pinwheel to appear in TeXstudio’s window.

Argus analyzes the trace graph and identifies five causal paths,

ordered by likelihood of causality. The first path connects mul-

tiple entities: Terminal→WindowServer→bash→kernel_task

→fseventd→TeXstudio—and suggests the following

root cause chain. touch triggers a change in the file

metadata. fseventd notifies TeXstudio and invokes

a callback handler. TeXstudio executes a function

QDocument::startChunkLoading, and causes busy pro-

cessing in TeXstudio’s main thread. Argus also outputs

the call stack with the busy APIs, startChunkLoading and

QDocumentPrivate::indexOf(). We reported our findings to

the developers and received confirmation that the diagnosis

is correct.

B5-Quiver: Quiver [7] is a closed-source notebook appli-

cation for mixing text, code, Markdown, LaTeX, etc. Users

report that applying bullet points to a text cell without an

empty line at bottom causes a spinning pinwheel [6]. Based on

the Argus trace graph, there is a hanging vertex in the WebKit

component used by Quiver. In particular, WebKit hangs in

executing InsertListCommand::doApply when applying the

list command to the Webview context from Quiver. The hang

occurs because of an infinite loop bug in WebKit rather than

Quiver. We verified the root cause by changing the comparison

result of the loop with lldb, which enables Quiver to display

the bulletin points without a spinning pinwheel. We reported

our findings to the developers, but received no reply.

7.2 Comparing with Other Approaches

We compared Argus versus other state-of-the-art tools for

diagnosing the performance issues in Table 2. We used two

widely-used traditional debugging and profiling tools from

Apple, spindump [10] and Instruments [12]. For spindump,

we enable it once the performance issue appears, and repeat

the process five times to eliminate bias on the start timing.

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12

spind.@top1 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗

spind.@top3 ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗

spind.@top5 ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✗

spind.@top10 ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✗

Instr.@top1 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗

Instr.@top3 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗

Instr.@top5 ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗

Instr.@top10 ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗

AppInsight ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗

Panappticon ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗

Argus ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

no weak edges ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓

w/critical path ✗ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗

Argus result
Src Dev Dyn Dev Dyn Dyn Src Fix Dyn Src Grd Dyn

validation

Table 4: Comparing Argus with other debugging tools.

spindump separately ranks the symbols from all sampled call

stacks and only the top of call stacks. We examined the topN

symbols and their corresponding call stack information. For

Instruments, we enable its time profiler in the background

when reproducing the bugs, and analyze its data from two

seconds before the performance issue occurs to three seconds

after. We rank APIs in the reported call trees with CPU time

percentage and filter out system routines. Then, we select the

topN APIs for investigation. We used values from N = 1 to

N = 10. We also used two causal tracing tools, the macOS

version of Panappticon, as discussed in Section 2, and AppIn-

sight [40]. Since AppInsight was originally built for Windows,

we reimplemented a version for macOS which captures trace

events, constructs trace graphs, and follows the path analysing

rules for diagnosis according to AppInsight’s design.

Table 4 shows the results for using the different tools,

including the results for Argus discussed in Section 7.1;

checks indicate correct root cause diagnosis. All of the

other tools diagnosed much fewer performance issues than

Argus. spindump diagnosed at most five issues. It captures

the state near the symptom point but cannot deduce how

the execution reaches a problematic point, especially in the

presence of highly concurrent and asynchronous execution

across different entities. Instruments diagnosed at most four

issues. It only outputs the most costly functions, which are

helpful for performance optimizations but may not be for

troubleshooting specific performance issues. Neither of the

causal tracing tools did any better because the constructed

trace graphs are highly inaccurate. AppInsight only diagnosed

two issues while Panappticon diagnosed four issues.

7.3 Mitigation of Trace Graph Inaccuracies

We evaluated the effectiveness of Argus in mitigating trace

graph inaccuracies in diagnosing the performance issues in

Table 2. Table 4 shows the benefits of weak edges and Beam

202 2021 USENIX Annual Technical Conference USENIX Association

Events Vertices
Edges

Total Strong Weak

Max 12.3M 1.68M 1.62M 751.3K 864.6K

Min 260.8K 15.1K 25.5K 17.5K 8.01K

Mean 3.31M 349.5K 358.4K 188.8K 169.6K

Med 1.02M 97.3K 172.6K 111.9K 60.71K

Table 5: Argus trace graph statistics.
B1 B2 B3 B4 B5 B6 B7 B8 B9 B10B11B12

Issue Id

101

102

103

104

T
im

e
 (

s
)

Graph diagnosis

Graph construction

Figure 8: Argus diagnosis time.

2 4 6 8 10
Setting

0

2

4

6

8

10

12

D
ia

g
n
o
s
e
d
 i
s
s
u
e
s beam width

lookback steps

penalty a

penalty b

Figure 9: Sensitivity of beam search settings.

search. Argus diagnoses eight issues if it discards weak edges

(no weak edges), and seven issues if it uses traditional critical

path analysis instead of Beam search (w/critical path). In both

cases, Argus still performs better than other tools.

Table 5 shows that the Argus trace graphs include hundreds

of thousands to millions of events, and on average have 350K

vertices and up to 1.68M vertices. Graphs are in general dense,

with an average of 358K edges. A significant percentage, 40%

on average, of the edges are tagged as weak edges. To avoid

abusing weak edges and overwhelming the diagnosis, Argus

applies the optimizations discussed in Section 5. Figure 10

shows the percentages of potential weak edges that Argus

excludes from the trace graph for different techniques: call

stack similarity, wait on end of task in a thread, acquire worker

threads, and kernel task delegate. Call stack similarity was

most effective in pruning potential weak edges.

We evaluated the sensitivity of Argus’s beam search settings:

beam width, lookback steps, and penalty function coefficients

a and b. Figure 9 shows the number of diagnosed issues when

changing one setting and leaving the rest at their defaults. The

settings for beam width and lookback steps are robust. Larger

settings increase the diagnosis effectiveness, but if they are too

large, the Argus debugger could run out of memory or time out

for large trace graphs. Changing penalty function coefficients

can significantly change the number of diagnosed issues. In

general, small coefficients from two to four are better. Overall,

the results indicate that Argus is practical, and developers do

not need to spend much effort to tune search settings.

7.4 Performance

We measured the time to run the Argus grapher and debugger

for diagnosing each of the performance issues in Table 2.

Figure 8 shows the time varies for different issues, ranging

from 49 s (B12) to 9870 s (B1). Constructing the trace graph

is the dominant cost. Running the beam search diagnosis

algorithm on the graph is fast, taking at most 144 s (B10).

We also measured the overhead of the Argus tracer using

various CPU, memory, and I/O benchmarks running on a live

deployment of Argus on a MacBookPro9,2 with an Intel Core

i5-3210M CPU, 10 GB RAM, and a 1 TB SSD. We first mea-

sured five runs of the iBench Cocoa benchmark [35], with and

without Argus, to measure overall performance. The reported

scores were 6.14 with 0.027 standard error without Argus trac-

ing and 6.13 with 0.025 standard error with Argus tracing

enabled. Argus only has a 0.16% performance degradation on

average. In comparison, with Instruments, the reported score

was 6.04, showing a 1.6% performance degradation. We next

ran the Chromium Catapult benchmarks [1] to evaluate CPU

performance, with and without Argus tracing. Figure 11 shows

that Argus overhead is less than 5%. The average overhead

for real and user time was 3.36% and 2.15%, respectively.

sys overhead was higher because Argus tracing in libraries in-

volves crossing the user-kernel boundary. Finally, we ran Bon-

nie++ [22] and IOzone [19] I/O benchmarks to evaluate I/O

performance, with and without Argus tracing. Figure 12 shows

the I/O throughput measurements. Argus tracing has almost no

overhead for sequential character read and write operations and

less than 10% overhead for block read and write operations.

8 Discussion and Limitations

Diagnosis in Argus may require the anomalous execution trace

as well as the normal one for comparison. Obtaining the latter

is not difficult. Persistent performance problems are typically

eliminated before release, so the remaining issues are often

non-deterministic, only occur with specific input events (e.g.,

typing special characters), and disappear with other events.

The quality of the Argus diagnosis results is affected by

edge annotation accuracy. Beam search helps tolerate errors by

inspecting multiple paths, but its settings can affect diagnosis

effectiveness, as discussed in Section 6.

Argus addresses performance issues that are reflected in

the underlying execution sequences and CPU time. It does

not handle performance issues due to contentions among

userspace threads or incorrect settings of UI elements.

Argus supports closed-source applications and libraries, but

its tracing infrastructure requires slight source-level kernel

modifications. System libraries such as CoreFoundation are

patched at the binary level. Binary instrumentation could also

be used to implement kernel changes, but is more cumbersome.

Vendors of proprietary OSes have incentives to enhance their

existing tracing mechanisms, and may conceivably adopt

Argus kernel modifications.

We have not yet ported Argus to other OSes, but modern

OSes share many similarities and provide tracing facilities

that can support Argus, such as ETW [39] in Windows and

LTTng in Linux [4]. Therefore, we are hopeful that our ideas

are generally applicable to other OSes.

USENIX Association 2021 USENIX Annual Technical Conference 203

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10B11B12
Issue Id

0

10

20

30

40

50

60

70

80

P
e
rc

e
n
t

(%
)

Callstack similarity

Acquire worker threads

Wait on task's end

Kernel task delegate

Figure 10: Potential weak edges pruned.

20K

40K

60K

C
P
U

 T
im

e
 (

s
)

Sys time w/ Argus

User time w/ Argus

Sys time w/o Argus

User time w/o Argus

a b c d e f g h i j k l m
Benchmark Id

0K

2K

4K

a:webrtc
b:dromaeo
c:blink_perf
d:speedometer
e:octan.desktop
f:memory_desktop
g:smoothness.oop_rasterization.top_25_smooth

h:v8.browsing_desktop
i:page_cycler_v2.typical_2
j:dummy_benchmark.histogram
k:system_health.memory_desktop
l:loading.desktop.network_serv
m:rasterize&record_micro.top_25

Figure 11: CPU overhead.

2,500K

5,000K
With Argus

Without Argus

200K

400K

T
h
ro

u
g
h
p
u
t

(K
B

/s
)

a b c d e f g h i j k
Benchmark Id

0K

20K

a:seq_write_char
b:seq_write_block
c:seq_rewrite
d:seq_read_char
e:seq_read_block

f:seq_file_create
g:seq_file_delete
h:random_file_create
i:random_file_delete
j:iozone_init_write
k:iozone_rewrite

Figure 12: I/O overhead.

9 Related Work
Many causal tracing solutions have been proposed for

networked and distributed systems, including Magpie [14],

XTrace [27], Dapper [44], and Pivot Tracing [38]. These

systems typically attach metadata to each request, propagate

the metadata to all components, and stitch the traces. This

approach assumes (1) the system is composed of white-box

components that can be easily modified; (2) these components

communicate in uniform interfaces. Neither assumption is

true for desktop systems. Magpie [14] does not use metadata

propagation but assumes a manual schema to extract and join

events from different components’ logs. The extracted traces

are limited by what each component chooses to log. However,

desktop components typically are packaged as release builds

that only log critical events, and logging practices among

components vary greatly, which makes writing uniform

schema difficult, time-consuming, and fragile.

Some causal tracing tools have been developed for mobile

applications. AppInsight [40] interposes on the interface

between applications and Windows Mobile frameworks and

assumes that applications follow the event callback program-

ming idiom. Panappticon [56] traces low-level events in

Android and assumes two asynchronous programming idioms,

message queue and thread pooling. Neither of these approaches

is effective for desktop applications such as those in macOS.

Profiling or static code analysis are typically ineffective

for detecting performance issues [23, 34]. Several solu-

tions [29,54] detect performance anomalies by leveraging logs

and call stacks. Other works [21, 24, 42, 50] apply machine

learning methods to identify anomalous events. Yu et al. [52]

study the performance impact of Windows device drivers in

real-world execution traces and propose to extract wait graphs

from the execution traces. Several solutions [15–17] infer

models from logs for distributed and concurrent systems, and

use them to automate the detection of anomalous behavior

when systems are exposed to new workloads and environments.

These systems are orthogonal to Argus, as Argus’s goal is to

diagnose an already-detected performance anomaly.

Argus is complementary to the work on concurrency bugs

and race detection [18,25,26,33,36,47,48,51,53]. The former

typically checks one (server) program, while Argus targets

desktop applications where the defect often involves user inter-

action events, daemons, external frameworks or other applica-

tions. The latter usually focuses on testing and eliminating bugs

before software is released, while Argus focuses on helping de-

velopers diagnose performance issues in the wild. Argus also

addresses performance issues caused by other types of bugs.

10 Conclusions and Future Work

Argus is the first comprehensive causal tracing system to diag-

nose performance anomalies in complex desktop applications.

We observe that although causal tracing is powerful and exten-

sively studied in distributed systems, it is brittle when applied

to desktop systems due to inherent tracing inaccuracies. Argus

addresses this problem by introducing annotated trace graphs

with strong and weak edges to account for these inaccuracies.

Argus pairs annotated trace graphs with a novel beam search

diagnosis algorithm and subgraph comparison mechanism

to determine causal paths in the presence of these inaccura-

cies. We have implemented Argus across multiple versions of

macOS and evaluated its effectiveness on complex desktop ap-

plications. Argus successfully pinpoints the root causes for 12

real-world performance issues in these applications, many of

which had remained open for several years. Argus imposes less

than 5% CPU overhead, making it fast enough for regular use.

We believe Argus’s strong and weak edge notions and

inaccuracy-tolerant diagnosis algorithm may extend beyond

the scope of desktop systems. In causal tracing of distributed

systems, many solutions assume systems are perfectly

instrumented, but in practice this is not the case. We plan to

explore using Argus’s techniques in the context of distributed

systems as an area of future work.

Acknowledgments

We thank our shepherd, Pedro Fonseca, and the anonymous re-

viewers for their valuable feedback. This work was supported

in part by NSF grants CCF-1918400, CNS-1563555, CNS-

1564055, CNS-1942794, CNS-1910133, and CCF-1918757,

ONR grants N00014-16-1-2263 and N00014-17-1-2788,

a JP Morgan Faculty Research Award, and a DiDi Faculty

Research Award.

204 2021 USENIX Annual Technical Conference USENIX Association

References

[1] Catapult : Chromium benchmark. https://chromium.

googlesource.com/catapult.

[2] Chromium issue 115920: Response time can be really

long with some IMEs (e.g. Pinyin IME (Apple), Sogou

Pinyin IME). https://bugs.chromium.org/p/chromium/

issues/detail?id=115920.

[3] Kernel probes (Kprobes). https://www.kernel.org/

doc/html/latest/trace/kprobes.html.

[4] LTTng: Linux tracing toolkit - next generation.

https://lttng.org.

[5] perf: Linux profiling with performance counters.

https://perf.wiki.kernel.org/index.php/Main_Page.

[6] Quiver: Crash when applying bullet points on multiple

lines of text. https://github.com/HappenApps/Quiver/

issues/21.

[7] Quiver: The programmer’s notebook. https:

//happenapps.com.

[8] Sequel-Ace fix reconnect timeout - accept SSH

password after network connection reset. https:

//github.com/Sequel-Ace/Sequel-Ace/pull/772.

[9] TeXstudio freezes when bib file is updated in the

background. https://github.com/texstudio-org/

texstudio/issues/288.

[10] Apple. Activity monitor user guide: Run system

diagnostics in activity monitor on mac. https:

//support.apple.com/guide/activity-monitor/

run-system-diagnostics-actmntr2225/mac.

[11] Apple. Cocoa fundamentals guide. https://developer.

apple.com/library/archive/documentation/Cocoa/

Conceptual/CocoaFundamentals/Introduction/

Introduction.html.

[12] Apple. Instruments overview. https://help.apple.

com/instruments/mac/current/#/dev7b09c84f5.

[13] Apple. trace: configure, record, and display kernel

trace events. https://opensource.apple.com/source/

system_cmds/system_cmds-671.10.3/trace.tproj.

[14] Paul Barham, Austin Donnelly, Rebecca Isaacs, and

Richard Mortier. Using Magpie for request extraction

and workload modelling. In Proceedings of the 6th

USENIX Symposium on Operating Systems Design

and Implementation (OSDI’04), pages 259 – 272, San

Francisco, CA, USA, December 2004.

[15] Ivan Beschastnikh, Yuriy Brun, Michael D. Ernst, and

Arvind Krishnamurthy. Inferring models of concurrent

systems from logs of their behavior with csight. In

Proceedings of the 36th International Conference

on Software Engineering (ICSE’14), page 468–479,

Hyderabad, India, May 2014.

[16] Ivan Beschastnikh, Yuriy Brun, Michael D Ernst, Arvind

Krishnamurthy, and Thomas E Anderson. Mining tempo-

ral invariants from partially ordered logs. In Workshop on

Managing Large-scale Systems via the Analysis of Sys-

tem Logs and the Application of Machine Learning Tech-

niques (SLAML’11), Cascais, Portugal, October 2011.

[17] Ivan Beschastnikh, Yuriy Brun, Sigurd Schneider,

Michael Sloan, and Michael D. Ernst. Leveraging

existing instrumentation to automatically infer invariant-

constrained models. In Proceedings of the 19th ACM

SIGSOFT Symposium on Foundations of Software

Engineering (FSE’11), pages 267–277, Szeged, Hungary,

September 2011.

[18] Cristian Cadar, Daniel Dunbar, and Dawson Engler. Klee:

Unassisted and automatic generation of high-coverage

tests for complex systems programs. In Proceedings

of the 8th USENIX Symposium on Operating Systems

Design and Implementation (OSDI’08), page 209–224,

San Diego, CA, USA, December 2008.

[19] Don Capps, Carol Capps, Darren Sawyer, Jerry Lohr,

George Dowding, Gary Little, Capps Capps, Robin

Miller, Sorin Faibish, Raymond Wang, Tanmay Wagh-

mare, Yansheng Zhang, Vernon Miller, Nick Principe,

Zach Jones, Udayan Bapat, William Norcott, Isom Craw-

ford, Kirby Collins, Al Slater, Scott Rhine, Mike Wis-

ner, Ken Goss, Steve Landherr, Brad Smith, Mark Kelly,

Alain Dr. CYR,Randy Dunlap,Mark Montague,Dan Mil-

lion, Gavin Brebner, Jean-Marc Zucconi, Jeff Blomberg,

Halevy. Benny, Dave Boone, Erik Habbinga, Kris

Strecker, Walter Wong, Joshua Root, Fabrice Bacchella,

Zhenghua Xue, Qin Li, Darren Sawyer, Vangel Bojaxhi,

Ben England, Lapa. Vikentsi, and Alexey Skidanoy. IO-

zone filesystem benchmark. https://www.iozone.org/.

[20] Mike Y. Chen, Emre Kiciman, Eugene Fratkin, Armando

Fox, and Eric Brewer. Pinpoint: Problem determination

in large, dynamic internet services. In Proceedings

of the 32nd IEEE/IFIP International Conference on

Dependable Systems and Networks (DSN’02), pages

595–604, Bethesda, MD, USA, June 2002.

[21] Ira Cohen, Moises Goldszmidt, Terence Kelly, Julie

Symons, and Jeffrey S. Chase. Correlating instru-

mentation data to system states: A building block for

automated diagnosis and control. In Proceedings of the

6th USENIX Symposium on Operating Systems Design

USENIX Association 2021 USENIX Annual Technical Conference 205

and Implementation (OSDI’04), pages 231–244, San

Francisco, CA, USA, December 2004.

[22] Russell Coker. Bonnie++ benchmarking.

https://www.coker.com.au/bonnie++/.

[23] Charlie Curtsinger and Emery D. Berger. COZ: Finding

code that counts with causal profiling. In Proceedings

of the 25th ACM Symposium on Operating Systems

Principles (SOSP’15), pages 184–197, Monterey, CA,

USA, October 2015.

[24] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar.

Deeplog: Anomaly detection and diagnosis from system

logs through deep learning. In Proceedings of the

2017 ACM SIGSAC Conference on Computer and

Communications Security (CCS’17), page 1285–1298,

Dallas, TX, USA, October 2017.

[25] Pedro Fonseca, Cheng Li, and Rodrigo Rodrigues. Find-

ing complex concurrency bugs in large multi-threaded

applications. In Proceedings of the 6th European

Conference on Computer Systems (EuroSys’11), pages

215–228, Salzburg, Austria, April 2011.

[26] Pedro Fonseca, Cheng Li, Vishal Singhal, and Rodrigo

Rodrigues. A study of the internal and external effects of

concurrency bugs. In Proceedings of the 40th IEEE/IFIP

International Conference on Dependable Systems and

Networks (DSN’10), pages 221–230, Chicago, IL, USA,

June 2010.

[27] Rodrigo Fonseca, George Porter, Randy H. Katz,

Scott Shenker, and Ion Stoica. X-trace: A pervasive

network tracing framework. In Proceedings of the 4th

USENIX Symposium on Networked Systems Design and

Implementation (NSDI’07), pages 271–284, Cambridge,

MA, USA, April 2007.

[28] Susan L. Graham, Peter B. Kessler, and Marshall K.

Mckusick. Gprof: A call graph execution profiler. In

Proceedings of the 1982 SIGPLAN Symposium on

Compiler Construction (SIGPLAN’82), page 120–126,

Boston, MA, USA, June 1982.

[29] Shi Han, Yingnong Dang, Song Ge, Dongmei Zhang, and

Tao Xie. Performance debugging in the large via mining

millions of stack traces. In Proceedings of the 34th Inter-

national Conference on Software Engineering (ICSE’12),

pages 145–155, Zurich, Switzerland, June 2012.

[30] Tyler Harter, Chris Dragga, Michael Vaughn, Andrea C.

Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. A file

is not a file: Understanding the I/O behavior of Apple

desktop applications. In Proceedings of the 23rd ACM

Symposium on Operating Systems Principles (SOSP’11),

page 71–83, Cascais, Portugal, October 2011.

[31] Galen Hunt and Doug Brubacher. Detours: Binary

interception of win32 functions. In Proceedings of the

3rd USENIX Windows NT Symposium, pages 135–143,

Seattle, WA, USA, July 1999.

[32] Jonathan Kaldor, Jonathan Mace, Michał Bejda, Edison

Gao, Wiktor Kuropatwa, Joe O’Neill, Kian Win Ong,

Bill Schaller, Pingjia Shan, Brendan Viscomi, Vinod

Venkataraman, Kaushik Veeraraghavan, and Yee Jiun

Song. Canopy: An end-to-end performance tracing

and analysis system. In Proceedings of the 26th ACM

Symposium on Operating Systems Principles (SOSP’17),

pages 34–50, Shanghai, China, October 2017.

[33] Oren Laadan, Nicolas Viennot, Chia-Che Tsai, Chris

Blinn, Junfeng Yang, and Jason Nieh. Pervasive

detection of process races in deployed systems. In

Proceedings of the 23rd ACM Symposium on Operating

Systems Principles (SOSP’11), pages 353–367, Cascais,

Portugal, October 2011.

[34] Bozhen Liu and Jeff Huang. D4: Fast concurrency debug-

ging with parallel differential analysis. In Proceedings

of the 39th ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI’18), pages

359–373, Philadelphia, PA, USA, June 2018.

[35] Ramón Medrano Llamas. iBench: The Cocoa

Benchmark. https://ibench.sourceforge.io.

[36] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou.

Learning from mistakes: A comprehensive study on real

world concurrency bug characteristics. In Proceedings

of the 13th International Conference on Architectural

Support for Programming Languages and Operating

Systems (ASPLOS’08), pages 329–339, Seattle, WA,

USA, March 2008.

[37] Jonathan Mace and Rodrigo Fonseca. Universal context

propagation for distributed system instrumentation.

In Proceedings of the 13th European Conference on

Computer Systems (EuroSys’18), pages 1–18, Porto,

Portugal, April 2018.

[38] Jonathan Mace, Ryan Roelke, and Rodrigo Fonseca.

Pivot tracing. In Proceedings of the 25th ACM Sympo-

sium on Operating Systems Principles (SOSP’15), pages

378–393, Monterey, CA, USA, October 2015.

[39] Microsoft. Event tracing for windows. https://docs.

microsoft.com/en-us/windows-hardware/drivers/

devtest/event-tracing-for-windows--etw-, 2002.

[40] Lenin Ravindranath, Jitendra Padhye, Sharad Agarwal,

Ratul Mahajan, Ian Obermiller, and Shahin Shayandeh.

AppInsight: Mobile app performance monitoring in the

wild. In Proceedings of the 10th USENIX Symposium

206 2021 USENIX Annual Technical Conference USENIX Association

on Operating Systems Design and Implementation

(OSDI’12), pages 107–120, Hollywood, CA, USA,

October 2012.

[41] Patrick Reynolds, Charles Edwin Killian, Janet L Wiener,

Jeffrey C Mogul, Mehul A Shah, and Amin Vahdat. Pip:

Detecting the unexpected in distributed systems. In Pro-

ceedings of the 3rd USENIX Symposium on Networked

Systems Design and Implementation (NSDI’06), pages

115–128, San Jose, CA, USA, May 2006.

[42] Ali G. Saidi, Nathan L. Binkert, Steven K. Reinhardt,

and Trevor Mudge. Full-system critical path analysis.

In Proceedings of the 2008 IEEE International Sympo-

sium on Performance Analysis of Systems and software

(ISPASS’08), pages 63–74, Austin, TX, USA, April 2008.

[43] Raja R. Sambasivan, Ilari Shafer, Jonathan Mace,

Benjamin H. Sigelman, Rodrigo Fonseca, and Gre-

gory R. Ganger. Principled workflow-centric tracing

of distributed systems. In Proceedings of the 7th ACM

Symposium on Cloud Computing (SoCC’16), pages

401–414, Santa Clara, CA, USA, October 2016.

[44] Benjamin H. Sigelman, Luiz André Barroso, Mike

Burrows, Pat Stephenson, Manoj Plakal, Donald Beaver,

Saul Jaspan, and Chandan Shanbhag. Dapper, a

large-scale distributed systems tracing infrastructure.

Technical report, Google, April 2010.

[45] The LLDB Team. The LLDB Debugger.

https://lldb.llvm.org/.

[46] Eno Thereska, Brandon Salmon, John Strunk, Matthew

Wachs, Michael Abd-El-Malek, Julio Lopez, and

Gregory R. Ganger. Stardust: Tracking activity in a

distributed storage system. In Proceedings of the Joint In-

ternational Conference on Measurement and Modeling of

Computer Systems (SIGMETRICS’06/Performance’06),

pages 3–14, Saint Malo, France, June 2006.

[47] Kaushik Veeraraghavan, Peter M. Chen, Jason Flinn,

and Satish Narayanasamy. Detecting and surviving data

races using complementary schedules. In Proceedings

of the 23rd ACM Symposium on Operating Systems

Principles (SOSP’11), pages 369–384, Cascais, Portugal,

October 2011.

[48] Jingyue Wu, Heming Cui, and Junfeng Yang. Bypassing

races in live applications with execution filters. In Pro-

ceedings of the 9th USENIX Symposium on Operating

Systems Design and Implementation (OSDI’10), pages

135––149, Vancouver, BC, Canada, October 2010.

[49] Weiwei Xiong, Soyeon Park, Jiaqi Zhang, Yuanyuan

Zhou, and Zhiqiang Ma. Ad Hoc synchronization

considered harmful. In Proceedings of the 9th USENIX

Symposium on Operating Systems Design and Imple-

mentation (OSDI’10), pages 163–176, Vancouver, BC,

Canada, October 2010.

[50] Wei Xu, Ling Huang, Armando Fox, David Patterson,

and Michael I. Jordan. Detecting large-scale system

problems by mining console logs. In Proceedings of the

22nd ACM Symposium on Operating Systems Principles

(SOSP’09), pages 117–132, Big Sky, MT, USA, October

2009.

[51] Jie Yu, Satish Narayanasamy, Cristiano Pereira, and

Gilles Pokam. Maple: A coverage-driven testing tool

for multithreaded programs. In Proceedings of the

ACM International Conference on Object Oriented

Programming Systems Languages and Applications

(OOPSLA’12), pages 485–502, Tucson, AZ, USA,

October 2012.

[52] Xiao Yu, Shi Han, Dongmei Zhang, and Tao Xie.

Comprehending performance from real-world execution

traces. In Proceedings of the 19th International

Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS’14), pages

193–206, Salt Lake City, UT, USA, February 2014.

[53] Yuan Yu, Tom Rodeheffer, and Wei Chen. Racetrack:

Efficient detection of data race conditions via adaptive

tracking. In Proceedings of the 20th ACM Symposium

on Operating Systems Principles (SOSP’05), pages

221–234, Brighton United Kingdom, October 2005.

[54] Ding Yuan, Soyeon Park, Peng Huang, Yang Liu,

Michael M. Lee, Xiaoming Tang, Yuanyuan Zhou, and

Stefan Savage. Be conservative: Enhancing failure

diagnosis with proactive logging. In Proceedings of

the 10th USENIX Symposium on Operating Systems

Design and Implementation (OSDI’12), pages 293–306,

Hollywood, CA, USA, October 2012.

[55] Benito van der Zander, Jan Sundermeyer, Danel

Braun, and Tim Hoffmann. TeXstudio: LaTeX made

comfortable. https://www.texstudio.org.

[56] Lide Zhang, David R. Bild, Robert P. Dick, Z. Morley

Mao, and Peter Dinda. Panappticon: Event-based tracing

to measure mobile application and platform performance.

In Proceedings of 2013 International Conference on

Hardware/Software Codesign and System Synthesis

(CODES+ISSS), Montreal, QC, Canada, September

2013.

USENIX Association 2021 USENIX Annual Technical Conference 207

	Introduction
	Motivation and Observations
	Overview of Argus
	Argus Tracer
	Argus Grapher
	Argus Debugger
	Causal Path Search—Beam Search
	Subgraph Comparison
	Debug Information
	Diagnosis for Spinning Pinwheel in macOS

	Evaluation
	Diagnosis Effectiveness
	Comparing with Other Approaches
	Mitigation of Trace Graph Inaccuracies
	Performance

	Discussion and Limitations
	Related Work
	Conclusions and Future Work

