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Abstract

Reverse causality has made it difficult to establish the causal directions between obesity

and prediabetes and obesity and insulin resistance. To disentangle whether obesity causally

drives prediabetes and insulin resistance already in non-diabetic individuals, we utilized the

UK Biobank and METSIM cohort to perform a Mendelian randomization (MR) analyses in

the non-diabetic individuals. Our results suggest that both prediabetes and systemic insulin

resistance are caused by obesity (p = 1.2×10−3 and p = 3.1×10−24). As obesity reflects the
amount of body fat, we next studied how adipose tissue affects insulin resistance. We per-

formed both bulk RNA-sequencing and single nucleus RNA sequencing on frozen human

subcutaneous adipose biopsies to assess adipose cell-type heterogeneity and mitochon-

drial (MT) gene expression in insulin resistance. We discovered that the adipose MT gene

expression and body fat percent are both independently associated with insulin resistance

(p�0.05 for each) when adjusting for the decomposed adipose cell-type proportions. Next,

we showed that these 3 factors, adipose MT gene expression, body fat percent, and adipose
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cell types, explain a substantial amount (44.39%) of variance in insulin resistance and can

be used to predict it (p�2.64×10−5 in 3 independent human cohorts). In summary, we dem-

onstrated that obesity is a strong determinant of both prediabetes and insulin resistance,

and discovered that individuals’ adipose cell-type composition, adipose MT gene expres-

sion, and body fat percent predict their insulin resistance, emphasizing the critical role of adi-

pose tissue in systemic insulin resistance.

Author summary

Obesity is a global health epidemic predisposing to type 2 diabetes (T2D) and other cardi-

ometabolic disorders. Previous studies have shown that obesity has a causal effect on T2D;

however, it remains unknown whether obesity causes prediabetes and insulin resistance

already in non-diabetic individuals. By utilizing almost half a million individuals from the

UK Biobank and the Finnish METSIM cohort, we identified a significant causal effect of

obesity on prediabetes and insulin resistance among the non-diabetic individuals. Next,

we investigated the role of subcutaneous adipose tissue in these obesogenic effects. We

discovered that the adipose mitochondrial gene expression and body fat percent are inde-

pendently associated with insulin resistance after adjusting for the tissue heterogeneity.

For the latter, we estimated the adipose cell type proportions by utilizing single-nucleus

RNA sequencing of frozen adipose tissue biopsies. Moreover, we established a prediction

model to estimate insulin resistance using body fat percent and adipose RNA-sequencing

data, which enlightens the importance of adipose tissue in insulin resistance and provides

a helpful tool to impute the insulin resistance for existing adipose RNA-sequencing

cohorts. Overall, we discover the potential causal effect of obesity on prediabetes and insu-

lin resistance and the key role of adipose tissue in insulin resistance.

Introduction

The global obesity epidemic is driving the concomitant rapid increase in the prevalence of car-

diometabolic disorders, including type 2 diabetes (T2D) [1,2]. It is well established that obesity,

prediabetes, and insulin resistance are tightly associated [3–8]. Although prediabetes is an

inevitable stage for T2D patients, some people with prediabetes do not ultimately develop dia-

betes given that the annualized conversion rate of prediabetes to diabetes is estimated to be

5%–10% [9]. Thus, it is important to investigate whether obesity is also a causal risk factor for

the early stages of T2D development (i.e. prediabetes). Moreover, inflammation has been iden-

tified as the link between obesity and insulin resistance [10–15]. For example, Roberts-Toler

et al. showed that diet-induced obesity can cause insulin resistance in mouse brown adipose

tissue [16]. Wensveen et al. showed that natural killer cells can mediate the association between

obesity and insulin resistance in mice [17]. However, the direction of the causal effect between

obesity and insulin resistance remains elusive in humans [18,19]. Thus, direct evidence of obe-

sity causing systemic insulin resistance in humans is still lacking. To this end, we performed a

Mendelian randomization (MR) analysis using the genotype and metabolic traits of unrelated

non-diabetic individuals from both UK Biobank (UKB) [20] and the Finnish METabolic Syn-

drome In Men (METSIM) cohort [21]. This report suggests for the first time using MR that

obesity (i.e. body fat percent) is causally related with both prediabetes and insulin resistance in

non-diabetic humans.

PLOS GENETICS Obesity causes prediabetes in non-diabetic individuals

PLOSGenetics | https://doi.org/10.1371/journal.pgen.1009018 September 14, 2020 2 / 23

repository, but restrictions apply to the availability

of these data, which were used under license for

the current study and therefore are not publicly

available. Data are however available with the

permission of UK Biobank. The GTEx dataset

analyzed during this study are available in the

dbGAP repository, phs000424.v6.p1 (currently

available under accession number phs000424.v8.

p2). The METSIM gene expression data were

previously made available in GEO under

GSE135134.

Funding: This study was funded by National

Institutes of Health (NIH) grants HL-095056, HL-

28481, R01HG010505, and U01 DK105561. Z.M

was supported by the AHA grant 19PRE34430112,

M.A. was supported by the HHMI Gilliam grant,

and A.K. by the NIH grant F31HL127921. E.H., E.R.

and B.J. were partially supported by the National

Science Foundation grant 1705197. E.H., E.R., and

B.J. were partially supported by NIH/NHGRI

HG010505-02. K.H.P. was supported by the

Academy of Finland (272376, 266286, 314383,

315035), Finnish Medical Foundation, Finnish

Diabetes Research Foundation, Novo Nordisk

Foundation, Gyllenberg Foundation, Sigrid Juselius

Foundation, Helsinki University Hospital Research

Funds, Government Research Funds and

University of Helsinki. The funders had no role in

study design, data collection, and analysis,

decision to publish, or preparation of the article.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pgen.1009018


The key functions of adipose tissue, i.e. lipogenesis (storing fat) and lipolysis (mobilizing

the stored fat), make it one of the most important tissues contributing to obesity. Thus, it

would be important to better understand how much this endocrine tissue contributes to insu-

lin resistance and T2D. Since adipose tissue is complex and contains multiple cell-types, adi-

pose cell-type composition may be affected by obesity. Weisberg et al. showed that the number

of macrophages increases in the adipose tissue of obese mice [22]. Furthermore, in human adi-

pose tissue, high BMI was reported to be negatively correlated with the number of adipocytes

[23] and positively correlated with the size of the adipocytes [22–24]. However, the effects of

different adipose cell-type proportions on insulin resistance have not been systematically

assessed in humans previously.

Fluorescence-activated cell sorting (FACS) has been used for characterizing and defining

some of the cell types in human adipose samples [25–27]. Even though the number of marker

proteins that can be simultaneously measured in FACS has progressively increased [28], FACS

relies on predetermined cell-type specific marker proteins to isolate different cell types and is

thus unable to discover new cell types or sub-cell types. Moreover, since FACS requires a large

starting number of cells (more than 10,000) in suspension [29], it is unable to isolate single

cells from a low quantity cell population. Overall, it is highly challenging to evaluate all cell

types of solid tissues, such as adipose tissue, using FACS. Thus, to thoroughly investigate the

tissue heterogeneity in human adipose tissue, we performed single nucleus RNA sequencing

(sn-RNA-seq) of all adipose cell types using frozen human subcutaneous adipose biopsies. We

then utilized the sn-RNA-seq data to define expression profiles of signature genes in different

adipose cell-types to decompose cell-type proportions in the bulk adipose RNA-seq cohorts.

This helped us leverage the gene expression information available in the adipose bulk RNA-

seq data to assess whether adipose cell-type composition influences systemic insulin resistance.

Previous studies have shown that the biogenesis and metabolic activities of the mitochon-

dria (MT) are impaired in the adipose tissue of obese individuals [2, 30–33]. Experimental evi-

dence also shows that declined MT function can elicit insulin resistance in mice [34,35].

Paglialunga et al. further demonstrated that elevated MT reactive oxygen species (ROS) emis-

sion in murine white adipose tissue contributes to insulin resistance [35]. Furthermore, dys-

function of MT in muscle and liver associates with insulin resistance in humans [36,37].

However, since the MT activity, obesity status (body fat percent or BMI), and systemic insulin

resistance are associated with each other, it is unclear whether these associations are caused by

independent mechanisms or confounded by a shared trait. To this end, we investigated

whether MT gene expression in human adipose tissue is independently associated with sys-

temic insulin resistance and body fat percent/BMI. Furthermore, we built a prediction model

to investigate whether systemic insulin resistance (i.e. assessed using the Matsuda index) in

humans can be predicted using adipose cell-type proportions, adipose MT gene expression,

and body fat percent as an input. Overall our studies helped determine the causal role of obe-

sity in human insulin resistance, of which a major portion is driven by adipose tissue.

Results

Evidence fromMendelian randomization for the role of obesity in
prediabetes and systemic insulin resistance in non-diabetic individuals

Although obesity and prediabetes are known to be associated [7,8], there is no previous MR

evidence about the causal direction between them in non-diabetic individuals. To this end,

we performed an MR analysis to investigate whether prediabetes (assessed by serum HbA1C

level between 5.7–6.4 [38]) is caused by obesity. Fig 1A shows the two-sample MR models

we used to explore causal associations between prediabetes and obesity (body fat percent).
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As BMI reflects both fat and lean mass, we used body fat percent instead of BMI in our MR

analyses to utilize a more specific surrogate of obesity [39,40]. For this MR analysis, we first

randomly separated the UKB cohort into two independent groups (n = ~190k in each

group). Then we performed a GWAS for body fat percent in one of the UKB groups that

identified 74 non-redundant SNPs (R2
<0.01) significantly associated with body fat percent

Fig 1. MR analysis shows the causal relationship of body fat percent on prediabetes andMatsuda index, i.e. obesity leads to insulin resistance. (A) Workflow
of our MR analysis in UKB andMETSIM cohorts. (B) The variant effect sizes on the exposure (i.e. body fat percent) are associated with the variant effect sizes on
the outcome (i.e. the Matsuda index). The slope indicates the estimated causal effect of the exposure on the outcome. The label boxes showed the MR results after
MR-PRESSO adjusted for potential pleiotropy. P.pleio indicates the p-value of pleiotropy identified by MR-egger. The IVs are significant body fat percent GWAS
variants in UKB (see the Methods for details). (C) A two-sample MR analyses show the causal effect of obesity (i.e. body fat percent) on prediabetes in UKB cohort.
The IVs are significant prediabetes GWAS variants in UKB (see the Methods for details). (D) A two-sample MR analysis did not identify the causal effect of
prediabetes on obesity (i.e. body fat percent). The p-values of the causal effects fromMR-PRESSO andMR-egger were adjusted for 3 tests using a Bonferroni
correction. To keep a stringent control of the potential pleiotropy, the other p-values (Heterogeneity test and P.pleio) were not adjusted for multiple testing. NS
indicates a non-significant p-value (p-value> 0.05). The IVs are significant body fat percent GWAS variants in UKB (see the Methods for details).

https://doi.org/10.1371/journal.pgen.1009018.g001
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(p<5×10−8), which we used as the genetic instrumental variables (IVs) in the MR analysis

(see Methods). Next, we used the second UKB group to perform a GWAS analysis on predia-

betes to fulfill the two-sample MR design. Since dyslipidemia and abnormal blood pressure

are known factors associated with obesity and diabetes [41,42], we excluded the IVs that are

significantly associated with diastolic/systolic blood pressure or serum total triglycerides in

the UKB cohort to avoid potential pleiotropy. Finally, we used the summary statistics from

the GWAS analysis and MR-PRESSO [43] to identify a significant positive causal effect of

body fat percent on prediabetes in the UKB (estimate effect = 0.039; adjusted p-

value = 1.2×10−3). To further investigate the effect of obesity on prediabetes, we also

employed MR-egger and heterogeneity test on the IVs adjusted by MR-PRESSO. Although

MR-egger did not identify a significant causal effect of body fat percent on prediabetes using

the threshold of p-value< 0.05, neither MR-egger nor heterogeneity test identified a signifi-

cant pleiotropy in this MR analyses (Fig 1C). Since MR-egger usually tend to have less power

compared to other MR methods [44], finding no evidence for pleiotropy fromMR-egger

and heterogeneity test appears still to be in line with the causal effect of body fat percent on

prediabetes identified by MR-PRESSO (Fig 1C). This also suggests that our MR model ful-

fills the second and third assumptions of MR analysis (i.e. the IV is not associated with the

hidden confounders or with the outcome variable (i.e. prediabetes) when conditioning on

the exposure variable (i.e. body fat percent)). To test the possibility of the reverse causal

path, we utilized 47 independent prediabetes GWAS SNPs as IVs from our GWAS in the

second half of the UKB and explored the potential causal effect of prediabetes on obesity. Fig

1D shows that there is no causal effect of prediabetes on body fat percent (estimated

effect = 0.13, adjusted p-value> 0.05). As we performed 3 MR analyses to explore the causal

effects among obesity, insulin resistance and prediabetes, we adjusted the p-values of causal

effects for 3 tests using a Bonferroni correction. Thus, using MR in the UKB, we established

a one-way causal effect of obesity on prediabetes.

To further investigate this finding, we next explored the causal relationship between obesity

and systemic insulin resistance (i.e. decreased insulin sensitivity assessed by the Matsuda

index) in the METSIM cohort. We used the 241 significant non-redundant body fat percent

GWAS SNPs identified in the UKB as IVs for the MR analyses in METSIM. Using

MR-PRESSO, we discovered a negative causal effect of body fat percent on the Matsuda index

(i.e. insulin sensitivity) in METSIM (estimate effect = -0.67, p-value = 3.1×10−24). It is worth

noting that MR-PRESSO did not find any evidence of global pleiotropy (p-value> 0.05) when

testing the causal effect of body fat percent on the Matsuda index in METSIM (Fig 1B). More-

over, MR-egger verified this finding (adjusted p-value = 4.2 ×10−8) while it identified no evi-

dence of pleiotropy (P.pleio> 0.05). A heterogeneity test also showed the concordant results

with MR-egger and MR-PRESSO (p-value> 0.05). When investigating the opposite direction

of causality (i.e. insulin resistance -> obesity) using a similar pipeline, we found no genome-

wide significant SNPs associated with the Matsuda index in METSIM or other cohorts of pre-

vious studies. Furthermore, no insulin resistance parameters are measured in the UKB. There-

fore, the first assumption of MR (i.e. IV is associated with the exposure variable) cannot be

fulfilled. As METSIM may be underpowered to identify genome-wide significant SNPs for the

Matsuda index, the current sample size of the Matsuda index GWAS does not allow a reliable

MR analysis in this opposite direction. Accordingly, assessment of this direction using MR

warrants further investigation in larger GWAS cohorts with the Matsuda index available for

study.

To investigate whether potential confounders affect our MR analyses, we tested for associa-

tion between the IVs and 3 potential confounders, i.e. alcohol intake, smoking, and physical

activity. S1 Fig shows that in all 3 MR analyses, only 4 IV variants (rs7187776, rs1788783,
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rs1872841, and rs62037364) showed a significant association with these confounders (S1A

Fig), and removing these 4 variants did not affect our MR results (S1B and S1C Fig), and thus

obesity still showed a significant causal effect on both insulin resistance and prediabetes.

In summary, we established a one-way causal effect of obesity on prediabetes among the

non-diabetic individuals from the UKB. Although MR-egger did not identify a similar signifi-

cant causal effect of body fat percent on prediabetes as MR-PRESSO, the pleiotropy test

employed by MR-egger and a heterogeneity test did not identify evidence for pleiotropy,

which suggests no violation of the no-pleiotropy assumptions required by an MR analyses. In

contrast, prediabetes did not show any evidence for a causal effect on body fat percent. We

then followed up this finding by identifying a negative causal effect of body fat percent on insu-

lin sensitivity (i.e. Matsuda index) in the non-diabetic individuals fromMETSIM. Although

METSIM is underpowered to investigate the reverse-causal effect (i.e. insulin resistance ->

body fat percent), the MR analyses performed in both UKB and METSIM suggest that obesity

causes prediabetes and insulin resistance before the development of diabetes and thus, predia-

betes is less likely to cause obesity among the non-diabetic population.

Adipose mitochondrial (MT) gene expression plays a key role in insulin
resistance

We have shown that obesity (i.e. a high body fat percent) leads to increased insulin resistance

in human using MR analysis. Since obesity reflects the amount of body fat, adipose tissue may

play an important role in obesity-induced insulin resistance. Thus, we further investigated

how adipose tissue affects the Matsuda index in the METSIM cohort. Among the 4k unrelated

individuals in METSIM, 335 had bulk RNA-seq data from the subcutaneous adipose tissue

biopsies. To estimate MT gene expression, we estimated the transcripts per million (TPM) val-

ues of each gene in the RNA-seq data and used the sum of TPMs from all 37 MT encoded

genes to represent the MT gene expression. We also included the first 3 genetic PCs as covari-

ates when correcting the MT expression to adjust for the potential population stratification

(see Methods). We first observed that MT expression is significantly associated with BMI and

body fat percent in the Finnish METSIM cohort using a threshold of p-value< 0.05 (S2A and

S2B Fig). We also verified this association between the obesity stage and MT expression in

another population, and our data in the Mexican cohort (see Methods) show that the lean

Mexicans have significantly higher MT adipose expression when compared to the obese Mexi-

cans (p-value = 0.016) (S2C Fig).

Next, we corrected the Matsuda index in METSIM for age, age2 and excluded people who

have type 2 diabetes (T2D) (n = 11). The Matsuda index and MT gene expression were inverse

normal transformed to obtain normal distribution. Using these data, we discovered that the

MT gene expression is significantly associated with Matsuda index (p-value = 9.60 × 10−15,

n = 324) in METSIM (Fig 2A). To further replicate and validate this finding, we tested the

association between MT gene expression and insulin resistance in the RNA-seq data from 5

different tissues in the GTEx cohort. Since the GTEx cohort does not have the Matsuda index

measured, we tested the MT gene expression difference between the patients with T2D and

non-diabetic individuals. Fig 2B shows that, as in METSIM, the patients with T2D in GTEx

have significantly lower MT gene expression in the subcutaneous and visceral adipose tissue

than the non-diabetic individuals (S3A Fig). However, in three other non-adipose tissues from

GTEx, only muscle MT gene expression (n = 305) showed the significant difference between

T2D patients and non-diabetics (P = 3.42×10−2). In the liver and whole blood (total n = 412),

no significant difference was observed using the threshold of p-value< 0.05 (S3 Fig). These

results support the important role of adipose tissue and muscle in the insulin resistance related
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Fig 2. A low adipose MT gene expression is associated with insulin resistance. (A) In METSIM, the adjusted adipose MT gene expression is significantly
associated with the adjustedMatsuda index. (B) In GTEx, the non-diabetic individuals have significantly higher adjustedMT gene expression (inverse normal
transformed) than the T2D patients.

https://doi.org/10.1371/journal.pgen.1009018.g002

Fig 3. Analysis of sn-RNA-seq data reveals tissue heterogeneity in human subcutaneous adipose tissue. (A) We identified 8 cell-type clusters in 15,623 nuclei
from frozen human adipose tissue from 6 Finnish individuals. The t-SNP plot is colored by the identified cell types. (B) Using sn-RNA-seq as reference, the
estimated adipose cell-type proportions from bulk adipose RNA-seq data are well concordant with the true cell-type proportions.

https://doi.org/10.1371/journal.pgen.1009018.g003
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metabolic process; however, due to the limited sample size of the GTEx liver cohort (n = 123),

we cannot exclude the potential role of liver in insulin resistance. Taken together, the adipose

MT gene expression is significantly associated with insulin resistance in the METSIM cohort

and T2D in the GTEx cohort. In both subcutaneous and visceral adipose tissue, the MT gene

expression is significantly lower in insulin resistant individuals.

Assessing tissue heterogeneity and adipose cell type proportions using
single nucleus RNA sequencing

Single nucleus RNA sequencing reveals 8 cell-types in human adipose tissue. Adipose

tissue is a complex tissue that consists of multiple cell-types, such as adipocytes, preadipocytes,

macrophages, fibroblasts, and vascular cells. Even though adipocytes comprise ~90% of the

total volume in the human adipose tissue, they only take ~50% of the total cell count [45–47].

We hypothesized that the metabolic processes in different contexts and adipose cell-types asso-

ciated with obesity may substantially affect systemic insulin resistance. To investigate how adi-

pose cell-type heterogeneity affects insulin resistance, we performed single-nucleus RNA

sequencing (sn-RNA-seq) on 6 frozen human subcutaneous adipose tissue biopsies (see the

Methods) and used cell-type-specific gene expression data as a reference to identify signature

genes for each adipose cell-type in order to estimate cell-type proportions from the bulk adi-

pose RNA-seq profiles.

Using the 10x Genomics platform, we sequenced on average ~2,600 nuclei for each sample

and obtained the non-zero expression of ~500 genes per cell (for sample-specific metrics, see

S1 Table). Next, we used Seurat to cluster the sn-RNA-seq data and identified 8 adipose cell-

type clusters based on the gene expression profiles of the adipose nuclei. It is worth noting that

the adipocyte cluster comprises 44.0% of the total cell number, which is in line with the previ-

ous findings [47]. Fig 3A shows the tSNE plots of the 8 adipose cell-type clusters in 15,623

nuclei. S4A Fig shows the tSNE plot that is colored by the sample IDs. These data show that

clustering is largely driven by distinct gene expression profiles from different adipose cell-

types rather than by the differences between individuals.

Estimating adipose cell-type proportions using the sn-RNA-seq as the reference. Next,

we used MuSiC to estimate the proportions of each cell-type from the bulk adipose RNA-seq

data. Utilizing both bulk RNA-seq and sn-RNA-seq data from these 6 individuals, we esti-

mated the cell-type proportions of the 6 individuals from bulk RNA-seq data and compared

the decomposition results with the true cell-type proportions from the sn-RNA-seq data to

verify our decomposition method. We employed a leave-one-out approach to decompose

the cell-type proportions of each sample while using the sn-RNA-seq data of the other 5

samples as the reference. Fig 3B shows that the estimated adipose cell-type proportions have

a high concordance with the true adipose cell-type proportions. Thus, our decomposition

method provides reliable estimated adipose cell-type proportions then we used the 6 sn-

RNA-seq samples as reference. S2 Table lists the true cell-type proportions of the 6 sn-RNA-

seq samples.

After verifying the accuracy of cell-type decomposition by MuSiC, we applied the method

to the 335 subcutaneous adipose bulk RNA-seq samples from the METSIM cohort to estimate

the proportions of the 8 adipose cell-types (S3 Table). We first checked the associations

between the Matsuda index and the 8 estimated cell-type proportions using linear regression.

In the association tests, we inverse normal transformed the Matsuda index and included age as

a covariant. Four of 8 estimated cell-type proportions showed a significant association (Bonfer-

roni adjusted p-value< 0.05) with the Matsuda index (S4 Table). It is worth noting that both

dendritic cells and macrophages exhibited a strong association with the Matsuda index (p-
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values< 5×10−5), suggesting that immune cell types contribute to insulin resistance in human

adipose tissue.

Body fat percent and adipose MT gene expression are independently associated with

systemic insulin resistance after adjusting for tissue heterogeneity. It has been shown pre-

viously that a high BMI associates with adipose MT activity [48]. In line with this we observed

that MT gene expression is significantly associated with body fat percent (p-value = 3.55×10−7)

in the adipose RNA-seq data fromMETSIM (n = 324). However, it is unknown if body fat per-

cent or adipose tissue heterogeneity causes the association between the adipose MT expression

and insulin resistance. To investigate this, we explored the associations between the Matsuda

index and age, body fat percent, adipose MT gene expression, and adipose cell-type propor-

tions using a multi-variable linear model (see model 1 in Methods). In our multi-variable lin-

ear model, body fat percent, MT expression, and the estimated proportions of dendritic and

fibroblasts cells in adipose all showed significant associations with the Matsuda index (p<0.05)

(S5 Table). This result suggests that the adipose tissue heterogeneity, MT gene expression, and

body fat percent all have independent contributions to the variance in the Matsuda index.

Noteworthy, this model explained 43.37% of the variance (R2) in the Matsuda index, which is

higher than using any trait alone: body fat percent (R2 = 30.89%); MT expression (R2 =

14.64%); and estimated cell-type proportions (R2 = 29.24%). Moreover, when we excluded

body fat percent from model 1, the estimated adipose cell-type proportions and MT expression

together explained a substantial amount (R2 = 35.42%) of the variance in the Matsuda index.

The high variance explained by model 1 makes it possible to predict the Matsuda index, i.e.

systemic insulin resistance, using body fat percent, adipose MT gene expression and the esti-

mated adipose cell-type proportions.

Utilizing adipose RNA-seq data to predict systemic insulin resistance

Although the Matsuda index is an important biomarker for glucose metabolism, its measure-

ment requires an oral glucose tolerance test, which is not available in many adipose RNA-seq

cohorts. To this end, we developed a prediction model using elastic net regularization [49] that

combines body fat percent/BMI, MT gene expression, age, and cell-type proportion informa-

tion to predict the Matsuda index using adipose RNA-seq data. Although body fat percent is a

more ideal trait for obesity compared to BMI, BMI is easy to measure, which makes it widely

available in most human adipose RNA-seq cohorts. Thus, we trained two models that use

either BMI or body fat percent to present obesity status to predict Matsuda index in METSIM.

Employing a 100-fold cross validation in both prediction models, S5 Fig shows that the pre-

dicted Matsuda index has a high concordance with the true Matsuda index (r> = 0.64, p-

value< = 1.65×10−38) in both models. Since body fat percent and BMI exhibited a similar

accuracy in predicting Matsuda index, we further tested the BMI model, which can potentially

be applied to more cohorts. To further confirm this promising prediction of insulin resistance,

we used the METSIM cohort to train a model and then estimated the Matsuda index in two

independent adipose RNA-seq cohorts: GTEx and FTC (see Methods). Fig 4B shows that in

the GTEx subcutaneous adipose samples, the T2D patients have significant lower predicted

Matsuda index when compared to the non-diabetic GTEx individuals (p-value = 2.62×10−5).

Since the monozygotic twin participants share the identical genetic background, we tested the

association between the predicted Matsuda index and the true Matsuda index both in the full

FTC cohort and the unrelated individuals by randomly selecting one individual from each

twin pair. Fig 4C and 4D shows that the predicted Matsuda index is similarly well concordant

with the true Matsuda index in the full FTC cohort (r = 0.51, p-value = 1.15×10−7) and in the

unrelated FTC individuals (r = 0.46, p-value = 1.03×10−3).
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Furthermore, the predicted Matsuda index had the best concordance with the true Matsuda

index when compared to any of the tested traits alone in METSIM and FTC. S6 Fig shows that

neither MT gene expression nor BMI can predict the Matsuda index as accurately as our pre-

diction model in the METSIM and FTC cohorts. Therefore, this prediction model can

Fig 4. The predictedMatsuda index is well concordant with the true Matsuda index values in 3 different cohorts: METSIM, GTEx, and FTC. (A) In METSIM,
the estimated and true Matsuda index are significantly associated. (B) In GTEx, the predicted Matsuda index is significantly higher in non-diabetic individuals
when compared to the T2D patients. (C) In FTC, the estimated and true Matsuda index are significantly associated. (D)We randomly choose one individual from
each twin pair to select the unrelated individuals from FTC. Among the unrelated individuals, the estimated and true Matsuda index are also significantly
associated, indicating that the twin status did not bias the prediction of the Matsuda index.

https://doi.org/10.1371/journal.pgen.1009018.g004
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potentially be used to impute systemic insulin resistance into other adipose RNA-seq cohorts,

in which this key glucose metabolism trait has not been measured. S6 Table shows the betas in

the trained prediction model that can be applied to other cohorts. In summary, we discovered

that a substantial amount (44.39%) of the variance in the systemic insulin resistance, measured

using the Matsuda index, can be explained by adipose MT gene expression, adipose cell-type

proportions, and BMI. By combining the information from these traits, we were repeatedly

able to predict the Matsuda index with a great accuracy when compared to the prediction

results with any single trait alone. Since the Matsuda index is an important biomarker for glu-

cose metabolism in humans, our prediction model can be utilized to impute the Matsuda

index into adipose RNA-seq cohorts where this key metabolic trait is missing.

Discussion

Even though the previous MR studies have shown that obesity has a causal effect on T2D

[50,51], MR evidence showing that obesity is causally linked with prediabetes or insulin resis-

tance among non-diabetic individuals is missing. Noteworthy, the annualized conversion rate

of prediabetes to diabetes is estimated to be 5%–10% [9] and thus, some prediabetes patients

do not develop T2D. Thus, the causal effect between obesity and prediabetes cannot be simply

deduced by the causal role of obesity on T2D. In the present study, we utilized the extensive

UK Biobank cohort [20] and carefully phenotyped Finnish METSIM cohort [21] to investigate

whether obesity causes prediabetes and causally increases insulin resistance in the non-diabetic

population using the MR analysis. Our MR result sheds new light on the long-standing reverse

causality question between obesity and insulin resistance by establishing its directionality.

Stancakova et al. have showed earlier that the Matsuda index is the best index of insulin sensi-

tivity when compared to other surrogate indexes of insulin resistance using an M value from

the euglycemic hyperinsulinemic clamp as the gold standard [52]. Therefore, the Matsuda

index is largely a measure of systemic rather than adipose-based insulin resistance. However,

when we examined the role of adipose cell-type heterogeneity, adipose MT gene expression,

and BMI in systemic insulin resistance, we discovered that even when excluding BMI from the

calculation, the estimated adipose cell-type proportions and adipose MT gene expression

together still explain a substantial amount (R2 = 35.42%) of the variance in the Matsuda index.

When we included BMI into this analysis, all three factors are independently associated with

insulin resistance (p<0.05 for each) and the R2 increased to 44.39% which is higher than using

any trait alone (R2
< = 30.89%). This surprisingly high proportion of variance explained by adi-

pose tissue (i.e. adipose cell types and MT gene expression) and BMI suggests that adipose tis-

sue has an important role in the systemic insulin resistance. Based on this novel finding, we

built a prediction model using adipose cell-types, adipose MT gene expression, and BMI that

accurately predicted insulin resistance across multiple cohorts.

To investigate how adipose tissue heterogeneity affects systemic insulin resistance, we per-

formed sn-RNA-seq using 6 frozen human subcutaneous adipose tissue samples. Noteworthy,

the previous studies investigating adipose cell-type heterogeneity used FACS [25–27]; however

this application is limited to a small number of well identified non-adipocyte cell-types and is

unable to detect refined new subtypes. There are no previous publications performing sn-

RNA-seq from frozen human adipose tissue, and thus the role of cell-type heterogeneity in

insulin resistance has not been investigated for all main adipose cell types before. After careful

quality control, the sn-RNA-seq generated 15,623 nuclei from the 6 adipose tissue biopsies and

identified 8 adipose cell-type clusters based on their gene expression. We then used the sn-

RNA-seq data as the reference data to detect cell-type specific signature genes in each adipose

cell type cluster and decomposed the cell-type proportions in the METSIM, FTC, and GTEx
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adipose bulk RNA-seq cohorts, leveraging thus substantially the information contained in

these existing bulk RNA-seq cohorts. Notably, the estimated cell-type proportions of macro-

phages and dendritic cells exhibited a significant association with insulin resistance, demon-

strating the key role of the obesity-induced low-grade inflammation process in systemic

insulin resistance [10,11,13–15].

Even though insulin resistance is an essential clinical metabolic trait in obesity-related car-

diometabolic diseases, it is often not measured in the existing adipose RNA-seq cohorts, such

as the GTEx cohort [55]. Moreover, although the adipose tissue is suggested to be relevant in

the development of insulin resistance [12,16,34], to the best of our knowledge, the variance in

insulin resistance parameters that can be explained by adipose tissue has not been reported

previously. Strikingly, we found that 44.39% of the variance in systemic insulin resistance (i.e.

the Matsuda index) can be explained by the adipose cell-types, adipose MT expression, and

BMI using the METSIM cohort. Thus, we developed an elastic net prediction model to predict

the Matsuda index using these traits. The prediction model was trained in a subset of the MET-

SIM cohort. The model not only successfully predicted the Matsuda index in the METSIM test

cohort but also predicted well the Matsuda index in 2 independent cohorts, the GTEx and

FTC, indicating that we can predict the missing systemic insulin resistance estimates to

cohorts lacking metabolic phenotype data, such as GTEx. Since the prediction model is based

on adipose RNA-seq data, the predicted Matsuda index can potentially be used to proportion-

ally estimate how much of insulin resistance is driven by adipose tissue versus other metabolic

tissues. This would help subtype different forms of insulin resistance states underlying the

development of type 2 diabetes.

As we used RNA-seq data to predict the cell-type proportions and then utilized those for

the prediction of the Matsuda index, this two-step prediction design may introduce noise from

both steps. However, utilizing gene expression across different cohorts is known to be prone to

technical biases and batch effects [53], whereas the estimated cell-type proportions represent

more uniform traits when compared to the gene expression. Moreover, as we have shown that

the estimated cell-type proportions have relatively high associations with the true cell-type pro-

portion, the cell-type proportions estimated by other methods, such as FACS sorting, can

potentially also be used to predict Matsuda index in other studies.

In summary, we have shown that obesity has a strong participation in prediabetes and insu-

lin resistance using the MR analysis. By leveraging bulk RNA-seq data in large adipose RNA-

seq cohorts using a small amount of adipose sn-RNA-seq data to decompose adipose cell-

types, we show that a substantial proportion (44.39%) of systemic insulin resistance can be

explained by certain adipose cell-type proportions, MT gene expression, and BMI. This new

finding not only establishes the key role of adipose tissue in regulating insulin resistance but

also provides a useful method to impute insulin resistance estimates to human transcriptome

cohorts.

Materials andmethods

Ethics statement

The METSIM, MOSS and FTC study designs were approved by local ethics committees and all

participants gave a written informed consent.

Study cohorts

We analyzed the genotype and phenotype data of ~510k individuals from two cohorts: MET-

SIM cohort (n = 10,198) [21], and UK Biobank cohort [20] (n = 391,816) In the METSIM

cohort, middle-aged Finnish males were recruited at the University of Eastern Finland and
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Kuopio University Hospital, Kuopio, Finland, and the biochemical lipid, glucose, and other

clinical and metabolic phenotypes were measured as described previously [21]. Briefly, a 2-h

oral glucose tolerance test (OGTT) (75 g of glucose) was performed in the METSIM cohort,

and samples for plasma glucose and insulin were drawn at 0, 30, and 120 min [21]. We evalu-

ated insulin resistance in the non-related, non-diabetic METSIM participants using the Mat-

suda index that was calculated based on the OGTT values, as described in detail previously

[54]. The METSIM study design was approved by local ethics committee and all participants

gave a written informed consent. This research has been conducted using the UK Biobank

Resource under Application Number 33934. The UK Biobank data was downloaded from the

UK Biobank data repository on 08/23/2018.

We analyzed the RNA-seq data in 751 human subcutaneous adipose samples from 4

different cohorts: METSIM cohort (n = 335) [21], Genotype-Tissue Expression (GTEx)

cohort (n = 308) [55,56], the ongoing MOSS cohort (n = 107), and 54 monozygotic Finnish

monozygotic twin cohort (FTC) (n = 108) [31,57,58]. The METSIM, MOSS and FTC study

designs were approved by local ethics committees and all participants gave a written

informed consent. The GTEx adipose RNA-seq data were downloaded from dbGaP (acces-

sion number phs000424.v6.p1) on 08/11/2016. In addition to subcutaneous adipose tissue,

we also analyzed the GTEx visceral adipose tissue, blood, liver, and muscle RNA-seq data

(v7). In the MOSS cohort, we collected subcutaneous adipose tissue biopsies from extreme

obese Mexican individuals undergoing bariatric surgery in Instituto Nacional de Ciencias

Medicas y Nutricion (INCMN), Mexico City. Currently, we have RNA-seq data from

subcutaneous adipose samples from 88 obese Mexican MOSS participants and 19 lean

Mexicans (BMI < 25) as controls. We used the FTC cohort to verify the prediction model of

the Matsuda index. In this cohort, we generated RNA-seq data from subcutaneous adipose

tissue of 54 MZ twin pairs (n = 108). S7 Table shows the clinical characteristics of the

participants in the 4 cohorts. We also selected the adipose biopsies of 6 individuals from

FTC for the sn-RNA-seq experiment. S1 Table shows the phenotypic characteristics of the 6

Finnish individuals whose adipose biopsies were processed for sn-RNA-seq. The 6 individu-

als have roughly similar ages, 3 of the 6 are males, and 3 of the 6 have a normal BMI

(BMI<25).

GWAS and Mendelian randomization (MR) analysis

To identify candidate instrumental variables (IVs) for the two-sample MR analysis in UKB, we

first randomly separated the UKB cohort into two independent groups and performed GWAS

analyses of body fat percent and prediabetes in different groups. The prediabetes cases were

identified by serum HbA1c level between 5.7–6.4 [38]. We excluded the individuals who had

HbA1c> 6.4 or had been diagnosed as diabetic to ensure that only non-diabetic individuals

were included in the GWAS analyses. We used BOLT-LMM [59] to explore the associations

between the genotypes and the target phenotype, while accounting for the population stratifi-

cation. We inverse normal transformed body fat percent to ensure a normal distribution and

included age, age2, sex, array type, center ID, and 20 genotype PCs as covariates. The percent

of prediabetes cases in UKB is 14% (62,866 out of 441,057), which is in line with the

BOLT-LMM recommendation of => 10% case fraction for an unbiased case-control GWAS

study [60]. To fulfill the first assumption of MR (i.e. IVs should be significantly associated with

the exposure variable), we selected the independent (R2<0.01) GWAS SNPs (p-value<5e-8 in

UKB) of body fat percent and prediabetes as candidate IVs for the MR analysis. Then we used

MR-PRESSO [43] to identify causal associations between body fat percent and prediabetes

while controlling for the potential pleiotropy. We also used MR-egger [61] and heterogeneity
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test (Cochran’s Q test) to verify that no pleiotropy biased our MR analysis. S8 Table shows the

summary statistics employed in the MR analyses.

When searching for a causal effect of body fat percent on insulin resistance, we performed

GWAS analyses of body fat percent and Matsuda index using the non-diabetic individuals

METSIM using BOLT-LMM [59] following the same pipeline as in UKB. For these GWAS

analyses, we inverse normal transformed body fat percent and Matsuda index and included

age, age2, and 10 genotype PCs as the covariates. In the GWAS, we did not identify any Mat-

suda index-associated SNPs in METSIM using a genome-wide significant cut point of p-

value<5.0×10−8. For body fat percent, we performed a GWAS analysis on body fat percent in

UKB using BOLT-LMM and utilized the non-redundant SNPs (R2
<0.01) as the candidate IVs

(n = 241) (S9 Table). Since UKB has a larger sample size than METSIM, the IVs identified in

UKB do not have genome-wide significant associations (p-value<5.0×10−8) with body fat per-

cent in METSIM. We then utilized MR-PRESSO to identify potential pleiotropy and test for

the causal effect between body fat percent and the Matsuda index in the direction obesity ->

insulin resistance. Noteworthy, there is no theoretical “perfect” MR method that guarantees a

pleiotropy free MR analysis. Thus, the absence of evidence for pleiotropy does not necessarily

prove the absence of pleiotropy. S9 Table shows the summary statistics employed in the MR

analyses. The opposite causal direction, insulin resistance -> obesity, could not reliably be

assessed using IVs due to the lack of genome-wide significant Matsuda index SNPs in the

METSIM cohort (see Results for details).

Single nucleus RNA-sequencing and clustering

Frozen subcutaneous adipose tissue was minced over dry ice and transferred into ice cold lysis

buffer consisting of 0.1% NP-40, 10mM Tris-Hcl, 10 mMNaCl, and 3 mMMgCl2. After a

10-minute incubation period, the lysate was gently homogenized using a dounce and filtered

through a 70 μmMACS smart strainer (Miltenyi Biotec #130-098-462) to remove debris.

Nuclei were centrifuged at 500 g for 5 minutes at 4˚C and re-suspended in wash buffer consist-

ing of 1X PBS, 1.0% BSA, and 0.2 U/μl RNase inhibitor. We further filtered nuclei using a

40 μm Flowmi cell strainer (Sigma Aldrich # BAH136800040) and centrifuged at 500 g for 5

minutes at 4˚C. Pelleted nuclei were re-suspended in wash buffer and immediately processed

with the 10X Chromium platform following the Single Cell 30 v2 protocol.

We used Cell Ranger [62] to build a pre-mRNA alignment reference based on the reference

gencode 19 and estimate the UMIs in each cell. As the quality control, we excluded the cells

that had<300 genes expressed and kept only the genes that were expressed in at least 3 cells.

Then we used Seurat [63] to simultaneously cluster all the qualified cells from the 6 individuals.

We identified 8 clusters and 697 signature genes (S10 Table) that have a higher expression in

one of the clusters over the others.

Decomposition of adipose cell-type proportions from bulk RNA-seq data

We first used Cell Ranger to re-align the single nucleus reads to a mature mRNA reference

(gencode 19) and then estimated the pseudo-bulk gene expression in the 6 individuals. Next,

treating the candidate gene expression of the sn-RNA-seq data as the reference, we used

MuSiC [64] to estimate the cell-type proportions from the bulk RNA-seq data. To validate the

accuracy of our decomposition method, we performed both sn-RNA-seq and bulk RNA-seq

using the subcutaneous adipose biopsies from the same 6 individuals. Then we predicted the

cell-type proportions using the bulk RNA-seq data and compared the decomposition results to

the cell-type proportions estimated from the sn-RNA-seq data of the same individuals. To

ensure the independence of the test data, we used the leave-one-out strategy. In more detail,
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when we estimated cell-type proportions of one individual, we used the sn-RNA-seq data from

the other 5 individuals as the reference. Thus, all of the estimated cell-type proportions of each

individual are based on an unrelated data set.

Because sn-RNA-seq captures not only mature mRNAs but also pre-mRNAs, the expression

patterns of some genes are expected to be different between the nuclei and bulk RNA-seq data.

For example, the MALAT1 gene (ENSG00000251562) exhibits an average TPM of 254 in the

bulk adipose tissue in METSIM while its average TPM in the sn-RNA-seq data is 391,375.

Accordingly, we observed that the decomposition results were biased by these different expres-

sion patterns when we used all the ~16,000 expressed genes as suggested by MuSiC (S4B Fig).

To improve the accuracy of the decomposition, we calculated the difference in mean of the log-

transformed gene expression across all genes from the target bulk RNA-seq samples and the 6

pseudo-bulk samples. Then we normalized the expression differences and kept the genes that

have chi square statistic<= 1. After this filtering process, we kept ~4,000 genes that have similar

expression in both the single nucleus and bulk RNA-seq data. When estimating the cell-type

proportions in the bulk RNA-seq data, we used the sn-RNA-seq data from all of the 6 samples as

the reference. Since cell-type proportions are estimated from RNA-seq data that is affected by

technical factors, we also adjusted the proportion of each cell-type for RNA-seq technical factors

when testing for the association between cell-type proportions and traits in the METSIM cohort.

QC for estimating MT gene expression

We used the same pipeline to estimate MT expression in all cohorts. First, we used FastQC

[65] to verify the sequence quality of the RNA-seq data. Then, we performed a 2-pass align-

ment using STAR [66] (reference genome: gencode 19, hg19) and subsequently used feature-

Counts [67] to estimate the TPM of each gene. Only uniquely mapped reads were counted for

gene expression. MT gene expression was defined as the sum of TPMs of all MT encoded

genes. Since gene expression estimates from RNA-seq data are affected by multiple technical

factors [68], we corrected MT gene expression for 11 known technical factors (S11 Table) and

3 genotype PCs. We chose to correct for 3 genotype PCs to follow a similar pipeline as imple-

mented in the GTEx project [56]. Since the GTEx RNA-seq samples were collected from

deceased individuals, we also adjusted MT gene expression for the post-mortem sample collec-

tion time in the GTEx cohort.

To control for admixed ancestry in the MOSS cohort, we called variants from the RNA-seq

data following the GATK pipeline. We used the recommended parameters of -window 35,

-cluster 3, and filtering FS> 30 and QD<2. Furthermore, we used variants with MAF>5%

and an average read depth> = 30. We then combined the MOSS and 1000 Genomes Project

genotype data [69] and performed PCA, observing that the MOSS individuals clustered well

with the individuals of Amerindian descent. Accordingly, we used these SNPs called from

RNA-seq data to calculate the genotype PCs in the MOSS cohort for the correction of ancestry.

However, it is worth noting that the MT genome is small and has a simple structure when

compared to the autosomal chromosomes. Thus, RNAmetrics estimated fromMT reads have

a different pattern compared to that of autosomal reads. Since MT reads comprise a relatively

large proportion of total reads (S11 Table), we discovered that the technical factors estimated

from the RNA-seq data, such as intergenic read percent and exonic read percent, are heavily

correlated with the MT read percent of each sample. S7A and S7B Fig shows that in the MET-

SIM cohort, almost all the RNAmetrics estimated by Picard Tools [70] show a significant asso-

ciation with the MT read percent, with the percent of intergenic reads exhibiting the strongest

association with the MT read percent (R = 0.86, p-value = 7.54 x 10−103). Since the MT read

percent reflects MT gene expression, these correlated RNAmetrics cannot well represent the
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true technical covariation. Correcting for these factors when estimating MT gene expression

would thus remove signals fromMT gene expression. To address this issue, we first excluded

the MT reads from the RNA-seq data and then estimated these technical factors from the

reads aligned to the nuclear genome using Picard Tools. The new unbiased technical factors

showed much weaker associations with the MT read percent (S7C and S7D Fig).

Disentangling the associations between MT expression, body fat percent,
insulin resistance (i.e. the Matsuda index), and tissue heterogeneity

Since individuals with T2D are insulin resistant and the antidiabetic medication may influence

the outcome, we removed them from all analyses involving the Matsuda index. We built a

multi-variable linear model treating the Matsuda index as the dependent variable to identify

the associations between MT expression, BMI/body fat percent, estimated adipose cell-type

proportions and Matsuda index in the METSIM cohort:

Matsuda � bb�body fat percent þ
X

bci�CTi þ bM�MT ðModel1Þ

MT indicates the corrected MT gene expression. Matsuda indicates the Matsuda index. CTi

is the estimated cell-type proportion in adipose tissue. The βs are the estimated parameters

from the multi-variable linear models. Since the sum of the 8 estimated cell-type proportions

equals to 1, the degree of freedom of the cell-type proportions is 7 instead of 8. We excluded

the proportion of endothelial cells from the model due to its less accurate prediction when

compared to the other cell-types.

To predict the Matsuda index using the other traits, we employed the following elastic net

regularization [71] to select the predictors and predict the β for each variable in model 1:

b̂ ¼ argmin
b

ðkMatsuda� Xbk þ lkbk þ lkbk
2

Þ

Elastic net regularization applies a penalty on the βs estimated from the predictors, and

therefore reduces the estimated βs of unnecessary predictors to 0. Thus, the predictors with a
non-zero estimated β are kept in the prediction model. We used the ‘glmnet’ package [72] to

obtain the λ that has the minimummean cross-validated error in the training data set, and then

used the specified λ and βs to predict the Matsuda index. To evaluate the prediction accuracy in

both models, we performed a 100-fold verification in the METSIM cohort. In more detail, we

randomly split the individuals into 100 groups, and then for each group, we predicted its value

based on the model that we trained with the other 99 groups. We also verified this model in 2

independent cohorts: FTC and GTEx. For building the final prediction model for these 2

cohorts, we used all individuals in the METSIM cohort as the training set and predicted the

Matsuda index in GTEx and FTC as verification. Using the predicted Matsuda index, we per-

formed a Pearson correlation test to check the association between the estimated and true Mat-

suda index. Since GTEx do not have the Matsuda index available, we compared the predicted

Matsuda index values between the GTEx individuals with and without T2D as the verification.

Supporting information

S1 Fig. Removing the IVs associated with 4 potential confounders did not affect the MR

results. (A) The associations between all IVs and three potential confounders, i.e. alcohol intake,

physical activity, and smoking. The x axis shows the MR analysis in which the IVs were used. The

y axis shows the p-values of the association between the IVs and confounders. (B) TheMR results

of body fat percent onMatsuda index without using the confounder-associated variants as IVs.
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(C) TheMR results of body fat percent on prediabetes without using the confounder-associated

variants as IVs. (D) TheMR results of prediabetes on body fat percent remained the same as in

Fig 1D as none of the prediabetes IV SNPs were associated with the 3 tested confounders.

(TIF)

S2 Fig. In METSIM and MOSS, we verified the significantly lower MT expression (p-

value< 0.05) in the obese individuals who have a high body fat percent or BMI compared

to the lean individuals. (A) BMI is significantly associated with the adjusted MT expression in

a Pearson correlation test. (B) Body fat percent is significantly associated with the adjusted MT

expression in a Pearson correlation test. (C) In MOSS, obese Mexicans have a lower adjusted

MT expression when compared to the lean Mexicans.

(TIF)

S3 Fig. In GTEx, we used a t-test to show the association between the adjusted MT gene

expression (inverse normal transformed) and T2D status in 4 different tissues. In (A) vis-

ceral adipose and (B) muscle, the adjusted MT expression is significantly higher in the non-

diabetic individuals than in the T2D patients. In (C) liver and (D) blood, there is no evidence

of differential MT gene expression between the non-diabetic individuals and the T2D patients.

(TIF)

S4 Fig. Our QC process ensures that the SN-RNA-seq accurately estimated the cell-type

proportions in subcutaneous adipose tissue. (A) The t-SNE plot shows no evidence of a

batch effect in SN-RNA-seq clustering. The dots are colored by sample IDs. (B) When using all

genes in the SN-RNA-seq data without any filtering, the estimated cell-type proportions are

not concordant with the true cell-type proportions. Thus, using the selected genes (Fig 2B) per-

forms much better than using all genes as reference in the decomposition process.

(TIF)

S5 Fig. Person correlations show that BMI and body fat percent are highly correlated in

the METSIM and FTC cohorts.Using either BMI or body fat percent predicted Matsuda

index in METSIM cohort in a similar accuracy. (A) The association between the body fat per-

cent and BMI in METSIM. (B) The association between the body fat percent and BMI in FTC.

(C) The association between the predicted Matsuda index and true Matsuda index when using

BMI to represent obesity status. (D) The association between the predicted Matsuda index and

true Matsuda index when using body fat percent to represent obesity status.

(TIF)

S6 Fig. Pearson correlations show the associations between the predictors (BMI, corrected

MT expression) and Matsuda index in the METSIM and FTC cohorts. The predicted Mat-

suda index is always more strongly associated with the true Matsuda index than any of the pre-

dictors (Fig 4). (A) The correlation between raw BMI and the Matsuda index in METSIM. (B)

The correlation between the corrected MT gene expression and Matsuda index in METSIM.

(C) The correlation between raw BMI and the Matsuda index in FTC. (D) The correlation

between the corrected MT gene expression and Matsuda index in FTC.

(TIF)

S7 Fig. Using the METSIM cohort as an example, we demonstrate that when estimating

RNAmetrics, including the MT reads, the RNAmetrics are heavily biased by the MT read

percent.When excluding the MT reads to estimate the RNAmetrics, the correlations between

the MT read percent and other RNAmetrics are reduced. (A). The qq-plot shows the correla-

tions between the MT read percent and estimated RNAmetrics, including MT reads. The y

axis shows the -log10(p-value) of the associations between MT read percent and the technical
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factors estimated from the RNA-seq data. The x axis shows the expected -log10(p-value) if no

true associations between the MT reads percent and technical factors exist. (B). The intergenic

read percent is dominated by the MT read percent, including the MT reads. (C). The qq-plot

shows the correlations between the MT read percent and estimated RNAmetrics, excluding

the MT reads. Compared to A, the associations between the MT read percent and other techni-

cal factors are much weaker. (D). The intergenic read percent is not correlated with the MT

read percent, excluding the MT reads.

(TIF)
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Visualization: Zong Miao.

Writing – original draft: Zong Miao, Päivi Pajukanta.
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