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Abstract

Worldwide, testing capacity for SARS-CoV-2 is limited and bottlenecks in the scale up of

polymerase chain reaction (PCR-based testing exist. Our aim was to develop and evaluate

a machine learning algorithm to diagnose COVID-19 in the inpatient setting. The algorithm

was based on basic demographic and laboratory features to serve as a screening tool at

hospitals where testing is scarce or unavailable. We used retrospectively collected data

from the UCLA Health System in Los Angeles, California. We included all emergency room

or inpatient cases receiving SARS-CoV-2 PCR testing who also had a set of ancillary labo-

ratory features (n = 1,455) between 1 March 2020 and 24 May 2020. We tested seven

machine learning models and used a combination of those models for the final diagnostic

classification. In the test set (n = 392), our combined model had an area under the receiver

operator curve of 0.91 (95% confidence interval 0.87–0.96). The model achieved a sensitiv-

ity of 0.93 (95% CI 0.85–0.98), specificity of 0.64 (95% CI 0.58–0.69). We found that our

machine learning algorithm had excellent diagnostic metrics compared to SARS-CoV-2

PCR. This ensemble machine learning algorithm to diagnose COVID-19 has the potential to

be used as a screening tool in hospital settings where PCR testing is scarce or unavailable.
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Introduction

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV2) is a worldwide public health

emergency [1, 2]. Polymerase chain reaction (PCR) testing for SARS-CoV-2 is critical to the

public health response to coronavirus disease 2019 (COVID-19). PCR testing capacity is espe-

cially important in the hospital setting for clinical decision making and infection control pro-

cedures [3]. Yet, the inability to scale up testing has been one of the most discussed topics in

both the scientific and popular literature [3, 4].

In many hospital settings, PCR testing capacity remains limited. Many PCR assays have

short analysis time; however, many hospitals lack on-site PCR capabilities and are tasked with

sending samples to centralized laboratories. Transport times and queues lengthen the turn-

around time and results can be delayed up to 48 to 96 hours [5–7]. This wait time slows the

clinical decision-making process and wastes scarce personal protective equipment.

Machine learning could help fill this gap. Ancillary laboratory values in blood samples of

patients with COVID-19 demonstrate a distinct pattern to that of other diseases [3, 8–11]. These

changes include elevations in inflammatory markers (ferritin, lactate dehydrogenase [LDH], C-

reactive protein, among others) and decreases in certain blood cell counts (absolute lymphocyte

count) and an increase in the neutrophil to lymphocyte ratio. Since the SARS-CoV-2 epidemic

reached pandemic status, research groups developed prediction algorithms applicable to their par-

ticular context [12–16]. One of the major limitations of these previous approaches is that the data-

sets that were used to train and test the approaches were small. Our aim was to develop a machine

learning algorithm using the largest dataset to date, to serve as a COVID-19 diagnostic proxy to

be useful in hospitals where SARS-CoV-2 specific PCR testing is unavailable or scarce. We

hypothesized that a machine learning-based algorithm based on a parsimonious set of blood

markers that include inflammatory markers could predict the presence or absence of COVID-19

with high sensitivity and potentially be used as a screening tool in clinical practice.

Methods

Study design

We used electronic health data from the UCLA Health System (Los Angeles, California, USA)

to develop a machine learning algorithm to serve as a proxy to diagnose COVID-19 in the hos-

pital setting. Our set of features were selected based on prior studies reporting a difference in

these features between patients with and without COVID-19, and higher values in those with

severe COVID-19 compared to mild COVID-19 [3, 8–11]. This study was deemed non-

human-subjects research by the institutional review board (IRB) at UCLA as all analyses used

de-identified data. We report our findings based on STARD-2015 guidelines [17].

Data sources

We retrospectively considered all cases that were tested for SARS-CoV-2 in the emergency

room or inpatient setting within the UCLA Health System between 1 March 2020 and 24 May

2020. After constructing our initial pool of cases, we included only cases with complete blood

counts and at least one inflammatory marker (C-reactive protein, ferritin, or LDH) within 48

hours of the sample collection for SARS-CoV2 PCR testing.

All data were extracted from the electronic medical record. Features included in the models

were age, gender, hemoglobin, red blood cell count, absolute neutrophil, absolute lymphocyte,

absolute eosinophil and absolute basophil counts, the neutrophil to lymphocyte ratio, C-reac-

tive protein, ferritin, and LDH. Prior to entering the model, all features were normalized to

have zero mean and unit standard deviation. The normalization parameters (e.g., mean and
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standard deviation) were computed using the training set, and the features in the test set were

scaled using these values. After scaling, missing lab values were imputed with zero, effectively

inserting the mean feature value from the training set. Mean imputation was determined

appropriate after evaluating several imputation methods (K-nearest neighbor and Iterative

Imputation), which did not result in significant improvements.

Gold standard

Diagnosis of SARS-CoV-2 was confirmed by PCR testing assays performed at the UCLA

Microbiology Laboratory. These assays included the 2019-nCoV Real-Time (RT)-PCR Diag-

nostic Panel (CDC, Atlanta, GA), the Diasorin Simplexa COVID-19 Direct RT-PCR (Diasorin

Molecular LLC, Cypress, CA), the TaqPath COVID-19 Combo Kit (Thermo Fisher Scientific

Inc., Waltham, MA).

Machine learning analysis

We compared seven machine learning models: Random forest, logistic regression, support

vector machine, multilayer perceptron (neural network), stochastic gradient descent,

XGBoost, and ADABoost. An ensemble (combined) model was then created based on those

seven individually trained machine learning models. The final classification as positive or neg-

ative was decided using the majority vote of the classifiers calculated by averaging their respec-

tive probabilities. The dataset was split 60% for training, 10% for validation, and 30% for

testing. The discriminatory operating threshold was determined using a validation set held out

from the training set and selected such that the sensitivity on the validation set would be above

a predefined threshold of 0.95 by configuring the beta parameter of the F-score. The resulting

model was then evaluated on the held-out test set using the following diagnostic metrics: area

under the receiver operator curve (AUROC), area under the precision recall curve (AUPRC),

sensitivity, specificity, negative predictive value (NPV), and positive predictive value (PPV).

Confidence intervals were constructed for each metric using a bootstrapping procedure on the

test set in which the test set was repeatedly resampled with replacement 1000 times. Feature

importance was assessed using a permutation test on importance. To test the contribution of

each feature to model performance, the feature values were randomly shuffled, thereby dis-

rupting their correlations with the outcome, and the decrease in model performance (f1-score)

was recorded. All machine learning analyses were performed using Python, making extensive

use of the Scikit-learn package.

Results

Descriptive

In total, there were 3,444 cases who were tested for SARS-CoV-2 and considered in our analy-

sis. After exclusion of patients who did not have the minimal necessary features to make pre-

dictions (a complete blood cell count and at least one inflammatory marker), 1455 cases

remained (1273 negative and 182 positive cases) (see Fig 1). All cases were either from the

emergency room or inpatient settings. Mean age was 58.1 (SD 22.3), 53% were men, 49%

white, 24% Latino, and 29% immunosuppressed. See Table 1 for descriptive characteristics for

included features by SARS-CoV-2 status.

Machine learning model: Diagnostic metrics

The AUROC of the model in the held-out test set (n = 392) was 0.91 (95% confidence interval

[CI] 0.87–0.96) and the AUPRC was 0.76 (95% CI 0.66–0.83). The model achieved a sensitivity
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of 0.93 (95% CI 0.84–0.98), specificity of 0.64 (95% CI 0.59–0.69), NPV of 0.98 (95% CI 0.96–

1.00), and PPV of 0.29 (95% CI 0.23–0.36). Receiver operator curves and precision-recall curves

were presented in Fig 2. Using a feature importance analysis, we found that the features that

provide most of the information to the model were: C-reactive protein and LDH (see Fig 3).

In sensitivity analyses, we calculated AUROC and AUPRC when adding the inflammatory

features relative to the baseline model of only demographic characteristics and features of the

complete blood cell count (see Fig 4). The AUROC of the model of the baseline model was

0.79 (95% CI 0.71–0.85). Then, we added the inflammatory markers to the model one at a

time. With ferritin, the AUROC was 0.83 (95% CI 0.78–0.88); with C-reactive protein 0.86

(95% CI 0.79–0.92); with LDH, 0.87 (95% CI 0.82–0.92). The AUPRC of the baseline model

Fig 1. Diagram of eligible, included and excluded cases, and diagnostic cross tabulation.

https://doi.org/10.1371/journal.pone.0239474.g001
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was 0.50 (95% CI 0.36–0.65); with ferritin 0.56 (95% CI 0.45–0.68); with LDH, 0.66 (95% CI

0.55–0.77); with C-reactive protein 0.66 (95% CI 0.50–0.80). Through these analyses we

observed that adding inflammatory markers, especially LDH, CRP, and the combination of

the three resulted in statistically significant improvements relative to the baseline model.

Table 1. Characteristics of cases by SARS-CoV-2 status.

SARS-CoV-2 status

Negative
n (%)

Positive
n (%)

Total
n

p- value

Total 1273 (87.5) 182 (12.5) 1455

Age, years, mean (SD) 57.2 (22.6) 64.2 (19.1) 58.1 (22.3) <0.001

Gender 0.030

Female 610 (47.9) 71 (39.0) 681 (46.8)

Male 663 (52.1) 111 (61.0) 774 (53.2)

Race/ethnicity 0.006

Asian 91 (7.1) 16 (8.8) 107 (7.4)

Black 156 (12.3) 18 (9.9) 174 (12.0)

Latino 281 (22.1) 61 (33.5) 342 (23.5)

Other 110 (8.6) 17 (9.3) 127 (8.7)

White 635 (49.9) 70 (38.5) 705 (48.5)

Immunosuppressed + 385 (30.2) 35 (19.2) 420 (28.9) 0.003

HIV 17 (1.3) 1 (0.5) 18 (1.2) 0.590

Transplant 180 (14.1) 19 (10.4) 199 (13.7) 0.214

Immunosuppressive medications 312 (24.5) 29 (15.9) 341 (23.4) 0.014

Not immunosuppressed 888 (69.8) 147 (80.8) 1035 (71.1)

Hemoglobin, g/dl, mean (SD) a 11.80
(9.90–13.5)

12.60
(11.0–14.2)

11.90
(10.0–13.6)

<0.001

Absolute neutrophil count x 10^3/uL, median (IQR) 6.02
(3.93–9.39)

5.19
(3.47–7.46)

5.92
(3.88–9.12)

0.001

Absolute lymphocyte count x 10^3/uL, median (IQR) e 1.22
(0.74–1.90)

0.96
(0.63–1.38)

1.18
(0.72–1.86)

<0.001

Neutrophil:lymphocyte ratio, median (IQR) 4.81
(2.47–9.77)

5.21
(2.91–10.3)

4.88
(2.56–9.81)

0.112

Absolute basophil count x 10^3/uL, median (IQR) 0.03
(0.02–0.05)

0.01
(0.01–0.03)

0.03
(0.02–0.05)

<0.001

Absolute eosinophil count x 10^3/uL, median (IQR) 0.08
(0.02–0.18)

0.01
(0.00–0.04)

0.07
(0.01–0.16)

<0.001

Absolute monocyte count x 10^3/uL, median (IQR) 0.65
(0.47–0.95)

0.48
(0.33–0.70)

0.64
(0.44–0.92)

<0.001

Platelet count x 10^3/uL, mean (SD) b 231
(168–298)

188
(149–252)

227
(164–291)

<0.001

C-reactive protein, mg/dl, mean (SD) c 1.90
(0.30–7.80)

6.60
(2.10–12.2)

2.80
(0.50–8.90)

<0.001

Ferritin, ng/ml, mean (SD) d 216
(93.0–522)

439
(261–770)

261
(110–585)

<0.001

Lactate dehydrogenase, U/L, mean (SD) e 245
(192–342)

306
(231–412)

261
(198–357)

<0.001

Abbreviations: IQR, interquartile range; SD, standard deviation.

Missing values (n, % of total): a hemoglobin 3 (0.2%); b platelets 6 (0.4%); c C-reactive protein 517 (35.5%); d ferritin 737 (50.6%); e lactate dehydrogenase 693 (47.6%).
+ We defined immunosuppressed status as a case with an HIV diagnosis, record of receipt of an organ transplant, or had taken an oral immunosuppressive medication

prior to their SARS-CoV-2 test (e.g., prednisone, tacrolimus, mycophenolate, azathioprine, methotrexate).

https://doi.org/10.1371/journal.pone.0239474.t001
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Discussion

This is the largest study to date using a machine learning algorithm as a proxy to diagnose

COVID-19. We built the algorithm based on a set of basic demographic characteristics and fre-

quently obtained blood biomarkers that could be easily obtained in many hospital settings.

Thus, the most likely application of the approach presented in this work is the use of these bio-

markers as a proxy for testing in locations where COVID-19 testing is scarce. We showed a

high sensitivity for COVID-19 diagnosis when compared to SARS-CoV-2 RT PCR testing as

the gold standard. The blood biomarkers included in the model can be obtained with a single

blood draw and turnaround time is typically within 24 hours at most hospital centers with lab-

oratory capabilities. Due to the model’s high sensitivity and rapid turnaround time, the pro-

posed algorithm lends itself to practical use in hospital facilities as a screening tool. At the time

of submission, this model was being actively developed into a web or mobile application,

whereby a clinician inputs the obtained values and receives immediate prediction on the prob-

ability of a particular patient having COVID-19. Further validation will be required to ascer-

tain its performance in other medical centers.

Our set of features performed as well as, or better than, the three diagnostic algorithms with

the largest number of cases known to us at this time [12, 13, 16]. A report by Sun et al. used

epidemiologic, clinical, laboratory and imaging features in their algorithms and reported

AUROCs of 0.91 (full model), 0.88 (without epidemiologic features), 0.88 (without imaging

features), and 0.65 (with clinical features alone) [12]. They used features from a complete

blood cell count and from a basic chemistry panel (sodium and creatinine), whereas, we used

inflammatory markers (ferritin, C-reactive protein, LDH) instead of sodium, potassium, and

creatinine as we did not suspect significant differences a priori in sodium, potassium, or creati-

nine. Meng et al reported an AUROC of 0.89 using a different set of features that included acti-

vated partial thromboplastin time, triglycerides, uric acid, albumin/globulin, sodium, and

calcium [16]. Batista et al. developed an algorithm aimed for use in lower resource settings and

reported an AUROC of 0.87 in a sparser dataset that only included basic demographics and

complete blood cell counts [13]. In fact, our model which incorporated inflammatory markers

significantly improved upon this set of features in terms of both AUROC and AUPRC. For a

Fig 2. Performance of the model on the held-out test set (N = 392). A) Receiver operator curve. B) Precision-recall curve.
At a sensitivity-optimized operating threshold, sensitivity and specificity were 0.93 (95% CI 0.85–0.98) and 0.64 (95% CI
0.59–0.69), respectively. Red solid lines were the mean receiver operator curve and mean precision-recall curve,
respectively; the purple shaded lines were the curves obtained from the bootstrapping procedure to calculate the 95%
confidence intervals.

https://doi.org/10.1371/journal.pone.0239474.g002
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full comparison of diagnostic algorithms related to COVID-19 we refer the reader to [15]—a

living systematic review.

Our findings should be considered in light of the following limitations. We included data

from one medical center in Los Angeles. Incorporating data from other medical centers in

other geographic areas would provide a higher likelihood of generalizability. Second, although

Fig 3. Combined model feature importance.Decrease in model performance (f1-score) after randomly shuffling the respective feature
values. Higher values represent important features for classification. Abbreviations: LDH, lactate dehydrogenase; NLR, neutrophil to
lymphocyte ratio; RBC, red blood cells.

https://doi.org/10.1371/journal.pone.0239474.g003
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many of our patients either had immunosuppressive conditions (e.g., solid organ transplants)

or were taking immunosuppressive medications (e.g., steroids), immunosuppressed hosts are

a heterogenous group and their immunosuppression may impact the laboratory values we

used in our models. We would need more cases with those conditions to understand how the

algorithm would perform in these populations. It is likely that specific models tailored to the

immunocompromised host should be developed to improve accuracy in this population.

Third, it is also possible that other community respiratory viral infections (e.g., influenza,

RSV) could cause a similar laboratory profile; however, incidence of these other community

respiratory viruses was low during the case inclusion period. Further validation comparing

COVID-19 cases to cases of other community respiratory viruses is needed. Finally, as all of

our patients’ blood was tested in the emergency department or as an inpatient, the applicability

of this model in the outpatient setting or milder cases of COVID-19 is unclear.Our report, in

combination with others [12, 13, 15, 16], demonstrate the high diagnostic accuracy of machine

learning models based on early available data. Other models have also been developed based

on characteristic imaging changes [15]. We and others were able to demonstrate impressive

results in our data silos [12–15]. Yet, to realize the full potential of machine learning and its

applicability to clinical medicine, collaborations from the international community are crucial,

both for the sharing of data and for the development and validation of advanced algorithms. It

is unclear if testing capacity for active disease using PCR-based methods will ever meet the

expanding need globally. In fact, countries in low-resource settings, such as in Sub-Saharan

Africa or Latin America, face bottlenecks in the testing supply chain, and are unable to com-

pete with affluent nations for prohibitively expensive PCR test kits. Even in developed nations,

scale up of PCR-based testing has many bottlenecks that include purchase of new testing plat-

forms, sample acquisition, availability of reagents, swabs and transport media, and the techni-

cal human expertise in performing PCR tests.

In summary, by using readily available laboratory tests combined with machine learning we

achieved a high sensitivity comparable to that of PCR. This machine learning modality may be

especially useful as a screening test in smaller medical centers or those in resource-poor

regions that may have limited capacity for COVID-19 PCR-based diagnosis, or in instances

Fig 4. Performance of models while removing one of the features. All analyses were performed on the held-out test set (N = 392). A) Receiver
operating curve. B) Precision-recall curve. Base model includes only demographic features and complete blood cell count. Abbreviations: CRP, C-
reactive protein; LDH, lactate dehydrogenase.

https://doi.org/10.1371/journal.pone.0239474.g004
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were testing capacity is in danger due to low supplies. Further validation is necessary in diverse

geographic settings and in a prospective manor to be used is a reliable tool to support clinical

decision making.
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