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ABSTRACT

The exponential growth of data has pushed the industry towards
new types of data management systems such as NoSQL database.
Our goal is to augment NoSQL, with the focus on its application
as a distributed key-value store (KV-store). Existing production-
ready systems often provide only probabilistic guarantees on con-
sistency and fault-tolerance, and may violate their correctness prop-
erties if a cluster has severe clock drift. Our system Cassandra+
addresses these issues by providing more choices for consistency
and fault-tolerance. We build Cassandra+ by implementing theo-
retical distributed shared memory (DSM) in Cassandra, one of the
most popular NoSQLs in the industry. In this paper, we share our
experience in adapting and implementing DSM algorithms into
a real-world system. We hope our experience and results allow a
better understanding of the DSM and the tradeoffs involved.
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1 INTRODUCTION

With the advent of the Cloud and mobile devices, we have witnessed
an exponential growth in the popularity of online activities that are
generating unprecedented amounts of data on the Internet. NoSQL
databases have become one of the most popular storage solutions
(such as Amazon Dynamo [14] and Cassandra [2], and RIAK [1])
because of its salient features like availability, scalability, capability
of handling unstructured data, etc. In this work, we focus on the
usage of NoSQL databases as a distributed key-value store (KV-
store), as this simple abstraction can be viewed as a well-studied
topic in the distributed computing community better known as
Distributed Shared Memory (DSM) or read/write data objects (or
simply registers) in message-passing systems.

KV-stores maintain data in the form of key-value pairs (or KV-
pairs) which can be accessed concurrently by write (PUT) or read
(GET) operations. To ensure high availability and horizontal scal-
ability, KV-stores replicate data to a large number of commodity
machines, and are often classified by the consistency and fault-
tolerance guarantees they provide. For example, Cassandra provides
consistency choices ranging from strong to eventual consistency.
Depending on the selected consistency level (i.e., the minimum
number of Cassandra nodes that must acknowledge an operation),
Cassandra tolerates different number of crashed nodes. While these
properties are sufficient for a wide range of application scenarios,
we observe that it is possible to improve Cassandra by providing
more choices for consistency and fault-tolerance guarantees.

Motivation and Goals: Most KV-stores use probabilistic quorum [8]
to replicate data. Such a design have a few limitations: (i) Its strong
consistency only ensures returning the most recent value, which
does not guarantee a total ordering of operations, i.e., linearizability
or atomicity [21]; (ii) Its strong consistency is ensured by quorum
intersection and synchronized clocks, which does not always hold
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if a cluster has severe clock drift or intermittent machine failures;
(iif) It only tolerates machine crash failures; and (iv) Its weaker
consistency (e.g., probabilistically bounded staleness [8]) is difficult
to reason with, and does not capture natural causality relations.

These issues indeed have been studied thoroughly in the the-
ory literature, and evaluated rigorously under theoretical models.
However, we are not aware of any practical systems that addressed
these issues without using expensive coordination protocols such
as consensus or leader/master. This observation motivates us to
make the following main contributions:

e We have developed our system Cassandra+ based on Cassan-
dra. More precisely, we replace Cassandra’s replication pro-
tocol by five DSM algorithms — ABD [7], MW (Multi-Writer)
[24], SBQ (Small Byzantine Quorum) [22], CM (Causal Mem-
ory) [4]), and BSR (Byzantine Safe Register) [15]. These al-
gorithms are lock-free in the sense that they do not rely on
any kind of consensus, commit, or lock protocols.

e Cassandra+ABD provides atomicity, which is one of the
strongest and most widely researched consistency in the
theory community. It provides a total order with real-time
constraints, which intuitively ensures an illusion that each
operation is carried out sequentially, as if it is executed on a
single machine. Hence, atomicity is simpler to reason with,
compared to other consistency models that do not have such
a total ordering constraint.

e Cassandra+CM provides causal consistency, which ensures
that clients observe causality or happens-before relation [20].

o Cassandra+MW explores various forms of strong consistency
that provide pair-wise total ordering.

e Cassandra+SBQ provides safeness consistency under semi-
Byzantine fault model, where a faulty server can behave
arbitrarily, but the timestamp cannot be tampered.

e Cassandra+BSR provides safeness consistency under Byzan-
tine servers and crash-prone clients. BSR assumes that times-
tamp is corruptible, and thus tolerates a typical Byzantine
model.

e The DSM algorithms in Cassandra+ use some types of logi-
cal timestamps; hence, they are correct even if clocks drift
severely.

e Cassandra users can use our implementation without know-
ing the details of the algorithm. That is, users can use the
same Cassandra API regardless of which replication algo-
rithm is used.

We implement these algorithms in Java and seamlessly port our
implementation with other components in Cassandra [2]. We chose
to develop our framework inside Cassandra mainly because of its
popularity and active community.

Practitioner Experience: Our main technical contributions are adapt-
ing and implementing prior theoretical DSM algorithms into the
framework of Cassandra so that they are compatible with other
components in Cassandra. In this paper and accompanied technical
report, we detail our experience in working with Cassandra, e.g.,
how to decompose its functionalities, where to implement the stor-
age algorithms, and which data structure to be used, etc. Our hope
is that our experience will lower the barrier of implementing other
theoretical DSM algorithms in similar NoSQL systems in the future.
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To our knowledge, Cassandra adopts a general architecture that
shares similarity with many other NoSQL systems. Additionally,
the five DSM algorithms we chose cover a wide spectrum of proper-
ties, e.g., strong/weak consistency, crash-/Byzantine-fault tolerance,
quorum/non-quorum-based. Hence, we hope that the lessons we
share in this paper would achieve two interleaving goals: (i) for
theoreticians to see how their algorithms fit with production-ready
systems; and (ii) for practitioners to integrate theoretical DSM al-
gorithms with NoSQL systems. Our implementation of Cassandra+
can be found at https://github.com/Dariusrussellkish/cassandra

In the literature of fault-tolerance and distributed computing,
numerous DSM algorithms have been proposed, e.g., [4, 7, 22, 24],
along with a wide spectrum of consistency and fault-tolerance
guarantees. Unfortunately, to our knowledge, very few of the pro-
posed algorithms have been integrated into real-world systems, let
alone thoroughly evaluated against production systems. Moreover,
common metrics of interest are message and round complexity
in the theory community. However, several prior works [5, 9, 13]
have demonstrated that such theoretical metrics do not indicate
the practical performance. As a consequence, it is very difficult
for practitioners to pick the most appropriate DSM algorithms or
even tune the performance of the implemented algorithms. Our
extensive evaluation results shed light on this aspect.

We evaluate our implementation extensively using Google Cloud
Platform (GCP).All the servers and clients are in the same data-
center. We collect both latency and throughput using the YCSB
(Yahoo! Cloud Service Benchmark) workload generator [12]. In
Table 1 below, we present a quick glance on a particular set of
our execution. For Cassandra, we use the configuration providing
weakest (eventual) consistency as the basis, namely Cass-One.

Related Work: There is a long history of research on consistency
models, e.g., [3, 16, 19] and fault-tolerance such as atomicity, se-
quential consistency, and regularity, e.g., [7, 21, 25]. In the theory
literature, numerous DSM algorithms have been proposed [4, 7, 22,
24, 25]. However, to the best of our knowledge, there is very few
study on comparing the practical performance of these algorithms
in a real-world environment. Closest works that we notice are the
ones evaluating Byzantine Quorum Systems (BQS), e.g., [5, 9, 13].
While they provided careful analysis and implementation, the re-
sults are quite outdated (the newest one is more than 13 years ago).
Plus, we implement the DSM algorithms in a real-world system
that have a potential to be production-ready, whereas prior works
proposed and built their own evaluation framework that lacks inte-
gration with other components like failure detection and database
engine. Finally, with the advancement of open-source technology
and cloud platform, we are able to deploy and test our systems in a
real-world platform, a privilege that prior works lacked.

2 CASSANDRA VS. CASSANDRA+

Cassandra and Replication: Cassandra implements a quorum-based
storage protocol called Probabilistic Quorum System (PQS) [8]. PQS
was inspired by a long history of study on quorum-based systems
[17, 18, 25]. It was first implemented in Dynamo [14], and later
adopted in open-source systems like Cassandra [2] and RIAK [1].
After these systems become popular in industry, the PQS framework
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Figure 1: Cassandra+ Performance

was formalized by Bailis et al. [8]. Several research groups have
proposed solutions to augment Cassandra, e.g., [23].

Cassandra is designed to be distributed, scalable, and highly
available. To achieve this, a Cassandra cluster contains a set of
servers (or replicas) that jointly act as a single instance to the users.
To ensure fault-tolerance and availability, each KV-pair is assigned
and replicated to multiple servers. The data is partitioned into
ranges based on its key, and each range of KV-pairs are dynamically
assigned to servers using consistent hashing [2, 14].

PQS requires each client proxy (or coordinate) to obtain re-
sponses from read and write quorums. The size of read and write
quorums is denoted by r and w, respectively. Strong consistency
is satisfied if r + w > n, where n is the number of servers. The
inequality implies quorum intersection, which guarantees at least
one common server that interacted with the clients of each pair
of read and write operations. Here, Cassandra’s tunable parameter
“consistency level” specifies r and w. When r + w < n, Cassandra
ensures eventual consistency, which can be analyzed using the
probabilistically bounded staleness framework [8]. Strong consis-
tency in Cassandra (or PQS) only ensures that a read will return the
most recent written value; however, it does not provide a notion
of total ordering. Moreover, if time is not perfectly synchronized
inside a Cassandra cluster, then clients might read a stale value if
the clocks are not synchronized.

Cassandra Architecture: Cassandra is a fairly complicated system
which has many components whose high-level architecture is pre-
sented in Figure 2. We mainly modify code in storage and replica-
tor layers. Storage layer specifies how each node handles storage-
related requests, e.g., fetching local data and writing a data into
memory or disk. Replicator layer specifies the replication strategy.
In our implementation, we make sure our code is compatible with
other components.

DSM in Cassandra+: Most DSM algorithms are designed to tolerate
network asynchrony, clock drift, and node failures. As the first step,
we target those algorithms that are always available, i.e., the algo-
rithms satisfy liveness if up to a certain fraction of nodes become
faulty. In particular, all algorithms implemented in Cassandra+ do
not require any form of lock, consensus or leader/master. All the
algorithms we evaluate adopt some form of quorum-based design.
Such a design aligns well with the PQS used by Cassandra, and this
is the main reason that we can integrate them with Cassandra’s
structure seamlessly.

Cassandra+

There are three main reasons behind our choice of the algorithms
— ABD [7], MW (Multi-Writer) [24], CM (Causal Memory) [4], SBQ
(Small Byzantine Quorum) [22], and BSR (Byzantine Safe Register)
[15]: (i) These algorithms together cover a wide spectrum of fault-
tolerance and consistency guarantees; and (ii) ABD and CM are
well-known in the theory community; however, we have never seen
a thorough performance comparison in a real-world setting; and (iii)
The internal data structure of these algorithms are quite different.
For example, ABD and MW do not need extra data structure; CM
uses a priority queue; SBQ uses a hashmap; and BSR uses both a
hashmap and priority queue. Key properties and summary of each
algorithm are described below:

e ABD [7] is a well-known crash-tolerant replication algo-
rithm, named after the authors Attiya, Bar-Noy and Dolev.
ABD ensures atomicity of read/write operations. The original
version of ABD in [7] is for a single-writer case. In this paper,
we follow the presentation of the multi-writer version in [6].
We also implement different versions of ABD as explained
later in Section 3.

o MW (Multi-Writer) [24] consists of a family of crash-tolerant
algorithms ensuring various definitions of multi-writer regu-
larity, which is weaker than atomicity. MW algorithms can
be viewed as a decomposed version of ABD. The authors
of [24] decomposed ABD into multiple building blocks, and
showed that different combination of blocks achieve a ver-
sion of multi-writer regularity.

e CM (Causal Memory) [4] is a crash-tolerant DSM algo-
rithm ensuring causal consistency [20]. It intuitively means
that the effect (e.g., response to a read) must be ordered after
the cause (e.g., invocation of the read). In other words, causal-
ity or happens-before relation [20] is always guaranteed.

e SBQ (Small Byzantine Quorum) [22] ensures safeness
[21] under semi-Byzantine servers and crash-prone clients.
It only tolerates semi-Byzantine servers, because the (logical)
timestamp is assumed to be incorruptible. The underlying
communication channel is assumed to be reliable.

¢ BSR (Byzantine Safe Register) [15] ensures safeness [21]
under Byzantine servers and crash-prone clients. BSR sat-
isfies safeness even under the assumption that timestamp
from faulty servers can be corrupted.

The first two algorithms assumes majority correctness, i.e., at least
I_%J + 1 servers do not crash, and CM is correct as long as there is
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one live server. SBQ assumes L%”J + 1 are correct, whereas BSR
assumes L‘%’J + 1 are correct.

Refer to Table 1 for a quick reference to the properties of the
algorithms under testing and a summary of one particular set of our
evaluations. RTT measures the round-trip time required between
the coordinator and other servers (replicas), which is a common
metric in the theory literature. Note that in the DSM literature,
users/clients co-locate with servers; hence, RTT does not include
the communication time between user and coordinator in our frame-
work. In Table 1, Cass-One denotes the case when PQS is configured
with r = w = 1, which provides only eventual consistency. This is
why CM and Cass-One require 0 RTT. They can immediately return
after the coordinator retrieves its local data, i.e., coordinator does
not need to wait for acknowledgment from other servers before
responding to the client.

For latency and throughput ratio, we use Cass-One as the ref-
erence. For ABD entries, we report numbers for ABD-OPT, an
optimized version of ABD [7]. For MW entries, we report numbers
for MW-AII-Off, the most lightweight one in MW algorithm family
[24]. The numbers in the table corresponding to the plots in Fig-
ure ??, which has write ratio 0.1 and data size 32B, and evaluates
performance against varying number of writer threads per YCSB
client. Please see evaluation details in Section 3. Table 1 together
with the results shown in Section 3 should provide a quick reference
on the practical tradeoff among performance, fault-tolerance and
consistency guarantees.

3 CASSANDRA+ AND EVALUATION

In this section, we share our experience in hopes of lowering the bar-
rier of implementing other theoretical algorithms in Cassandra or
other similar systems in the future. In order to obtain a meaningful
and fair evaluation, we have three main goals in our implementa-
tion: (i) We make a minimum modification to the original Cassandra
codebase. For example, we try not to introduce new complicate
data structure. We constraint ourselves of using either Cassandra’s
internal data structure or simple data structures natively supported
by Java, e.g., singleton monotonic map. (ii) For each DSM algorithm
implementation, we add our code into the same files and follow a
similar style into Cassandra codebase. (iii) Cassandra users can use
our implementation without knowing the details of the algorithm.
That is, users can use the same Cassandra API regardless of which
replication protocol is used. As a benefit, we can directly use YCSB
[12] to evaluate each of our implementation.

This turns out to be a difficult task, at least for the first imple-
mentation, because we are constrained to using only Cassandra’s
internal tools and data structures for communication and coor-
dination. We spent enormous amount of time to decompose and
understand Cassandra’s internal logic because the codebase is not
well documented and often provide poor comments. The version of
Cassandra (version 3.11.2) that we used to develop contains around
57,000 LoC in Java.! We have implemented 9 algorithms in total
(including variations of ABD and MW algorithms). Our implemen-
tation consists of around 2,800 LoC in total.

!The most recent version 3.11.6 was released in February 2020: https://cassandra.
apache.org/download/
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Adaption and Implementation. Cassandra adopts the column-
family data model, which provides a richer functionalities than a
simple read/write data object abstraction for DSM. At a high level,
Cassandra’s data structure can be viewed as a table, where each
row corresponds to data sharing the same key. Hence, in our imple-
mentation, each row is used to store a single KV-pair. In addition
to the key and value, we also use extra columns to store meta-
data used by each DSM algorithm such as logical timestamp or
vector timestamp. We will discuss in more details in our technical
report. In our implementation, we do not modify how Cassandra
handles user requests, and let its original mechanism handle load
balancing and cache/memory management. Therefore, our imple-
mentation supports Cassandra’s original read/write API Since the
DSM algorithms under testing do not support transactions, those
transaction-related APIs are not supported.

All the DSM algorithms that we implemented have separate al-
gorithms for reader/writer client and server separately. Server code
is mainly implemented in MutationVerbHandler.java and ReadCom-
mandVerbHandler.java, whereas client code is mainly implemented
in StorageProxy.java. There are some minor logics implemented in
files dispersed at other places. These minor changes can be tracked
on our Github repository. To ensure correctness, we do not modify
the algorithms themselves. Our efforts lie in translating pseudo-
code to efficient and correct Java code. While most DSM algorithms
are not complicated in terms of algorithm design, the key chal-
lenge is using Cassandra’s internal tools without introducing new
communication or non-native data structures. Our approach not
only provides a fair comparison with unmodified Cassandra, but
also makes our implementation compatible with other components
inside Cassandra.

Evaluation: We use the Google Cloud Platform (GCP) as our testing
platform. Each virtual machine (VM) is equipped with 4 virtual
CPUs, 16 GB memory, and hosting Ubuntu 14.04 LTS. We present
our evaluations in the local cluster with 3-server setup (LAN). The
average RTT between any two VMs is around 0.2 ms. We use the
Yahoo! Cloud Serving Benchmark (YCSB) [12] for evaluation. We
have three additional VMs inside the same datacenter running
an YCSB instance and each YCSB instance performs 0.3 million
read/update operations on 60,000 KV pairs.

For each data point reported below, we make 5 experiment runs,
and collect both the average and 95th percentile data for latency, and
average for throughput. We study the impact of these performance
measures in terms of (i) the number of readers and writers, (ii) the
(data) value size, and (iii) ratio of read to write frequencies. Our
experiments were confined to the following implementations: (a)
unmodified Cassandra with r = w = 1 (Cass-One), (b) plain always
two-round ABD; (c) optimized ABD (ABD-OPT); (d) Causal memory
(CM); (e) unmodified Cassandra with quorum, i.e., r = w = 2 (Cass-
Quorum); (f) Small Byzantine Quorum (SBQ);(g) MW without any
building blocks (MW-AII-Off); (h) MW without write-back (MW-
No-WB); (i) MW without local cache (MW-No-LC); (j) ABD-MT
(ABD-Machine Time); and (k) BSR (Byzantine Safe Register).

Across all the experiments, Cass-One should always have supe-
rior performance because a read or write from one single server
is the simplest of distributed operation one can perform. Hence,
we use Cass-One as the baseline. In the first set of the evaluations,
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Figure 3: Average read latency

we plot average read latency (in ps), and average write latency
(in ps) against various number of threads per YCSB instance in
Figures 3 and 4, respectively The value size is 32 Bytes and the
write ratio is 0.1 — we pick these two parameters according to a
recent study [11] in Facebook workload. The numbers in Table 1
are based on this set of experiments. Our technical report presents
more evaluation results, including performance against value size,
WAN case, 5-server cluster, etc. We also report throughput, 95th
percentile, and read/write latency together with limitations and
potential reasons.

4 SUMMARY

We strengthen the Cassandra framework with five family of DSM
algorith that provide a wide range of consistency guarantees for
practical applications ranging from atomicity to causal consistency.
We call this strengthened system Cassandra+. Most importantly, we
share our experience and lessons in this paper. We hope to stimulate
further effort in understanding the tradeoff among performance,
fault-tolerance, and consistency, and implementing and adapting
theoretical algorithms in real-world systems.
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