
CassandrEAS: Highly Available and
Storage-Efficient Distributed Key-Value Store with

Erasure Coding
Viveck Cadambe*

EE Department
Pennsylvania State University

University Park, PA, USA
viveck@engr.psu.edu

Kishori M. Konwar, Muriel Medard
Dept of EECS

MIT
Cambridge, USA

{kishori, medard}@mit.edu

Haochen Pan, Lewis Tseng
Dept of CS

Boston College
Boston, USA

{haochen.pan, lewis.tseng}@bc.edu

Yingjian Wu†
Dept of CSE

UCSD
San Diego, USA
yiw079@ucsd.edu

Abstract—In this work, we propose an erasure coding-based
protocol that implements a key-value store with atomicity and
near-optimal storage cost. Our protocol supports concurrent read
and write operations while tolerating asynchronous communi-
cation and crash failures of any client and some fraction of
servers. One novel feature is a tunable knob between the number
of supported concurrent operations, availability, and storage cost.

We implement our protocol into Cassandra, namely Cassan-
drEAS (Cassandra + Erasure-coding Atomic Storage). Extensive
evaluation using YCSB on Google Cloud Platform shows that
CassandrEAS incurs moderate penalty on latency and through-
put, yet saves significant amount of storage space.

Index Terms—atomicity, erasure-coding, KV store

I. INTRODUCTION

Storage systems is the foundational platform for modern
Internet services. Ever increasing reliance on massive data sets
has forced developers to move towards a new class of scalable
storage systems known as NoSQL key-value stores (KV-store).
Most distributed NoSQL KV-stores (e.g., Cassandra [1], Riak
[2], Dynamo [30]) support a flexible data schema and simple
GET/PUT (or Read/Write) interface for reading and writing
data items. The data items are replicated at multiple servers to
provide high fault-tolerance and availability.

One drawback of the replication-based approach is the
high storage cost. Erasure coding (EC) has been integrated
with other types of KV-store to reduce storage cost (e.g.,
DepSky [8] for cloud-of-clouds, Cocytus [34] for in-memory
KV-store and Giza [11] for cross-datacenter KV-store). This
work is motivated by the following question: is it possible to
use erasure coding in a NoSQL KV-store to reduce storage
cost while maintaining strong consistency with moderate
performance penalty? We provide an affirmative answer by
introducing CassandrEAS (Cassandra + Erasure-coding

*Authors ordered alphabetically. †Yingjian worked on this project when
he was affiliated with Boston College. Authors from Boston College are
supported in part by National Science Foundation award CNS1816487. Any
opinions, findings, and conclusions or recommendations expressed here are
those of the authors and do not necessarily reflect the views of the funding
agencies or the U.S. government.

Atomic Storage), a customized version of Cassandra [1] with
a new EC-based storage protocol that achieves atomicity [23],
a form of strong consistency.

In this paper, we first present a novel quorum and erasure-
code-based and storage cost optimized protocol called Two-
Round Erasure coded Atomic Storage-Optimized (TREAS-OPT).
In addition to the improved storage cost, when compared
to the existing erasure-code based algorithms, TREAS-OPT
algorithm is simple to implement as the high-level structure of
the algorithm is very similar to the classic replication-based
algorithm by Attiya, Bar-Noy and Dolev [6] and practical
quorum storage [7], [30]. TREAS-OPT is a two-round protocol
that uses logical timestamps, which obviates the reliance on
any physical (machine) clock to implement atomic KV-store.
We also modify TREAS-OPT to use physical timestamp that
results in a single-round distributed storage protocol One-Round
Erasure coding Atomic Storage (OREAS). Both algorithms are
suitable for quorum-based KV-store.

Cassandra: We chose to develop our system on top of
Cassandra. Even though Cassandra was released in 2008, it
is still one of the most used NoSQL KV-stores in industry.
It is also an active open-source project (recent stable release
in February 2020) [4]. Plus, its quorum-based replication [7]
shares similarly with other popular systems like Riak [2] and
Dynamo [30]. For many big data applications, Cassandra offers
a good balance of properties, e.g., high availability, scalability,
and tunable consistency. Our system CassandrEAS provides
similar guarantees in scalability and availability.

Cassandra offers tunable consistency guarantees, ranging
from eventual consistency to strong consistency. Popular
storage systems in industry, such as Google Spanner [16] and
CockroachDB [3], are focusing on providing strong consistency.
Inspired by the observation, this paper focuses on atomicity
[23] (or linearizability [20]), one of the more popular forms
of strong consistency, because atomicity is composable [20]
and more intuitive for developing applications.

Cassandra provides high availability and scalability using a
quorum-based (or peer-to-peer) design. It replicates data on
multiple servers, and each server can serve any read/write978-1-7281-8326-8/20/$31.00 ©2020 IEEE

request from clients using the practical quorum approach
(or Dynamo-style quorum) [7] for serving read and write
operations. The approach does not use master node or consensus
protocol to coordinate servers; hence, Cassandra has high
performance without a single point of failure.* Cassandra’s
quorum-based design make it difficult to use prior EC-based
solutions [8], [11], [34]. Cocytus [34] uses a master-based
design, whereas Giza [11] is a consensus-based protocol.
DepSky [8] does not provide atomicity.

Main Contributions

In the theoretical contribution, we propose two novel EC-
based atomic storage protocols: TREAS-OPT and OREAS.
From the engineering perspective, we demonstrate that our
protocols can be seamlessly integrated with a real-world system,
Cassandra. We made minimum modification to the original
Cassandra codebase, and Cassandra users can call Cassandra’s
original read and write API directly without knowing the
details of the algorithm. Our implementation can be found
at https://github.com/yingjianwu199868/cassandra/

Using TREAS-OPT and OREAS, CassandrEAS also provides
availability and scalability at a similar level of Cassandra,
because both systems do not use master or consensus. One
interesting feature of our protocols is a tunable knob that
allows clients to choose the desired level of availability (i.e.,
the maximum number of tolerated server failures), storage cost,
and the number of supported concurrent operations. If there
are more server failures or more concurrent operations than the
specified parameters, then CassandrEAS may return stale value
or fail to serve client’s request. A protocol for self-stabilization,
reconfiguration, or recovery is left as an interesting future work.

For evaluation, we deploy CassandrEAS in Google Cloud
Platform (GCP) and conduct extensive experiments using
the Yahoo! Cloud Service Benchamarking (YCSB) workload
generator [12]. YCSB is a practical tool used to benchmark
many KV-stores. Our evaluation results in Section V-B indicate
that CassandrEAS incurs moderate performance penalty, yet
saves significant amount of storage space.

Cassandra vs. CassandrEAS: Table I summarizes the
comparison between Cassandra and CassandrEAS when storing
one unit of data (i.e., data size is normalized to 1). We do not
count the size of meta-data such as timestamps. Erasure coding
is more useful when dealing with larger data (say in terms of
100 Bs), so meta-data size is practically negligible. In the paper,
n denotes the number of servers that store the data, δ represents
the maximum number of writes concurrent with any read on
the same key-value pair, and f is the maximum number of
tolerated crash servers. For compactness, let k = n− 2f . For
Cassandra, we choose the majority quorum configuration.

In practical systems, the number of concurrent writes
on the same KV-pair is small in most cases, since each op-
eration completes in the order of 100 ms. If CassandrEAS
with n = 9 is configured to tolerate f = 2 crashed servers, and

*Cassandra uses Paxos [24] to support transactions, but it does not use
consensus for non-transaction operations, e.g., read and write operations.
Following the design philosophy, our algorithms do not support transactions.

Cassandra CassandrEAS ARES

Storage cost/server 1 1
d k
δ+1 e

(δ + 1) 1
k

f , max crashes n
2 − 1 n−k

2
n−k
2

TABLE I: Comparison of fault-tolerance level and storage-cost
for Cassandra (Quorum), CassandrEAS and ARES

.

support δ = 3 concurrent writes. In this case, k = 5, so the
data storage cost at each server becomes 1

d k
δ+1 e

= 1
d 5
3+1 e

= 1
2 .

In comparison, Cassandra’s storage cost is 1, as each server
stores the original data. Hence, CassandrEAS saves 50% of
storage space. If we have the configuration n = 7, f = 1, δ = 1,
then k = 5 and the storage cost of CassandrEAS is 1

3 , a 67%
reduction in storage space.

II. PRELIMINARIES

A. Erasure Coding Storage Systems

Erasure coding (EC) is a space-efficient solution for data
storage. EC has been traditionally used with great success
for storage cost reduction in write-once, read-many-times data
stores (e.g., [8], [13], [21], [27], [29]). Recently there is an
increasing interest in using EC in update-many-times, read-
many-times data stores. As observed in [11], [34], with the
advancement of hardware, it is possible to perform encod-
ing/decoding in a real-time fashion. EC also has the potential
to significantly reduce network bandwidth, as well as for system
maintenance (such as repairing failed servers). Therefore, both
information theory and system research communities have
investigated the usage of erasure coding to reduce various kind
of costs, e.g., [14], [28], [32], [33].

Three recent systems DepSky [8], Cocytus [34] and Giza
[11] studied the applicability of erasure coding in other types of
KV-stores. DepSky [8] uses erasure coding for efficient storage
in cloud-of-clouds; however, it does not support atomicity.
Giza [11], Microsoft’s proprietary storage, is a Fast-Paxos-
based multi-version cross-data center strongly consistent object
store used in Microsoft’s OneDrive storage system. Giza servers
store erasure-coded elements instead of the original data to
significantly reduce storage cost. Cocytus [34] is a master-based
in-memory KV-store that guarantees strong consistency and
reduces storage cost using erasure coding. For each key, value
is erasure coded and the coded elements are stored among
a subset of servers. In addition, the master server maintains
a full copy of the value to provide high availability for read
operations. As elaborated above, Cassandra’s quorum-based
design does not fit well with consensus protocol or master-
based design. Therefore, we have to design a new EC-based
protocol for using erasure coding in Cassandra.

The distributed computing community also shows interest
in using erasure coding. EC-based algorithms for strongly
consistent storage are an active area of research in theory
community, e.g., [9], [18], [19], [26]. SODA [19] described
an algorithm to achieve optimal storage cost; however, it pays
a higher write communication cost. None of these algorithms

have been integrated or implemented real-world systems. It is
not clear how to adapt them into practical systems.

B. Erasure Codes

In this paper, we consider the optimal erasure codes.
In particular, we adopt an [n, l] linear Maximum Distance
Separable (MDS) code [22] over a finite field Fq to encode
and store the value v among the n servers. The value refers to a
specific version of the data in our context. An [n, l] MDS code
has the property that any l out of the n coded elements can be
used to recover (or decode) the original value v. For encoding,
v is divided† into l elements v1, v2, . . . , vl with each element
having size 1

l (assuming size of v is 1). The encoder takes the l
elements as input and produces n coded elements c1, c2, . . . , cn
as output, i.e., [c1, . . . , cn] = Φ(n,l)([v1, . . . , vl]), where Φ(n,l)

denotes the encoder. For ease of notation, we simply write
Φ(n,l)(v) to mean [c1, . . . , cn]. The vector [c1, . . . , cn] is
referred to as the codeword corresponding to the value v.
Each coded element ci also has size 1

l . In our scheme, we
store one coded element per key-value pair at each server.

C. Main Challenge

The key challenge in an EC-based storage protocol that is
compatible with quorum-based system is to handle concurrent
operations. To ensure high availability, the readers need to
receive sufficient coded elements from the servers to be able
to decode the version of the data that satisfies atomicity. This
issue becomes complicated in practice due to the following
reasons: (i) there might be concurrent write operations that
write different versions of the data simultaneously; (ii) servers
and clients might crash so that the servers do not have enough
coded element for a particular version; and (iii) messages might
arrive in an arbitrary order due to the asynchrony assumption
of the underlying network.

D. Model and Definitions

A shared atomic storage (or atomic KV-store) can be
emulated by composing individual atomic objects. Therefore,
we aim to implement a single atomic read/write memory object.
A read/write object takes a value from a set V . We assume a
system consisting of three distinct sets of processes: a set W
of writers, a set R of readers and S , a set of servers. Servers
host data elements (replicas or encoded data fragments). Each
writer is allowed to modify the value of a shared object, and
each reader is allowed to obtain the value of that object. Nodes
communicate through asynchronous, but reliable channels.

Executions. An execution of an algorithm A is an alternating
sequence of states and actions of A starting with the initial
state. An execution ξ is well-formed if any process invokes
one operation at a time and it is fair if enabled actions perform
a step infinitely often. In the rest of the paper we consider

†In practice, v can be viewed as a byte array, which is divided into many
stripes based on the choice of the code, various stripes are individually encoded
and stacked against each other. We omit details of represent-ability of v by a
sequence of symbols of Fq , and the mechanism of data striping, since these
are fairly standard in the coding theory literature.

executions that are fair and well-formed. A node crashes in
an execution if it stops taking steps; otherwise it is non-faulty.

Write and Read Operations. An implementation of a read or
a write operation contains an invocation action and a response
action (such as a return from the procedure). An operation π is
complete in an execution, if it contains both the invocation and
the matching response actions for π; otherwise π is incomplete.
We say that an operation π precedes an operation π′ in an
execution ξ, denoted by π → π′, if the response step of π
appears before the invocation step of π′ in ξ. Two operations
are concurrent if neither precedes the other. An implementation
A of a read/write object satisfies the atomicity property if the
conditions of Lemma 13.16 in [25] holds.

Storage and Communication Costs. We define the total
storage cost as the size of the data stored across all servers,
at any point during the execution of the algorithm. The
communication cost associated with a read or write operation
is the size of the total data transmitted in the messages sent
as part of the operation. We assume that metadata, such as
version number, process ID, etc. used by various operations is
of negligible size, and therefore, ignore in the calculation of
storage and communication cost. Further, we normalize both
the costs with respect to the size of the value v; in other words,
we compute the costs assuming that v has size 1 unit.

Quorum system. We define our quorum system, Q, to be the
set of all subsets of S that have at least n+k

2 servers. We refer
to the members of Q, as quorum sets and they satisfy the
following property.

Lemma. For any k, 1 ≤ k ≤ n− 2f . (i) If Q1 ,Q2 ∈ Q, then
|Q1 ∩Q2| ≥ k. (ii) If the number of faulty servers is at most
f , then Q contains at least one quorum set Q of non-faulty
servers.

Liveness of operations. We require algorithms to satisfy
certain liveness properties, specifically, in every fair execution
that satisfies certain restrictions in terms of the number of
failed nodes, we require every operation by a non-faulty client
completes eventually, irrespective of the behavior of other
clients. Most replication-based atomic memory algorithms
guarantee liveness, as long as certain number of servers
remain non-faulty; however, similar fault-tolerance levels can
be achieved erasure-code based systems only in carefully
designed algorithms. Moreover, there are some lower bound
results on the storage-cost for erasure-coded atomic memory
algorithms in the presence of faulty clients [10], [31]. As
a result, to circumvent this restriction many authors assume
some restricting assumptions. CASGC, ORCAS-A and ORCAS-
B [15] assume a bound on the number of concurrent operations.
In the same vein, our protocol assume a known bound on the
number of concurrent writes with a read to achieve liveness.

III. TREAS-OPT: STORAGE-OPTIMIZED TWO-ROUND
ALGORITHM

The pseudo-code for TREAS-OPT is presented in Alg. 1.
TREAS-OPT is parameterized by the number of servers n, the

quorum intersection size k, and the degree of concurrency
that can be tolerated δ. Note that k does not represent the
dimension of the code here. The algorithm uses an MDS code,
with encoding function Φ(n,`) : F` → Fn where, F represents
the finite field over which encoding is performed, n represents
the length of the code, and ` = d k

δ+1e represents the dimension
of the code.

A tag τ is defined as a pair (z, w), where z ∈ N and w ∈ W ,
an ID of a writer. Let T be the set of all tags. Notice that tags
could be defined in any totally ordered domain and given that
this domain is countably infinite, then there can be a direct
mapping to the domain we assume. For any τ1, τ2 ∈ T , where
τi = (zi, wi), we define τ2 > τ1 if (i) τ2.z2 > τ1.z1 or (ii)
τ2.z2 = τ1.z1 and τ2.w2 > τ1.w1.

Each server si stores one state variable, List, which is a set
of up to (δ + 1) (tag, coded-element) pairs. Initially the set
at si contains a single element, List = {(t0,Φi(v0)}. A read
operation at a client is implemented based on the get-data and
put-data steps; and a write operation is based on the get-tag
and put-data steps.

get-tag(): A client, during the execution of a get-tag()
primitive, queries all the servers in S for the highest tags
in their Lists, and awaits responses from

⌈
n+k
2

⌉
servers. A

server upon receiving the GET-TAG request, responds to the
client with the highest tag, as τmax ≡ max(t,c)∈List t. Once
the client receives the tags from

⌈
n+k
2

⌉
servers, it selects the

highest tag t and returns it .
put-data(〈tw, v〉): During put-data(〈tw, v〉), a client sends

the pair (tw,Φi(v)) to each server si ∈ S. When a server si
receives a message (PUT-DATA, tw, ci) , it adds the pair in its
local List, trims the pairs with the smallest tags exceeding the
length (δ+1) of the List , and replies with an ack to the client.
In particular, si replaces the coded-elements of the older tags
with ⊥, and maintains only the coded-elements associated with
the (δ + 1) highest tags in the List (see Line Alg. 2:13-17).
The client completes the primitive operation after getting acks
from

⌈
n+k
2

⌉
servers.

get-data(): A client, during the execution of a get-data()
primitive, queries all the servers in S for their local variable
List, and awaits responses from

⌈
n+k
2

⌉
servers. Once the client

receives Lists from
⌈
n+k
2

⌉
servers, it selects the highest tag t,

such that: (i) its corresponding value v is decodable from the
coded elements in the lists; and (ii) t is the highest tag seen
from the responses of at least k Lists (see lines Alg. 1:21-24)
and returns the pair (t, v). Note that in the case where anyone
of the above conditions is not satisfied the corresponding read
operation does not complete.

The main technical aspect in which TREAS-OPT differs with
ARES is the liveness proof. We argue that despite the changes,
TREAS-OPT guarantees termination of every read operation
whose concurrency is below δ.

Safety and Liveness properties Now we state the safety and
liveness properties of TREAS-OPT.

Theorem (Atomicity). Any well-formed and fair execution of
TREAS-OPT is atomic.

Proof. Consider any well-formed execution β of TREAS-OPT,
all of whose invoked read or write operations complete. Let Π
denote the set of all completed read and write operations in β.
We first define a partial order (≺) on Π. For any completed
write operation π, we define tag(π) as the variable tw. For
any completed read operation π, we define tag(π) as the value
of tr. Now, in Π the relation ≺ is defined as follows: For any
π, φ ∈ Π, we say π ≺ φ if one of the following holds: (i)
tag(π) < tag(φ), or (ii) tag(π) = tag(φ), and π and φ are
write and read operations, respectively. Atomicity is proved by
using Lemma 13.16 in [25], which essentially requires any
execution to hold four properties to guarantee atomicity. Let
us denote them by P1, P2, P3 and P4. Property P1 is easily
satisfied by our executions, so we show that any execution
satisfies the remaining properties. Let φ and π denote two
operations in Π such that φ completes before π starts in β. Let
cφ and cπ denote the clients that invokes φ and π, respectively.

Property P2 We want to show that π 6≺ φ. Below we
consider the four possible cases of φ and π.
φ, π are writes: It is enough to prove that tag(π) > tag(φ).

Consider the put-data phase of φ, where the writer cφ sends
the pair (tw, v) to all servers in S. Let us denote the set Sφ
of

⌈
n+k
2

⌉
servers that responds to cφ during the put-data

phase. Now, observe that the maximum tag in any server’s
List is monotonically non-decreasing, because in algorithm B
any server add tags to List only in lines Alg. 2:13–17. Once
added, a tag is never removed from List. Therefore, at each
server in Sφ the maximum tag in List at the time of sending
the responses to cφ in the put-data phase is at least tag(φ)
Now, suppose Sπ be the set of dn+k2 e servers that responds to
cπ during the get-tag phase of π. Therefore, at the point of
the execution when π is invoked, the maximum tag in List
of each server is at least tag(φ). Since |Sφ| = |Sπ| = dn+k2 e
hence Sφ ∩ Sπ 6= ∅. Therefore, there is at least one of the
responses from the servers in the get-tag (see lines Alg. 2:15)
has a tag at least tag(φ). So, the tw is greater than tag(φ). So
tag(π) ≥ tw > tag(φ) hence, π 6≺ φ.

φ is a read, π is a write: By virtue of the definition of ≺,
it is enough to prove that tag(π) ≥ tag(φ). The rest of the
argument is very similar to the previous case.

φ is a write, π is a read: From the definition of ≺, it is
enough to prove that tag(π) ≥ tag(φ). Consider the put-data
phase of φ, where the reader cφ sends the pair (tw, v) to all
servers in S. Let us denote the set Sφ of

⌈
n+k
2

⌉
servers that

responds to cφ. Note that for each server in Sφ the maximum
tag in List at the time of sending the responses to cφ in the
put-data phase is at least tag(φ) (see lines Alg. 2:13–17). Now,
suppose Sπ be the set of dn+k2 e servers that responds to cπ,
with the values in their Lists during the get-data phase of π.
Since the maximum tag in any server’s List is monotonically
non-decreasing.therefore, at the point of the execution when
π is invoked, the maximum tag in List of each server is at
least tag(φ) because for φ to complete we must have tdecmax =
t∗max in line Alg. 1:25. Since |Sφ| = |Sπ| = dn+k2 e hence
Sφ ∩ Sπ 6= ∅. Therefore, there is at least one of the reponses
from the servers in the get-data (see lines Alg. 1:25) has

Algorithm 1 The reader/writer client-side steps for implementing TREAS-OPT.

/* at reader r */
operation read()

2: 〈tr, v〉 ← get-data()
put-data(〈tr, v〉)

4: return v
end operation

/* at writer w */
6: operation write(v)

tmax ← get-tag()
8: tw ← (tmax.z + 1, w)

put-data(〈tw, v〉)
10: end operation

at each process pi ∈ I

12: procedure get-tag()
send (QUERY-TAG) to each s ∈ S

14: until receives 〈ts, es〉 from
⌈
n+k
2

⌉
servers

tmax ← max({ts : received 〈ts, vs〉 from s})
16: return tmax

end procedure

18: procedure get-data()
send (QUERY-LIST) to each s ∈ S

20: until receives Lists from each server s ∈ Sg s.t. |Sg | =
⌈
n+k
2

⌉
Tags≥k

∗ = set of tags that appears in k lists
22: Tags≥`

dec = tags appearing in ` lists with values
t∗max ← maxTags≥k

∗
24: tdecmax ← maxTags≥`

dec
if tdecmax ≥ t∗max then

26: v ← decode value for tdecmax

return 〈tdecmax, v〉
28: end procedure

procedure put-data(〈τ, v〉))
30: code-elems = [(τ, e1), . . . , (τ, en)], ei = Φi(v)

send (PUT-DATA, 〈τ, ei〉) to each si ∈ S
32: until receives ACK from

⌈
n+k
2

⌉
servers

end procedure

Algorithm 2 The response protocols at any server si ∈ S in TREAS-OPT for client requests.

/* at each server si ∈ S */
2: State Variables:

List ⊆ T × Cs, initially {(t0,Φi(v0))}

Upon receive (QUERY-TAG) from q
4: τmax = max(t,c)∈List t

Send τmax to q
6: end receive

Upon receive (QUERY-LIST) from q
8: Send List to q

end receive
10:

Upon receive (PUT-DATA, 〈τ, ei〉) from q
12: τmax = max(t,c)∈List t

if τ ≥ τmax then
14: List← List\{〈τmax, ei〉 : 〈τmax, ei〉 ∈ List}

List← List ∪ {〈τ, ei〉, 〈τmax,⊥〉}
16: else

List← List ∪ {〈τ,⊥〉}
18: Send ACK to q

end receive

a tag at least tag(φ). So, the tr is as large as tag(φ). So
tag(π) ≥ tr ≥ tag(φ) hence, π 6≺ φ.

φ, π are reads: From the definition of ≺, it is enough to
prove that tag(π) ≥ tag(φ). Consider the put-data phase of
φ, where the reader cφ sends the pair (tr, v) to all servers in S .
Let us denote the set Sφ of

⌈
n+k
2

⌉
servers that responds to cφ.

Note that for each server in Sφ the maximum tag in List at the
time of sending the responses to cφ in the put-data phase is at
least tag(φ) (see lines Alg. 2:13–17). Now, suppose Sπ be the
set of dn+k2 e servers that responds to cπ , with the data in their
Lists during the get-data phase of π. Since the maximum tag
in any server’s List is monotonically non-decreasing.therefore,
at the point of the execution when π is invoked, the maximum
tag in List of each server is at least tag(φ) because for φ to
complete we must have tdecmax = t∗max in line Alg. 1:25. Since
|Sφ| = |Sπ| = dn+k2 e hence Sφ ∩ Sπ 6= ∅. Therefore, there is
at least one of the reponses from the servers in the get-data
(see lines Alg. 2:25) has a tag at least tag(φ). So, the tr is as
large as tag(φ). So tag(π) ≥ tr ≥ tag(φ) hence, π 6≺ φ.

Property P3 This follows from the construction of tags, and
the definition of the partial order (≺).

Property P4 This follows from the definition of partial order
(≺), and by noting that value returned by a read operation π
is simply the value associated with tag(π).

Theorem (Liveness). Let β denote a well-formed and fair
execution of TREAS-OPT with parameters [n, k, δ] over a
system of n servers. If the number of write operations that
are with any valid read operation in β bounded by δ, and the
number of server failures is bounded by dn+k2 e−1, then every
operation in β terminates.

Proof. Note that in the read and write operation the get-tag and
put-data operations initiated by any non-faulty client always
complete. Therefore, the liveness property with respect to
any write operation is clear because it uses only get-tag and
put-data operations. So, we focus on proving the liveness
property of any read operation π, specifically, the get-data
operation completes. Let α be an execution of TREAS-OPT and
let cσ∗ and cπ be the clients that invoke the write operation
σ∗ and read operation cπ , respectively.

Let Sσ∗ be the set of
⌈
n+k
2

⌉
servers that responds to cσ∗ , in

the put-data operations, in σ∗. Let Sσπ be the set of
⌈
n+k
2

⌉
servers that responds to cπ during the get-data step of π. Note
that in α at the point execution T1, just before the execution of
π, none of the write operations in Λ is complete. Observe that,
by algorithm design, the coded-elements corresponding to tσ∗

are garbage-collected from the List variable of a server only
if more than δ higher tags are introduced by subsequent writes
into the server. Since the number of concurrent writes |Λ|, s.t.
δ > |Λ| the corresponding value of tag tσ∗ is not garbage

collected in α, at least until execution point T2 in any of the
servers in Sσ∗ .

Therefore, during the execution fragment between the
execution points T1 and T2 of the execution α, the tag
and coded-element pair is present in the List variable of
every in Sσ∗ that is active. As a result, the tag and coded-
element pairs, (tσ∗ ,Φs(vσ∗)) exists in the List received from
any s ∈ Sσ∗ ∩ Sπ during operation π. Note that since
|Sσ∗ | = |Sπ| =

⌈
n+k
2

⌉
hence |Sσ∗ ∩ Sπ| ≥ k and hence

tσ∗ ∈ Tags≥kdec, the set of decodable tag, i.e., the value
vσ∗ can be decoded by cπ in π, which demonstrates that
Tags≥kdec 6= ∅. Next we want to argue that t∗max = tdecmax

via a contradiction: we assume maxTags≥k∗ > maxTags≥kdec.
Now, consider any tag t, which exists due to our assumption,
such that, t ∈ Tags≥k∗ , t 6∈ Tags≥kdec and t > tdecmax. Let
Skπ ⊂ S be any subset of k servers that responds with t∗max in
their List variables to cπ. Note that since k > n/3 hence
|Sσ∗ ∩ Sπ| ≥

⌈
n+k
2

⌉
+

⌈
n+1
3

⌉
≥ 1, i.e., Sσ∗ ∩ Sπ 6= ∅.

Then t must be in some servers in Sσ∗ at T2 and since
t > tdecmax ≥ tσ∗ . Now since |Λ| < δ hence (t,⊥) cannot
be in any server at T2 because there are not enough concurrent
write operations (i.e., writes in Λ) to garbage-collect the coded-
elements corresponding to tag t, which also holds for tag t∗max.
In that case, t must be in Tag≥kdec, a contradiction.

TREAS-OPT vs. ARES and ABD: TREAS-OPT shares some
similarities with ABD [6] as well as ARES [26]. Specifically,
in TREAS-OPT, like ARES, erasure coding is used, and each
server stores a list of all the tags that it receives in the execution;
even if the coded element corresponding to a tag t, logical
timestamp, is garbage collected, the server stores a tuple of
the form (t,⊥). Unlike ARES, in TREAS-OPT each server
stores only coded element, similar to ABD [6]. When a new
tag-coded-element pair arrives at a server, if the tag is larger
than the highest locally stored tag τmax, then the server simply
replaces the stored coded element by the newly arriving coded
element; however, the server will continue to store a tuple of
the form (τmax,⊥).

While in ARES, each server stores δ + 1 coded elements of
a code with dimension k, in TREAS-OPT, each server stores
one coded element of dimension d k

δ+1e. Since the size of each
coded element is effectively a fraction 1

k the size of the value,
the server storage cost in ARES normalized by the size of the
object is δ+1

k , whereas the storage cost of TREAS-OPT is 1
d k
δ+1 e

since δ+1
2k < 1

d k
δ+1 e

≤ δ+1
k the storage cost of TREAS-OPT is

no worse than the storage cost of ARES, and can be up to
twice as efficient. For instance, if we have n = 9 servers, and
we use quorums of size 6 so that k = 3, for a concurrency of
δ = 1, the storage cost of ARES is 2/3, whereas the cost of
TREAS-OPT is 1

2 . For the same system, if quorums of size 7
are used, and a concurrency can be bounded by δ = 3, then
the storage cost of ARES is 4/5 = 0.8 whereas TREAS-OPT
has a storage cost of 1/2 = 0.5.

Algorithm 3 The reader/writer steps for implementing OREAS.

/* at reader r */
operation read()

2: 〈tr, v〉 ← get-data()
put-data(〈tr, v〉)

4: return v
end operation

/* at writer w */
6: operation write(v)

tw ← (t, w) where t is machine
time at w

8: put-data(〈tw, v〉)
end operation

IV. ONE-ROUND ERASURE CODING ATOMIC STORAGE

Instead of logical timestamp (tags), OREAS relies on
physical timestamps, i.e., machine time at the coordinator.
The advantage of using logical timestamp is that strong
consistency is guaranteed even in the presence of clock drift and
absence of synchronized clocks among the various servers. The
downside is that it requires, as in TREAS-OPT, an additional
communication round in order to gather the largest tag, which
increases latency. On the other hand, in OREAS, the strong
consistency guarantee is reliant on correctly synchronized
clocks; however, write operations complete in one round.

V. OUR SYSTEM: CASSANDREAS

A. Implementation

We share our implementation experience here in hope to
lower the barrier of implementing other replication- or EC-
based protocols in Cassandra in the future.‡ We have two main
goals in our implementation: (i) make minimum modification to
the original Cassandra codebase; (ii) allow Cassandra users to
use our implementation without knowing the details of OREAS.
That is, users can use the same Cassandra API in our system.
The implementation turns out to be a difficult task because
we are constrained to using only Cassandra’s internal tools
and data structures for communication and coordination. We
spent enormous amount of time to decompose and understand
Cassandra’s internal logic because the codebase is not well
documented and often provide poor comments. The version
of Cassandra (version 3.11) that we used to develop contains
around 57,000 LoC in Java. We also implemented the algorithm
ARES, which uses logical timestamp to deal with loosely
synchronized clock. Our implementation of both algorithms
consists of around 2,000 LoC. We did not implement our
protocols as a middleware because the protocols require system
information (e.g., timestamps), which is not revealed externally.

Technical Details: We mainly modify the following two
files in the Cassandra codebase. In Cassandra’s terminology,
“mutation” is essentially a write operation that modifies the
internal state of the servers. (i) StorageProxy.java is where the
coordinator server handles the user’s read or write operation.
Specifically, MUTATE function handles Cassandra user’s write
operation whereas FETCHROWS function handles user’s read
operation. The size of read/write quorums is also specified
in this file; and (ii) MutationVerbHandler.java where each
server’s database engine handles incoming write requests from

‡We also has a separate paper that documents the implementation and
benchmarking of other replication-based storage protocols in Cassandra [17].

the coordinator. Specifically, DOVERB function applies the
mutation onto local storage.

One major challenge we encountered is that Cassandra does
not provide an easy way to fetch users’ requests and modify
their mutations. We have to figure out a way to construct a new
mutation when we need to add new fields such as timestamp
and coded elements. Recall that we do not want to introduce
new data structure, so we choose to use Cassandra’s column
family data model (i.e., an ordered collection of rows) to store
the List variable at each server. CassandrEAS uses BackBlaze
Reed-Solomon Code.

B. Evaluation

We evaluate the performance of CassandrEAS by comparing
it to the vanilla Cassandra (version 3.11). Cassandra-All
requires the coordinator to hear from every server, whereas
Cassandra-Quorum only requires to hear from a majority
quorum of servers.

Cluster Configuration and Workload: We use the Google
Cloud Platform (GCP) as our testing platform. Each virtual
machine (VM) is equipped with 4 virtual CPUs, 16 GB
memory, and hosting Ubuntu 14.04 LTS. All VMs are located
in datacenter us-east1-c (South Carolina). VMs use internal
IP’s for communication. The average RTT between any two
VMs is around 0.3 ms, and TCP bandwidth measured by Iperf
is around 7.5 Gbits/sec. For most of evaluation, our cluster
consists of 5 VMs, and 3 YCSB single-threaded clients. Thus,
δ = 3. We use YCSB to generate realistic workload. We first
insert a total of 30,000 KV-pairs, and each user performs
100,000 read or write operations. Recall that we have 3 YCSB
clients, so we have 300,000 operations in total. We report the
aggregated throughput, i.e., the sum of total operations per
second across three YCSB clients.

Performance: Figure 1 presents our evaluation results in
different configurations. Figures 1a to 1c show latency and
throughput under different write ratio with data size equal to
128B. Read latency is comparable across all four algorithms.
ARES has poor write latency due to the usage of logical
timestamps, which requires an extra round-trip. OREAS has
moderate penalty in write latency. Throughput is comparable in
the case of write ratio 0.1, a common case in NoSQL KV-stores.
Figures 1d to 1f show latency and throughput under different
data size with write ratio 0.1. We only show average latency,
as 95 percentile has the same pattern. Figure 1f demonstrates
that CassandrEAS suffers moderate penalty on throughput.

Availability, Fault-tolerance, and Scalability: Cassan-
drEAS is highly available, fault-tolerant, and scalable, because
its core is based on Cassandra. It can continue serving client’s
operations as long as the conditions specified by f and δ are
satisfied. We have tested our system with 7 servers and 1
crashed server, and observed minimal disruption on throughput
(ranging from 0.1% to 2.5% decrease). We also observed that
each YCSB client’s throughput decreased a bit right after a
server crashed, and later came back to normal throughput
(compared with a cluster without any fault). Finally, we also
tested clusters with 7, 9, and 11 servers. The throughput of

OREAS is in the range of 77 − 80% of Cassandra’s. This
demonstrates that CassandrEAS’ performance is also scalable,
i.e., the throughput increases when n increases.

Correctness: We develop a consistency checker based on
the approach specified in [25] to ensure that our implementation
also provides this guarantee. Validating strong consistency
requires precise clock synchronization across all servers. This is
impossible to achieve in a distributed system where clock drift
is inevitable. To circumvent it, we deploy our CassandrEAS
servers on a single machine and use Mininet [5] to simulate
the underlying network communication. Our checker then uses
the machine time as the global clock. We collect multiple
traces under different configurations with failures. The checker
verifies that all traces we tested satisfy atomicity.

VI. SUMMARY

Strong consistency, storage efficiency, and availability are
three key features for NoSQL KV-stores. We demonstrated that
through CassandrEAS – erasure coding can be used to reduce
storage cost while incurring moderate performance penalty.
One interesting future work is to investigate how to apply
TREAS-OPT and OREAS in other NoSQL KV-stores, or to
Cassandra to support transaction-related primitives beyond the
simple read or write.

REFERENCES

[1] The apache cassandra project. http://cassandra.apache.org/.
[2] basho. http://basho.com/products/riak-s2/. [Online; accessed 30-October-

2018].
[3] cockroachdb. https://www.cockroachlabs.com/.
[4] Db-engines: Cassandra system properties. https://db-engines.com/en/

system/Cassandra. [Online; accessed 14-March-2020].
[5] Mininet. http://mininet.org/. [Online; accessed 14-March-2020].
[6] H. Attiya, A. Bar-Noy, and D. Dolev. Sharing memory robustly in

message passing systems. Journal of the ACM, 42(1):124–142, 1996.
[7] Peter Bailis, Shivaram Venkataraman, Michael J. Franklin, Joseph M.

Hellerstein, and Ion Stoica. Probabilistically bounded staleness for
practical partial quorums. PVLDB, 5(8):776–787, 2012.

[8] A. Bessani, M. Correia, B. Quaresma, F. André, and P. Sousa. DepSky:
dependable and secure storage in a cloud-of-clouds. ACM Transactions
on Storage, 9(4):1–33, 2013.

[9] Viveck R. Cadambe, Nancy A. Lynch, Muriel Médard, and Peter M.
Musial. A coded shared atomic memory algorithm for message passing
architectures. Distributed Computing, 30(1):49–73, 2017.

[10] Viveck R Cadambe, Zhiying Wang, and Nancy Lynch. Information-
theoretic lower bounds on the storage cost of shared memory emula-
tion. In Proceedings of the 2016 ACM Symposium on Principles of
Distributed Computing, pages 305–313. ACM, 2016.

[11] Yu Lin Chen Chen, Shuai Mu, and Jinyang Li. Giza: Erasure coding
objects across global data centers. In Proceedings of the 2017 USENIX
Annual Technical Conference (USENIX ATC ’17), pages 539–551, 2017.

[12] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. Benchmarking cloud serving systems with ycsb. In
Proceedings of the 1st ACM Symposium on Cloud Computing, SoCC
’10, pages 143–154, 2010.

[13] A. G. Dimakis, K. Ramchandran, Y. Wu, and C. Suh. A survey on network
codes for distributed storage. Proceedings of the IEEE, 99(3):476–489,
2011.

[14] Alexandros G Dimakis, P Brighten Godfrey, Yunnan Wu, Martin J
Wainwright, and Kannan Ramchandran. Network coding for distributed
storage systems. IEEE transactions on information theory, 56(9):4539–
4551, 2010.

[15] Partha Dutta, Rachid Guerraoui, and Ron R. Levy. Optimistic erasure-
coded distributed storage. In DISC ’08: Proceedings of the 22nd
international symposium on Distributed Computing, pages 182–196,
Berlin, Heidelberg, 2008. Springer-Verlag.

(a) average read latency vs. write ratio (b) average write latency vs. write ratio (c) throughput vs. write ratio

(d) avg read latency vs. data size (e) avg write latency vs. data size (f) throughput vs. data size

Fig. 1: Comparison of latency and throughput of different configurations

[16] Corbett et al. Spanner: Google’s globally-distributed database. In
Proceedings of the 10th USENIX Conference on Operating Systems
Design and Implementation, OSDI’12, pages 251–264, Berkeley, CA,
USA, 2012. USENIX Association.

[17] Guo-Shu Gau et al. Practical experience report: Cassandra+: Trading-
off consistency, latency, and fault-tolerance in cassandra. In 22nd
International Conference on Distributed Computing and Networking,
ICDCN 2021, 2021.

[18] Kishori M. Konwar et al. A layered architecture for erasure-coded
consistent distributed storage. In Proceedings of the ACM Symposium
on Principles of Distributed Computing, PODC 2017, Washington, DC,
USA, July 25-27, 2017, pages 63–72, 2017.

[19] Konwar et al. Storage-optimized data-atomic algorithms for handling
erasures and errors in distributed storage systems. In 30th IEEE
International Parallel & Distributed Processing Symposium (IPDPS),
2016.

[20] Maurice P Herlihy and Jeannette M Wing. Linearizability: A correctness
condition for concurrent objects. ACM Transactions on Programming
Languages and Systems (TOPLAS), 12(3):463–492, 1990.

[21] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li,
and S. Yekhanin. Erasure coding in windows azure storage. In
Proc. USENIX Annual Technical Conference, pages 15–26, 2012.

[22] W. C. Huffman and V. Pless. Fundamentals of error-correcting codes.
Cambridge university press, 2003.

[23] Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM, 21(7):558–565, July 1978.

[24] Leslie Lamport. The part-time parliament. ACM Trans. Comput. Syst.,
16(2):133–169, May 1998.

[25] N.A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers,
1996.

[26] Nicolas C. Nicolaou, Viveck R. Cadambe, N. Prakash, Kishori M. Konwar,
Muriel Médard, and Nancy A. Lynch. ARES: adaptive, reconfigurable,
erasure coded, atomic storage. In 39th IEEE International Conference on

Distributed Computing Systems, ICDCS 2019, Dallas, TX, USA, July
7-10, 2019, pages 2195–2205. IEEE, 2019.

[27] K. V. Rashmi, P. Nakkiran, J. Wang, N. B. Shah, and K. Ramchandran.
Having your cake and eating it too: Jointly optimal erasure codes for
i/o, storage, and network-bandwidth. In 13th USENIX Conference on
File and Storage Technologies (FAST), pages 81–94, 2015.

[28] KV Rashmi, Mosharaf Chowdhury, Jack Kosaian, Ion Stoica, and Kannan
Ramchandran. Ec-cache: Load-balanced, low-latency cluster caching
with online erasure coding. In OSDI, pages 401–417, 2016.

[29] M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, A. G. Dimakis,
R. Vadali, S. Chen, and D. Borthakur. XORing elephants: novel erasure
codes for big data. In Proceedings of the 39th international conference
on Very Large Data Bases, pages 325–336, 2013.

[30] Alexander Shraer, Jean-Philippe Martin, Dahlia Malkhi, and Idit Keidar.
Data-centric reconfiguration with network-attached disks. In Proceeding
of the 4th Int’l Workshop on Large Scale Distributed Systems and
Middleware (LADIS 2010), 2004.

[31] Alexander Spiegelman, Yuval Cassuto, Gregory Chockler, and Idit
Keidar. Space bounds for reliable storage: Fundamental limits of coding.
Technical report, arXiv:1507.05169v1, 2015.

[32] Itzhak Tamo and Alexander Barg. A family of optimal locally recoverable
codes. IEEE Transactions on Information Theory, 60(8):4661–4676,
2014.

[33] Zhiying Wang and Viveck R Cadambe. Multi-version coding—an
information-theoretic perspective of consistent distributed storage. IEEE
Transactions on Information Theory, 64(6):4540–4561, 2018.

[34] Heng Zhang, Mingkai Dong, and Haibo Chen. Efficient and available
in-memory kv-store with hybrid erasure coding and replication. In
14th USENIX Conference on File and Storage Technologies (FAST 16),
pages 167–180, 2016.

