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ABSTRACT

Programs typically provide a broad range of features. Because dif-
ferent typologies of users tend to use only a subset of these features,
and unnecessary features can harm performance and security, pro-
gram debloating techniques, which can reduce the size of a program
by eliminating (possibly) unneeded features, are becoming increas-
ingly popular. Most existing debloating techniques tend to focus
on program-size reduction alone and, although effective, ignore
other important aspects of debloating. We believe that program
debloating is a multifaceted problem that must be addressed in
a more general way. In this spirit, we propose a general approach
that allows for formulating program debloating as a multi-objective
optimization problem. Given a program to be debloated, our ap-
proach lets users specify (1) a usage profile for the program (i.e.,
a set of inputs with associated usage probabilities), (2) the factors
of interest for debloating, and (3) the relative importance of these
factors. Based on this information, the approach defines a suitable
objective function for associating a score to every possible reduced
program and aims to generate an optimal solution that maximizes
the objective function. We also present and evaluate Debop, a spe-
cific instance of our approach that considers three objectives: size
reduction, attack-surface reduction, and generality (i.e., the extent
to which the reduced program handles inputs in the usage profile
provided). Our results, albeit still preliminary, are promising and
show that our approach can be effective at generating debloated
programs that achieve a good trade-off between the different de-
bloating objectives considered. Our results also provide insights
on the performance of our general approach when compared to a
specialized single-goal technique.
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1 INTRODUCTION

Modern software systems are increasingly complex and feature-rich.
Typically, however, different users use different features, and a sig-
nificant fraction of these features are rarely used at all [13]. Because
this unneeded functionality can severely harm performance, cost en-
ergy, and raise security issues [24], software debloating techniques,
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which can remove such unnecessary features, are becoming increas-
ingly popular. Most existing debloating techniques (e.g., [12, 23])
take as input a (bloated) program p and a set of inputs I for p, and
their only goal is to produce the smallest reduced program p′ that
behaves correctly (i.e., like p) for I .

We believe that this is a limited view of debloating. When per-
forming debloating in a more realistic scenario, there would typi-
cally be different, possibly conflicting goals at play. For example, it
may be acceptable for a debloated program to be unable to handle
10% of the inputs in I if that can result in an 80% reduction of its
possible vulnerabilities. Similarly, there may be cases in which gen-
erality (i.e., the extent to which the reduced program can handle
inputs in I ) is the most important factor, and should therefore be
pursued at the expense of program-size reduction. To account for
these situations, and provide a more general approach to debloating,
we propose a novel, general formulation of program debloating as
a multi-objective optimization problem.

Our approach allows for specifying a debloating task in terms
of the following elements: the program to be debloated, p; a set
of inputs for p, possibly with associated usage probabilities (i.e., a
usage profile); the factors of interest for the debloating task; and the
relative importance of these factors, expressed as weights. Based
on this information, the approach generates an objective function
O that encodes the relevant factors and their weights. It then uses
O to compute a score for every possible reduced program during
the search for an optimal solution—the solution that maximizes O.

We also presentDebop, a specific instance of our general debloat-
ing approach that supports three goals: maximizing size reduction,
minimizing attack surface (code that can be leveraged for attacks),
and maximizing generality. In addition to p and a user profile for p,
Debop therefore takes as input weights that indicate the relative
importance of the three goals and uses them to define O.

Because it is generally infeasible to enumerate all possible re-
duced versions of p, Debop cannot find an optimally debloated
program through an exhaustive search. Instead, our technique lever-
ages aMarkov ChainMonte Carlo (MCMC) sampling technique [11]
for effectively exploring the search space. The MCMC sampling
algorithm, guided by the objective function O, samples a number
of reduced versions of p and reports the one with the best value
for O. This version, which we call pdeb , is an approximation of the
actual optimal solution.

To evaluate our approach, we performed a case study in which
we used Debop to compute debloated versions of a Unix utility
using different combination of weights for its three goals. This
proof-of-concept evaluation confirms that Debop can effectively
generate debloated programs that achieve good trade-offs in the
presence of multiple, conflicting goals. We also applied a state-of-
the-art, specialized debloating technique to the same Unix utility
and compared the performance of the two techniques. The result of
this second study show that, although Debop may pay a price for
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its generality, it produces better overall results when considering
multiple goals. Moreover, Debop can be improved along many
dimensions, as we discuss when describing our future work.

This paper makes the following contributions:
• A novel, general formulation of program debloating as a
multi-objective optimization problem that accounts for the
presence of multiple, possibly conflicting debloating goals.
• An instance of our approach, Debop, that (1) supports multi-
ple goals expressed in terms of program size, attack surface,
and generality, and (2) computes approximated solutions to
the (debloating) optimization problem via MCMC sampling.
• A proof-of-concept evaluation that shows the potential use-
fulness of our approach and provides insight on the trade-offs
involved in program debloating.
• An implementation of Debop that is publicly available, to-
gether with our experiment infrastructure and data, for repli-
cation, at https://sites.google.com/view/debop19.

2 BACKGROUND

Debloating. Let p be a deterministic program and I be a set of
unique inputs for p with associated usage probabilities (i.e., a usage
profile for p). We use p(i) to denote the result of running p with
input i . Given p and I , debloating is the process of removing code
from p to produce a reduced program p′. We say that p′ can handle
an input i if p(i) = p′(i).

ProgramRepresentation. A program p consists of a sequence
of program statements: p = {s1, s2, . . . , sn }. We define Sub(p) as the
set of all possible reduced versions of p. We represent each program
p′ ∈ Sub(p) as an n-bit bitvectorW (p′) = b1,b2, . . . ,bn , where bi
is 1 when the corresponding statement si is present in p′, and 0
otherwise. (For p, bi is 1 for 1 ≤ i ≤ n.)

3 OUR TECHNIQUE: DEBOP

As we mentioned in Section 1, our general approach formulates
program debloating as a multi-objective optimization problem de-
fined in terms of p, I , and a set of weighted goals. In this section,
we present Debop, a specific instance of this general approach that
(1) supports three goals expressed in terms of program size, attack
surface, and generality and (2) computes approximated solutions
to the (debloating) optimization problem via MCMC sampling.

Debop characterizes a reduced program p′ ∈ Sub(p) in terms of
size reduction, sr (p,p′), attack-surface reduction, ar (p,p′), and gen-
erality, д(p,p′), computed as: sr (p,p′) = sz(p)−sz(p′)

sz(p) , where sz(p)

is the size of p (e.g., in LOCs); ar (p,p′) = as(p)−as(p′)
as(p) , where as(p)

measures the attack surface of p (e.g., in terms of number of gad-
gets [22]); д(p,p′) =

∑
ik ∈I prkT (ik ), where prk is the probability

associated with the input ik ∈ I ; and T (ik ) is an indicator function
whose value is 1 when p′(ik ) = p(ik ) and 0 otherwise. Debop aims
to generate a reduced program p′deb that maximizes size reduction,
attack-surface reduction, and generality (with different weights for
the different goals). To do so, it first computes a general measure of
reduction, r (p,p′), by combining sr (p,p′) and ar (p,p′):

r (p,p′) = (1 − α) · sr (p,p′) + α · ar (p,p′),

where α is a weight between 0 and 1 that denotes the relative
importance of sr (p,p′) and ar (p,p′). It then computes an objective

function O(p,p′) defined as the weighted sum of reduction r (p,p′)
and generality д(p,p′):

O(p,p′) = (1 − β) · r (p,p′) + β · д(p,p′),

where β is also a weight between 0 and 1. We call the value this
function computes the O-score. We can now formulate Debop’s
debloating task as an optimization problem:

pdeb = argmax
p′∈Sub(p)

O(p,p′)

By using different values for α and β , one can generate solutions
with different trade-offs between sr (p,p′), ar (p,p′), and д(p,p′).

Solving this optimization problem by enumerating each p′ ∈
Sub(p) and identifying the one with the highest O-score is not
feasible, given the exponential size of Sub(p). Therefore, Debop
leverages stochastic search, and specifically a Markov Chain Monte-
Carlo (MCMC) sampling method, to generate an approximate pdeb .

MCMC &Metropolis-Hastings Algorithm.MCMC is a sam-
pling technique [11] for estimating the properties of a distribution
d by drawing samples from it. To use MCMC in our context, we
need to define d and its density function. We can define the density
function f (p,p′) for d using the objective function O(p,p′) as

f (p,p′) =
1
Z
exp(k · O(p,p′)), (1)

where k and Z are constants [11, 20].
Our goal is to draw a sufficient number of samples S in proportion

to d and infer properties of d based on S . Intuitively, this means that
more samples with higher density values (and thus higher O-scores)
should be drawn from d than samples with lower density values. In
our context, a sample is a reduced program p′ ∈ Sub(p). To draw
such samples, we use the Metropolis-Hastings (MH) algorithm [7]
with the probability of accepting a new sample p′i+1, given a current
sample p′i , defined as

A(p′i → p′i+1) = min
(
1,

f (p,p′i+1) · q(p
′
i ,p
′
i+1)

f (p,p′i ) · q(p
′
i+1,p

′
i )

)
= min

(
1,
exp(k · O(p,p′i+1)) · q(p

′
i ,p
′
i+1)

exp(k · O(p,p′i )) · q(p
′
i+1,p

′
i )

)
, (2)

where q(p′i ,p
′
i+1) is the proposal distribution of transforming one

sample p′i into another p
′
i+1. When the transformation is symmetric

(i.e., q(p′i ,p
′
i+1) = q(p

′
i+1,p

′
i )), the acceptance probability becomes

A(p′i → p′i+1) = min
(
1,
exp(k · O(p,p′i+1))

exp(k · O(p,p′i ))

)
. (3)

The general MH algorithm starts with an initial sample p′0. It
then iteratively generates a new sample p′i+1 from the current one
p′i , by mutating it, and compares the density values f (p′i+1) and
f (p′i ). If f (p

′
i+1) > f (p′i ), it acceptsp

′
i+1 and usesp

′
i+1 as the current

sample. Otherwise, it can still accept p′i+1 by acceptance probability
A(p′i → p′i+1) to avoid being trapped in local maxima. If p′i+1 is
rejected, p′i will be used again as the current sample.

Algorithm 1 presents the specific MH algorithm used within
Debop. The algorithm takes as input a program p, the number of
samples n to generate, and weights α and β , and generates as output
a list of samples. The algorithm first obtains stmts , the program
statements of p (line 1), sets the current sample ps as p (line 2) and
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Algorithm 1 Sampling algorithm.
Input: p : initial program
Input: n: number of samples
Input: alpha: alpha value
Input: beta: beta value
Output: samples : samples generated
1: stmts ← get the statements of p
2: ps ← p
3: dvalue ← getDensityValue(p, ps , alpha, beta)
4: samples ← {}
5: i ← 0
6: while i < n do

7: stmt ← randomly select one statement from stmts
8: if ps contains stmt then
9: new_ps ← reduce(ps , stmt )
10: else

11: new_ps ← revert(ps , stmt )
12: new_dvalue ← getDensityValue(p, new_ps , alpha, beta)
13: accept ← f alse
14: r ← getrandom() ▷ r ∈ [0, 1)
15: if r < (new_dvalue/dvalue) then
16: accept ← true
17: if accept then
18: samples ← samples ∪ {new_ps }
19: ps ← new_ps
20: dvalue ← new_dvalue
21: i ← i + 1
22: return samples

computes its density value dvalue (line 3), and initializes the result
list samples and a sample counter i (lines 4 and 5).

The algorithm then generates samples iteratively (lines 6–21).
At each iteration of the loop, it mutates the current sample ps to
generate a new sample new_ps . It does so by (1) randomly select-
ing a program statement stmt from stmts and (2) either removing
stmt from ps or adding stmt back to ps (lines 7–11). Because the
transformation is symmetric, as each program statement has the
same chance of being selected for removal or add-back, the algo-
rithm uses the simplified equation 3 for computing the acceptance
probability. After generating the new sample new_ps , the algorithm
computes its density value new_dvalue (line 12) and compares it to
the currentdvalue to decide whether to acceptnew_ps (lines 13–16).
If new_ps is accepted, the algorithm saves it into samples and up-
dates ps , dvalue , and the sample counter i (lines 17–21). Finally, the
algorithm returns the list of samples, among which Debop selects
as pdeb the sample with the highest O-score.

4 PROOF-OF-CONCEPT EVALUATION

We performed a case study to investigate two research questions:
• RQ1: Does Debop generate debloated programs with differ-
ent size reduction, attack-surface reduction, and generality
trade-offs, when provided with different α and β values?
• RQ2: How does Debop compare with a specialized, single-
goal debloating approach?

Implementation. We implemented a prototype of Debop in
C++. Debop uses Clang [3] to build an AST (abstract syntax tree)
for p and identify p’s statements. To measure the size of a program,
Debop compiles it (with GCC v. 7.4.0, -O3 option) and counts the
number of bytes in the resulting executable. Then, to measure the
attack surface, Debop counts the number of ROP (Return-Oriented
Programming) gadgets [22] in the executable using the ROPgadget
tool [5]. An ROP gadget is a sequence of machine instructions that
can be exploited for ROP attacks [6].

Experiment Setup. As a benchmark for our case study, we used
mkdir (version 5.2.1, ∼28 KLOCs), a Unix utility for creating new

directories used in related work [12]. As inputs (i.e., usage profile)
for mkdir, we used the 26 tests provided with the program plus 2
tests provided with its BusyBox version [1]. (BusyBox contains a
stripped-down version of several Unix utilities.) We used a timeout
of 1s for each test run, to handle cases in which a reduced program
did not terminate. For simplicity, we assigned equal probability to all
inputs. Based on early experimentation, we configured Algorithm 1
so that it generated 1, 000 samples and used k = 50 for computing
density values.

For RQ1, we used Debop to debloat mkdir using all provided
inputs and in multiple trials with different values for α (0.25, 0.5,
and 0.75) and β (0.1, 0.2, ..., 0.9), for a total of 27 combinations. We
did not include the two extreme cases of β being 0 and 1. When β is
0, Debop would simply return an empty program. Similarly, when
β is 1, Debop would simply return the original program. We also
did not include the two cases of α being 0 and 1, so as to consider
both size reduction and attack-surface reduction when debloating.
It took Debop on average 2.3 hours to finish each trial.

To the best of our knowledge, Debop is the first multi-objective
debloating technique, so there are no ideal baseline techniques.
Nevertheless, to get a better understanding of Debop’s strengths
and weaknesses, in RQ2 we compared it with a specialized, single-
goal debloating technique. Specifically, we selected Chisel [12], a
state-of-the-art debloating technique based on delta debugging, and
used its existing implementation [2]. Chisel can only generate a
reduced program that handles all the provided inputs. Therefore, to
perform a fairer comparison, for each of the 27 trials, we (1) logged
the exact set of inputs that Debop could correctly handle and (2)
provided Chisel with the same inputs when running it within that
trial. In other words, we ran Chisel on the set of “optimal” inputs
that were identified as part of Debop’s solution.

4.1 Results: RQ1

Figure 1 shows Debop’s results for α values from 0.25 (left) to 0.75
(right). As α increases (i.e., attack-surface reduction is weighted
more), the reduction score (triangle/gray line) gets closer to the
attack-surface reduction score (box/orange line). Also, when β in-
creases from 0.1 to 0.9 (i.e., generality is weighted more), the gen-
erality score increases, while the reduction score decreases. These
results confirm that Debop indeed allows for exploring different
trade-offs while debloating.

There are cases, however, in which generality decreases and/or
reduction increases when β increases (e.g., when α = 0.25 and β
changes from 0.4 to 0.5). This could be due to the fact that some
test inputs cover more program statements (i.e., some inputs are
more “important”). When β is less critical (e.g., β = 0.5), omitting
those test inputs but increasing the reduction has a more significant
impact on improving the O-score. Also, reduced programs with
less statements do not necessarily handle less inputs than reduced
programs with more statements (e.g., if a failing path is added).

4.2 Results: RQ2

Table 1 shows the results of comparing Debop and Chisel in terms
of size and attack-surface reduction of the debloated programs they
generate. Due to space limits, we only show, for each value of α ,
the ratios of Debop’s reduction scores over Chisel’s reduction
scores, presented as averages and standard deviations computed
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Figure 1: Debop’s results for different values of α and β . β values are on the x-axis and the different scores are on the y-axis:

Size-Red (size reduction), AttkSurf-Red (attack-surface reduction), Red (reduction), Gen (generality), and OScore (O-score).

Table 1: Average and standard deviation of the ratios of De-

bop’s reduction scores over Chisel’s reduction scores for

size (Size-Red) and attack surface (AttkSurf-Red).

α Size-Red AttkSurf-Red
Avg Stdev Avg Stdev

0.25 0.82 0.11 1.07 0.08
0.5 0.86 0.11 1.12 0.11
0.75 0.83 0.1 1.13 0.13

over the nine β values considered. An extended version of Table 1
is available online [4].

We observe that Debop seems to pay a price for its generality;
Chisel, as a specialized size-reduction technique, generates de-
bloated programs with higher size reduction than Debop (ratios
< 1). However, by being a multi-objective technique, Debop can
target multiple goals at once and, in fact, outperforms Chisel in
terms of attack-surface reduction (ratios > 1). It is also worth not-
ing that, as we mentioned above, Chisel here operates on sets of
“optimal” inputs identified by Debop. Moreover, as we discuss in
future work, Debop can be improved along many dimensions.

5 RELATED WORK

Many debloating techniques have been proposed in the literature [8,
12, 14, 17–19, 23]. None of them, however, formulates debloating as
a multi-goal optimization problem and proposes an MCMC-based
technique to solve the problem, as our work does. Our work is
also related to techniques that use MCMC sampling to tackle other
problems, such as superoptimization [20], and more broadly to
techniques that improve software using genetic algorithms [16].

6 CONCLUSION AND FUTUREWORK

We introduced a general formulation of program debloating as a
multi-objective optimization problem. We have also proposed a
specific instance of this general approach, Debop, that considers
three objectives (size reduction, attack-surface reduction, and gen-
erality) and leverages MCMC sampling to approximate an optimally
debloated program. Finally, we showed the feasibility and potential
usefulness of our approach through a proof-of-concept evaluation.

In future work, in addition to performing a more extensive em-
pirical evaluation, we will investigate ways to improve Algorithm 1
through the use of (1) mutation elements other than statements
and (2) hierarchical mutations based on program structure. We
also plan to investigate other sampling algorithms (e.g., Gibbs sam-
pling [10]) and other stochastic search algorithms (e.g., genetic
programming [15]) for optimization. In terms of longer-term and
broader future research directions, the approach we proposed is
general and can be applied in areas other than debloating. In partic-
ular, we plan to investigate the use of our approach in the context

of resource adaptation [8], energy reduction [21], and program
repair [9].
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