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Purpose: Needle catheter positions critically affect the quality of treatment plans in 
prostate cancer high-dose-rate (HDR) brachytherapy. The current standard needle 20 
positioning approach is based on human intuition, which cannot guarantee a high-quality 
plan. This study proposed a method to simultaneously select needle catheter positions and 
determine dwell time for preplanning of HDR brachytherapy of prostate cancer. 
Methods: We formulated the needle catheter selection problem and inverse dwell time 
optimization problem in a unified framework. In addition to the dose objectives of the 25 
planning target volume (PTV) and organs at risk (OARs), the objective function 
incorporated a group-sparsity term with a needle-specific adaptive weighting scheme to 
generate high-quality plans with the minimal number of needle catheters. The optimization 
problem was solved by a fast-iterative shrinkage-thresholding algorithm. For validation 
purposes, we tested the proposed algorithm on 10 patient cases previously treated at our 30 
institution and compared the resulting plans with plans generated using needle catheters 
selected manually.   
Results: Compared to the plan with manually selected needle catheters, when normalizing 
both plans to the same PTV D95, the plans generated by the proposed algorithm reduced 
median V125 from 70% to 62%, V150 from 34% to 26%, and V200 from 15% to 8%. The 35 
median homogeneity index and conformity index were increased from 0.64 to 0.74, and 
from 0.44 to 0.49, respectively. Most of clinically important dosimetric variables of OARs 
were reduced, except D1cc and D2cc of the rectum that were slight increased. On average, 
the number of selected needle catheters was reduced by two.  
Conclusion: The proposed algorithm for prostate HDR brachytherapy preplanning was 40 
effective to perform needle catheter selection and dwell time optimization simultaneously.  
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1. INTRODUCTION  
 

High-dose-rate (HDR) brachytherapy is an effective therapeutic approach for prostate 
cancer management, either as a monotherapy or as a boost in combination with external 
beam radiotherapy (Martinez et al., 2001; Blasko et al., 2002; Dinges et al., 1998; Galalae 5 
et al., 2002; Lachance et al., 2002; Mate et al., 1998; Thompson et al., 2007; Yoshioka et 
al., 2000). Different from external-beam radiotherapy that uses a high-energy radiation 
beam to deliver the dose from the outside of the patient’s body, HDR brachytherapy 
delivers radiation directly to the tumor by having a radioactive source travel through 
catheter needles inserted into the prostate. This allows the achievement of a dose 10 
distribution highly conformal to the treatment targets, while effectively sparing 
surrounding normal organs. 

In a typical procedure of prostate cancer HDR brachytherapy, a 2D template with a 
grid coordinate is used to define candidate needle catheter positions. A number of needle 
catheters in a subset of the candidate positions are inserted through the perineum to the 15 
treatment target under image guidance. After acquiring a 3D volumetric image for 
treatment planning, needle catheter trajectories are reconstructed, and dwell positions are 
determined along those trajectories. Finally, dwell times for each dwell position is 
optimized to generate a 3D dose distribution that meets clinical objectives. The quality of 
the resulting treatment plan depends on both the needle catheter positions and the optimized 20 
dwell times of the dwell positions defined within the needle catheters. Hence, a proper 
needle catheter configuration is the basis for a high-quality plan. On one hand, a sufficient 
number of needle catheters have to be inserted to achieve adequate dose coverage of the 
tumor while sparing adjacent normal organs. On the other hand, it is highly desired to use 
as a minimal number of needle catheters as possible to minimize trauma (Boyea et al., 25 
2007; Eapen et al., 2004). The current clinical practice relies on physician’s intuition to 
select needle catheter positions. While this has been acceptable as the standard practice, it 
is expected that the resulting needle catheter configuration would depend on physician’s 
experience and may not guarantee an optimal treatment plan. Therefore, it is desirable to 
develop a method to guide the selection of needle catheter positions to ensure consistent 30 
achievement of high-quality plan for each patient. 

A number of studies have been performed on the treatment planning problem of 
prostate cancer HDR brachytherapy, but most haven been focused on the optimization of 
dwell time for given dwell positions. Existing methods include simulated annealing (Deist 
and Gorissen, 2016; Lessard and Pouliot, 2001), particle swarm optimization (Moren et al., 35 
2018) and mixed integer programming as well as its convex relaxation (Moren et al., 2019; 
Siauw et al., 2011). Multi-criteria optimization (Breedveld et al., 2019) and multi-
resolution (Luong et al., 2019) schemes have also been proposed. Relatively less research 
efforts have been devoted to the determination of optimal needle catheter positions. 
Sadowski et. al. employed a mixed-integer optimization approach with a genetic algorithm 40 
to solve this problem and found that clinically acceptable high-quality plans may be 
achievable with less catheters than typically used in the clinical practice (Sadowski et al., 
2017). Similarly, the Gene-pool Optimal Mixing Evolutionary Algorithm was used to 
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optimize catheter positions (van der Meer et al., 2018). In (Siauw et al., 2012), the authors 
reported a needle planning by integer program (NPIP) method to select needle catheters to 
meet the requirement of spatial coverage of the target. 

The optimization problem for needle catheter selection belongs to the category of 
combinatorial optimization. The enormously large solution space prohibits the use of 5 
simple methods such as exhaustive search. Moreover, for this problem, the objective 
function defined for the independent variable of needle catheter configuration is indeed the 
optimal objective function value of the treatment planning optimization problem solved on 
top of the needle catheter configuration. This bi-level optimization structure further 
increases the difficulty of solving this problem in a mathematically rigorous form. In this 10 
paper, we propose an inverse planning method to perform needle catheter selection and 
dwell time optimization simultaneously for optimal plan quality with the minimal number 
of needle catheters selected. Our method will be based on the concept of group sparsity 
(Bach et al., 2012; Bach, 2008; Huang and Zhang, 2010; Meier et al., 2008; Simon et al., 
2013). Generally speaking, solving the group sparsity problem refers to the selection of a 15 
small number of groups of variables from candidate groups of variables to achieve a certain 
goal. In the context of HDR brachytherapy preplanning, all the independent variables of 
dwell time among all candidate needle catheters can be grouped based on the needle 
catheters. The group sparsity approach generates a solution that is sparse at the group level, 
i.e. the needle level, hence achieving the objectives of using a small number of needle 20 
catheters to produce a high-quality treatment plan.  This group sparsity method has been 
successfully implemented in various applications (Parvaresh et al., 2008; Wu and Lin, 
2006), including beam orientation optimization in radiation therapy (Jia et al., 2011; Gu et 
al., 2018; Gu et al., 2019; O'Connor et al., 2017). 

 25 
2. METHODS AND MATERIALS 
 
2.1 Optimization problem 
  

We considered the treatment planning problem with a 3D volumetric ultrasound image. 30 
Planning Target Volume (PTV) and Organs at Risk (OARs) including bladder, rectum, and 
urethra were delineated by the physician. The PTV was defined as prostate minus urethra. 
One additional structure generated for this study was a ring-shape protected zone around 
the PTV. The distance between the inner side of the ring and the PTV surface was 5 mm, 
and the thickness of the ring was 5 mm. Any overlapping region with OARs were removed 35 
from the protected zone. The purpose of generating this structure was to help enforcing 
dose fall-off outside the PTV, when solving the plan optimization problem.  

We considered the setup using a 2D needle template (Eckert & Ziegler Group, Berlin, 
Germany) with a grid size of 13 × 13 needle catheters spaced 5 mm apart in the x-y 
direction. We first aligned the template with the patient anatomy. The template was 40 
assumed to be placed parallel to the axial image direction. Laterally, the grid center was 
aligned with the rectum center, and the posterior needle level was at the anterior side of the 
rectal wall (Fig. 1) to approximate the clinical setup with transrectal ultrasound (TRUS). 
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We assumed that needle catheters were inserted perpendicular to the template. Among the 
169 possible needle catheter positions, we considered candidate needle catheter positions 
that resulted in needle catheters intersecting with a volume including the PTV with a 3mm 
outward expansion to provide sufficient dose coverage to PTV boundary. Hence, the 
number of candidate needle catheters was patient dependent. In our study, this number 5 
ranged between 50 and 74. Fig. 1 illustrates the geometry showing the candidate needle 
catheter positions relative to the PTV and OAR regions. For all the candidate needle 
catheters, dwell positions are placed along the needle catheters within the expanded 
prostate volume. This assumes each candidate needle catheter can be inserted sufficiently 
deep such that needle tips pass beyond the superior end of the prostate. The dwell positions 10 
were spaced 5mm apart following the setup of our Varian VariSource HDR brachytherapy 
afterloader (Varian Medical System, Palo Alto, CA, USA).  

 

 
Figure 1:  Illustration of candidate needle catheter positions relative to PTV and OARs.   
 
The inverse planning task was formulated as solving an optimization problem that 15 

simultaneously selects the needle catheters and optimizes dwell time for corresponding 
sources in selected needle catheters. The objective function contains two parts. The first 
part describes dosimetric objectives. We consider a quadratic objective function that 
enforces PTV coverage close to the prescription dose, while minimizing doses to OARs: 

1

2
"𝐷0𝐭 − 𝑑𝑝𝟏"2

2
+∑ 𝜆𝑖

2
‖𝐷𝑖𝐭‖22𝑀

𝑖=1 , (1) 

where 𝐭	 = 	 [𝐭!; 	𝐭"; 	𝐭#; … ;	𝐭$] ≥ 𝟎	denotes dwell time of a set of 𝑁  candidate needle 20 
catheters, while the vector 𝐭% 	specifies the dwell time for a number of 𝑛% sources in the 𝑗-
th candidate needle catheter. The matrix 𝐷& is the dose-deposition matrix for the PTV (𝑖 =
0) or the OARs (𝑖 = 1, 2, …	,𝑀), which specifies the contributions to dose at each voxel 
of the structure 𝑖 from each dwell position at its unit time. Dose was calculated using the 
clinical standard AAPM TG-43 formalism (Rivard et al., 2004). 1 and 0 are vectors with 25 

all elements being 1 or 0, respectively. The first term !
"
"𝐷'𝐭 − 𝑑(𝟏""

" enforces the PTV 

dose to be close to the prescription dose 𝑑(, while the second term ∑ !"
# ‖*"𝒕‖#

#,
&-!  penalizes 
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for dose to OARs. {𝜆&}	is a set of parameters balancing the contributions among different 
terms in the objective function. 

In addition to the terms specifying dosimetric objectives for the PTV and OARs, we 
incorporate a group-sparsity term to penalize for the number of selected needle catheters. 
More specifically, we chose an objective function of a weighted 𝐿",! norm of 𝐭 :  5 

∑ 𝜇𝑗"𝐭𝑗"2
𝑁
𝑗=1 , (2) 

where 𝜇% is the weighting factor of the 𝑗-th needle catheter. This 𝐿",! norm first calculates 
the 𝐿" norm of the dwell time within each needle catheter group and then sums over all 
needle catheters in the 𝐿!  norm. Minimizing the 𝐿",!  norm enforces the sparsity of the 
solution at the group (needle catheter) level, but not at the level of individual elements 
(dwell time) within each group. Hence, including this term in the objective function will 10 
promote a solution with only a small fraction of the candidate needle catheters containing 
non-zero dwell time to meet the dosimetric objectives, therefore accomplishing the goal of 
needle catheter selection. Combining these two objectives in Eq. (1) and (2), the proposed 
optimization problem was formulated as: 

min
𝒕/𝟎

!
"
"𝐷'𝐭 − 𝑑(𝟏""

" + ∑ 1"
"
‖𝐷&𝐭‖"",

&-! +∑ 𝜇%"𝐭%""
$
%-! .	 (3) 

 15 
2.2. Optimization algorithm 

 
The proposed optimization problem in Eq. (3) is convex and can be solved efficiently 

by a number of fast algorithms. In this study, we used the fast-iterative shrinkage-
thresholding algorithm (FISTA) (Beck and Teboulle, 2009). FISTA considers a general 20 
minimization problem in the form of 

min
2
𝑓(𝑥) + 	𝑔(𝑥), 

where 𝑓 is differentiable and convex, while 𝑔 has an explicit form of its proximal operator. 
The iterative scheme in the 𝑘-th iteration is 

⎩
⎪
⎨

⎪
⎧ 𝑥(4) = prox67 R𝑦(4) − 𝛽∇𝑓V𝑦(4)WX

𝑠(48!) =
1 +Z1 + 4(𝑠(4))"

2
𝑦(48!) 		= 𝑥4 +	9:

(%);!
:(%'()

<V𝑥(4) − 𝑥(4;!)W	

, 25 

where the proximal operator is defined as prox67(𝑥) = min
=
\𝛽𝑔(𝑢) + (

#
‖=;2‖##^ and 𝛽 is a 

parameter. Specific to the problem of Eq. (3), we have 𝑓(𝐭) = 	 !
"
"𝐷'𝐭 − 𝑑(𝟏""

" +

∑ 1"
"
‖𝐷&𝐭‖"",

&-! ,	  and 𝑔(𝐭) = 	∑ 𝑔%V𝐭%W,$
%-!  where  

𝑔%V𝐭%W = 	_
𝜇%"𝐭%""								𝐭% ≥ 0,
∞							otherwise.

 

	 30 
Based on the chain rule, the gradient of 𝑓 can be expressed as 
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∇𝑓(𝐭) = 𝐷'>V𝐷'𝐭 − 𝑑(𝟏W +	g 𝜆&𝐷&>𝐷&𝐭
,

&-!
.	 

Since 𝑔% is separable, the proximal operator of 𝑔 is given by  

prox7(𝐭) = 	

⎝

⎜
⎛
prox7((𝐭!)
prox7#(𝐭")

⋮
prox7)(𝐭$)⎠

⎟
⎞
.	 

According to (O'Connor et al., 2017),  
prox7*V𝐭%W = 	prox?*‖⋅‖#VmaxV𝐭% , 𝟎WW. 5 

Hence, the proximal operator of the 𝐿"  norm is prox?*‖⋅‖#(𝐲) = 𝐲 − 𝑃%𝐲,  where 𝑃%𝐲 

denotes the projection of 𝐲 onto the 𝐿" norm ball with a radius of 𝜇%, i.e., 

𝑃%𝐲 = 	 r
𝜇%𝐲 ‖𝒚‖"⁄ 			if	‖𝐲‖" > 𝜇% ,

𝐲								otherwise.  

The iterative process of the algorithm is summarized in Algorithm 1.  
 10 

Algorithm 1. FISTA algorithm solving the problem in (3).  

Input: 𝐷+ , 𝜆+ , 𝜇, , 𝑖 = 0, 1, … ,𝑀, 𝑗 = 1, 2, … ,𝑁 and prescription dose 𝑑- 
Initialize: 𝐲(/) = 𝐭(1), 𝑠(/), and   step size 𝛽,	tolerance 𝜎	
Output: 𝐭∗ 
for 𝑘	 = 	1, 2, …,	do  
       𝐯(3) =	𝐲(3) − 𝛽∇𝑓<𝐲(3)=, 𝐯(3) is partitioned as	𝐯(3) =	 >𝐯/

(3), 𝐯𝟐
(3), … , 𝐯5

(3)? 
       𝐭𝒋

(3) = 	prox78"‖⋅‖#<max<𝐯,
(3), 𝟎==, 𝑗 = 1, 2, … ,𝑁 

       𝐭(3) =	 >𝐭/
(3), 𝐭𝟐

(3), … , 𝐭5
(3)? 

       𝑠(3;/) =
/;</;=>?(%)@

#

A
 

      𝐲(3;/) = 𝐭(3) +	B'(%)()
'(%*))

C<𝐭(3) − 𝐭(3D/)= 
        
     break if  G𝐭(3) − 𝐭(3D/)G

𝟐
G𝐭(3)G

𝟐H < 𝜎, set 𝐭∗ = 𝐭(3).		
end for  
 
 
2.3 Adaptive needle weight adjustment 

 
Looking at the Algorithm 1, in each iteration, the operation maxV𝐯% , 𝟎W eliminates 15 

negative elements in the solution vector. The proximal operator further reduces the 
magnitude of the solution for each needle catheter group. These operations gradually 
generate a sparsity solution in this iterative process. Importantly, the proximal operation 
projects the solution to a sphere having a radius of 𝜇% for the dwell time vector of needle 
catheter 𝑗. Proper selection of parameter 𝜇%  could in principle accelerate the process of 20 
generating sparsity and hence the optimization process. Unfortunately, it is not possible to 
rigorously set the parameter values without knowing prior information. In (Ahmad and 
Schniter, 2015; Li et al., 2017), the authors proposed an iterative weight adjustment scheme. 
The basic idea was to set a small weighting factor for the group that is likely to exist in the 
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final solution. The small weight for the group would then reduce the penalty of sparsity of 
this term in the objective function, hence preserving this group in the solution.   
        In light of this idea, we proposed a heuristic method for needle weight adjustment. 
Again, the basic idea is to estimate the importance of each needle catheter based on the 
intermediate solution 𝐭𝒋

(4) during the iterative process and assign smaller weights to those 5 
needle catheters that are likely more important. Specifically, we set the same weight for all 
the candidate needle catheters at the beginning of the iterative process and solve the 
problem with the fixed weight using FISTA for a number of iteration steps to obtain an 
estimate of the final solution. In practice, we found the first 100 iterative steps could lead 
to a reliable estimation. The weight is then updated adaptively at each step of the remaining 10 
iterations. Similar to  (Ahmad and Schniter, 2015; Li et al., 2017), the update was based 

on the x𝐭%
(4)x

"
, the 𝐿" norm of the intermediate solution in the 𝑘-the iteration, in the form 

of 

𝜇%
(4) = 𝑐 zx𝐭%

(4)x
"

"
+ 	𝜖	|	} ,	 (4) 

where 𝑐 is an overall constant that governs the trade-off between the sparsity objective and 

the dosimetric objective in the objective function. A relatively large x𝐭%
(4)x

"

"
 indicates that 15 

the needle catheter 𝑗 is likely more important, and hence its weight is set to be small.  𝜖 >
0 is a parameter with a small value to avoid divergence when computing 𝜇%

(4) for those 
needle catheters with zero dwell time. The adapted scheme is summarized in Algorithm 2.   
 

Algorithm 2. FISTA algorithm solving the problem in (3) with the adaptive needle weights.  

Input: 𝐷+ , 𝜆+ , 𝑖 = 0, 1, … ,𝑀, 𝑐 and prescription dose 𝑑- 
Initialize: 𝐲(/) = 𝐭(1), 𝑠(/), and step size 𝛽,	tolerance 𝜎, 𝜖 
Output: 𝒕∗ 
for 𝑘	 = 	1, 2, … ,100	do  
      𝐯(3) =	𝐲(3) − 𝛽∇𝑓<𝐲(3)=, 𝐯(3) is partitioned as	𝐯(3) =	 >𝐯/

(3), 𝐯𝟐
(3), … , 𝐯5

(3)? 
      𝐭𝒋

(3) = 	prox7E‖⋅‖#<max<𝐯,
(3), 𝟎==, 𝑗 = 1, 2, … ,𝑁 

      𝐭(3) =	 >𝐭/
(3), 𝐭𝟐

(3), … , 𝐭5
(3)? 

      𝑠(3;/) =
/;</;=>?(%)@

#

A
 

      𝐲(3;/) = 𝐭(3) +	B'(%)()
'(%*))

C<𝐭(3) − 𝐭(3D/)= 
end for 
for 𝑘	 = 	101, 102,…	do  
      𝐯(3) =	𝐲(3) − 𝛽∇𝑓<𝐲(3)=, 𝐯(3) is partitioned as	𝐯(3) =	 >𝐯/

(3), 𝐯𝟐
(3), … , 𝐯5

(3)? 
      𝐭𝒋

(3) = 	prox78"
(%)‖⋅‖#

<max<𝐯,
(3), 𝟎==, 𝑗 = 1, 2, … ,𝑁 

      𝐭(3) =	 >𝐭/
(3), 𝐭𝟐

(3), … , 𝐭5
(3)? 

       𝑠(3;/) =
/;</;=>?(%)@

#

A
 

      𝐲(3;/) = 𝐭(3) +	B'(%)()
'(%*))

C<𝐭(3) − 𝐭(3D/)= 
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𝜇,
(3) = 𝑐 NG𝐭,

(3)G
A

A
+ 	𝜖	O⁄ ; 

 
     break if  G𝐭(3) − 𝐭(3D/)G

𝟐
G𝐭(3)G

𝟐H < 𝜎, set 𝐭∗ = 𝐭(3).		
end for  
 
 
2.4 Evaluation studies 
 

We tested the proposed method on a set of ten patient cases that were randomly selected 5 
from those patients treated at our institution. The prescription dose was either 14 Gy per 
fraction or 15 Gy per fraction depending on the specific treatment regimen for the patient. 
We extracted the PTV and OAR contours for each case from our clinical treatment planning 
system. We then discretized the volumetric space into voxels with 1 mm3 in size. The 
number of voxels of PTV and OARs and their volumes are summarized in Table 1. For 10 
each case, we solved the preplanning problem using the proposed algorithm. In the 
optimization process, overlap between urethra and bladder is considered as urethra to give 
it higher priority. However, dose in overlapping voxels is considered in both organs when 
evaluating the resulting plans.  
 15 
Table 1: Numbers of voxels and volumes of PTV and OARs in patient cases.  

 
Number of voxels Volume 

Mean Range Mean (cc) Range (cc) 

PTV 32023 22275 - 43701 32.02 22.28 - 43.70 
Urethra 746 329 - 1234 0.75 0.33 - 1.23 
Rectum 14971 7231 - 31882 1.50 7.23 - 31.88 
Bladder 38389 12618 - 61745 38.51 12.70 - 61.90 

 
To demonstrate the effectiveness of the proposed algorithm, we compared the 

optimized plans with the clinically used plans generated using needle catheter positions 
manually selected by the physicians during the actual HDR brachytherapy procedure. As 20 
such, we first identified the selected needle catheter positions for each patient case. 
Assuming the ideal needle catheter insertion situation with needles being perpendicular to 
the template, we positioned dwell positions inside the PTV and a 3mm expansion as 
previously described. After that, we solved an optimization problem with the group-
sparsity term removed from Eq. (3), namely  25 

min
𝒕/𝟎

!
"
"𝐷~'𝐭 − 𝑑(𝟏""

" + ∑ 1"
"
"𝐷~& 	𝐭""

",
&-! .	 (5) 

Here	𝐷~' and 𝐷~& are dose deposition matrices for the known needle catheters. Because the 
known needle catheter positions belonged to the candidate needle catheter positions, 𝐷~' 
and 𝐷~& were submatrices of 𝐷' and 𝐷%. We solved the problem of Eq. (5) by FISTA as well. 
Here, 

𝑓(𝐭) = 	
1
2
"𝐷~'𝐭 − 𝑑(𝟏""

" +g
𝜆&
2
"𝐷~& 	𝐭""

",

&-!
,	 30 
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and  

𝑔(𝐭) = 0														𝐭 ≥ 𝟎,
∞				𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. 

prox7(𝑦) is a nonnegative projection, i.e., prox7(𝐲) = max(𝐲, 0). Therefore, the iterative 
scheme is  

⎩
⎪⎪
⎨

⎪⎪
⎧					𝐭(4) = max z𝐲 − 𝛽𝐷~'>V𝐷~'𝐲(4) − 𝑑(𝟏W −g 𝛽𝜆&𝐷~&>𝐷~&𝐲(4)

,

&-!
, 0|

𝑠(48!) =
1 + Z1 + 4(𝑠(4))"

2
𝐲(48!) 	= 𝐭(4) +	9:

(%);!
:(%'()

<V𝐭(4) − 𝐭(4;!)W.
																		

 5 

    
All the numerical experiments were conducted on a desktop computer equipped with 

a CPU (Intel i7- 6700, 3.4GHz) and 32 GB memory. We implemented all the computations 
using MATLAB 9.2 (R2017a) (MathWorks, Natick, MA, USA). 

To evaluate the resulting plan quality and fairly compare qualities of plans, we 10 
normalized the plan generated by the proposed algorithm (Algorithm 2), such that its PTV 
D95 equaled to that of the plan generated using pre-determined needle catheters. In addition 
to examining typical dosimetric quantities of interest of the PTV and OARs, PTV 
homogeneity and conformality were also evaluated. Homogeneity Index (HI) was used to 
measure the dose homogeneity inside PTV(Major et al., 2017), which was defined as 15 

HI = 1 − 𝑉!B'/𝑉!''. 
Conformity Index (CI) quantified the geometric congruence between the volume irradiated  
and the PTV volume (Cirino et al., 2012). We considered the definition 

CI = 	
C+,-./0
C+,-

∙
C+,-./0
C12134./0

. 

Here 𝑉DEF is the PTV volume and 𝑉DEF/G0 is the volume of PTV receiving at least the 20 
prescribed dose 𝑑(. 𝑉HIHJK/G0 represents the total volume receiving at least 𝑑(.  
 
3. RESULTS 
 
3.1 Iteration process 25 
 

We first present the iteration process for a representative patient case, in which the 
proposed algorithm gradually selects needle catheters. Fig. 2 shows the value of the 
objective function and the number of active needle catheters (needle catheters with non-
zero dwell time) for each iteration. In the first 100 iterations, the weights for all the 30 
candidate needle catheters are the same and the objective function value dramatically 
decreases. However, the number of active needle catheters was only reduced slightly. After 
the first 100 iteration steps, the adaptive weight adjustment was turned on to accelerate the 
needle catheter selection process. In Fig.1(b), we can see that the number of active needle 
catheters was reduced rapidly by 32 from the 100-th iteration step to the 118-th iteration 35 
steps. The heuristic weight-adjustment scheme led to an increase of the objective function 
value after the first 100 iteration steps. The objective function value gradually saturates to 
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the final level.  During this process, the number of active needle catheters is continuously 
reduced, finally saturating at 13 needle catheters.  

 
Figure 2: (a) Objective functions and (b) the number of active needle catheters during the iterative 
process.   
 

We further demonstrate the effect of adaptive weight adjustment by comparing the 
needle catheter selection process using algorithms with (Algorithm 2) and without 5 
(Algorithm 1) the adaptive weight adjustment scheme. The number of active needle 
catheters during the iterative processes in these two cases are shown in Fig. 3. The one 
without adaptive weight cannot effectively reduce the number of the active needle catheters 
after the first 100 iterations, yielding a solution that can minimize the dosimetric objective 
function but with a relatively large number of needle catheters selected (59). In contrast, 10 
the adaptive weight adjustment scheme was able to dramatically reduce the needle catheter 
number to 13. 

 
Figure 3:  The number of active needle catheters in the iterative processes with/without the 
adaptive weight adjustment scheme.  
 
 
3.2 Quantitative evaluations of plan quality 

 15 
Using another patient case as an example, in Fig. 4, we compare the selected needle 

catheters, isodose lines, and dose volume histograms (DVHs) of the plan generated by the 
proposed algorithm with those in the plan optimized with needle catheters manually 
selected. The advantage of the proposed method can be clearly observed. The plan with 

(a) (b)
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manually selected needle catheter positions contained 16 needle catheters. However, the 
needle catheters missed the superior-right and superior-left regions of the PTV. As a 
consequence, to a generate sufficient PTV coverage, the optimization algorithm had to 
increase some of the dwell time, yielding a relatively large connected hot region with dose 
greater than 150% of the prescription dose. In contrast, the proposed algorithm selected 13 5 
needle catheters spanning the PTV region relatively uniformly and avoiding the urethra. 
The dose distribution was found to be more homogeneous compared to the other plan, as 
indicated by a few disconnected hot regions with relatively smaller sizes.         
 

 
Figure 4:  Selected needle catheters and isodose lines in the plan optimized with manually 
selected needle catheters (A) and the plan generated by our algorithm (B). The needle catheter 
positions and isodose lines are plotted over the ultrasound image and organ contours. (C) DVHs 
of these two plans. Prescription dose for this case was 15 Gy, as indicated by the vertical dash 
line. 
 

In terms of DVH comparisons, the DVH of the PTV for the plan generated by the 10 
proposed algorithm was slightly sharper than that of the plan using pre-defined needle 
catheter positions, indicating better dose homogeneity. The dose to OARs were also 
reduced slightly. In particular, the hot spot of the urethra was reduced, which can also be 
observed by comparing the isodose lines. The 115% isodose line in the plan generated by 
the proposed algorithm curved around the urethra to effectively spare it. 15 

Tables 2 and 3 summarize the median values of the dosimetric quantities of interest for 
all ten patient cases. We further present these metrics in Fig. 5 and 6 to better visualize the 
distributions among these patient cases. For PTV coverage, the V100 of the plan generated 
by the proposed algorithm was higher than that of the plan with manually selected needle 
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catheter positions. The other three quantities, V125, V150, and V200, of the plan with needle 
catheters selected by our algorithm were all lower than the corresponding quantities in the 
clinically used plan. These numbers indicated the effectiveness of the proposed algorithm 
in terms of selecting needle catheters to generate plans with high PTV homogeneity. This 
was confirmed by the improvement of median HI from 0.64 to 0.74. The median CI was 5 
also improved, which was ascribed by the more appropriate needle catheter positions 
selected by the algorithm to allow a rapid dose fall-off outside the PTV. Note that these 
improvements were achieved with a median reduction of needle catheter number by 2. As 
for the quantities of interest for OARs, the proposed algorithm was able to reduce median 
values for all except the D1cc and D2cc of the rectum, which were increased slightly. 10 

  
Table 2: PTV coverage metrics, homogeneity index (HI), Conformity Index (CI) and the 
number of needle catheters for the plan optimized with manually selected needle catheters 
(MA) and plan optimized using the proposed group sparsity algorithm (GS).  

Method 
Prostate (PTV) 

HI CI No. of Needle 
catheters 

V100 V125 V150 V200 

MA 94% 70% 34% 15% 0.64 0.44 14 

GS 96% 62% 26% 8% 0.74 0.49 12 
 15 
Table 3: OARs dosimetric quantities of interest for the plan optimized with manually selected 
needle catheters (MA) and plan optimized using the proposed group sparsity algorithm (GS).  

Method 
Urethra Bladder Rectum 

D1cc (Gy) D30% (Gy) D1cc (Gy) D2cc (Gy) D1cc (Gy) D2cc (Gy) 

MA 19.34 17.40 15.89 19.17 10.01 10.95 

GS 19.06 16.63 11.82 13.89 10.60 11.80 

 

 
Figure 5:  Boxplot of PTV coverage metrics and number of needle catheters. 
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Figure 6:  Boxplot on dosimetric quantities of interest for OARs: urethra (left column), bladder 
(middle column), and rectum (right column). 
 
4. CONCLUSION AND DISCUSSIONS 
 

In this work, we propose a method for simultaneous needle catheter selection and dwell 
time optimization for the preplanning task of prostate cancer HDR brachytherapy. The 5 
method was based on group sparsity. It introduced a weighed 𝐿",!  penalty term in the 
objective function to promote sparsity with respect to the number of active needle catheters. 
We further propose an adaptive weight adjustment approach to heuristically adjust needle 
weights during the iterative optimization process to enable more effective selection of 
needle catheters. The proposed method was tested on ten patient cases. Compared with 10 
plans optimized based on pre-determined needle catheter positions manually selected by 
physicians, the proposed method was able to effectively select needle catheters yielding 
plans with better PTV coverage and OAR sparing in most of dosimetric variables of 
interest. More importantly, the improvement of plan quality was achieved with two less 
needle catheters as compared to the plans with manually selected needle catheter positions. 15 

In our optimization scheme, there were several parameters, including the step size for 
the proximal operator 𝛽,	the overall relative weight 𝑐 between the dosimetric objectives 
and the sparsity objective, and𝜆& , 𝑖 = 1,… ,𝑀 , the relative important among organs. 
Generally speaking, the selections of these parameters affect the resulting plan quality and 
number of needle catheters. Hence, it is worthwhile to discuss this parameter selection 20 
issue. The parameter 𝛽 can be determined by the Lipchitz gradient constant of the function 
𝑓 according to (Boyd et al., 2004). Once its value was set small enough, it does not affect 
the solution but only the convergence speed. In our study, we set the parameter 𝛽 = 1/𝐿, 
where 𝐿 is the Lipchitz gradient constant of 𝑓, which can be numerically computed given 
its function form. The parameter 𝑐 governs the tradeoff between the planning dosimetry 25 
objectives and the needle catheter number objective. The parameters 𝜆& , 𝑖 = 1,… ,𝑀 
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control different objectives among the PTV and OARs. The proper values of these 
parameters are case dependent. In this work, these parameter values are adjusted manually 
to yield a satisfactory solution for each patient case. This manual selection limits the 
proposed method, as it would affect the practicality of the method for routine clinical use. 
Future studies to solve this problem are needed and are being explored by our group. A 5 
possible solution is to solve the optimization problem in real time, which would allow a 
user to visualize the resulting plan quality as a function of the parameter values and 
interactively adjust them to achieve optimal results. Alternatively, it may be possible to 
build a statistical model to relate the patient anatomy to the optimal parameter values. This 
approach has been previously explored in the context of plan optimization for intensity 10 
modulated radiation therapy (Lee et al., 2013; Boutilier et al., 2015) and we expect 
extension of this method to our problem is feasible. In addition, recent advances in deep 
reinforcement learning (Shen et al., 2020b) may help in solving this problem. Studies have 
demonstrated feasibility of using deep reinforcement learning to model human intuition in 
adjusting parameters of objective functions for optimization problems, such as in iterative 15 
CT reconstruction (Shen et al., 2018; Shen et al., 2019b) and radiotherapy treatment 
planning (Shen et al., 2019a; Shen et al., 2020a).  

As a method for preplanning, the proposed algorithm assumes ideal needle catheter 
placement in the patient body, i.e. without considering practical issues such as the bending 
of needle catheters or other uncertainties in needle catheter placement during the insertion 20 
process. Hence, its clinical value may be limited to a certain extent. The calculated needle 
catheter positions assuming the ideal insertion situation may not be optimal anymore once 
the needle catheters deviate from these conditions. An approach to potentially alleviate this 
caveat is to further extend the proposed needle catheter selection method to a real-time 
guidance form. Specifically, the method would be executed continuously during a needle 25 
insertion procedure. At any given time, the needle catheters already inserted are known to 
the algorithm, and the algorithm would optimize with respect to remaining needle catheter 
positions to select the needle catheter positions based on those already inserted needle 
catheters. This is a feasible approach, as the procedure is often performed under real-time 
image guidance, and digitization of inserted needle catheter position during the procedure 30 
is achievable. 

There are also other potential areas of applications of the proposed algorithm. such as 
HDR brachytherapy for cervical cancer when using interstitial needle catheters (Nag et al., 
2000). The planning problems in these cases face the same challenge of achieving 
sufficient dosimetric coverage while minimizing the use of needle catheters to reduce 35 
trauma. It is expected that it is straightforward to extend the current algorithm in those 
contexts. Similarly, the algorithm may also be extended to preplanning for LDR 
brachytherapy of prostate cancer and other tumor sites. 
 
 40 
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