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Purpose: Needle catheter positions critically affect the quality of treatment plans in
prostate cancer high-dose-rate (HDR) brachytherapy. The current standard needle
positioning approach is based on human intuition, which cannot guarantee a high-quality
plan. This study proposed a method to simultaneously select needle catheter positions and
determine dwell time for preplanning of HDR brachytherapy of prostate cancer.
Methods: We formulated the needle catheter selection problem and inverse dwell time
optimization problem in a unified framework. In addition to the dose objectives of the
planning target volume (PTV) and organs at risk (OARs), the objective function
incorporated a group-sparsity term with a needle-specific adaptive weighting scheme to
generate high-quality plans with the minimal number of needle catheters. The optimization
problem was solved by a fast-iterative shrinkage-thresholding algorithm. For validation
purposes, we tested the proposed algorithm on 10 patient cases previously treated at our
institution and compared the resulting plans with plans generated using needle catheters
selected manually.

Results: Compared to the plan with manually selected needle catheters, when normalizing
both plans to the same PTV Deos, the plans generated by the proposed algorithm reduced
median Vizs from 70% to 62%, Viso from 34% to 26%, and V200 from 15% to 8%. The
median homogeneity index and conformity index were increased from 0.64 to 0.74, and
from 0.44 to 0.49, respectively. Most of clinically important dosimetric variables of OARs
were reduced, except Dicc and Dacc of the rectum that were slight increased. On average,
the number of selected needle catheters was reduced by two.

Conclusion: The proposed algorithm for prostate HDR brachytherapy preplanning was
effective to perform needle catheter selection and dwell time optimization simultaneously.
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1. INTRODUCTION

High-dose-rate (HDR) brachytherapy is an effective therapeutic approach for prostate
cancer management, either as a monotherapy or as a boost in combination with external
beam radiotherapy (Martinez et al., 2001; Blasko et al., 2002; Dinges et al., 1998; Galalae
et al., 2002; Lachance ef al., 2002; Mate et al., 1998; Thompson et al., 2007; Yoshioka et
al., 2000). Different from external-beam radiotherapy that uses a high-energy radiation
beam to deliver the dose from the outside of the patient’s body, HDR brachytherapy
delivers radiation directly to the tumor by having a radioactive source travel through
catheter needles inserted into the prostate. This allows the achievement of a dose
distribution highly conformal to the treatment targets, while effectively sparing
surrounding normal organs.

In a typical procedure of prostate cancer HDR brachytherapy, a 2D template with a
grid coordinate is used to define candidate needle catheter positions. A number of needle
catheters in a subset of the candidate positions are inserted through the perineum to the
treatment target under image guidance. After acquiring a 3D volumetric image for
treatment planning, needle catheter trajectories are reconstructed, and dwell positions are
determined along those trajectories. Finally, dwell times for each dwell position is
optimized to generate a 3D dose distribution that meets clinical objectives. The quality of
the resulting treatment plan depends on both the needle catheter positions and the optimized
dwell times of the dwell positions defined within the needle catheters. Hence, a proper
needle catheter configuration is the basis for a high-quality plan. On one hand, a sufficient
number of needle catheters have to be inserted to achieve adequate dose coverage of the
tumor while sparing adjacent normal organs. On the other hand, it is highly desired to use
as a minimal number of needle catheters as possible to minimize trauma (Boyea et al.,
2007; Eapen et al., 2004). The current clinical practice relies on physician’s intuition to
select needle catheter positions. While this has been acceptable as the standard practice, it
is expected that the resulting needle catheter configuration would depend on physician’s
experience and may not guarantee an optimal treatment plan. Therefore, it is desirable to
develop a method to guide the selection of needle catheter positions to ensure consistent
achievement of high-quality plan for each patient.

A number of studies have been performed on the treatment planning problem of
prostate cancer HDR brachytherapy, but most haven been focused on the optimization of
dwell time for given dwell positions. Existing methods include simulated annealing (Deist
and Gorissen, 2016; Lessard and Pouliot, 2001), particle swarm optimization (Moren et al.,
2018) and mixed integer programming as well as its convex relaxation (Moren et al., 2019;
Siauw et al., 2011). Multi-criteria optimization (Breedveld et al, 2019) and multi-
resolution (Luong et al., 2019) schemes have also been proposed. Relatively less research
efforts have been devoted to the determination of optimal needle catheter positions.
Sadowski et. al. employed a mixed-integer optimization approach with a genetic algorithm
to solve this problem and found that clinically acceptable high-quality plans may be
achievable with less catheters than typically used in the clinical practice (Sadowski et al.,
2017). Similarly, the Gene-pool Optimal Mixing Evolutionary Algorithm was used to
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optimize catheter positions (van der Meer et al., 2018). In (Siauw et al., 2012), the authors
reported a needle planning by integer program (NPIP) method to select needle catheters to
meet the requirement of spatial coverage of the target.

The optimization problem for needle catheter selection belongs to the category of
combinatorial optimization. The enormously large solution space prohibits the use of
simple methods such as exhaustive search. Moreover, for this problem, the objective
function defined for the independent variable of needle catheter configuration is indeed the
optimal objective function value of the treatment planning optimization problem solved on
top of the needle catheter configuration. This bi-level optimization structure further
increases the difficulty of solving this problem in a mathematically rigorous form. In this
paper, we propose an inverse planning method to perform needle catheter selection and
dwell time optimization simultaneously for optimal plan quality with the minimal number
of needle catheters selected. Our method will be based on the concept of group sparsity
(Bach et al., 2012; Bach, 2008; Huang and Zhang, 2010; Meier et al., 2008; Simon et al.,
2013). Generally speaking, solving the group sparsity problem refers to the selection of a
small number of groups of variables from candidate groups of variables to achieve a certain
goal. In the context of HDR brachytherapy preplanning, all the independent variables of
dwell time among all candidate needle catheters can be grouped based on the needle
catheters. The group sparsity approach generates a solution that is sparse at the group level,
i.e. the needle level, hence achieving the objectives of using a small number of needle
catheters to produce a high-quality treatment plan. This group sparsity method has been
successfully implemented in various applications (Parvaresh et al., 2008; Wu and Lin,
2006), including beam orientation optimization in radiation therapy (Jia et al., 2011; Gu et
al.,2018; Gu et al., 2019; O'Connor et al., 2017).

2. METHODS AND MATERIALS
2.1 Optimization problem

We considered the treatment planning problem with a 3D volumetric ultrasound image.
Planning Target Volume (PTV) and Organs at Risk (OARs) including bladder, rectum, and
urethra were delineated by the physician. The PTV was defined as prostate minus urethra.
One additional structure generated for this study was a ring-shape protected zone around
the PTV. The distance between the inner side of the ring and the PTV surface was 5 mm,
and the thickness of the ring was 5 mm. Any overlapping region with OARs were removed
from the protected zone. The purpose of generating this structure was to help enforcing
dose fall-off outside the PTV, when solving the plan optimization problem.

We considered the setup using a 2D needle template (Eckert & Ziegler Group, Berlin,
Germany) with a grid size of 13 X 13 needle catheters spaced 5 mm apart in the x-y
direction. We first aligned the template with the patient anatomy. The template was
assumed to be placed parallel to the axial image direction. Laterally, the grid center was
aligned with the rectum center, and the posterior needle level was at the anterior side of the
rectal wall (Fig. 1) to approximate the clinical setup with transrectal ultrasound (TRUS).
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We assumed that needle catheters were inserted perpendicular to the template. Among the
169 possible needle catheter positions, we considered candidate needle catheter positions
that resulted in needle catheters intersecting with a volume including the PTV with a 3mm
outward expansion to provide sufficient dose coverage to PTV boundary. Hence, the
number of candidate needle catheters was patient dependent. In our study, this number
ranged between 50 and 74. Fig. 1 illustrates the geometry showing the candidate needle
catheter positions relative to the PTV and OAR regions. For all the candidate needle
catheters, dwell positions are placed along the needle catheters within the expanded
prostate volume. This assumes each candidate needle catheter can be inserted sufficiently
deep such that needle tips pass beyond the superior end of the prostate. The dwell positions
were spaced Smm apart following the setup of our Varian VariSource HDR brachytherapy
afterloader (Varian Medical System, Palo Alto, CA, USA).

Bladder

Urethra

Rectum

Prostate

Protected zone

+ JHRNN

Candidate needles

Figure 1: lllustration of candidate needle catheter positions relative to PTV and OARs.

The inverse planning task was formulated as solving an optimization problem that
simultaneously selects the needle catheters and optimizes dwell time for corresponding
sources in selected needle catheters. The objective function contains two parts. The first
part describes dosimetric objectives. We consider a quadratic objective function that
enforces PTV coverage close to the prescription dose, while minimizing doses to OARs:

i”Dot—dplnj + 2 2Dt (1)

where t = [ty; ty; t3;...; ty] = 0 denotes dwell time of a set of N candidate needle
catheters, while the vector t; specifies the dwell time for a number of n; sources in the j-
th candidate needle catheter. The matrix D; is the dose-deposition matrix for the PTV (i =
0) or the OARs (i = 1, 2, ... , M), which specifies the contributions to dose at each voxel
of the structure i from each dwell position at its unit time. Dose was calculated using the
clinical standard AAPM TG-43 formalism (Rivard et al., 2004). 1 and 0 are vectors with

all elements being 1 or 0, respectively. The first term % ||D0t - dp1||2 enforces the PTV

dose to be close to the prescription dose d,,, while the second term Y,i~; 4iiip;¢ll3 penalizes
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for dose to OARs. {A;} is a set of parameters balancing the contributions among different
terms in the objective function.

In addition to the terms specifying dosimetric objectives for the PTV and OARs, we
incorporate a group-sparsity term to penalize for the number of selected needle catheters.
More specifically, we chose an objective function of a weighted L, ; norm of t :

o1 'uj”tj |2) 2

where p; is the weighting factor of the j-th needle catheter. This L, ; norm first calculates
the L, norm of the dwell time within each needle catheter group and then sums over all
needle catheters in the L; norm. Minimizing the L, ; norm enforces the sparsity of the
solution at the group (needle catheter) level, but not at the level of individual elements
(dwell time) within each group. Hence, including this term in the objective function will
promote a solution with only a small fraction of the candidate needle catheters containing
non-zero dwell time to meet the dosimetric objectives, therefore accomplishing the goal of
needle catheter selection. Combining these two objectives in Eq. (1) and (2), the proposed
optimization problem was formulated as:

min [|Dot — dy 1) + 2, FUDIE + 20y 51, 3)

2.2. Optimization algorithm

The proposed optimization problem in Eq. (3) is convex and can be solved efficiently
by a number of fast algorithms. In this study, we used the fast-iterative shrinkage-
thresholding algorithm (FISTA) (Beck and Teboulle, 2009). FISTA considers a general
minimization problem in the form of

min f(x) + g0,
where f is differentiable and convex, while g has an explicit form of its proximal operator.
The iterative scheme in the k-th iteration is

x(k) = proxﬁg (y(k) — ﬁVf(y(k)))

141+ 4(s)2
2
ykHD ke g (s("’—l)(x(k) — x(k-)

sk+1) —

S+ D)

where the proximal operator is defined as proxg,(x) = min{ﬁ gluw) + %Ilu—xllg} and fisa
u
parameter. Specific to the problem of Eq. (3), we have f(t) = % ||D0t - dp1||2 +
A
YL S IDAIE, and g(® = X, g;(t;), where

_ ulll, =0,
(t.)) = Ml j
g]( ]) { 00 otherwise.

Based on the chain rule, the gradient of f can be expressed as
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M
VF(t) = DI (Dot — dy1) + 2 A,D7D;t.
i=1
Since g; is separable, the proximal operator of g is given by

proxg, (t,)

proxg, (t;)
proxy(t) = -

proxg, (ty)
According to (O'Connor ef al., 2017),
pros,(t;) = pros,.,(max(t; 0))
Hence, the proximal operator of the L, norm is PTOX,, .1, (y) =y — Pjy, where Pjy
denotes the projection of y onto the L, norm ball with a radius of u;, i.e.,

_ {#jY/H}’”z if llyllz > p,
y  otherwise.
The iterative process of the algorithm is summarized in Algorithm 1.

Py

Algorithm 1. FISTA algorithm solving the problem in (3).

Input: Di,/li,uj,i =0,1,..,M,j =1,2,...,N and prescription dose dp
Initialize: y = t(@,sM and step size 8, tolerance o
Output: t*
fork = 1,2,..,do
v = y® — pyf(y®), v is partitioned as v(K) = [vl(k),vz(k), ...,v,E,k)]

t;k) = proxﬁuj”_”z(max(vj(k),0)), j=12,..,N

[0 (0G0
t® = [6,7, 6,7, .., 6]
GG — 1+ [1+4(s®)?

2
yUe+D) = g0 4 < )(t<k> — t0e-D)

s
s(k+1)

break if [[t% — e /[[t®]|. < o, set e = £,
end for

2.3 Adaptive needle weight adjustment

Looking at the Algorithm 1, in each iteration, the operation max(v]-,O) eliminates
negative elements in the solution vector. The proximal operator further reduces the
magnitude of the solution for each needle catheter group. These operations gradually
generate a sparsity solution in this iterative process. Importantly, the proximal operation
projects the solution to a sphere having a radius of y; for the dwell time vector of needle
catheter j. Proper selection of parameter y; could in principle accelerate the process of
generating sparsity and hence the optimization process. Unfortunately, it is not possible to
rigorously set the parameter values without knowing prior information. In (Ahmad and
Schniter, 2015; Li et al., 2017), the authors proposed an iterative weight adjustment scheme.
The basic idea was to set a small weighting factor for the group that is likely to exist in the
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final solution. The small weight for the group would then reduce the penalty of sparsity of
this term in the objective function, hence preserving this group in the solution.

In light of this idea, we proposed a heuristic method for needle weight adjustment.
Again, the basic idea is to estimate the importance of each needle catheter based on the

intermediate solution t](.k) during the iterative process and assign smaller weights to those

needle catheters that are likely more important. Specifically, we set the same weight for all
the candidate needle catheters at the beginning of the iterative process and solve the
problem with the fixed weight using FISTA for a number of iteration steps to obtain an
estimate of the final solution. In practice, we found the first 100 iterative steps could lead
to a reliable estimation. The weight is then updated adaptively at each step of the remaining
iterations. Similar to (Ahmad and Schniter, 2015; Li et al., 2017), the update was based

on the ”t](k) ” , the L, norm of the intermediate solution in the k-the iteration, in the form
2

of

K k) ||2
#](.):c/<||t]§)||2+ e), (4)
where c is an overall constant that governs the trade-off between the sparsity objective and

2
the dosimetric objective in the objective function. A relatively large ” t](k) ” indicates that
2

the needle catheter j is likely more important, and hence its weight is set to be small. € >
0 is a parameter with a small value to avoid divergence when computing u;k) for those

needle catheters with zero dwell time. The adapted scheme is summarized in Algorithm 2.

Algorithm 2. FISTA algorithm solving the problem in (3) with the adaptive needle weights.

Input: D;, A;,i = 0,1, ..., M, ¢ and prescription dose d,,
Initialize: y = t(©, s and step size B, tolerance o, €
Output: t*
fork = 1,2,..,100 do
vl = y® — pyf(y®), v is partitioned as v(K) = [vl(k), vz(k), ...,v,E,k)]
t;k) = proxBC”.”Z(maX(vj(k),0)), j=12,..,N
t® = [t%9¢0, ]

K 2
krn) T THGD)

yUe+D) = ¢ +2 <ﬁ%>(t(") — t0e-D)
end for
for k = 101,102, ...do
v = ylo [)’Vf(y(")), v is partitioned as v(K) = [vl(k), vz(k), ...,v,E,k)]

t;k) = proxﬁﬂﬁk)”_”z(max(vj(k),0)), ji=12,..,N

t® = [t9e, . t)]

K 2
GG — 1+ 1+4(s00)

2
k+1) — ¢k - k k-1
yUe+D) = g0 4 <§<k+$)(t( ) — k=)
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2
#E-k) = C/(||t](k)||2 + € );

break if [[t% — eV /[[t®]|. < o, sett* = £,
end for

2.4 Evaluation studies

We tested the proposed method on a set of ten patient cases that were randomly selected
from those patients treated at our institution. The prescription dose was either 14 Gy per
fraction or 15 Gy per fraction depending on the specific treatment regimen for the patient.
We extracted the PTV and OAR contours for each case from our clinical treatment planning
system. We then discretized the volumetric space into voxels with 1 mm® in size. The
number of voxels of PTV and OARs and their volumes are summarized in Table 1. For
each case, we solved the preplanning problem using the proposed algorithm. In the
optimization process, overlap between urethra and bladder is considered as urethra to give
it higher priority. However, dose in overlapping voxels is considered in both organs when
evaluating the resulting plans.

Table 1: Numbers of voxels and volumes of PTV and OARs in patient cases.

Number of voxels Volume
Mean Range Mean (cc) Range (cc)
PTV 32023 22275 - 43701 32.02 22.28 -43.70
Urethra 746 329 -1234 0.75 0.33-1.23
Rectum 14971 7231 - 31882 1.50 7.23-31.88
Bladder 38389 12618 - 61745 38.51 12.70 - 61.90

To demonstrate the effectiveness of the proposed algorithm, we compared the
optimized plans with the clinically used plans generated using needle catheter positions
manually selected by the physicians during the actual HDR brachytherapy procedure. As
such, we first identified the selected needle catheter positions for each patient case.
Assuming the ideal needle catheter insertion situation with needles being perpendicular to
the template, we positioned dwell positions inside the PTV and a 3mm expansion as
previously described. After that, we solved an optimization problem with the group-
sparsity term removed from Eq. (3), namely

min || Dot — dy 1 + X2, 7

15; t||2. (5)

Here D, and D; are dose deposition matrices for the known needle catheters. Because the
known needle catheter positions belonged to the candidate needle catheter positions, D,
and D; were submatrices of D, and D;. We solved the problem of Eq. (5) by FISTA as well.

Here,

1, 2 Mo~ 2
O = 31Dt =1l + )~ FBiel,
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and
(0 t>0,
9 = {oo otherwise.
proxg4(y) is a nonnegative projection, i.e., proxy (y) = max(y, 0). Therefore, the iterative

scheme 1s

( ST(R M ~ra
t® = max (Y — BD§ (Doy® — dp1) - Z 13/1iDiTDiy(k): 0)
i=

)2
< s(k+1)=1+‘/1+4(s )

2
y(k+1) — t(k) + (g(k)—l)(t(k) —t(k_l)),

k1)

\

All the numerical experiments were conducted on a desktop computer equipped with
a CPU (Intel i7- 6700, 3.4GHz) and 32 GB memory. We implemented all the computations
using MATLAB 9.2 (R2017a) (MathWorks, Natick, MA, USA).

To evaluate the resulting plan quality and fairly compare qualities of plans, we
normalized the plan generated by the proposed algorithm (Algorithm 2), such that its PTV
Dys equaled to that of the plan generated using pre-determined needle catheters. In addition
to examining typical dosimetric quantities of interest of the PTV and OARs, PTV
homogeneity and conformality were also evaluated. Homogeneity Index (HI) was used to
measure the dose homogeneity inside PTV(Major et al., 2017), which was defined as

HI =1 —Vi50/Vioo0-
Conformity Index (CI) quantified the geometric congruence between the volume irradiated

and the PTV volume (Cirino et al., 2012). We considered the definition
cl = VPTVz2a, ) VPTVz2d,

Vet Veotalzdp
Here Vpry is the PTV volume and VpTvzdp is the volume of PTV receiving at least the

prescribed dose d,,. thalzdp represents the total volume receiving at least dp,.
3. RESULTS

3.1 Iteration process

We first present the iteration process for a representative patient case, in which the
proposed algorithm gradually selects needle catheters. Fig. 2 shows the value of the
objective function and the number of active needle catheters (needle catheters with non-
zero dwell time) for each iteration. In the first 100 iterations, the weights for all the
candidate needle catheters are the same and the objective function value dramatically
decreases. However, the number of active needle catheters was only reduced slightly. After
the first 100 iteration steps, the adaptive weight adjustment was turned on to accelerate the
needle catheter selection process. In Fig.1(b), we can see that the number of active needle
catheters was reduced rapidly by 32 from the 100-th iteration step to the 118-th iteration
steps. The heuristic weight-adjustment scheme led to an increase of the objective function
value after the first 100 iteration steps. The objective function value gradually saturates to
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the final level. During this process, the number of active needle catheters is continuously
reduced, finally saturating at 13 needle catheters.
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Figure 2: (a) Objective functions and (b) the number of active needle catheters during the iterative
process.

We further demonstrate the effect of adaptive weight adjustment by comparing the
needle catheter selection process using algorithms with (Algorithm 2) and without
(Algorithm 1) the adaptive weight adjustment scheme. The number of active needle
catheters during the iterative processes in these two cases are shown in Fig. 3. The one
without adaptive weight cannot effectively reduce the number of the active needle catheters
after the first 100 iterations, yielding a solution that can minimize the dosimetric objective
function but with a relatively large number of needle catheters selected (59). In contrast,
the adaptive weight adjustment scheme was able to dramatically reduce the needle catheter
number to 13.
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Figure 3: The number of active needle catheters in the iterative processes with/without the
adaptive weight adjustment scheme.

3.2 Quantitative evaluations of plan quality

Using another patient case as an example, in Fig. 4, we compare the selected needle
catheters, isodose lines, and dose volume histograms (DVHs) of the plan generated by the
proposed algorithm with those in the plan optimized with needle catheters manually
selected. The advantage of the proposed method can be clearly observed. The plan with

10
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manually selected needle catheter positions contained 16 needle catheters. However, the
needle catheters missed the superior-right and superior-left regions of the PTV. As a
consequence, to a generate sufficient PTV coverage, the optimization algorithm had to
increase some of the dwell time, yielding a relatively large connected hot region with dose
greater than 150% of the prescription dose. In contrast, the proposed algorithm selected 13
needle catheters spanning the PTV region relatively uniformly and avoiding the urethra.
The dose distribution was found to be more homogeneous compared to the other plan, as
indicated by a few disconnected hot regions with relatively smaller sizes.

Isodose Legend: Gy [% of Prescription Dose]
22.50[150.0%] M 18.75 [125.0 %]
17.25[115.0 %] 15.00 [100.0 % [N
13.50[ 90.0%] I 10.50 [ 70.0 %] I

— — ~MA-ure | |

— — —MA-bla
— — —MAwec | Prostate Il Urethra [N
Rectum | Bladder

Anatomy Legend:

% Struture Volume

Catheter Legend:
Candidate Manual (MA) Group-Sparsity (GS)

O + *

0 5 10 15 20 25 30
Dose (Gy)

Figure 4: Selected needle catheters and isodose lines in the plan optimized with manually
selected needle catheters (A) and the plan generated by our algorithm (B). The needle catheter
positions and isodose lines are plotted over the ultrasound image and organ contours. (C) DVHs
of these two plans. Prescription dose for this case was 15 Gy, as indicated by the vertical dash
line.

In terms of DVH comparisons, the DVH of the PTV for the plan generated by the
proposed algorithm was slightly sharper than that of the plan using pre-defined needle
catheter positions, indicating better dose homogeneity. The dose to OARs were also
reduced slightly. In particular, the hot spot of the urethra was reduced, which can also be
observed by comparing the isodose lines. The 115% isodose line in the plan generated by
the proposed algorithm curved around the urethra to effectively spare it.

Tables 2 and 3 summarize the median values of the dosimetric quantities of interest for
all ten patient cases. We further present these metrics in Fig. 5 and 6 to better visualize the
distributions among these patient cases. For PTV coverage, the V1o of the plan generated
by the proposed algorithm was higher than that of the plan with manually selected needle

11
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catheter positions. The other three quantities, Vi2s, Viso, and Vago, of the plan with needle
catheters selected by our algorithm were all lower than the corresponding quantities in the
clinically used plan. These numbers indicated the effectiveness of the proposed algorithm
in terms of selecting needle catheters to generate plans with high PTV homogeneity. This
was confirmed by the improvement of median HI from 0.64 to 0.74. The median CI was
also improved, which was ascribed by the more appropriate needle catheter positions
selected by the algorithm to allow a rapid dose fall-off outside the PTV. Note that these
improvements were achieved with a median reduction of needle catheter number by 2. As
for the quantities of interest for OARs, the proposed algorithm was able to reduce median
values for all except the Dicc and Dacc of the rectum, which were increased slightly.

Table 2: PTV coverage metrics, homogeneity index (HI), Conformity Index (CI) and the
number of needle catheters for the plan optimized with manually selected needle catheters
(MA) and plan optimized using the proposed group sparsity algorithm (GS).

Prostate (PTV)
Method HI 1 No. of Needle
catheters
V100 Vis Viso Vaoo
MA 94% 70% 34% 15% 0.64 044 14
GS 96% 62% 26% 8% 0.74 049 12

Table 3: OARs dosimetric quantities of interest for the plan optimized with manually selected
needle catheters (MA) and plan optimized using the proposed group sparsity algorithm (GS).

Urethra Bladder Rectum
Method
Dic (Gy)  D30%(Gy) Diec(Gy)  D2c(Gy)  Diec(Gy) Dace (Gy)
MA 19.34 17.40 15.89 19.17 10.01 10.95
GS 19.06 16.63 11.82 13.89 10.60 11.80
0.98 T T T 02 T
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Figure 5: Boxplot of PTV coverage metrics and number of needle catheters.
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Figure 6: Boxplot on dosimetric quantities of interest for OARs: urethra (left column), bladder
(middle column), and rectum (right column).

4. CONCLUSION AND DISCUSSIONS

In this work, we propose a method for simultaneous needle catheter selection and dwell
time optimization for the preplanning task of prostate cancer HDR brachytherapy. The
method was based on group sparsity. It introduced a weighed L, ; penalty term in the
objective function to promote sparsity with respect to the number of active needle catheters.
We further propose an adaptive weight adjustment approach to heuristically adjust needle
weights during the iterative optimization process to enable more effective selection of
needle catheters. The proposed method was tested on ten patient cases. Compared with
plans optimized based on pre-determined needle catheter positions manually selected by
physicians, the proposed method was able to effectively select needle catheters yielding
plans with better PTV coverage and OAR sparing in most of dosimetric variables of
interest. More importantly, the improvement of plan quality was achieved with two less
needle catheters as compared to the plans with manually selected needle catheter positions.

In our optimization scheme, there were several parameters, including the step size for
the proximal operator S, the overall relative weight ¢ between the dosimetric objectives
and the sparsity objective, andA;,i = 1,...,M, the relative important among organs.
Generally speaking, the selections of these parameters affect the resulting plan quality and
number of needle catheters. Hence, it is worthwhile to discuss this parameter selection
issue. The parameter § can be determined by the Lipchitz gradient constant of the function
f according to (Boyd et al., 2004). Once its value was set small enough, it does not affect
the solution but only the convergence speed. In our study, we set the parameter § = 1/L,
where L is the Lipchitz gradient constant of f, which can be numerically computed given
its function form. The parameter ¢ governs the tradeoff between the planning dosimetry
objectives and the needle catheter number objective. The parameters A;,i =1,...,M
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control different objectives among the PTV and OARs. The proper values of these
parameters are case dependent. In this work, these parameter values are adjusted manually
to yield a satisfactory solution for each patient case. This manual selection limits the
proposed method, as it would affect the practicality of the method for routine clinical use.
Future studies to solve this problem are needed and are being explored by our group. A
possible solution is to solve the optimization problem in real time, which would allow a
user to visualize the resulting plan quality as a function of the parameter values and
interactively adjust them to achieve optimal results. Alternatively, it may be possible to
build a statistical model to relate the patient anatomy to the optimal parameter values. This
approach has been previously explored in the context of plan optimization for intensity
modulated radiation therapy (Lee et al., 2013; Boutilier et al., 2015) and we expect
extension of this method to our problem is feasible. In addition, recent advances in deep
reinforcement learning (Shen ef al., 2020b) may help in solving this problem. Studies have
demonstrated feasibility of using deep reinforcement learning to model human intuition in
adjusting parameters of objective functions for optimization problems, such as in iterative
CT reconstruction (Shen et al., 2018; Shen et al., 2019b) and radiotherapy treatment
planning (Shen et al., 2019a; Shen et al., 2020a).

As a method for preplanning, the proposed algorithm assumes ideal needle catheter
placement in the patient body, i.e. without considering practical issues such as the bending
of needle catheters or other uncertainties in needle catheter placement during the insertion
process. Hence, its clinical value may be limited to a certain extent. The calculated needle
catheter positions assuming the ideal insertion situation may not be optimal anymore once
the needle catheters deviate from these conditions. An approach to potentially alleviate this
caveat is to further extend the proposed needle catheter selection method to a real-time
guidance form. Specifically, the method would be executed continuously during a needle
insertion procedure. At any given time, the needle catheters already inserted are known to
the algorithm, and the algorithm would optimize with respect to remaining needle catheter
positions to select the needle catheter positions based on those already inserted needle
catheters. This is a feasible approach, as the procedure is often performed under real-time
image guidance, and digitization of inserted needle catheter position during the procedure
is achievable.

There are also other potential areas of applications of the proposed algorithm. such as
HDR brachytherapy for cervical cancer when using interstitial needle catheters (Nag et al.,
2000). The planning problems in these cases face the same challenge of achieving
sufficient dosimetric coverage while minimizing the use of needle catheters to reduce
trauma. It is expected that it is straightforward to extend the current algorithm in those
contexts. Similarly, the algorithm may also be extended to preplanning for LDR
brachytherapy of prostate cancer and other tumor sites.
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