
This paper is included in the
Proceedings of the 18th USENIX Symposium on

Networked Systems Design and Implementation.
April 12–14, 2021

978-1-939133-21-2

Open access to the Proceedings of the
18th USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by

Twenty Years After: Hierarchical
Core-Stateless Fair Queueing

Zhuolong Yu, Jingfeng Wu, and Vladimir Braverman, Johns Hopkins University;
Ion Stoica, UC Berkeley; Xin Jin, Peking University

https://www.usenix.org/conference/nsdi21/presentation/yu

Twenty Years After:

Hierarchical Core-Stateless Fair Queueing

Zhuolong Yu

Johns Hopkins University

Jingfeng Wu

Johns Hopkins University

Vladimir Braverman

Johns Hopkins University

Ion Stoica

UC Berkeley

Xin Jin

Peking University

Abstract
Core-Stateless Fair Queueing (CSFQ) is a scalable algorithm

proposed more than two decades ago to achieve fair queueing

without keeping per-flow state in the network. Unfortunately,

CSFQ did not take off, in part because it required protocol

changes (i.e., adding new fields to the packet header), and

hardware support to process packets at line rate.

In this paper, we argue that two emerging trends are mak-

ing CSFQ relevant again: (i) cloud computing which makes

it feasible to change the protocol within the same datacen-

ter or across datacenters owned by the same provider, and

(ii) programmable switches which can implement sophisti-

cated packet processing at line rate. To this end, we present

the first realization of CSFQ using programmable switches.

In addition, we generalize CSFQ to a multi-level hierarchy,

which naturally captures the traffic in today’s datacenters,

e.g., tenants at the first level and flows of each tenant at the

second level of the hierarchy. We call this scheduler Hierar-

chical Core-Stateless Fair Queueing (HCSFQ), and show that

it is able to accurately approximate hierarchical fair queueing.

HCSFQ is highly scalable: it uses just a single FIFO queue,

does not perform per-packet scheduling, and only needs to

maintain state for the interior nodes of the hierarchy. We

present analytical results to prove the lower bounds of HCSFQ.

Our testbed experiments and large-scale simulations show that

CSFQ and HCSFQ can provide fair bandwidth allocation and

ensure isolation.

1 Introduction

Fair queueing is a canonical mechanism to provide fair band-

width allocation to network traffic by ensuring that each flow

gets its fair share irrespective of the other flows. This way, fair

queueing enforces isolation between competing flows, which

ensures that normal flows are protected from ill-behaving

flows. There is a long history of research on fair queue-

ing [1–12]. Many of the proposed solutions require to main-

tain per-flow state in the switch, and rely on complex data

structures and scheduling algorithms to realize fair queueing.

Core-Stateless Fair Queueing (CSFQ) [13] is a scalable al-

gorithm to realize fair queueing. Compared to the alternatives,

CSFQ has the unique property that it does not maintain per-

flow state in the network. With CSFQ, the sources or switches

at the edge classify traffic into flows and estimate per-flow

rate. In turn, the switches in the network estimate the fair rate,

and use probabilistic dropping to regulate each flow to its fair

rate without maintaining per-flow state.

While CSFQ was proposed more than twenty years ago, it

has not taken off. This is primarily due to two reasons. First, it

requires changes to the IP protocol (i.e., adding a field to the

IP header) and coordination across all switches (routers) in

the network. Second, CSFQ requires switches to estimate the

fair rate, compute a drop probability, and update the header of

each packet. To perform these operations at line rate we need

hardware support. These challenges are exacerbated by the

fact that routers belong to different, often competing, Internet

Service Provides (ISPs), which would all need to cooperate

to upgrade their infrastructures to support CSFQ.

However, two emerging technologies are making CSFQ

relevant again: (i) the advent of cloud computing and (ii)
the increased popularity of programmable switches. Cloud

providers own large datacenters consisting of many thou-

sands of servers. Since a datacenter is typically owned by a

single administrative entity (cloud provider) that controls both

the software and hardware, it is relatively easy for a cloud

provider to upgrade all its switches and servers to support

CSFQ. FairCloud [14] proposes to apply CSFQ for network

isolation in datacenters, but it does not have a hardware im-

plementation for CSFQ. The emergence of programmable

switches makes it possible to implement sophisticated packet

processing at line rate. In particular, as we will show in this

paper, existing programmable switches are powerful enough

to support CSFQ at line rate.

While datacenter deployment removes the adoption barriers

for CSFQ, it also raises new challenges. In particular, while

CSFQ has been designed for a flat hierarchy, the traffic in

today’s datacenters is naturally structured in a multi-level

hierarchy. For example, at the top level we typically have

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 29

tenants and at the bottom level we have the flows of those

tenants. The mechanism of choice to manage such traffic is

hierarchical fair queueing [9,10,15], where each non-leaf node

distributes its excess bandwidth (i.e., the bandwidths unused

by some of its children) across its children. This allocation

policy is consistent with a per-tenant payment granularity, i.e.,

network resources are divided between tenants in proportion

to their payments [14]. In this case, if a flow of a tenant stops

sending data, that tenant would want to re-allocate the flow’s

bandwidth to its other flows, and not to the flows of other

tenants in the datacenter.

However, implementing hierarchical fair queueing is chal-

lenging. Existing solutions require per-flow state, and more

importantly, require complex queue management and packet

transfers in a hierarchy of queues [9, 10, 15]. Because of the

implementation complexity, hierarchical fair queueing is not

supported by today’s high-speed hardware switches.

To address this challenge, we propose Hierarchical Core-

Stateless Fair Queueing (HCSFQ). CSFQ only provides fair

queueing, not hierarchical fair queueing. Directly extending

CSFQ to support hierarchical fair queueing would require a

hierarchy of queues. HCSFQ is able to accurately approxi-

mate hierarchical fair queueing and it is highly scalable. The

key difference of our approach is that HCSFQ requires only a

single queue, not a hierarchy of queues. HCSFQ also requires

no packet scheduling. HCSFQ recursively computes the fair

rate of each node starting from the root, and then limits the

rate of each flow to its fair share rate. To the best of our knowl-

edge, HCSFQ is the first solution that enables hierarchical fair

queueing on commodity hardware at line rate while requiring

neither per-flow state nor hierarchical queue management.

An important distinction of HCSFQ from CSFQ is that

HCSFQ keeps the state of the interior nodes of the hierarchy

in the switch. The state of the interior nodes is necessary to

support hierarchical fair queueing, as the fair share rates of

distinct interior nodes are typically different. The excess band-

width of a flow is only shared with its sibling flows. That is, if

a flow changes its sending rate, it would impact the fair rate of

the sibling flows, but not necessarily of other flows in the hier-

archy. Note that similar to CSFQ, HCSFQ does not maintain

per-flow state (i.e., the state of the leaf nodes). Fortunately, for

today’s multi-tenant clouds, the number of tenants is orders of

magnitude smaller than the number of flows, and commodity

switches have sufficient on-chip memory to maintain the state

for these interior nodes.

We exploit the capability of programmable switching to

provide the first realization of CSFQ and HCSFQ on commod-

ity hardware. While conceptually simple, implementing these

schedulers on a programmable switch raises several techni-

cal challenges. First, they use a complex formula to estimate

the rates, which includes several floating-point multiplica-

tion, divisions and exponentiation operations. Unfortunately,

these operations are not supported by today’s programmable

switches. To get around this challenge, we leverage high-

precision timestamps and a window-based mechanism to esti-

mate these rates. Second, these algorithms rely on probabilis-

tic packet dropping to limit the flows to their fair rates. Un-

fortunately, probabilistic packet dropping cannot be directly

implemented in these switches. We discretize the probability

computation to approximate the dropping probability with

bounded error. To discretize these probabilities we leverage

the switch’s random number generator and take advantage

of multiple stages. Third, computing the fair rate exhibits a

circular dependency. Unfortunately, the switch data plane con-

sists of a multi-stage processing pipeline, and the later stages

cannot modify the state in the previous stages. To address

it, we judiciously use packet recirculation, and periodically

update the fair rate to minimize recirculation overhead.

In summary, we make the following contributions.

• We extend CSFQ to HCSFQ, the first scalable, practical

solution to implement hierarchical fair queueing on com-

modity hardware at line rate with no per-flow state and no

hierarchical queue management.

• We exploit the capability of programmable switching

ASICs to provide the first data plane design for CSFQ

and HCSFQ.

• We implement a prototype of CSFQ and HCSFQ on a Bare-

foot Tofino Wedge 100BF-65X switch. Our experiments

show that CSFQ and HCSFQ can provide fair bandwidth

allocation and ensure isolation.

2 Background and Motivation

Our work is motivated by the need for network isolation in

multi-tenant datacenters. CSFQ is a scalable solution for fair

queueing. We review the background of CSFQ, and identify

the opportunities for CSFQ in modern datacenters.

2.1 Core-Stateless Fair Queueing

Fair queueing provides max-min fairness for competing flows.

A max-min fair bandwidth allocation is one that any increase

of the allocation to some flows would necessarily decrease the

allocation of some other flows. The basic way to realize fair

queueing in a switch is to keep one queue for each flow and

use a scheduling algorithm to pick which queue to dequeue

a packet each time. There has been decades of research on

fair queueing [1–12]. While we leave the extensive discussion

to related work (§7), we emphasize that most solutions are

not scalable because of the need to maintain per-flow state

to classify flows and shape their rates with per-flow queues

and complex queue management. As a result, commodity

switches only support 10–20 queues.

CSFQ is a scalable algorithm to achieve fair queueing with

a unique property that it does not maintain per-flow state

in the network. Figure 1 shows the architecture of CSFQ.

CSFQ divides the network into edge and core. The switches

30 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

allocated capacity c(A1) is 5. The fair share rate is set as 4,

and there is no need to drop packets for f1 and f2. At node A2,

the arrival rate r(A2), which is 10, is bigger than the allocated

capacity, which is 5. A2 allocates its capacity to f3 and f4

fairly. Each receives a fair share rate of 2.5. So the switch

drops 50% of the packets for both f3 and f4.

Weighted HCSFQ. The HCSFQ algorithm can be extended

to support flows and flow aggregates with weights. For node

v, we use w(v) to represent the weight of the flow or flow ag-

gregate of v. Under max-min fair bandwidth allocation, com-

peting flows or flow aggregates at the bottlenecked link have

the same fair share rate r(v)/w(v). There are two changes

to the algorithm in order to incorporate the weight. The first

change is on the equation to compute the fair rate α(v) when

r(v)> c(v). Eq.(1) is changed to

c(v) = ∑
e(v,u)∈E

w(u) ·min(α(v),
r(u)

w(u)
). (6)

The second change is on the equation to compute the drop

probability. Eq.(3) is changed to

max(0,1−α(v.parent) ·
w(v)

r(v)
). (7)

4.3 Theoretical Guarantee

We have the following theorem to provide the theoretical guar-

antees for HCSFQ. The proof of the theorem is in Appendix.

Theorem 1. Consider a link with a hierarchical fair queueing

policy and a flow in the hierarchy. Let w1, w2, ..., wn be the

weights of the nodes from the root to the flow. Let α1, α2, ...,

αn be the constant normalized fair rate of the nodes from the

root to the flow. Let rαi
= αiwi. If probabilistic dropping is

applied at the last layer, then the excess service received by

the flow that sends at a rate at no larger than R, is bounded

above by

rαnK(1+ ln
R

rαn

)+ lmax (8)

where lmax is the maximum packet length.

Consider a parent and its children in the hierarchy. Let the

number of children be k. Let rα′ be the weighted fair rate of

the parent, and r
(j)
α be the weighted fair rate of the j-th child.

Suppose the inter-arrival time of every packet is at least τ,

and

rα′ ≥
1

1− e−τ/K

k

∑
j=1

r
(j)
α .

The the parent node does not drop packets.

Remark. The first conclusion bounds the excess service that

can be received by a flow. The second conclusion provides

the theoretical condition for only performing probabilistic

dropping at the leaf node.

5 Data Plane Design and Implementation

In this section, we describe a data plane design to imple-

ment CSFQ and HCSFQ on new-generation programmable

switches. Programmable switches enable users to program the

multi-stage match-action pipeline in the switch data plane to

implement custom features. Users can also access the on-chip

memory and implement stateful operations using the register

arrays provided by programmable switches. Programmable

switches also support a set of primitive actions (e.g., recircu-

late, bit shift, add and subtract) which make HCSFQ possible.

Based on the constructs of programmable switches, we show

how to design and implement the rate estimation, the fair rate

computation and the flow shaping logic (i.e., Algorithm 1) on

programmable switches. Our HCSFQ implementation con-

tains 1952 lines of code in P4 and is compiled to Barefoot

Tofino ASIC [29]. The code is open-source and available at

https://github.com/netx-repo/HCSFQ.

5.1 Single Layer

We first describe how to implement CSFQ, i.e., single-layer

HCSFQ, which is used as a building block to implement multi-

layer HCSFQ. There are three challenges to implement single-

layer HCSFQ on programmable switches: rate estimation,

probabilistic drop, and fair rate update. We describe each

challenge and its solution as follows.

Rate estimation. The switch needs to estimate two rates: the

total arrival rate r, and the accepted rate f . Both rates are

estimated with Eq.(4). Because switches have strict timing

and resource requirements, an action in a match-action table

can only contain a small number of operations in a limited

operation set. The equation cannot be directly implemented in

the switch data plane due to two reasons. First, the equation

involves several multiplication, division and exponentiation

operations on floating points. These operations are quite com-

plex and require multiple clock cycles to compute. As such,

they are not typically supported by the switch data plane.

Second, a rate (r or f) is stored in a register of the on-chip

memory. To update the rate, the switch needs to read the rate

from the register, uses the equation to calculate the new rate,

and then updates the register. A register can only be accessed

by its own stage, but the equation includes multiple arithmetic

operations, which requires multiple stages to compute.

We leverage the high-precision timestamps available in the

data plane, and use a window-based mechanism to estimate

the rates. Programmable switches are able to provide high-

precision timestamps at the granularity of one nanosecond.

To estimate a rate, the switch maintains a pair of registers

(reg.byte and reg.start). One register (reg.byte) stores the to-

tal bytes of packets the switch has received in the current

window. The other register (reg.start) stores the start times-

tamp of the current window. For each incoming packet, the

switch first checks the current timestamp and compares it

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 35

with reg.start to see if the packet belongs to the current win-

dow. If so, the switch adds the size of the packet to reg.byte;

otherwise, the switch clears reg.byte and sets reg.start to the

current timestamp. The switch keeps another register reg.rate

to store the current rate estimate. When a window is passed,

the switch uses reg.byte to update reg.rate, which can be done

with either a direct assignment, or a moving average. Our ex-

periments indicate that using a moving average (implemented

with several bit shift and addition operations) works better

and avoids oscillation with the control loop that updates the

fair share rate and drops packets.

The key benefit of this window-based mechanism is that

because the switch can provide nanosecond-granularity times-

tamps, we can use a small window size to accurately estimate

flow rate and capture sudden packet bursts. It is important to

note that the rate estimation is local to the switch and only

uses timestamps to divide time into windows. So there is no

need for time synchronization between switches.

Probabilistic drop. Probabilistic drop is used to regulate the

flows to the fair share rate. The switch uses the fair share rate

α and the flow arrival rate r to compute the probability to drop

packets of the flow (Eq.(3) and line 5 in Algorithm 1). Then

the switch checks the condition max(0,1−α/r)> rand(0,1)
to decide whether to drop an incoming packet or not. Similar

to rate estimation, the challenge is that switches do not support

the division operation to compute the probability. One way to

solve the problem is to use a similar window-based mecha-

nism as rate estimation, i.e., divide time into windows with

window size δ, and keep counters to allow up to rδ packets

to pass in each window and drop all remaining packets. The

drawback of this approach is that it introduces bursty packet

drops, which do not work well with congestion control. We

want to mimic the behavior of CSFQ to have random packet

drops that are uniformly distributed in the packet stream.

We discretize the probability computation to approximate

the drop probability with bounded error. We leverage the ran-

dom number generator provided by the data plane and use

multiple stages to realize the discretized computation. Specifi-

cally, to check the condition max(0,1−α/r)> rand(0,1), it

is sufficient to check rand(0,1)> α/r. We multiply r to both

sides of the inequality, and transform the condition to

rand(0,r)> α.

If the switch can generate a random number between 0 and r,

then we can simply compare the generated random number

and α to decide whether to drop a packet. However, some

switches can only generate a random number in a range of a

power of two, i.e., in [0,2n −1], where n is a given value at

compilation time and cannot be a variable. One possible solu-

tion is to use a large value for n at compilation time and use

rand(0,2n − 1)%r to approximate rand(0,r). But the mod-

ulo operation on an arbitrary number may not be supported,

and the generated numbers are not uniformly distributed in

[0,r]. We solve this problem by discretizing the probability

computation. We use an integer, instead of a floating point,

for the probability. We convert the condition to

rand(0,2n −1) · r > (2n −1) ·α.

While multiplication is not directly supported, we can convert

a multiplication operation into several bit shift and addition

operations. Since n is small and one stage can do multiple

operations, a multiplication can be done in a few stages. This

solution introduces errors because the random number is an in-

teger in [0,2n−1], instead of a real number in [0,1]. However,

the error is bounded by 1/2n, which reduces exponentially

with n. When n is 7, the error introduced by the approximation

is bounded by 1/128, which is smaller than 1%.

Fair rate update. When the link is congested, the fair share

rate is the unique solution to Eq.(1). Because HCSFQ does

not maintain per-flow state, it uses αnew = αoldc/ f (Eq.(5))

to approximately compute the fair share rate, where c is the

capacity and f is the accepted rate. Like rate estimation and

probabilistic drop, Eq.(5) cannot be supported because it con-

tains multiplication and division. What is more challenging

is that the fair rate update introduces the following circular

dependency to the packet processing.

read α → enqueue/drop → update f → update α

Specifically, the switch needs to read α to compute the drop

probability. Then based on whether to enqueue or drop a

packet, the switch updates the accepted rate f , which is then

used to update α. Because a register can only be accessed by

its own stage, the new value of α cannot be used to update

the register that stores α in a previous stage.

To address these two problems, we first observe that the

update equation αnew = αoldc/ f in HCSFQ is already an

approximation, and the correct α is iteratively computed after

several updates until f converges to c. As such, we replace

the update equation with an additive-increase multiplicative-

decrease method, which increases or decreases α each time if

f is not equal to c. This ensures that the value for α converges

to the correct value. Note that in the original CSFQ, α is also

computed iteratively to converge to the correct value.

To address the circular dependency, we leverage packet

recirculation available in programmable switches, and let the

recirculated packets carry the new value of α to update the

register for α in a previous stage. Switches have limited band-

width for recirculation. We judiciously use packet recircula-

tion to minimize recirculation overhead. We follow the same

scheme as CSFQ: update α only when the node is congested

or uncongested for a window length of Kc. Given the window

size Kc, α is updated by at most 1/Kc times per second. As

a concrete example, let Kc be 10 µs. Then α is updated by at

most 100K times per second, and the amount of recirculation

traffic is only a tiny fraction of the switch capacity.

36 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] J. Nagle, “On packet switches with infinite storage,”

IEEE Transactions on Communications, April 1987.

[2] A. Demers, S. Keshav, and S. Shenker, “Analysis and

simulation of a fair queueing algorithm,” SIGCOMM

CCR, August 1989.

[3] S. Keshav, “On the efficient implementation of fair

queueing,” Internetworking: Research and Experience,

September 1991.

[4] P. E. McKenney, “Stochastic fairness queueing.,” in

IEEE INFOCOM, June 1990.

[5] M. Shreedhar and G. Varghese, “Efficient fair queueing

using deficit round robin,” in ACM SIGCOMM, October

1995.

[6] D. Lin and R. Morris, “Dynamics of random early de-

tection,” in ACM SIGCOMM, October 1997.

[7] R. Mahajan, S. Floyd, and D. Wetherall, “Controlling

high-bandwidth flows at the congested router,” in IEEE

ICNP, November 2001.

[8] R. Pan, L. Breslau, B. Prabhakar, and S. Shenker, “Ap-

proximate fairness through differential dropping,” SIG-

COMM CCR, April 2003.

[9] J. C. Bennett and H. Zhang, “Hierarchical packet fair

queueing algorithms,” in ACM SIGCOMM.

[10] A. Sivaraman, S. Subramanian, M. Alizadeh, S. Chole,

S.-T. Chuang, A. Agrawal, H. Balakrishnan, T. Ed-

sall, S. Katti, and N. McKeown, “Programmable packet

scheduling at line rate,” in ACM SIGCOMM, August

2016.

[11] N. K. Sharma, M. Liu, K. Atreya, and A. Krishna-

murthy, “Approximating fair queueing on reconfigurable

switches,” in USENIX NSDI, April 2018.

[12] A. G. Alcoz, A. Dietmüller, and L. Vanbever, “SP-PIFO:

Approximating push-in first-out behaviors using strict-

priority queues,” in USENIX NSDI, February 2020.

[13] I. Stoica, S. Shenker, and H. Zhang, “Core-stateless fair

queueing: Achieving approximately fair bandwidth al-

locations in high speed networks,” in ACM SIGCOMM,

October 1998.

[14] L. Popa, G. Kumar, M. Chowdhury, A. Krishnamurthy,

S. Ratnasamy, and I. Stoica, “Faircloud: Sharing the net-

work in cloud computing,” in ACM SIGCOMM, August

2012.

[15] S. Floyd and V. Jacobson, “Link-sharing and resource

management models for packet networks,” IEEE/ACM

Transactions on Networking, August 1995.

[16] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron,

“Towards predictable datacenter networks,” in ACM SIG-

COMM, August 2011.

[17] H. Ballani, K. Jang, T. Karagiannis, C. Kim, D. Gunawar-

dena, and G. O’Shea, “Chatty tenants and the cloud net-

work sharing problem,” in USENIX NSDI, April 2013.

[18] C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong, P. Sun,

W. Wu, and Y. Zhang, “SecondNet: A data center net-

work virtualization architecture with bandwidth guaran-

tees,” in ACM CoNEXT, November 2010.

[19] D. Xie, N. Ding, Y. C. Hu, and R. Kompella, “The only

constant is change: Incorporating time-varying network

reservations in data centers,” in ACM SIGCOMM, Au-

gust 2012.

[20] S. Angel, H. Ballani, T. Karagiannis, G. O’Shea, and

E. Thereska, “End-to-end performance isolation through

virtual datacenters,” in USENIX OSDI, October 2014.

[21] J. Lee, Y. Turner, M. Lee, L. Popa, S. Banerjee, J.-M.

Kang, and P. Sharma, “Application-driven bandwidth

guarantees in datacenters,” in ACM SIGCOMM, August

2014.

[22] H. Rodrigues, J. R. Santos, Y. Turner, P. Soares, and D. O.

Guedes, “Gatekeeper: Supporting bandwidth guarantees

for multi-tenant datacenter networks.,” in Workshop on

I/O Virtualization, June 2011.

[23] K. Jang, J. Sherry, H. Ballani, and T. Moncaster, “Silo:

Predictable message latency in the cloud,” in ACM SIG-

COMM, August 2015.

[24] A. Shieh, S. Kandula, A. G. Greenberg, C. Kim, and

B. Saha, “Sharing the data center network,” in USENIX

NSDI.

[25] V. T. Lam, S. Radhakrishnan, R. Pan, A. Vahdat, and

G. Varghese, “NetShare and stochastic NetShare: Pre-

dictable bandwidth allocation for data centers,” SIG-

COMM CCR, June 2012.

[26] V. Jeyakumar, M. Alizadeh, D. Mazières, B. Prabhakar,

C. Kim, and A. Greenberg, “EyeQ: Practical network

performance isolation at the edge,” in USENIX NSDI,

April 2013.

[27] L. Popa, P. Yalagandula, S. Banerjee, J. C. Mogul,

Y. Turner, and J. R. Santos, “ElasticSwitch: Practical

work-conserving bandwidth guarantees for cloud com-

puting,” in ACM SIGCOMM, August 2013.

42 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[28] M. Chowdhury, Z. Liu, A. Ghodsi, and I. Stoica, “HUG:

Multi-resource fairness for correlated and elastic de-

mands,” in USENIX NSDI, March 2016.

[29] “Barefoot Tofino.” https://www.barefootnetworks.

com/technology/#tofino.

[30] “Broadcom Ethernet Switches and Switch Fabric De-

vices.”

[31] “Cavium XPliant,” 2018. https://www.cavium.com/.

[32] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu, “Silkroad:

Making stateful layer-4 load balancing fast and cheap

using switching ASICs,” in ACM SIGCOMM, August

2017.

[33] M. Mathis, J. Semke, J. Mahdavi, and T. Ott, “The

macroscopic behavior of the TCP congestion avoidance

algorithm,” SIGCOMM CCR, July 1997.

[34] “Intel data plane development kit (dpdk),” 2018. http:

//dpdk.org/.

[35] “Netbench.” http://github.com/ndal-eth/.

[36] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKe-

own, B. Prabhakar, and S. Shenker, “pfabric: minimal

near-optimal datacenter transport,” in ACM SIGCOMM,

2013.

[37] V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D. G.

Andersen, G. R. Ganger, G. A. Gibson, and B. Mueller,

“Safe and effective fine-grained tcp retransmissions for

datacenter communication,” SIGCOMM CCR, August

2009.

[38] P. Kumar, N. Dukkipati, N. Lewis, Y. Cui, Y. Wang,

C. Li, V. Valancius, J. Adriaens, S. Gribble, N. Foster,

and A. Vahdat, “PicNIC: Predictable virtualized NIC,”

in ACM SIGCOMM, August 2019.

[39] A. Kumar, S. Jain, U. Naik, A. Raghuraman, N. Kasi-

nadhuni, E. C. Zermeno, C. S. Gunn, J. Ai, B. Carlin,

M. Amarandei-Stavila, et al., “Bwe: Flexible, hierarchi-

cal bandwidth allocation for wan distributed computing,”

in ACM SIGCOMM, August 2015.

[40] N. K. Sharma, A. Kaufmann, T. E. Anderson, A. Krish-

namurthy, J. Nelson, and S. Peter, “Evaluating the power

of flexible packet processing for network resource allo-

cation.,” in USENIX NSDI, March 2017.

[41] K.-F. Hsu, R. Beckett, A. Chen, J. Rexford, P. Tammana,

and D. Walker, “Contra: A programmable system for

performance-aware routing,” in USENIX NSDI, Febru-

ary 2020.

[42] “In-band Network Telemetry (INT) Dataplane

Specification.” https://github.com/p4lang/

p4-applications/blob/master/docs/INT.pdf.

[43] A. Gupta, R. Harrison, M. Canini, N. Feamster, J. Rex-

ford, and W. Willinger, “Sonata: Query-driven streaming

network telemetry,” in ACM SIGCOMM, August 2018.

[44] S. Narayana, A. Sivaraman, V. Nathan, P. Goyal, V. Arun,

M. Alizadeh, V. Jeyakumar, and C. Kim, “Language-

directed hardware design for network performance mon-

itoring,” in ACM SIGCOMM, August 2017.

[45] N. Katta, M. Hira, C. Kim, A. Sivaraman, and J. Rexford,

“Hula: Scalable load balancing using programmable data

planes,” in ACM SOSR, March 2016.

[46] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster,

C. Kim, and I. Stoica, “NetCache: Balancing key-value

stores with fast in-network caching,” in ACM SOSP,

October 2017.

[47] Z. Liu, Z. Bai, Z. Liu, X. Li, C. Kim, V. Braverman,

X. Jin, and I. Stoica, “DistCache: Provable load bal-

ancing for large-scale storage systems with distributed

caching,” in USENIX FAST, February 2019.

[48] M. Liu, L. Luo, J. Nelson, L. Ceze, A. Krishnamurthy,

and K. Atreya, “IncBricks: Toward in-network computa-

tion with an in-network cache,” in ACM ASPLOS, April

2017.

[49] X. Jin, X. Li, H. Zhang, N. Foster, J. Lee, R. Soulé,

C. Kim, and I. Stoica, “NetChain: Scale-free sub-RTT

coordination,” in USENIX NSDI, April 2018.

[50] H. T. Dang, D. Sciascia, M. Canini, F. Pedone, and

R. Soulé, “NetPaxos: Consensus at network speed,” in

ACM SOSR, June 2015.

[51] H. T. Dang, M. Canini, F. Pedone, and R. Soulé, “Paxos

made switch-y,” SIGCOMM CCR, April 2016.

[52] D. R. K. Ports, J. Li, V. Liu, N. K. Sharma, and A. Krish-

namurthy, “Designing distributed systems using approx-

imate synchrony in data center networks,” in USENIX

NSDI, May 2015.

[53] J. Li, E. Michael, N. K. Sharma, A. Szekeres, and

D. R. Ports, “Just say NO to Paxos overhead: Replacing

consensus with network ordering,” in USENIX OSDI,

November 2016.

[54] H. Zhu, Z. Bai, J. Li, E. Michael, D. Ports, I. Stoica, and

X. Jin, “Harmonia: Near-linear scalability for replicated

storage with in-network conflict detection,” in Proceed-

ings of the VLDB Endowment, November 2019.

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 43

[55] J. Li, E. Michael, and D. R. K. Ports, “Eris:

Coordination-free consistent transactions using in-

network concurrency control,” in ACM SOSP, October

2017.

[56] A. Lerner, R. Hussein, P. Cudre-Mauroux, and U. eXas-

cale Infolab, “The case for network accelerated query

processing.,” in CIDR, January 2019.

[57] A. Sapio, I. Abdelaziz, A. Aldilaijan, M. Canini, and

P. Kalnis, “In-network computation is a dumb idea

whose time has come,” in ACM SIGCOMM HotNets

Workshop, November 2017.

[58] A. Sapio, M. Canini, C.-Y. Ho, J. Nelson, P. Kal-

nis, C. Kim, A. Krishnamurthy, M. Moshref, D. R.

Ports, and P. Richtárik, “Scaling distributed machine

learning with in-network aggregation,” arXiv preprint

arXiv:1903.06701, February 2019.

[59] N. Ivkin, Z. Yu, V. Braverman, and X. Jin, “Qpipe: Quan-

tiles sketch fully in the data plane,” in ACM CoNEXT,

December 2019.

[60] Z. Yu, Y. Zhang, V. Braverman, M. Chowdhury, and

X. Jin, “Netlock: Fast, centralized lock management

using programmable switches,” in ACM SIGCOMM,

August 2020.

[61] R. Mittal, R. Agarwal, S. Ratnasamy, and S. Shenker,

“Universal packet scheduling,” in USENIX NSDI, March

2016.

44 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

A Proof of Theorem 1

Proof. The first conclusion is directly derived from the guar-

antee of CSFQ [13].

For the second conclusion, we consider a model with a

parent and k children. We add a script ′ to represent the no-

tations related to the parent, e.g., r′i is the estimated arrival

rate of the i-th packets at the parent. We add a script (j) to

represent the notations related to the j-th child, e.g., r
(j)
i is the

estimated arrival rate of the i-th packets at the j-th child. Sup-

pose the time episode is universal for all children. Suppose

that r
(j)
0 = r′0 = 0 for j = 1, . . . ,k.

Suppose the inter-arrival time Ti ≥ τ for all i. Suppose

rα′ ≥
1

1− e−τ/K

k

∑
j=1

r
(j)
α .

Then we will show that the parent node rα′ does not drop

packets. To this end, we only need to prove that

r′i ≤ rα′ , ∀i. (9)

After the first drop, the package length is hi = h
(1)
i + · · ·+

h
(k)
i , where

h
(j)
i =







ℓ
(j)
i r

(j)
i ≤ r

(j)
α ,

ℓ
(j)
i

r
(j)
α

r
(j)
i

r
(j)
i > r

(j)
α .

And by definition,

r′i = (1− e−Ti/K)
hi

Ti

+ e−Ti/Kr′i−1, 1 ≤ i ≤ n.

We now recursively prove Eq. (9).

(i) First let i = 1.

We will use the following inequality to prove Eq. (9):

(1− e−T1/K)
h
(j)
1

T1
≤ r

(j)
α , ∀ j. (10)

On the one hand, if Eq. (10) is true, we have

r′1 = (1− e−T1/K)
∑

k
j=1 h

j
1

T1
≤

k

∑
j=1

r
j
α ≤ rα′ ,

which implies Eq. (9) for i = 1.

On the other hand, recall r
(j)
1 = (1− e−T1/K)

ℓ
(j)
1
T1

, we then

prove Eq. (10) as following:

1. If r
(j)
1 < r

(j)
α , then h

(j)
1 = ℓ

(j)
1 , thus

(1− e−T1/K)
h
(j)
1

T
= (1− e−T1/K)

ℓ
(j)
1

T
= r

(j)
1 ≤ r

(j)
α .

2. If r
(j)
1 ≥ rα, then h

(j)
1 = ℓ

(j)
1

r
(j)
α

r
(j)
1

, thus

(1− e−T1/K)
h
(j)
1

T1
= (1− e−T1/K)

ℓ
(j)
1

T1

r
(j)
α

r
(j)
1

= r
(j)
α .

Thus Eq. (10) holds.

(ii) Now suppose that r′i−1 ≤ rα′ .

We will use the following inequality to prove our claim:

(1− e−Ti/K)
h
(j)
i

Ti

≤ r
(j)
α , ∀ j. (11)

On the one hand, if Eq. (11) is true, we have

r′i =(1− e−Ti/K)
∑

k
j=1 h

(j)
i

Ti

+ e−Ti/Kr′i−1

≤

k

∑
i=1

rα + e−a/Kr′α ≤ r′α,

which implies Eq. (9) for i.

On the other hand, recall

r
(j)
i = (1− e−Ti/K)

ℓ
(j)
i

Ti

+ e−Ti/Kr
(j)
i−1,

we then prove Eq. (11) as following:

1. If r
(j)
i < r

(j)
α , then h

(j)
i = ℓ

(j)
i , thus

(1− e−Ti/K)
h
(j)
i

Ti

=(1− e−Ti/K)
ℓ
(j)
i

Ti

=r
(j)
i − e−Ti/Kr

(j)
i−1

≤r
(j)
i ≤ r

(j)
α .

2. If r
(j)
i ≥ r

(j)
α , then h

(j)
i = ℓ

(j)
i

r
(j)
α

ri

(j)

, thus

(1− e−Ti/K)
h
(j)
i

Ti

=(1− e−Ti/K)
ℓ
(j)
i

Ti

r
(j)
α

r
(j)
i

=(r
(j)
i − e−Ti/Kr

(j)
i−1)

r
(j)
α

r
(j)
i

≤r
(j)
i

r
(j)
α

r
(j)
i

= r
(j)
α .

Thus Eq. (10) holds. By (i) and (ii) and mathematical induc-

tion our proof is finished.

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 45

	Introduction
	Background and Motivation
	Core-Stateless Fair Queueing
	Opportunities

	Hierarchical Fair Queueing
	HCSFQ Design
	Fluid Model
	HCSFQ Algorithm
	Theoretical Guarantee

	Data Plane Design and Implementation
	Single Layer
	Multiple Layers

	Evaluation
	Fair Queueing Experiments
	Hierarchical Fair Queueing Experiments
	Large-Scale Simulation

	Related Work
	Conclusion
	Proof of Theorem 1

