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ABSTRACT

Unmanned Aerial Vehicles (UAVs) are an important subset of au-

tonomous robotics, offering unique opportunities in domains like

merchandise delivery, geographical survey, and disaster recovery.

The planning layer of UAVs is made up of high-level directives

that instruct the system on how to achieve the plan’s goals. UAVs

execute their plans in the physical environment, and thus the plans

must adapt to changes in the dynamic context. In this paper, we

present a simple programming abstraction, adaptive variables, to

declaratively define adaptation for UAV flight plans in a dynamic

context. Building on top of a declarative language for expressing

UAV flight plans, adaptive variables can change during a UAV flight

based on predicates over physical data. We implement adaptive

variable for Paparazzi and demonstrate its usefulness in adaptive

UAV planning with the NPS Simulator.

CCS CONCEPTS

• Software and its engineering→Domain specific languages;

• Computer systems organization→ External interfaces for

robotics.
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1 INTRODUCTION

Within the field of autonomous mobile robotics, Unmanned Aerial

Vehicles (UAVs) are an emerging platform which greatly enriches

the application domain of robotics. Like other autonomous mo-

bile systems, the behavior of UAVs is highly dependent on their

environmental and system resource context. First, UAVs must adapt

to environmental changes, such as wind conditions, and potential

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

COP’20, July 21, 2020, Virtual Event, USA

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8144-4/20/07. . . $15.00
https://doi.org/10.1145/3422584.3422763

possibilities of collision. Second, UAVs must adjust their behavior

based on the availability of system resources, such as battery level

and communication channels. A top priority of UAV design is to

build adaptive systems that respond to the rapidly changing context.

Existing solutions to UAV programming follow two routes. First,

as UAVs can be treated as a form of embedded systems, they can be

programmed with low-level languages such as C, or paired with

C-based frameworks such as ROS [19]. These solutions can flexi-

bly support adaptive UAV behaviors, but the lack of UAV-specific

programming abstractions makes high-level intentions buried in

embedded code and complicates program reasoning. Another route

is to use high-level declarative frameworks, such as the Paparazzi’s

Flight Plans [10]. Declarative programming simplifies UAV behav-

ior specification and promotes program reasoning for this family of

cyber-physical systems. Both goals are important for UAV software

development. However, existing declarative frameworks do not

naturally support the variability and dynamism that UAVs require

to navigate under complex contexts.

In this paper we take the declarative approach for adaptive

UAV planning. We describe a simple and intuitive extension to

Paparazzi’s Flight Plans, with the focus on its support of adapt-

ability: how the UAVs respond to the potentially rapidly changing

context. The centerpiece of our design is the adaptive variable, a

programming abstraction that allows the state of the program to

change upon the satisfaction of its guarding condition. The guard-

ing condition is a predicate over program states that may change as

the environment or system resource context changes. As a result,

when a UAV carries out its flight plan and flies over a 3D space, the

guarding condition may become satisfied on the fly, leading to the

change of the adaptive variable and ultimately the flight behavior

of the UAV itself.

Imagine the use scenario of a UAV-based geographical survey

(GS) for example. GS is a common flight task where a UAV flies

over a large (often rectangle) area through the zig-zag pattern. In

Paparazzi’s existing design, the resolution of the survey, i.e., the

density of the zig-zag pattern, must be statically set by the program-

mer as a constant. However, operating in a realistic environment

makes battery consumption dynamic. As most commercial UAVs

operate with a battery life of less than 60 minutes [9], it is essential

for the GS flight plan to be aware of battery level in order to ensure

task completion and that the UAV can return home. With adaptive

variables, we are able to support energy aware GS: the battery level

can serve as a guarding condition to determine the resolution of

the GS, captured as an adaptive variable.

Our solution, albeit simple, is the first step toward a direction

with a distinct philosophy: there is great benefit for UAV software

systems to overlay low-level code with a high-level declarative and

adaptive language design. Broadly, this philosophy is well aligned
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with Context-Oriented Programming (COP) [13] in that high-level

programming abstractions can improve the safety and maintainabil-

ity of software systems while retaining adaptiveness and expres-

siveness. Through this lens, our preliminary design is an instance

of declarative COP in an emerging domain.

The rest of this paper is structured as follows. Section 2 will

present some background information on UAV planning that is

required to understand our implementation and examples. Section

3 will present our design in the context of two motivating examples.

In Section 4, we will discuss the implementation details. Section 5

discusses related work, followed by a discussion on conclusion and

future work in Section 6.

2 BACKGROUND

1 <flight_plan >

2 <waypoints >

3 <waypoint name="p1" x="0" y="100"/>

4 <waypoint name="p2" x="500" y="0"/>

5 </waypoints >

6 <blocks >

7 <block name="Takeoff">

8 ...

9 </block >

10 <block name="Survey">

11 <survey_rectangle wp1="p1" wp2="p2" grid="5"

12 orientation="NS"/>

13 </block >

14 <block name="Land">

15 ...

16 </block >

17 </blocks >

18 </flight_plan >

Listing 1: An Example of a Simple Paparazzi Flight Plan

We build our adaptive variables on top of Paparazzi, a widely

used open-source software and hardware ecosystem. The majority

of Paparazzi’s source code is written in C, including both autopilot

code to be deployed on the UAVs, and a ground station solution.

As UAV hardware components are diverse, Paparazzi supports a

highly configurable compilation process to allow for the generation

and deployment of autopilot code.

On top of the C code base, Paparazzi supports a high-level XML-

based domain-specific definition for flight plans. This high-level

plan will eventually guide the compilation process to generate an

autopilot control loop that represents the planning layer of the UAV

software stack.

As shown in Listing 1, each flight_plan consists of two parts: a

list of waypoints and a sequence of blocks. Each waypoint defines

a position in 3D space Ð identified by the x, y, and an optional

altitude alt tags Ð and can be associated with a name. For example,

in Listing 1, two waypoints have been defined: p1 and p2. Each

block defines a segment of flight objective. In the example, 3 blocks

have been defined: Takeoff, Survey and Land. It is important to

note that the order of blocks represents the sequential control flow

of the program Ð the UAV will first takeoff, perform a survey, and

finally land. Once the task defined by a block is finished, the UAV

continues to execute the next block.

Surveying is a fundamental task of UAVs. The general idea is

to have the UAV sweep back and forth over a predefined area to

achieve sufficient coverage. The most standard form of survey cov-

ers a rectangular area, whose diagonal corners are defined by XML

tags wp1 and wp2 at line 11, i.e. waypoints p1 and p2 in our ex-

ample. Each survey consists of sequence of sweeps, each of which

is defined as a flight path connecting two waypoints on opposite

sides of the rectangle. The direction of the sweep is indicated by

the orientation tag at line 12, where NS means the sweep follows

a North-South direction. The resolution of the survey, i.e., the dis-

tance between two adjacent sweeps, is indicated by the grid tag at

line 11, e.g., 5 meters in the example.

3 ADAPTIVE VARIABLES

1 <block name="adaptive_variable_design">

2 <command tag_1=adaptive_var_1 tag_2=adaptive_var_2 ... />

3 <adaptation guard=condition_1 var=adaptive_var_1 value=

assignment_expression_1/>

4 <adaptation guard=condition_2 var=adaptive_var_2 value=

assignment_expression_2/>

5 ...

6 </block >

Listing 2: A Flight Plan Block With Adaptive Variables

(Terminals and Non-Terminals are Represented by TrueType

Font and italic Font Respectively)

In this section, we describe the programming abstraction of adap-

tive variables. We introduce its syntax and informal semantics in

Section 3.1, with two motivating use scenarios detailed in Sections

3.2 and 3.3.

3.1 Syntax and Semantics

We support adaptive variables with a new clause called adaptation

as shown in Listing 2. The adaptation clause can be associated

with three tags: guard, var, and value. The guard tag specifies a

predicate where the adaptation will be triggered if the predicate

becomes true. The var tag represents the name of the adaptive

variable whose state will change upon adaptation. The value tag

contains the new value for the adaptive variable upon the satis-

faction of the guarding variable. The clause is block-scoped, and

each block may contain many adaptations. For example, Listing 2

includes two adaptation clauses defining adaptive variables adap-

tive_var_1 and adaptive_var_2.

The reason that the state change in adaptive variables has an

affect on flight behavior is due to their participation in built-in

Paparazzi commands. Paparazzi contains 46 commands which are

linked to C functions whose arguments can be provided by the

tag associated with the command. For example, the command in

Listing 3 is survey_rectangle. Tags wp1, wp2, and grid are tags

associated with the arguments of a C function that implements the

survey functionality. A more general form can be found at line 2

in Listing 2. Here, any change of adaptive_var_1 or adaptive_var_2

will result in an adaption of command.

There are two noteworthy aspects in the run-time semantics

of a flight plan. First, the evaluation of different blocks follows a

sequential semantics: the first block encountered in the lexical order

will be executed first, followed by the execution of the second block,

and so on. Second, within each block, a control loop is at work: the

run-time system łexecutesž the non-adaptation commands sequen-

tially included in the block in stages, where the execution of such a

command forms a stage. The semantics of each command execution



Adaptive Variables for Declarative UAV Planning COP’20, July 21, 2020, Virtual Event, USA

is event-based. More precisely, the lower-level C function that mir-

rors each higher-level command is indeed an event handler, which

will be periodically triggered based on a pre-determined timer set

by the UAV system. A stage will terminate when the command it

embodies is łcompletedž, a command-specific condition. For exam-

ple, the survey_rectangle command terminates when the sweep

of a geographical survey is completed. As this is the last command

in the block, the control loop for the block is also terminated.

As adaptive variables are block-scoped, their semantics is more

related to their integration within the control loop. The guarding

condition of each adaptive variable is evaluated periodically, at the

same rate as the control loop. When the guarding condition is met,

the variable is updated. The event handler associated with each

command is always called with the latest states of the adaptive vari-

ables. Their execution is stage-less, in that their evaluation will be

applied to all stages defined in the block. In Section 4, we will revisit

the semantic behavior when the implementation and translation of

adaptive variables is discussed.

Multiple adaptive variables can appear in the same block.We also

allow multiple adaptation clauses for the same adaptive variable to

appear in the same block. At the beginning of each period of the

control loop at run time, the guarding conditions of all adaptation

clauses enclosed in the block will be evaluated, and the adaptive

variables will be updated accordingly. The order of evaluation fol-

lows the lexical order in which the adaptation clauses appear in the

block.

We allow adaptive variables to be defined dependently, i.e., one

adaptive variable (say, x) appears in the guarding condition of

another (say, y). The semantics of their updates is simple, following

the lexical order of evaluation: if the adaptation clause of x appears

before that of y, and variable x is adapted in an iteration of the

control loop, variable y will be adapted based on the updated value

of x; otherwise if the adaptation clause of x appears after that of

y, then variable y will be adapted based on value of x from the

previous iteration.

Guarding conditions can be arbitrary C Boolean expressions. In

particular, we also allow user-defined functions in the guarding

condition, a feature also supported in Paparazzi flight plan. Physi-

cally, these functions can be defined in a Paparazzi sub-directory

called sw/airborne/modules.

Let us now describe the new construct through two examples.

3.2 Battery-Aware Geographical Survey

1 <block name="Battery Aware Survey">

2 <set var="sweep" value="5"/>

3 <survey_rectangle wp1="p1" wp2="p2" grid="sweep" orientation="

NS"/>

4 <adaptation guard="12.3 > electrical.vsupply" var="sweep"

value="10"/>

5 <adaptation guard="12.2 > electrical.vsupply" var="sweep"

value="15"/>

6 <adaptation guard="12.0 > electrical.vsupply" var="sweep"

value="20"/>

7 </block >

Listing 3: A Flight Plan Block For Battery-Aware GS

Our first example can be viewed as an instance of COP where

system resources serve as the context. Listing 3 demonstrates flight

plan block for battery-aware survey. The overall goal is to adjust

the resolution of the survey based on the remaining battery level

of the UAV. Line 2 firstly initializes a variable sweep to 5, using a

pre-defined Paparazzi command named set. The variable serves as

an adaptive variable for the survey rectangle clause, specifically its

argument grid. The UAV will then begin its survey between the

given waypoints p1 and p2. During the course of the survey, the

battery level electrical.vsupply will be checked and compared

against the given values in the adaptation’s conditions defined by

the guard tags. Once a guard is satisfied, the sweep variable will be

set to the corresponding value defined by the value tag, and the

survey will continue with this new resolution.

Adjusting the grid variable, i.e., the distance between sweeps,

will change the resolution of the survey. A shorter sweep width

also means that there are more legs, defined as a flying task from

the north most edge of the rectangle to the south most edge, or vice

versa. This will take more time and energy from the UAV, but can

be considered as a more precise solution. By applying our adaptive

variables to the grid argument of our survey, we can adjust how

precisely we complete our task. On the high level, the design here

adapts the resolution of our flying task to our remaining resources,

an instance of energy-aware flight planing. With this programming

idiom, the UAVs have more likelihood to complete its task before

the battery depletes.

3.3 Wind-Adaptive Circle Navigation

1 <block name="Wind Adaptive Circle">

2 <set var="var_throttle" value="0.80"/>

3

4 <circle wp="HOME" throttle="var_throttle" pitch=" -15" vmode="

throttle"/>

5

6 <!--STRONG WIND WITH -->

7 <adaptation guard="wind_speed () > 4.5 && (0.25 >

8 (abs(wind_dir -stateGetHorizontalSpeedDir_i ()) ||

9 (abs(wind_dir -stateGetHorizontalSpeedDir_i ()) >1.75)))"

10 var="var_throttle" value="0.5"/>

11

12 <!--STRONG WIND AGAINST -->

13 <adaptation guard="wind_speed () > 4.5 && (1.25 >

14 (abs(wind_dir -stateGetHorizontalSpeedDir_i ()) &&

15 (abs(wind_dir -stateGetHorizontalSpeedDir_i ()) >0.75)))"

16 var="var_throttle" value="0.9"/>

17

18 <!--WEAK WIND WITH -->

19 <adaptation guard="wind_speed () < 4.5 && (0.25 >

20 (abs(wind_dir -stateGetHorizontalSpeedDir_i ()) ||

21 (abs(wind_dir -stateGetHorizontalSpeedDir_i ()) >1.75)))"

22 var="var_throttle" value="0.75"/>

23

24 <!--WEAK WIND AGAINST -->

25 <adaptation guard="wind_speed () < 4.5 && (1.25 >

26 (abs(wind_dir -stateGetHorizontalSpeedDir_i ()) &&

27 (abs(wind_dir -stateGetHorizontalSpeedDir_i ()) >0.75)))"

28 var="var_throttle" value="0.85"/>

29 </block >

Listing 4: A Flight Plan Block Wind-Adaptive Circle

Navigation

Our Second example can be viewed as an instance of COP where

environmental conditions serve as the context. Listing 4 demon-

strates a flight plan block for a wind-adaptive circle navigation. At

the beginning of the flight plan block, the command for the UAV

to follow a circle routine. Line 2 firstly initializes var_throttle

to 0.80. It serves as the adaptive variable for the circle clause,
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specifically the argument throttle. In UAV system design, throt-

tle refers to the percentage of power given to the motors, where

100% indicates full motor speed. The main command for the block

is a circle routine. Its tag wp represents the center of the circle;

tag pitch indicates the orientation of the UAV; and tag vmode is

a constant whose value throttle indicates that the throttle tag

will be used to control the trajectory of the UAV.

Our adaptations are set up to detect environmental factors in-

cluding the wind strength represented by wind_speed() and the

relative direction of wind represented by the difference expres-

sion abs(wind_dir-stateGetHorizontalSpeedDir_i()). By be-

ing able to detect these wind features, we can better adjust our

throttle to stay on course.

In circle navigation, the desired trajectory should cover a se-

quence of implicitly defined waypoints at a relatively constant

ground speed. What the wind condition can introduce is a discrep-

ancy between the air speed and the ground speed. If the UAV’s

throttle were to remain unchanged in the presence of wind, the

UAV will experience different ground speeds at the various way-

points of the circle navigation. Therefore, to maintain a constant

ground speed, we set up 4 adaptations in Listing 4 to adjust the

variable var_throttle accordingly. In the adaptation at line 7, for

example, if we have a strong wind traveling in the same direction

of our trajectory, then we should be able to decrease our throttle,

hence airspeed, while maintaining the same speed over ground.

4 IMPLEMENTATION AND PRELIMINARY
EVALUATION

4.1 Compilation Process

Figure 1 shows the general compilation process in Paparazzi from

flight plan to binary deployed on the UAV. The flight plan generator

takes the XML-based flight plan file as the input, and transforms it

into a C file AutoNav.c. This C program is linked to the required

firmware files, and cross-compiled to an architecture-specific bi-

nary. This process is the general Paparazzi groundwork that our

adaptive variables are built on. Specifically, by extending the flight

plan generator and changing certain features of the underlying

implementation, we can support adaptive variables in our flight

plan language. The flight plan generator by Paparazzi is originally

written in OCaml, which is also our development language for the

extension. Our development and evaluation have been performed

with Paparazzi version 5.15_devel.

After the autopilot C code is generated, the executable will

be compiled together with application modules, communication

protocols, and hardware drivers. These software components are

"libraries" for the autopilot software. As a result, our flight plan

can refer to any global variables or predefined functions in these

software components. For example, electrical.vsupply in List-

ing 4 is a global variable defined as a hardware driver, in a C file

sw/airborne/modules/sensors/bat_voltage_ardrone2.c. Pa-

parazzi has an extensible design for adding new modules, allowing

these libraries to be extended.

4.2 Code Generation For Adaptive Variables

1 void auto_nav () {

2 ...

3 switch(nav_block) {

4 ...

5 Block(N)

6 switch(nav_stage) {

7 ...

8 Stage(M)

9 ...

10 }

11 ...

12 }

13 }

Listing 5: Autopilot Control Loop

1 void auto_nav () {

2 ...

3 switch(nav_block) {

4 Block (1) // Takeoff

5 switch(nav_stage) {

6 ...

7 }

8 Block (2) // Dynamic Survey

9 if ((12.300000 > electrical.vsupply)) {sweep = 10;}

10 if ((12.200000 > electrical.vsupply)) {sweep = 15;}

11 if ((12.000000 > electrical.vsupply)) {sweep = 20;}

12 switch(nav_stage) {

13 Stage (0)

14 sweep = 5;

15 NextStageAndBreak ();

16 Stage (1)

17 NavSurveyRectangleInit (4, 5, sweep , NS);

18 NextStageAndBreak ();

19 Stage (2)

20 if (NavSurveyRectangle1 (4, 5, sweep)) {break ;}

21 else {NextStageAndBreak ();}

22 break;

23 default : break

24 }

25 Block (3) //Land

26 switch(nav_stage) {

27 ...

28 }

29 }

30 }

Listing 6: Autopilot Control Loop with Battery-Aware GS

Paparazzi compiles the flight plan file into an autopilot control

loop, written in C. As is shown in Listing 5, the autopilot con-

trol loop takes the form of a periodically called function named

auto_nav. The function consists of twin-tiered nested switch state-

ments. Each case of the outer switch statement is mapped to a flight

plan block that we described in Section 2. Each case of the inner

switch statement is mapped to a stage within the block.

The logic specific to adaptive variables is generated at the level

of the inner switch. By placing it at this level, we assure that our

adaptations will only be considered when the enclosing block is

executed. We place the guarding condition check before the inner

switch statement, ensuring that adaptation will start before every

stage of a block. Consider the adaptations presented in the rectangle

survey example presented in Section 3. These adaptations should

only be considered during a survey, and should not be considered

by the logic inside of our takeoff and landing blocks. As shown in

Listing 6, the adaptation clauses cannot be reached when the outer

switch case is not Block(2).

1 #define InitStage () nav_init_stage ();

2 #define NextStageAndBreak () { nav_stage ++; InitStage (); break; }

Listing 7: Flight Plan Utility Functions
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Figure 1: Autopilot Compilation (Our efforts focus on the colored components)

It is important to observe that the auto_nav function is peri-

odically called. To allow for stage transitions, a Paparazzi utility

function names NextStageAndBreak will be called, whose defini-

tion can be found in Listing 7. To determine whether the stage

should be completed, each command is associated with a termina-

tion condition. In the case of survey_rectangle the termination

condition is NavSurveyRectangle(). If the function returns false,

the current stage is complete, and the autopilot control loop will

transition to the next stage. This can be seen on lines 20 and 21 in

Listing 6.

Let us now take a closer look at the generated code. Recall that

adaptive variables are stage-less: note that the generated code for

their updates appears immediately before the inner switch. As a

result, the guarding conditions will be checked at every period,

and the variables will be updated accordingly at the same rate if

the guarding conditions are true. The generated code for Stage 0

results from the set command in line 2 of Listing 4. In Paparazzi,

the rectangle survey is split into two separate stages, for initial-

ization (stage 1) and for surveying itself (stage 2). Function call

NavSurveyRectangleInit(4,5,sweep,NS) initializes the survey

with the initial setting for sweep in stage 1. In this stage, there is

a function call NextStageAndBreak, and as a result, the code in

stage 1 is only executed once in the periodic control loop. Stage

2, on the other hand, will be called periodically until the survey

is completed, when NavSurveyRectangle1 returns false. Function

NavSurveyRectangle1 is a variant of the existing Paparazzi sur-

vey function NavSurveyRectangle, which only takes the first two

arguments of the former. As Paparazzi does not support adaptive

survey, its original API does not include a dynamic sweep width as

an argument, which we have extended.

In Paparazzi’s run-time design the auto_nav function is exclu-

sively executed by a single thread. Since adaptive variables only

appear in blocks, they are exclusively read/written by one thread.

There are no race conditions.

Figure 2: The Simulation of Paparazzi’s GS

Figure 3: The Simulation of Energy-Aware GS (Two battery-

aware adaptations occur at the red circles.)

4.3 Simulation and In-Flight Preparation

We have used the New Paparazzi Simulator (NPS) to evaluate our

design of adaptive variables, using the example provided in Section 3

as our test case. NPS can simulate the flight path given a flight plan.

For example, in Figure 2, the simulation shows the trajectory of



COP’20, July 21, 2020, Virtual Event, USA J. Burns et al.

a rectangle survey, where S1 and S2 are the bounding waypoints.

Observe that in paparazzi’s build-in rectangle survey support, the

grid size must be constant. As a result, the trajectory of the UAV

has equal distance between a pair of adjacent sweeps.

Figure 3 demonstrates the simulation results from our energy-

aware survey. The two small red circles placed on the UAV’s path

are locations where adaptations happen. Observe that the difference

in sweep density before and after each adaptation. This result shows

that our UAV is capable of adjusting the behavior of survey based

on the remaining battery levels. NPS does not support a build-in

battery simulation. In this experiment, we emulate the behavior of

the battery by linearly decreasing the supply voltage.

We have taken the preparation steps in testing our feature on a

real-world platform. We have reconfigured a Paparazzi AR drone

2, successfully re-rooting it with Paparazzi autopilot. The UAV is

installed with a GPS (Ublox NEO-6M), required for autonomous

navigation. We have been able to confirm the operational condi-

tion of our UAV and its components, together with a successful

compilation and deployment of our target code.

4.4 Open Source Development

The original implementation of Paparazzi’s rectangle survey re-

quired the user to statically set the sweep width while initializing

the survey, and did not support adjustments to its parameters dur-

ing the survey. Instead, to mimic dynamic adjustment, a Paparazzi

flight plan programmer would have to stop the survey, reinitialize

it with the new sweep width, and restart.

A sub-component of our adaptive variable support is to enable

the sweep width (the grid tag) to associate with a variable. With

this design, the sweep width can be updated in the middle of a

survey without the need to stop-reinitialize-restart. This imple-

mentation, which can be viewed as adaptive variables but without

language support, has been accepted into the main Paparazzi Repos-

itory available at GitHub 1.

Our language support for adaptive variables are not currently

included in the main branch of the paparazzi repository, it can also

be found on GitHub 2.

5 RELATED WORK

In main stream of autonomous robot programming, the most com-

monly used programming language is C, often with extensions.

Simmons and Apfelbaum [20] describe a higher-level language

for describing robotic tasks built as extensions to C. ROS [19] is a

robotics middle-ware with a programming interface. ROS is graph-

based where individual robotic tasks are represented as nodes that

may communicate with each other. ROS is equipped with a higher-

level configuration language to help generate glue code for this

graph-based model. Vanthienen et al. [23] proposes a high-level

domain-specific language for configuring and coordinating tasks in

a constraint-based model. Their high-level language is built on top

of Lua [14]. Meld [4] is a logic programming language to enable

global programming for an ensemble of robots. A survey on pro-

gramming challenges for robots can be found in [25]. Among these

1https://github.com/paparazzi/paparazzi
2https://github.com/jburns11/paparazzi_adaptions

efforts, our design is more aligned with the higher-level languages

with a focus on adaptation support.

Adaptation is a central focus for Context-Oriented Program-

ming (COP) [13]. Layers [2][3][7][16][17][22] are a powerful pro-

gramming abstraction to capture the unit of behavioral variation.

Through the dynamic activation of layers, the program may adapt

to new behavior. Context traits [12] supports run-time adaptation

via dynamic traits composition. COP is known to be useful in many

system domains such as fault-tolerant distributed systems [11] and

wireless sensor networks [1]. Adaptive variables are a language

design to apply the principle of COP to UAV planning. As the be-

havior of UAVs is context-driven, we believe that COP language

features can be beneficial for defining context adaptation. Relative

to existing COP features, adaptive variables are simple, working

with a higher-level declarative programming model.

FRP [8] is an influential functional language to support reactive

programming, with libraries and extensions specific for robotic de-

velopment. In FRP-like languages, change propagation is managed

implicitly, i.e., when the value of a signal is changed, all values that

are dependent on this signal, based on the data-flow latent in the

program, will be automatically updated as well. Reactive features

have also been introduced into COP languages [15] [18], including

support for embedded systems [24]. Our language allows for depen-

dencies between adaptive variables, but we do not support reaction

semantics among them. Instead dependent adaptive variables are

explicitly represented in the declarative program, and the changes

are propagated explicitly in the next iteration of the control loop.

Within the case studies we have conducted for UAV flight planning,

our current design appears to be sufficient. In general, it is interest-

ing future work to investigate the need of reactive features in the

presence of dependent adaptive variables for UAV planning.

‘

Adaptation is also studied in the context of energy-aware pro-

gramming languages. In Eon [21], the data flow may be dynami-

cally adapted based on the energy level. In Energy Types [6], the

mswitch construct allows the program to adjust its behavior based

on the energy modes. Eco [26] introduces mode cases which allows

adaptive values to be modeled as first-class citizens. In Ent [5], a

combination of static typing and dynamic typing enables princi-

pled energy-adaptive behavior. Eon is built on top of a data flow

programming model, and the rest of the existing work are built on

general-purpose object-oriented languages. Our adaptation support

is based on declarative languages.

6 CONCLUSIONS AND FUTUREWORK

Like other autonomous mobile systems, a top priority of UAVs is

to respond to a rapidly changing context. Declarative program-

ming simplifies UAV behavior specification and promotes program

reasoning, but does not naturally support the variability and dy-

namism that UAVs require to navigate complex contexts. We have

described a declarative language for UAV planning, with a focus on

its support of adaptability through using adaptive variables, and

evaluated its usefulness through motivating use scenarios.

In this paper we focus on adaptive variables, an abstraction

for declarative and adaptive state changes. In the future we also

plan to support declarative and adaptive behavior changes. In our
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current design, adaptive behavior change can be supported when

the adaptive variable is a function pointer, but we think a design

in this flavor would weaken its declarative nature. To mirror our

support for variables, we are interested in designing an abstraction

called adaptive blocks, where flight plan blocks may be guarded by

a condition just as adaptive variables are. Alternative behaviors

can thus be supported through multiple adaptive blocks guarded

by different conditions, which we briefly illustrate in Listing 8. If

the wind_speed is below 4.5 meters per second, a Survey will be

performed. Otherwise, the UAV will Circle around waypoint p1.

1 <flight_plan >

2 <blocks >

3 <adaptive_block name="Survey" guard="wind_speed () < 4.5">

4 <survey_rectangle wp1="p1" wp2="p2" grid="sweep"

5 orientation="NS"/>

6 </adaptive_block >

7 <adaptive_block name="Circle" guard="wind_speed () >= 4.5">

8 <circle wp="p1" radius="10"/>

9 </block >

10 </blocks >

11 </flight_plan >

Listing 8: A Proposed Adaptive Block
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