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Phenology, that is the timing of seasonal life history events such 
as migration and reproduction, has changed substantially in 
response to ongoing global change across a wide variety of 

taxa and in all the Earth’s biomes1,2. There is increasing concern that 
variation in the magnitude and direction of these changes is result-
ing in altered species interactions3,4 both among (via phenological 
mismatch5,6) and within (via competition7) trophic levels. This may 
ultimately have implications for ecosystem function, by way of pop-
ulation8 and coexistence dynamics9. However, despite the growing 
documentation of widespread phenological change, much remains 
unknown regarding how and why these responses vary across space 
and among species2.

Given their reliance on seasonally available resources and their 
widespread monitoring by the public, migratory birds represent a 
valuable means to understand phenological change. These birds 
must time migration and breeding to take advantage of temporal 
fluctuations in resources and maximize fitness. As such, the arrival 
of migratory birds has been heralded as a harbinger of seasonal 
change dating back at least to ancient Greece10. Coincident with 
changes observed in other organisms1, many bird species are now 
migrating substantially earlier in spring than they did just decades 
before8,11–13. In North America, many of these migratory species, 
particularly neotropical migrants, have experienced dramatic popu-
lation losses over the past half-century14. Understanding how phe-
nological dynamics vary among species, particularly in response 
to spatiotemporal fluctuations of lower trophic levels3, is a key step 
in characterizing and predicting the consequences of phenological 

asynchronies, including the role that these might play in observed 
long-term populations declines.

Quantifying variation in migration phenology across species, 
space and time requires vast quantities of biological survey data that 
are only now becoming available via resources such as large-scale 
community-science databases. For over 7 million bird observations 
submitted to the program eBird15, we used logistic generalized addi-
tive models (GAMs) to derive estimates of migratory arrival dates 
for 56 species of birds from 2002 to 2017 across 33° of latitude in 
eastern North America (Extended Data Figs. 1 and 2). We used these 
estimates in conjunction with hierarchical Bayesian spatial autore-
gressive models to derive annual estimates of migration phenology 
for each species (Extended Data Figs. 3 and 4). With these estimates, 
we quantified the ‘sensitivity’ of birds to spring phenology, defined 
by how well the timing of spring migration of birds tracks interan-
nual fluctuations in vegetation phenology and addressed how and 
why sensitivity varied across space and among species.

Results and discussion
Variation in sensitivity across space. Green-up (the timing of 
the vernal emergence of new vegetation)16 is a key indicator of the 
arrival of spring17, linked to the availability of key food resources 
for migratory birds18. As such, it represents a principal metric 
against which to evaluate phenological change, particularly in the 
absence of direct information on food availability19 (which is sparse 
in the case of North American migratory birds). We found that, 
while spring bird arrival does broadly coincide with interannual  
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fluctuations in forest green-up (as measured by satellite-based sen-
sors), birds only coarsely track these changes in vegetation phenol-
ogy (Fig. 1). For every 1-d change in green-up, local bird arrival 
phenology (αξ in equation (12)) changed by only 0.13 d (95% CI 
0.11, 0.16; Figs. 1 and 2 and Extended Data Fig. 5) across all species. 
We refer to this relationship of the number of days change in bird 
arrival per day change in green-up as ‘sensitivity’—of which a value 
of 1 represents a scenario where these metrics fluctuate perfectly 
in synchrony. In all cases, sensitivity was calculated relative to the 
annual anomalies in green-up for a given location. Green-up also 
exhibited higher interannual variation (s.d. = 5.31 d) compared to 
variation in bird arrival (across species mean s.d. = 1.70 d; Fig. 1). 
These results suggest that migratory birds may have a limited capac-
ity to maintain synchrony with changes in phenology at lower tro-
phic levels (whether that be interannual fluctuations or long-term 
changes). Given that green-up is advancing over time (Extended 
Data Fig. 6), our results are consistent with a previous finding that 
asynchrony between birds and vegetation is increasing over time12.

On average, green-up explained ~19% of the variation (equa-
tion (15)) in arrival (with species-level means ranging from 2 to 
66%) within geographic regions (defined by hexagonal cells of 
~70,000 km2; Extended Data Fig. 1). While the seasonal nature of 
resource availability is thought to be the primary reason why migra-
tion evolved as a viable strategy20, migratory birds face challenges in 
timing life history events to match year-to-year variation in these 
resource pulses21. During the overwinter period, birds have limited 
information about conditions on breeding grounds. Migrants may 
rely on cues such as photoperiod22 or other abiotic23 or biotic24,25 
conditions to time their departure from overwintering grounds. 
Given the limited covariation between conditions at overwintering 
and breeding grounds, these cues provide only a coarse approxima-
tion of when birds must depart to synchronize their arrival with 
temporal variation in resource availability, limiting how well migra-
tory birds can track spring phenology.

Within species, we observe a strong latitudinal gradient in sensi-
tivity to green-up (μγAPG (equation (13)) posterior mean: 0.009 unit 
(days arrival per day green-up) change in sensitivity per degree 
latitude, 95% CI 0.006, 0.012), with birds generally less sensitive to 

fluctuations in green-up in the southern portions of their migratory 
and breeding range compared to the northern portions (Fig. 2 and 
Extended Data Fig. 5; this pattern is also apparent when considering 
only the breeding range, Supplementary Information). This latitu-
dinal gradient in sensitivity, in conjunction with faster phenological 
change in vegetation at higher latitudes (Extended Data Fig. 6), may 
explain why phenological change is generally more pronounced at 
higher latitudes for birds and other vagile taxa13,26. This finding also 
suggests that most birds have some capacity to adjust their migratory 
behaviour en route on the basis of environmental conditions25 (in 
effect, riding the ‘green wave’ of vegetation across space and time27) 
but that increases in migration speed can only be achieved incre-
mentally (probably through adjustments in stopover duration28). As 
a result, bird phenology generally more strongly matches fluctua-
tions in green-up at higher latitudes (Fig. 2). Birds may also respond 
more strongly to green-up in the more polar portions of their ranges 
because these areas are more likely to reflect conditions on breeding 
grounds. We caution, however, that even the most sensitive species 
in the most responsive portions of their range still fail to keep pace 
with changes in green-up (Fig. 2 and Extended Data Fig. 5). Still, spa-
tial trends in phenological sensitivity are consistent with other work 
that has shown that birds adjust their migratory speed in response to 
changes in temperature29,30 and that bird arrival dates on the north-
ern Gulf of Mexico coastline have changed little over time31.

Intraspecific variation may also play a role in this spatial varia-
tion in sensitivity. Populations within the same species may vary 
in their degree of plasticity to environmental conditions32, exhibit 
different migratory strategies (perhaps using different migratory 
corridors) or face different constraints resulting from conditions 
experienced on overwinter grounds. These intraspecific differences 
could explain departures from the general latitudinal pattern in 
sensitivity for some species, including reverse latitudinal trends and 
longitudinal patterning (Fig. 2). For example, the northern parula 
Setophaga americana shows higher sensitivity in the southeast por-
tion of its North American range, possibly the result of spatially dis-
crete overwintering populations (for example, on Caribbean islands 
and along the Yucatán Peninsula) that probably experience differing 
environmental conditions in migration along distinct corridors.
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Fig. 1 | Bird arrival in response to green-up. a, Interannual variation in green-up (red) and arrival dates for a representative species, the tree swallow 
(blue; both variables centred), for a single, representative location (cell centroid: 43.78° N, 75.00° W) in the species’ range. Error bars for arrival 
represent 1 posterior s.d. b, When analysed across the entire breeding and migratory ranges of 56 species, spring arrival dates (plotted at each species’ 
mean latitude) showed variable sensitivity to green-up anomalies (that is, centred on the mean green-up value for each cell). Each line represents one 
bird species. Colours represent the slope of the lines—the extent to which arrival date changes given a 1-d change in green-up—which corresponds to 
sensitivity. Dark green hues denote higher sensitivity while yellow hues denote lower sensitivity. The black line represents the overall (cross-species) mean 
relationship between arrival and green-up anomaly, while the grey ribbon denotes the 95% credible interval. For enhanced visualization and exploration of 
single-species trends, see https://migratory-sensitivity.shinyapps.io/MigSen-app/.
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Variation in sensitivity among species. Among the 56 bird spe-
cies we studied, species varied widely in their mean sensitivity to 
advancing green-up (Figs. 1 and 2 and Extended Data Fig. 5). We 
found that species that migrate more slowly, arrive earlier and over-
winter further north are more sensitive to changes in green-up (βξ 
in equation (12)) posterior mean effect PC1 −0.038, 95% CI −0.057, 
−0.019; Fig. 3; see also Supplemental Information for discussion of 
other migratory traits). For example, the pine warbler (Setophaga 
pinus) and eastern phoebe (Sayornis phoebe), which lie on one end 
of the spectrum (Supplementary Table 1), vary their arrival dates 
substantially in response to changes in green-up (ξAPGk

 in equa-
tion (11)—posterior means 0.37 (pine warbler) and 0.45 (eastern 
phoebe) days per day; Extended Data Fig. 5), whereas the bobolink 
(Dolichonyx oryzivorus) and willow flycatcher (Empidonax traillii), 
which lie on the other end of the spectrum (Supplementary Table 1), 
vary only a small amount (ξAPGk

—posterior means 0.08 (bobolink) 
and 0.11 (willow flycatcher) days per day; Extended Data Fig. 5). 
Species that exhibit greater sensitivity also tend to have larger inter-
annual variability in arrival dates (ρ in equation (18)—posterior 
mean 0.86, 95% CI 0.80, 0.90), suggesting that phenological inflex-
ibility in migration is a primary driver of insensitivity to green-up.

The novel trait relationships illustrated in this work connect 
recent research on the natural history of avian migration to our 
understanding of mechanisms underlying phenological shifts. 
Migratory birds in eastern North American can be generally divided 
into neotropical migrants—that largely winter in the Caribbean or 
Central and South America—and temperate-wintering migrants—
that remain predominantly in the United States and northern 
Mexico. Temperate-wintering migrants have northern range limits 
that vary dynamically in winter33 and show strong relationships to 
thermal physiology34, leading to spring migrations that begin early, 
traverse relatively short distances and progress slowly35. In con-
trast, neotropical migrants have winter ranges that largely appear to 
track resource availability36, leading to longer migrations that arrive 
later but progress more quickly35. Previous synthetic efforts have 
come to mixed conclusions regarding the ability of short- versus 

long-distance migrants to respond to phenological change37. Our 
findings suggest that these two groupings broadly characterize the 
continuous spectrum of migratory species’ sensitivity of arrival to 
green-up in North America (Fig. 3). Temperate-wintering migrants 
benefit from better access to information about resource conditions 
at their migratory destinations so as to arrive earlier as needed yet 
dynamically avoid the hazards of early-spring weather. In contrast, 
neotropical migrants are limited by resource availability and weak 
teleconnections between wintering and breeding ranges, thus lead-
ing to later, faster and more inflexible migration.

Implications for understanding global change. Given that 
advances in spring green-up are likely to continue into the future38, 
our results suggest that particular species (those that overwinter 
closer to breeding grounds, migrate more slowly and arrive ear-
lier) may be better equipped to keep pace with some components 
of future global change. Much of the concern over differential shifts 
in phenology across trophic levels is due to the risk of phenological 
mismatch6. Species that adjust their arrival dates to match changes in 
green-up may better match changes in the timing of resource avail-
ability, whereas less sensitive species may be at risk of phenologi-
cal mismatch where breeding success or adult survival is depressed 
as a result of these temporal asynchronies39, with implications for 
population dynamics40. Evidence for the negative demographic con-
sequences of phenological mismatches remains sparse41,42, however, 
highlighting the need to not only quantify apparent asynchronies but 
also to evaluate their consequences. Future efforts should integrate 
these findings into a tritrophic framework43, whereby insect dynam-
ics44, particularly larval lepidopterans, and demographic responses 
are considered directly. The role of rapid evolution in shaping phe-
nological responses should also not be discounted and may provide 
a means of adaptation to directional phenological change45.

Beyond trophic mismatches, species-level variation in arrival 
phenology may lead to an assortment of cascading effects on life 
history and demography. More sensitive species might also stay 
longer on breeding grounds, which could lead to population gains 
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through multiple mechanisms46. For example, extended breeding 
seasons could lead to increased multiple brooding47 or facilitate 
extended parental care, which could increase overwinter survival 
of juveniles48. The diverse range of possible outcomes highlights 
the increased need to study the relationship between migration 
phenology and breeding phenology49, particularly over large spa-
tial and taxonomic scales. Differential shifts in phenology may also 
alter interspecific competition dynamics, which may have negative 
demographic consequences for some species50.

These findings regarding spatial and taxonomic variation in 
sensitivity also have implications for interpreting other widespread 
global change-driven phenomena, such as species’ range shifts. 
As bird species are shifting both their winter and breeding distri-
butions poleward over time33, a critical metric is the relative shift 
across seasons. In both Europe and North America, winter distri-
butions are shifting faster than breeding distributions, leading to 
shortening of migratory distances33,51. Particularly if these shifts 
lead to transcontinental migrants switching to intracontinental 
migration—for example, by wintering along the coast of the Gulf 
of Mexico, as is increasingly seen in some species52—our findings 
indicate that this could lead to a renewed ability of some species 
to track advancing green-up (though unfilled habitat requirements 
may limit the potential for some range shifts). Such a phenomenon 
would be much-needed good news for neotropical migrants, which 
have seen dramatic population declines in recent years due to the 
cumulative effects of a diverse range of threats on both breeding and 
overwintering grounds14. Alternatively, since phenological changes 
may, in some situations, mitigate the need for range shifts53, species 
whose breeding phenology are more sensitive to changing climate 
may also shift their breeding distributions less.

Given variation in species’ capacity to respond to and keep 
pace with rapid anthropogenic climate change, the ability to iden-
tify vulnerable species and at-risk landscapes will be necessary for 
the conservation of biodiversity and the effective management of 
natural resources. Previous studies have come to mixed conclusions 

regarding how and why phenology is changing54, the implications 
these changes have for phenological mismatch55 and which species 
characteristics might leave them more vulnerable to phenological 
change37. We present evidence to suggest why phenological sensi-
tivity differs over space and across species. This species-specific, 
spatially explicit approach to estimating migratory arrival, in con-
junction with other approaches such as the tracking of individual 
birds, will facilitate future work aimed at better understanding 
transcontinental avian phenological dynamics.

Methods
To characterize changes in avian phenology and its sensitivity to spring arrival 
across time, space and species we developed a methodological pipeline that made 
use of observations from an expansive ornithological dataset and satellite-based 
remote sensors. We applied a hierarchical Bayesian analytical approach56 to account 
for uncertainty and propagate it throughout the analyses, the specific details of 
which are outlined in following sections. We derived estimates of bird arrival 
by fitting logistic GAMs to checklist data collected by observers across eastern 
North America. We combined estimates from locales to generate region-wide 
estimates of arrival time by fitting a spatial autoregressive model to derive spatially 
smoothed estimates of phenology. Once we generated spatiotemporal estimates 
of arrival dates, we then used these estimates to fit a hierarchical spatially varying 
coefficients model to estimate how the effect of vegetation phenology (green-up) 
on bird phenology varies over space and across species. Due to theoretical and 
computational considerations, some parts of this pipeline are linked by treating 
marginal posterior distributions for parameters in one analysis as data in a 
downstream analysis (Extended Data Fig. 7 and Supplementary Table 2). Doing so 
allowed us to incorporate uncertainty into predictions at subsequent levels. Most 
phenological studies model the quantity of interest (often the first or mean date of 
a phenological observation57,58), failing to account for varying data collection effort 
both within and among years and ignoring uncertainty in these estimates. Here, we 
account for both varying effort and uncertainty in our phenological estimates and 
downstream analyses.

Study region, dates, bird species and data sources. We characterized bird 
migration phenology throughout eastern North America using data from 
Project eBird, an online community-science platform for bird observations15. We 
restricted the spatial scope of our analyses to the area of North America east of 
95° W longitude and north of 24° N latitude to focus on the Eastern Temperate 
Forest biome and make use of the high density of bird observations in this area. 
To aggregate data within equal-sized areas large enough to allow robust estimates 
of phenology, we used a uniform hexagonal grid (Icosahedral Snyder Equal 
Area projection with an aperture of 3; distance between cell centres of 285 km; 
per-cell area of ~70,000 km2) which covered our study region (produced using 
the R package dggridR59; Extended Data Fig. 1). We limited the temporal scope 
of our analyses to the years 2002–2017. While some eBird observers have entered 
data based on field-notes made before 2002 (eBird’s first year of operation), the 
volume of data is generally much lower. We focused analyses on migratory, forest- 
or near-forest-dwelling, primarily passerine birds that breed in eastern North 
America. From an initial list of 114 species, we ultimately analysed 56 species that 
met our data requirements (Extended Data Fig 4; requirements outlined below), 
comprising one species of the order Caprimulgiformes, one from Cuculiformes 
and 54 from Passeriformes (Supplementary Table 1). For each species, we restricted 
analyses to grid cells within their breeding and migratory range (excluding areas 
where they overwinter), which we assessed using standard range maps60. We 
downloaded the eBird ‘basic’ dataset in December 2018 and extracted ‘complete’ 
checklists conducted before ordinal date (day-of-year) 200 (19 July in non-leap 
years), with a reported survey effort of between 6 min and 24 h, a reported distance 
<100 km and a start time before 18:00 local time (to exclude night-time surveys).

Estimates of spring vegetation phenology (green-up) from 2002 to 2017 were 
obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) 
Land Cover Dynamics MCD12Q2 v.6 data product16 which corresponds well to 
independent field-derived phenological measurements17. MCD12Q2 product 
pixels (500 m) were filtered by land cover type, as characterized by the Land Cover 
Classification System from the Food and Agriculture Organization61 provided 
as part of the MCD12Q1 v.6 data product62. The MCD12Q2 and MCD12Q1 
products are produced on the same spatial grid allowing for easy filtering based 
on land cover classifications. Vegetation phenology values were only extracted 
for pixels classified as forest (evergreen needleleaf forests, evergreen broadleaf 
forests, deciduous needleleaf forests, deciduous broadleaf forests, mixed broadleaf/
needleleaf forests, mixed broadleaf evergreen/deciduous forests, open forests 
or sparse forests) in the year 2017 as provided by the MCD12Q1 product and 
with vegetation phenology quality scores of ‘good’ or ‘best’, as provided by the 
MCD12Q2 product. Quantitative estimates of pixel-level green-up uncertainty 
are not available for this product. We selected ‘mid-green-up’ as our metric of 
green-up, which estimates the day of the year at which the amplitude of the 
modelled Enhanced Vegetation Index was half of its maximum16. The green-up 
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value for a given hexagonal grid cell for a given year was calculated as the mean 
of the green-up values for all pixels with appropriate land cover type and quality 
scores within that cell. Cell-level green-up values were only used if at least 10,000 
valid pixels (~2,500 km2) were available to calculate the mean.

Annualized, independent gridded estimates of migratory phenology. We used 
presence/absence data from 7,150,883 bird observations contained in 2,068,687 
unique eBird checklists to estimate annual arrival dates across the study area. 
We fit independent GAMs63 in a Bayesian framework for each species–cell–year 
combination to estimate the half-maximum date, our metric of bird arrival in 
this study. This grid-based approach builds on previous analyses of interannual 
variation in migratory timing11,12 but differs from other spatiotemporal exploratory 
models commonly fit to eBird data64, which have, thus far, not been able to resolve 
annualized phenology estimates due to high data requirements. The record of 
a given bird species in a checklist (y) was modelled as a Bernoulli-distributed 
random variable (where a record is represented as a 1 and absence of a record is 
a 0), with the per-checklist reporting probability (p) modelled as a logit-linear 
function of effort-hours (EH) and a penalized thin-plate regression spline65 
smoother for ordinal date (day-of-year)

yi ∼ Bern(pi)

logit (pi) = αGAM + βGAM × EHi + f
(
Dayi

) (1)

where i is an individual checklist, αGAM is the intercept, βGAM is the effect of EH, 
‘Day’ is the ordinal date for a given checklist and f is a smooth function of Day. Our 
GAM-based approach contrasts with previous approaches of fitting parametric 
functions to the reporting frequency in eBird data as a function of Day11,12. Visual 
inspection of eBird checklist observations showed clear early-summer peaks in 
detection followed by declines in many cases. These nonlinear patterns are likely to 
interfere with estimating the height of the asymptote (and therefore the position of 
the half-maximum date) in the scaled logistic model (as used by previous studies). 
Given expected differences in migration patterns across species, as well as within 
species across their ranges, the functional form of the probability of occurrence 
in a checklist is also likely to vary across species and cells, particularly as a 
function of the relative proportion of phenological signal deriving from passage 
migrants versus local breeders66. We therefore used GAMs due to their flexibility 
in modelling a variety of functional forms and their recommendation in other 
phenological applications66.

We only fit GAMs in species–cell–years that met certain data conditions. For 
each species–cell–year, we required detections on at least ten unique days, at most 
2% of detections occurring before day 60 (around 1 March) and non-detections 
on at least 20 unique days before the first detection. These threshold choices 
were based on results obtained during the exploratory phase of the analyses. We 
imposed the first requirement to avoid spurious spikes in the GAM in regions that 
are not well-constrained by data. We imposed the last two requirements to ensure 
that the species did not overwinter in substantial numbers within the cell and that 
early-season non-detections were sufficient to constrain the model to low values 
early in the season.

To calculate the half-maximum metric for a given species–cell–year, at 
each iteration of a posterior chain we calculated the first local maximum of the 
modelled per-checklist reporting probability to come after the first detection. The 
half-maximum was defined as the ordinal date at which the reporting probability 
is half the difference between the local maximum and minimum value plus 
the minimum reporting probability (Extended Data Fig. 2). In most cases, this 
corresponds to the ordinal date at which the reporting probability is half of the 
local maximum, although for some iterations, the minimum reporting probability 
before the local maximum may be non-negligibly >0. Half-maximum values for 
species–cell–years where no local maximum existed for >1% of posterior iterations 
(the second derivative of the reporting probability was never negative) were not 
used in downstream analyses (Extended Data Fig. 2). By calculating this derived 
half-maximum parameter at each iteration of the posterior chain, we obtained a 
posterior distribution of the half-maximum date, reflecting the uncertainty in this 
measure (Extended Data Fig. 2).

We fit the GAMs with a basis dimension (k) of 30 in a Bayesian framework 
using the R package rstanarm67 to interface with Stan68. We ran four chains 
for 1,500 iterations each with a warmup of 750 iterations. We assessed model 
convergence using the potential scale reduction factor (Rhat)69 and number of 
effective samples. We discarded any species–cell–years with divergent transitions 
(which indicate that the sampler was not exploring probability space properly)68, 
Rhat > 1.02, number of effective samples <400 for any parameter or a posterior 
distribution for the half-maximum date with s.d. > 15 d. In total, we estimated valid 
half-maximum dates for 26,118 species–cell–year combinations.

Smoothing and interpolation of phenology with spatial autoregressive models. 
We used the GAM-derived half-maximum estimates in conjunction with intrinsic 
autoregressive (IAR; also referred to as intrinsic conditional autoregressive, ICAR) 
models to derive more accurate phenological measures, leveraging the fact that 
the timing of bird migration is spatially autocorrelated within years. IAR models 
provide a framework to estimate the local dependency among variables in areal 

data (data aggregated into discrete spatial units70,71). By quantifying the degree of 
spatial autocorrelation among variables, these models produce spatially smoothed 
estimates of those variables. For a given cell, the spatial random effect estimated by 
an IAR is dependent on the values of the neighbouring cells and the uncertainty in 
those values.

We constructed IAR models to estimate latent modelled arrival dates for 
each species–cell–year using the GAM-derived half-maximum estimates (with 
associated posterior uncertainty) as the response variable in these models. Our IAR 
models partially pooled data across cells and year but not across species (that is, 
we fit a separate model for each species). We fit IAR models only for species–year 
combinations with GAM estimates for arrival in at least three cells and only for 
species where at least 40% of the cells from the species’ migratory and breeding 
ranges that fell within the study area had at least 3 yr of data. While 40% was an 
arbitrary threshold, this choice was made to ensure that sensitivity estimates were 
available over a substantial portion of the species ranges. We also excluded data 
from cells where <5% of the cell was covered by land, as these values might reflect 
very localized (principally coastal) dynamics. Although rare, cells that had no 
neighbours were dropped from the analysis, as limited spatial information could be 
shared in these cases. In total, 56 species with 20,576 species–cell–years were used 
in the IAR analysis (Extended Data Fig. 4). We modelled the observed posterior 
mean of the GAM-derived half-maximum (ĤM) for cell i in year j as normally 
distributed, with the mean represented by the latent modelled arrival date (ARR) 
and s.d. represented by the uncertainty in the half-maximum estimate (σĤM; the 
posterior s.d. of the half-maximum estimate)

ĤMij ∼ N(ARRij , σĤMij
) (2)

In this way, the uncertainty in the estimate of the half-maximum is propagated 
through downstream analyses—GAM-derived half-maximum estimates with little 
uncertainty would tend not to differ greatly from IAR-derived estimates, while 
GAM-derived half-maximum estimates that were less precisely estimated draw 
more information from neighbouring estimates. We considered the modelled 
arrival of each species, ARR, as a function of a year effect ( βIAR, an offset in the 
arrival date for all cells in a given year), a cell effect (γIAR, an offset representing the 
typical arrival date for a cell across years) and a within-year spatial random effect 
(ϕIAR × σϕIAR, where ϕIAR is the spatial effect scaled to 1 s.d. (for computational 
efficiency) and σϕIAR regulates the magnitude of that spatial effect for all years), 
with process error σARR

ARRij ∼ N(μARR ij
, σARR)

μARR ij
= βIARj

+ γIARi
+ ϕIARij × σϕIAR

(3)

βIAR was modelled as normally distributed with mean 0, s.d. σβARR

βIARj
∼ N(0, σβ IAR ) (4)

To leverage the universal pattern of northward progression of spring migration, 
we modelled the cell effect (γIAR) as a linear function of latitude

γIARi
∼ N(μγIARi

, σγIAR )

μγIARi
= αγIAR + βγIAR

× LATi
(5)

where αγIAR is the intercept, βγIAR
 is the effect of latitude, LAT is the latitude of the 

centroid of cell i and σγIAR is the process error.
The spatial random effect ϕIAR, represents the degree to which each cell is 

augmented due to values of neighbouring cells and is defined as

ϕIAR ∼ N
(

0, [D − W]
−1

)

(6)

where D is a diagonal matrix, with the number of neighbours for each cell on the 
diagonal and 0 on the off-diagonal elements and W is the weights matrix, with a 
binary encoding representing the proximity of two cells (taken from the spatial 
structure of the hex cells that represent a given species’ migratory and breeding 
range), such that wm,n = 1 if cell m is adjacent to cell n and wm,n = 0 otherwise. We 
formulate the spatial component ϕIAR using the pairwise difference formula72. The 
model was parameterized such that the spatial structure of the autocorrelation 
was estimated independently for each year but a single parameter, σϕIAR, scaled the 
magnitude of this autocorrelation for all years for each species. The log probability 
density of ϕIAR can be written as

log p(ϕIAR) = −

1
2

(
∑

m∼n
(ϕIARm − ϕIARn )

2
)

(7)

A sum-to-zero constraint is necessary to ensure parameter identifiability in 
IAR models72

∑

i
ϕIAR ij = 0 (8)
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We fit the IAR and all following models using R package rstan73 to interface 
with Stan68 in R74. For each model, we ran four chains for 5,000 iterations each with 
a warmup of 2,500 iterations. In cases where Rhat ≥ 1.02 or the number of effective 
samples for any parameter was <400, the number of total and warmup iterations 
was doubled (up to a maximum of 40,000 total iterations) and the model was refit. 
Any model that failed to reach the specified Rhat and number of effective sample 
thresholds was discarded. No models had divergent transitions68. For all models, we 
implemented non-centred parameterizations of hierarchical parameters to increase 
the computational efficiency of model fitting in Stan75. Weakly informative priors 
were given for all parameters. Graphical posterior predictive checks were used 
to check that data generated by the model were similar to the data used to fit the 
model76. Data simulated from the posterior predictive distribution were similar to 
the observed data.

Assessing species-level differences in bird arrival phenology as a function of 
green-up. To characterize the sensitivity of bird arrival to changes in vegetation 
phenology, we modelled estimated arrival dates (ÂRR; the posterior mean of ARR 
(equation (2)), derived from the arrival IAR model) and their uncertainty as a 
function of green-up in a single hierarchical model for all species. ÂRR for cell i, 
year j and species k was modelled as normally distributed, with mean μÂRR and 
s.d. σÂRR (the posterior s.d. of ARR (equation (2)), derived from the arrival IAR 
model). In this way, the uncertainty in the arrival estimates is propagated through 
the analyses. Only arrival dates in species–cells–years for which GAM-derived 
half-maximum values were estimated were used for these analyses (that is, no 
values interpolated by the arrival IAR model were used in downstream analyses). 
In total, 56 species and 20,576 species–cell–years were modelled. Green-up was 
standardized within each species–cell to have a mean of 0, as we were interested 
in the response of arrival to interannual fluctuations in green-up within a given 
area and the number of years where data were available for a given cell varied by 
species. All species were modelled jointly, so as to improve parameter estimation 
through partial pooling77

ÂRRijk ∼ N(μÂRRijk
, σÂRRijk

)

μÂRRijk
∼ N(μAPGijk

, σAPG)

μAPGijk
= αAPGik + βAPGik

× CGijk

(9)

where αAPG is the intercept term, βAPG is the effect of green-up on arrival, CG is 
green-up centred within each cell for each species, σAPG is the process error and the 
APG subscript abbreviates ‘arrival days per green-up day’ (to help distinguish these 
parameters from those in other models). Separate slope and intercept parameters 
were estimated for each species–cell and modelled hierarchically as follows. 
Parameter αAPG was modelled as a function of latitude, to leverage the fact that bird 
arrival occurs later at more northerly latitudes

αAPGik ∼ N(μαAPGik
, σαAPG )

μαAPGik
= πAPGk + νAPGk × LATi

[
πAPGk

νAPGk

]

∼ MVN
([

μπAPG

μνAPG

]

, ΣAPG

)
(10)

where πAPG is the intercept term for αAPG and vAPG is the effect of latitude on αAPG, 
LAT is the latitude at the centroid of cell i and σαAPG is the process error. Parameters 
πAPG and vAPG were modelled as multivariate normal, with means μπAPG

 and μvAPG, 
respectively, and covariance ΣAPG (a 2 × 2 covariance matrix). Parameter βAPG was 
modelled as a function of latitude (with slope γAPG, to examine the effect of latitude 
on the species-level sensitivity to green-up), a species-level intercept for the rate of 
change (ξAPG) and a spatial random effect (ϕAPG scaled by σϕAPG), to account for the 
fact that sensitivity to green-up is likely to be similar among nearby cells for a given 
species

βAPGik
∼ N(μβAPGik

, σβAPG
)

μβAPGik
= ξAPGk

+ γAPGk
× SLik + ϕAPGik × σϕAPGk

(11)

where σβAPG
 represents the process error and SL represents latitude standardized 

within species, so ξAPG represents the sensitivity to green-up (number of days 
change in arrival at a given cell per one-day change in green-up) for species k 
at the mean latitude of the species’ migratory and breeding range. This model 
used an IAR structure similar to models of arrival phenology but puts the spatial 
random effect on the rate of change over time rather than the phenological estimate 
(sometimes referred to as a spatially varying coefficients model78).

To assess why species differed in their sensitivity to green-up, we modelled 
ξAPG as a function of species-level migratory traits: migration pace (the number of 
days on average that a species takes to cover one degree latitude during migration), 
arrival date (the mean date over a species’ migratory and breeding range across 
all years) and overwinter latitude (the latitude of the centroid of the species’ 

overwinter range). Since these traits covary (correlation coefficients: migration 
pace and arrival date, −0.51; migration pace and overwinter latitude, 0.40; mean 
arrival date and overwinter latitude, −0.39), we regressed species-level sensitivity 
to green-up on the first principal component (PC1) of these three variables (which 
represents 62% of the variation in these variables; Supplementary Table 3) to avoid 
issues of multicollinearity

ξAPGk
∼ N(μξAPGk

, σξAPG
)

μξAPGk
= αξ + βξ × PC1k

(12)

where αξ is the intercept term, βξ is the effect of PC1 and σξAPG
 is the process error. 

Parameter βγIAR
 (equation (5); representing the effect of latitude on the cell random 

effect in days per degree latitude) from the IAR model was used as a measure of 
migration pace. We represented species-level overwinter latitude as the centroid of 
the species’ overwinter range, as determined from published range maps60. Mean 
arrival date was calculated as the mean estimated arrival date for all cells across 
the species’ migratory and breeding ranges across all years. While this measure 
of migration pace and estimates of arrival phenology are derived from the same 
model, migration pace is estimated in such a way that it has little to do with either 
the average arrival date for each species or how much arrival date might vary from 
year to year.

γAPG (the effect of latitude on the species-level sensitivity to green-up) was 
modelled as hierarchically normally distributed

γAPGk
∼ N(μγAPG

, σγAPG ) (13)

with mean μγAPG
 and s.d. σγAPG.

Because migratory and breeding ranges varied across species, separate 
adjacency matrices were created for each species to estimate the spatial random 
effect. Parameter σϕAPG was modelled hierarchically, to aid in estimation 
across species. A log normal distribution was used to allow for a non-centred 
parameterization79 of a zero-bounded parameter

σϕAPGk
∼ LN(λAPG, κAPG) (14)

where λAPG is the location parameter and κAPG is the scale parameter. We ran four 
chains for 7,000 iterations and discarded the initial 3,000 iterations as warmup. 
Graphical posterior predictive checks showed that data simulated from the 
posterior predictive distribution were similar to the observed data (Extended  
Data Fig. 8).

The proportion of within-cell variation in arrival explained by green-up was 
assessed as

var(μAPG ik
)

var(μÂRRik
)

(15)

where μAPG is the linear predictor (equation (9)) and μÂRR is the total variance of 
predicted arrival dates (equation (9)) for each species–cell at each iteration of  
the posterior. This was calculated at each iteration of the posterior chain. The 
median across all iterations was calculated for each species–cell to quantify the 
proportion of within-cell variation explained by green-up. Species-level means 
were calculated by taking the mean of these medians for each species. The overall 
within-cell variation explained by green-up was taken as the mean of these 
species-level means.

Sensitivity as a function of interannual variation in arrival. To determine  
to what degree species-level sensitivity in arrival was related to flexibility in 
interannual arrival, we calculated the correlation between ξAPG (species-level 
sensitivity of bird arrival to green-up; equation (11)) and a derived quantity, σμ 
(species-level interannual variability in arrival date). To calculate the derived 
quantity, σμ, we first calculated δ, the difference between μÂRR (the latent arrival 
date for each species–cell–year; equation (9)) and αAPG (the cell intercept for each 
species–cell; equation (9)) for each species–cell–year, at each iteration of the 
posterior chain

δijk = μÂRRijk
− αAPG ik (16)

This quantity represents centred (for each species–cell) bird arrival dates. 
We then calculated σμ as the s.d. of each realization of δ (where the number of 
realizations is equal to the number of posterior iterations for μÂRR and αAPG) for 
each species

σμk = s.d.(δk) (17)

yielding a derived posterior distribution representing the degree of interannual 
variability in arrival dates for each species. We then calculated correlation 
coefficients between ξAPG and σμ at each realization of the posteriors

ρ = cor(ξAPG k
, σμk ) (18)
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to compare species-level sensitivity to species-level interannual variability. This 
resulted in a distribution of correlation coefficients, on which we then made 
inference.

Estimating trends in green-up over time. To characterize changes in forest 
green-up phenology, we modelled the green-up date (GR) (the ‘mid-green-up’ 
metric from the MCD12Q2 product16) for cell i in year j as a linear function of  
time (YEAR)

GRij ∼ N(μGRij
, σGR)

μGRij
= αGRi + βGRi

× YEARj
(19)

where αGR is the intercept term, βGR is the rate of phenological change over time 
(YEAR) and σGR is the process error. Separate slope and intercept parameters were 
estimated for each cell and modelled hierarchically as follows. Parameter αGR was 
modelled as a linear function of latitude, to leverage the fact that green-up occurs 
later in the year at more northerly latitudes

αGRi ∼ N(μαGRi
, σαGR )

μαGRi
= πGR + νGR × LATi

(20)

where πGR is the intercept term, vGR is the effect of latitude on αGR, LAT is latitude at 
the centroid of cell i and σαGR is the process error.

The temporal trend in green-up phenology for each cell (βGR) was modelled as 
a function of an intercept (ξGR) and a spatial random effect (ϕGR scaled byσϕGR),  
to account for the fact that the rate of change in green-up is likely to be similar 
among cells

βGRi
∼ N(μβGRi

, σβGR
)

μβGRi
= ξGR + ϕGRi × σϕGR

(21)

This spatially varying coefficients structure of equation (21) is similar to 
equation (11), above. In total, 1,696 cell–years were modelled. We ran four chains 
for 8,000 iterations with a warmup of 4,000 iterations. We fit two separate models, 
one using green-up values from only forest land cover type and one using green-up 
values from all land cover types. Graphical posterior predictive checks showed 
that data simulated from the posterior predictive distribution were similar to the 
observed data (Extended Data Fig. 8). It should be noted that the spatial structure 
of the rate of change in green-up is land cover dependent, with middle latitudes 
of North America showing no trends in green-up when all land cover types 
are included (Extended Data Fig. 6), possibly resulting from the phenological 
insensitivity of agricultural practices80.

We fit models on the University of Connecticut’s Xanadu high-performance 
computing cluster and an Apple iMac desktop computer. In total, model fitting 
required ~1,240 processor-days of computing time.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Bird occurrence data are available through eBird (https://ebird.org). Green-up 
(MCD12Q2) and land cover (MCD12Q1) data are available through the NASA/
USGS Land Processes Distributed Active Archive Center (https://lpdaac.usgs.gov/). 
Interactive visualizations of all major analyses, as well as download capabilities 
of data products, are viewable on our R Shiny site at https://migratory-sensitivity.
shinyapps.io/MigSen-app/ which is also available on Github (https://github.com/
br-amaral/MigratorySensitivity_ShinyApp) and archived on Zenodo (https://doi.
org/10.5281/zenodo.4549910).

Code availability
Code used to derive the arrival estimates and conduct the analyses of phenological 
sensitivity are available on Github (https://github.com/phenomismatch/Bird_
Phenology; https://github.com/caseyyoungflesh/Pheno_sensitivity) and archived 
on Zenodo (https://doi.org/10.5281/zenodo.4532885; https://doi.org/10.5281/
zenodo.4532799).
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Extended Data Fig. 1 | Study area of interest over North America. Data were aggregated within each cell to calculate phenological measures and to 
characterize phenological change and sensitivity. Yellow cells represent the full extent of the study area. Cells were selected based on data density for both 
bird and green-up phenology (see Methods). Cell centres ranged from approximately 95° W to 54° W longitude and 26° N to 59° N latitude.

Nature Ecology & Evolution | www.nature.com/natecolevol

http://www.nature.com/natecolevol


Articles Nature Ecology & EvolutionArticles Nature Ecology & Evolution

Extended Data Fig. 2 | Derivation of the half-maximum from GAM results for each species–cell-year. Circles at the top of each plot represent checklists 
where the species of interest was recorded, while circles at the bottom of each plot represent checklists where the species of interest was not recorded. 
Left panel: the green line represents the first detection of a given species in a given cell-year; the red line represents the first local maximum for the 
modelled probability of occurrence in an eBird checklist to come after the first detection; the gold line represents the probability of occurrence at that local 
maximum; the purple line represents Δp, the difference between the minimum modelled probability of occurrence prior to the first local maximum and the 
probability of occurrence at the local maximum (the minimum reporting probability here is 0); the dark blue line represents the probability of occurrence 
at 12 Δp, half the difference between the maximum and minimum probabilities plus the minimum reporting probability; the light blue line represents the 
half-maximum date, the ordinal date (day-of-year) at which the modelled probability of occurrence equals 12 Δp. Right panel: black lines represent posterior 
realizations of the GAM model fit for a single species–cell-year (500 realizations shown for clarity). The red lines represent the derived half-maximum 
date at each realization of the GAM model fit and were used to calculate the mean and 95% credible intervals for this metric.
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Extended Data Fig. 3 | Data processing pipeline using red-eyed vireo (Vireo olivaceus) as an example. Estimates of arrival (half-maximum) were derived 
from generalized additive models (GAMs), which were then used as input for the intrinsic autoregressive (IAR) model to produce spatially smoothed 
estimates of arrival. The plot at the far left shows GAM results for a single cell-year for this species. Circles at the top of the plot represent eBird checklists 
in which red-eyed vireo was recorded, while circles at the bottom of the plot represent eBird checklists in which red-eyed vireo was not recorded. The 
black line represents the mean GAM fit, while the dashed red lines represent the 95% credible intervals. The solid blue and dashed blue lines represent the 
mean estimate and 95% credible intervals for the half-maximum, respectively. The plots in the centre column of the figure represent the estimated arrival 
date of this species over the study area for 2006. The plot at top centre represents the GAM-derived arrival estimates, while the plot at bottom centre 
represents the IAR-derived arrival estimates. Blue hues represent later arrival dates while pink hues represent earlier arrival dates for a given cell. The 
plots at far right represent a subset (the region bounded by the black box) of the maps in the centre column of the figure. Numbers in black represent the 
posterior mean of the arrival day (ordinal date), while the white numbers represent the posterior standard deviation of the arrival day.
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Extended Data Fig. 4 | Number of cells across the study area that met data requirements for each species and year. Red hues represent more cells while 
white hues represent fewer cells. Only species that met minimum data requirements are shown. Since species-years with fewer than 3 valid cells were not 
run as a part of the IAR model (see Methods), each species–year has either 0 or 3 or greater valid cells.
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Extended Data Fig. 5 | Posterior estimates for a) ξAPG (the species-specific phenological sensitivities; equation 11) and b) γAPG (the species-specific 
effect of latitude on phenological sensitivities; equation 11). Points represent posterior medians, thick lines represent 50% credible intervals, thin lines 
represent 95% credible intervals. The dashed grey line represents zero in each case.
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Extended Data Fig. 6 | Rate of change in green-up from 2002–2017 over the study area for (a) forest land cover types, and (b) all land cover types. 
Colours for (a) and (b) represent the cell-specific posterior mean estimates of the rate of change in green-up over time (days change per year) with 
red hues representing more negative trends over time (earlier green-up) and yellow hues representing no trend over time. c, Posterior estimates for 
cell-specific rate of change in green-up for forest land cover types (black) and all land cover types (red). Points represent the posterior median estimates 
for the rate of change of each cell (ordered by latitude), thick lines represent 50% credible intervals, thin lines represent 95% credible intervals. The 
dashed grey line represents zero.
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Extended Data Fig. 7 | Directed acyclic graphs (DAGs) outlining the hierarchical models used in this study. Boxes represent variables that were provided 
to the model, while ovals represent parameters estimated by the model. Corresponding equation numbers for each DAG given in lower right of each 
bounded box. Lettering corresponds to that shown in Supplementary Table 2, which provides descriptions of each variable represented in the DAGs.
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Extended Data Fig. 8 | Density plots for observed response variable data (y; corresponding to IAR-derived arrival dates for (a) and green-up dates 
for (b) and (c)) and response variable data simulated from the posterior predictive distribution (yrep). These plots were used for graphical posterior 
predictive checks, to ensure that data simulated from the model were similar to the observed data for models examining (a) the sensitivity of bird arrival to 
vegetation phenology (Eqs. 9–14), (b) trends in green-up over time for forest land cover types (Eqs. 19–21), and (c) trends in green-up over time for all land 
cover types (Eqs. 19–21). Curves in red are a representation of the density of all response data used to fit each model. Curves in black are a representation 
of the density of data simulated from the posterior predictive distribution. Each iteration of the posterior chain yields a simulated dataset. Here 250 
datasets simulated from the posterior predictive distribution are displayed (250 separate black lines). The general similarities between the red lines and 
black lines demonstrate that the models simulate data similar to the observed data.
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