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Abstract—While the Hirschfeld-Gebelein-Rényi (HGR) max-
imal correlation and the Wyner common information share
similar information processing purposes of extracting common
knowledge structures between random variables, the relation-
ships between these approaches are generally unclear. In this
paper, we demonstrate such relationships by considering the
Wyner common information in the weakly dependent regime,
called ε-common information. We show that the HGR maximal
correlation functions coincide with the relative likelihood func-
tions of estimating the auxiliary random variables in ε-common
information, which establishes the fundamental connections these
approaches. Moreover, we extend the ε-common information to
multiple random variables, and derive a novel algorithm for
extracting feature functions of data variables regarding their
common information. Our approach is validated by the MNIST
problem, and can potentially be useful in multi-modal data
analyses.

I. INTRODUCTION

For jointly distributed random variables X and Y , with

ranges X and Y respectively, the (generalized) HGR maximal

correlation [1]–[3], defined as

ρk(X;Y ) , sup
f : X 7→R

k
, g : Y 7→R

k

E[f(X)]=E[g(Y )]=0

E[f(X)f
T
(X)]=E[g(Y )g

T
(Y )]=Ik

E

[

f
T(X)g(Y )

]

,

(1)

attempts to extract k-dimensional features f(X) and g(Y )
to optimize the Pearson correlation coefficient in the feature

space, and then measure the dependence between X,Y by

the resulted correlation coefficient. Conceptually, the formu-

lation (1) intends to extract features from one variable that

has high predictive power towards some aspects of the other

variable, which can be interpreted as learning the common

knowledge shared between these random variables. As such,

the features extracted by (1) are shown useful in supervised

learning, unsupervised learning, and multi-modal machine

learning scenarios.

On the other hand, in traditional information theoretic

discipline, the common knowledge between random variables

is often described and extracted by auxiliary random variables,

among which a widely adopted formulation is the Wyner

common information, defined as

C(X,Y ) = min
PW |XY : X↔W↔Y

I(W ;X,Y ) (2)

where W is the auxiliary random variable, and X ↔W ↔ Y
forms the Markov chain. While the maximal correlation and

Wyner common information share the same information pro-

cessing purpose, the relationship between these two problems

is generally unclear.

In this paper, we consider the Wyner common information for

weakly dependent X,Y , from which the ε-common information

problem is formulated. We show that in this formulation, the

feature functions extracted from the HGR maximal correlation

problem, with an appropriately chosen dimension k, coincide

with the relative likelihood function of estimating the optimal

W from X,Y in the ε-common information. This establishes a

local-equivalence between HGR maximal correlation problem

and Wyner common information. Moreover, our development

indicates a (local) decomposition of the Wyner common

information shared by X,Y , by the modal decomposition

of their joint distribution PXY corresponding to the singular

value decomposition (SVD) of the canonical dependence matrix

(CDM) [4].

Furthermore, motivated by [5], we generalize the ε-common

information to multiple random variables with a class of joint

distributions. Unlike two random variables, the resulted opti-

mization problem is non-convex without analytical solutions,

which is difficult to solve for continuous random variables.

In this paper, we propose to solve a relaxed optimization

problem that can be viewed as solving the original problem

with quadratic regularizers. We show that the relaxed problem

can be efficiently solved by deep neural networks, which also

suggests a novel deep learning approach for extracting features

from multi-modal data regarding to their common information.

Finally, our experimental results demonstrate the effectiveness

of the extracted features in real problems.

II. PRELIMINARIES AND DEFINITIONS

In this section, we briefly introduce some important results

of HGR maximal correlation, as well as some definitions of

local neighborhood of distributions that will be useful later on

in our derivations.

A. HGR Maximal Correlation and SVD

For discrete random variables X,Y , the optimal f ,g of the

HGR maximal correlation (1) is related to the SVD of the
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canonical dependence matrix (CDM).

Definition 1 (CDM). The canonical dependence matrix B̃ is

the |Y| × |X| matrix with the (y, x)th entry defined as

B̃(y, x) ,
PXY (x, y)− PX(x)PY (y)

√

PX(x)PY (y)
(3)

We denote the singular values of B̃ as σ1 ≥ · · · ≥ σK ,

where K , min{|X|, |Y|}, and the corresponding right and

left singular vectors as ψ
X
i and ψ

Y
i , respectively, for all i. In

addition, we define the functions f∗i : X 7→ R and g∗i : Y 7→ R,

for all i, as

f∗i (x) =
ψX
i (x)

√

PX(x)
, g∗i (y) =

ψY
i (y)

√

PY (y)
, (4)

where ψX
i (x) and ψY

i (y) are the xth and yth entries of ψ
X
i

and ψ
Y
i , respectively. Then, the functions f∗i and g∗i admit a

modal decomposition of the joint distribution PXY :

PXY (x, y) = PX(x)PY (y)

[

1 +
K−1
∑

i=1

σif
∗
i (x)g

∗
i (y)

]

(5)

where E
[

f∗i (X)
]

= E
[

g∗i (Y )
]

= 0, and
1
E
[

f∗i (X)f∗j (X)
]

=
E
[

g∗i (Y )g∗j (Y )
]

= 1i=j . Moreover, the following result holds

for HGR maximal correlation (1).

Proposition 2. For discrete X,Y and k < K, it follows that

ρk(X;Y ) =

k
∑

i=1

σi,

which is achieved by choosing

f(x) = fk∗ (x) ,
(

f∗1 (x), · · · , f∗k (x)
)

,

g(y) = gk∗ (y) ,
(

g∗1(y), · · · , g∗k(y)
)

.

Consequently, the SVD of CDM decomposes the correlation

between X,Y into a sequence of dependent modes with the

strength of the modes characterized by the singular values. This

decomposition will be revisited when we develop the Wyner

common information for weakly dependent variables in the

ε-common information problem in the next section.

B. The Neighborhood of Distributions

Let P
Z

denote the space of distributions on some finite

alphabet Z, where |Z| < ∞, and let relint(PZ) denote the

relative interior of P
Z

, i.e., the subset of strictly positive

distributions.

Definition 3 (ε-Neighborhood). For a given ε > 0, the ε-
neighborhood of a reference distribution P0 ∈ relint(PZ) is

the set of distributions in a (Neyman) χ2
-divergence [6] ball

of radius ε2 about P0, i.e.,

N
Z
ε (P0) ,

{

P ′ ∈ P
Z : D

χ
2(P ′‖P0) ≤ ε2

}

, (6a)

1
We use the Kronecker notation

1A =

{

1 A is true
0 otherwise

where for P ∈ P
Z

and Q ∈ relint(PZ),

D
χ
2(P‖Q) ,

∑

z∈Z

(

Q(z)− P (z)
)2

Q(z)
. (6b)

In the sequel, for a distribution P ∈ N
Z
ε (P0), we define the

information vector φ and feature function associated to P

φ(z) ,
P (z)− P0(z)

ε
√

P0(z)
, f(x) =

φ(x)
√

P (x)
(7)

which results in a one-to-one correspondence

P ↔ φ↔ f (8)

In addition, given ε > 0, we refer to random variables X and

Y as ε-dependent if PXY ∈ N
X×Y
ε (PXPY ), where PX and

PY are the marginal distributions associated with PXY . Since

D
χ
2(PXY ‖PXPY ) = ‖B̃‖2F, where B̃ is the CDM as defined

in (3), it follows that X and Y are ε-dependent if and only if

‖B̃‖F ≤ ε.

Definition 4 (sub-ε dependence). For random variables X and

Y with joint distribution PXY , X and Y are sub-ε dependent

if the corresponding CDM B̃ as defined in (3) satisfies

‖B̃‖∗ ≤ ε, (9)

where ‖ · ‖∗ denotes the nuclear norm. In addition, given

marginal distributions PX and PY , we use N̄
X×Y
ε (PXPY ) to

denote the set of PXY satisfying (9).

Since ‖B̃‖F ≤ ‖B̃‖∗, the sub-ε dependence implies ε-
dependence, and hence N̄

X×Y
ε (PXPY ) ⊂ N

X×Y
ε (PXPY ).

III. THE ε-COMMON INFORMATION PROBLEM

Under sub-ε dependence, we define the following restricted

common information.

Definition 5 (ε-Common Information). Given PXY ∈
N̄

X×Y
ε (PXPY ) for ε > 0, the ε-common information is

Cε(X,Y ) = min
PW |XY ∈Pε

I(W ;X,Y ), (10)

where

Pε ,

{

PW |XY , some W : PW |XY (·|x, y) ∈ P
W

for all

(x, y), X ↔W ↔ Y, and PX|W (·|w)∈N
X√
δ(ε)

(PX),

PY |W (·|w)∈N
Y√
δ(ε)

(PY ), for all w∈W and some

δ(·) > 0 such that lim
ε→0

δ(ε)→0.
}

. (11)

In Definition 5, an auxiliary random variable W such that

PW |XY (·|x, y) ∈ Pε is characterized by the configuration

C
X,Y
ε (PXY ) defined as:

C
X,Y
ε (PXY ) ,

{

W, {PW (w), w ∈ W},
{PX|W (·|w), w ∈ W},
{PY |W (·|w), w ∈ W}

}

(12)

subject to the constraints

PX|W (·|w) ∈ N
X√
δ(ε)

(PX), w ∈ W, (13a)

PY |W (·|w) ∈ N
Y√
δ(ε)

(PY ), w ∈ W, (13b)
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for some δ such that δ(ε) → 0 as ε→ 0, and

PX|W (x|w)PY |W (y|w) = PXY |W (x, y|w). (14)

In turn, (14) implies the constraint
∑

w∈W

PW (w)PX|W (x|w)PY |W (y|w) = PXY (x, y), (15)

which further implies the constraints
∑

w∈W

PW (w)PX|W (x|w) = PX(x) (16a)

∑

w∈W

PW (w)PY |W (y|w) = PY (y). (16b)

Defining the information vectors

φX|W
w (x) ,

PX|W (x|w)− PX(x)√
δ(ε)

√

PX(x)
(17a)

φY |W
w (y) ,

PY |W (y|w)− PY (y)√
δ(ε)

√

PY (y)
, (17b)

we can equivalently express (12) in the form

C
X,Y
ε (PXY ) ,

{

W, {PW (w), w ∈ W},
{φX|W

w , w ∈ W}
{φY |W

w , w ∈ W}
}

(18)

subject to the constraints

‖φX|W
w ‖ ≤ 1, ‖φY |W

w ‖ ≤ 1, w ∈ W (19)

which correspond to (13), and
∑

w∈W

PW (w)φX|W
w (x) = 0, x ∈ X, (20a)

∑

w∈W

PW (w)φY |W
w (y) = 0, y ∈ Y, (20b)

due to (16).

Moreover, it follows from (14) and (17a)–(17b)

PXY |W (x, y|w) (21)

= PX|W (x|w)PY |W (y|w) (22)

=
(

PX(x) +
√
δ(ε)

√

PX(x)φX|W
w (x)

)

·
(

PY (y) +
√
δ(ε)

√

PY (y)φ
Y |W
w (y)

)

= PX(x)PY (y) +
√
δ(ε)

√

PX(x)PY (y)

·
[

√

PY (y)φ
X|W
w (x) +

√

PX(x)φY |W
w (y)

+
√
δ(ε)φX|W

w (x)φY |W
w (y)

]

. (23)

Finally, it follows from the expectation of (23) with respect to

PW and (20) that

PXY (x, y)

=
∑

w∈W

PW (w)PX|W (x|w)PY |W (y|w)

= PX(x)PY (y)

+
√

PX(x)PY (y)

· δ(ε)
∑

w∈W

PW (w)φX|W
w (x)φY |W

w (y), (24)

from which we obtain

δ(ε)
∑

w∈W

PW (w)φX|W
w (x)φY |W

w (y) = B̃(y, x), x ∈ X, y ∈ Y,

(25)

by recognizing B̃(y, x) as defined in (3) as the final factor in

(24).

The following variational characterization of the nuclear (i.e.,

trace) norm (see, e.g., [7]) is useful in our development.

Lemma 6. Given an arbitrary k1 × k2 matrix A, we have

min
{k, M1∈R

k1×k
, M2∈R

k×k2 :

M1M2=A}

(

1

2
‖M1‖2F +

1

2
‖M2‖2F

)

= ‖A‖∗.

(26)

In particular, we obtain that the ε-common information is

given by the nuclear norm of B̃.

Theorem 7. Given PXY ∈ N̄
X×Y
ε (PXPY ) for ε > 0, we have

2

C(X,Y ) ≤ Cε(X,Y ) = ‖B̃‖∗ + o(ε), (27a)

where

‖B̃‖∗ =

K−1
∑

i=1

σi, (27b)

which is achieved by the configuration

CX,Y
∗ (PXY )

=

{

W = {±1, . . . ,±(K − 1)},

PW (w) =
σ|w|

2‖B̃‖∗
,

PX|W (x|w) = PX(x)
(

1 + sgn(w) ‖B̃‖1/2∗ f∗|w|(x)
)

,

PY |W (y|w) = PY (y)
(

1 + sgn(w) ‖B̃‖1/2∗ g∗|w|(y)
)

}

(28)

and δ(ε) = ε in (11).

Proof. Due to the space limitations, we present the main steps

of the proof here, while referring the full proof to [4, Appendix

V-I].

Notice that from (25) and (9), we have

δ(ε) = O(ε). (29)

In addition, it follows from (23) and (24) that I(W ;X,Y ) can

be approximated as

I(W ;X,Y ) =
∑

w∈W

PW (w)D(PXY |W (·, ·|w)‖PXY )

2
Since I(W ;X,Y ) ≥ max{I(W ;X), I(W ;Y )} by the chain rule, it

follows that our result does not change if we further include in (11) of
Definition 5 all distributions PX|W (·|w) and PY |W (·|w) that for all w ∈ W

do not depend on ε, since they will give rise to nonvanishing I(W ;X) and
I(W ;Y ). In essence, the configurations our definition omits are those for
which the PW is increasingly severely imbalanced as ε → 0.
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=
δ(ε)

2

∑

w∈W

PW (w)
(

‖φX|W
w ‖2 + ‖φY |W

w ‖2
)

+ o(δ(ε)),

(30)

Then, by defining

Φ̃
X|W

,
√

δ(ε)ΦX|W√

PW (31a)

Φ̃
Y |W

,
√

δ(ε)ΦY |W√

PW , (31b)

where Φ
X|W

is a |X| × |W| matrix whose wth column is

φ
X|W
w , where Φ

Y |W
is a |Y| × |W| matrix whose wth column

is φ
Y |W
w , and where PW is a |W|×|W| diagonal matrix whose

wth diagonal entry is PW (w), we can equivalently express the

constraint (25) in the form

B̃ = Φ̃
Y |W (

Φ̃
X|W )T

, (32)

and the objective function (30) as

I(W ;X,Y ) =
1

2

(

‖Φ̃X|W ‖2F + ‖Φ̃Y |W ‖2F
)

+ o(δ(ε)) (33)

≥ ‖B̃‖∗ + o(ε), (34)

where to obtain the inequality we have used (29) and Lemma 6

with (32). The equality is achieved by choosing the configura-

tion for W according to

W = {±1, . . . ,±(K − 1)}

φ
X|W
i = −φX|W

−i =

√

σi
σ̃i δ(ε)

ψ
X
i , i = 1, . . . ,K − 1

φ
Y |W
i = −φY |W

−i =

√

σi
σ̃i δ(ε)

ψ
Y
i , i = 1, . . . ,K − 1

PW (i) = PW (−i) = 1

2
σ̃i, i = 1, . . . ,K − 1,

where

σ̃i ,
σi

∑K−1

i
′
=1

σi′
,

which results in (28) by the correspondence (8) and (4), and

choosing δ(ε) = ε.

The ε-common information variable W can be related to

the modal decomposition (5) of the correlation between X,Y .

To develop this, let us equivalently express W as

W ,WK−1 = (W1, . . . ,WK−1), (35a)

where each Wi is a variable defined over alphabet

W◦ , {−1, 0,+1} (35b)

according to

Wi ,











+1 W = i

−1 W = −i
0 otherwise.

(35c)

In particular, we have the following result, where the proof is

referred to [4, Appendix V-K].

Theorem 8. Given PXY ∈ N̄
X×Y
ε (PXPY ) for ε > 0, and let

WK−1
be the representation (35) of the optimizing ε-common

information variable W in Proposition 7. Then

Cε(X,Y ) = I(W ;X,Y ) =

K−1
∑

i=1

I(Wi;X,Y ) + o(ε), (36)

where

I(Wi;X,Y ) = σi + o(ε), i = 1, . . . ,K − 1. (37)

IV. THE ε-COMMON INFORMATION FOR MULTIPLE

RANDOM VARIABLES

The Wyner common information was generalized by [5] to

multiple variables, defined as

C(Xd) = min I(W ;Xd), (38)

where Xd
, (X1, . . . , Xd) with the range X

d
, X1×· · ·×Xd,

and the minimum is taken over all the joint distribution of

W and Xd
such that X1, . . . , Xd are conditional independent

given W .

In the sequel, we generalize the ε-common information to

multiple random variables Xd
with the joint distribution P

X
d

belong to the class P̂, defined as

P̂ ,

{

P
X

d : EP
X

d

[

∏

i∈I

fi(Xi)

]

= 0, for all fi : Xi 7→ R,

s.t. E [fi(Xi)] = 0, and all I ⊂ {1, . . . , d}, s.t. |I| ≥ 3

}

.

In particular, the distributions in P̂ only depend on the pairwise

distributions of Xd
, which is characterized by the following

result with the proof referred to [8].

Proposition 9. We have P
X

d ∈ P̂ if and only if, for all xd,

P
X

d(xd)−
d
∏

i=1

PXi
(xi)

=
∑

i<j

[

PXiXj
(xi, xj)− PXi

(xi)PXj
(xj)

]

∏

l 6=i,j

PXl
(xl).

Then, under sub-ε dependence, we define the following ε-
common information for random variables Xd

with P
X

d ∈ P̂.

Definition 10. Given P
X

d ∈ P̂∩ N̄
X

d

ε (PX1
· · ·PXd

) for ε > 0,

the multivariate ε-common information is defined as

Cε(X
d) = min

P
W |X

d∈P
(d)
ε

I(W ;Xd), (39)

where

P
(d)
ε ,

{

P
W |Xd , some W : P

W |Xd(·|xd) ∈ P
W

for all xd,

P
X

d|W =
d
∏

i=1

PXi|W and PXi|W (·|w)∈N
Xi√
δ(ε)

(PXi
),

for all i = 1, . . . , d, all w∈W, and some δ(·) > 0

such that lim
ε→0

δ(ε)→0.
}

.

Similar to (31), we define, for i = 1, . . . , d,

Φ̃
Xi|W ,

√

δ(ε)ΦXi|W
√

PW

where Φ
Xi|W is a |Xi| × |W| matrix whose wth column is

the information vector φ
Xi|W
w defined similar to (17). Then
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similar to (33), to the objective function (39) can be equivalently

expressed as

I(W ;Xd) =
1

2

d
∑

i=1

‖Φ̃Xi|W ‖2F + o(δ(ε)). (40)

Moreover, similar to what (25) was obtained, we have the

constraints [cf. (32)]

B̃ij = Φ̃
Xi|W (

Φ̃
Xj |W )T

, 1 ≤ i < j ≤ d, (41)

where B̃ij is the CDM of Xi and Xj as defined in (3). Then,

it follows from (40) and (41) that (39) can be expressed as

C|W| = min
Φ̃

Xi|W∈R
|Xi|×|W|

1

2

d
∑

i=1

∥

∥

∥
Φ̃

Xi|W
∥

∥

∥

2

F
(42a)

s.t. B̃ij = Φ̃
Xi|W (

Φ̃
Xj |W )T

, 1 ≤ i < j ≤ d. (42b)

As such, we have the following result for multivariate ε-
common information, where the proof is referred to [8].

Proposition 11. The ε-common information (39) satisfies

C(Xd) ≤ Cε(X
d) = Ck0

+ o(ε),

where k0 =
∑d

i=1 |Xi|.

From the correspondence (8), the optimal solution of (42)

provides feature functions of the variables regarding to their

common information. However, unlike the two random vari-

ables case, (42) is non-convex without structural solutions,

and is difficult to solve in practice when k0 is very large. As

such, we relax the constraints in (42) from two aspects: (i)

we allow |W| = k to be designed less than k0, which can be

interpreted as designing the top k informative features regarding

to the common information; (ii) we adopt the quadratic penalty

method [9], which leads to a relaxed unconstrained optimization

problem that minimizes

1

2

d
∑

i=1

∥

∥

∥
Φ̃

Xi|W
∥

∥

∥

2

F
+

1

2

∑

i<j

γij

∥

∥

∥
B̃ij − Φ̃

Xi|W (

Φ̃
Xj |W )T

∥

∥

∥

2

F

(43)

where the γ’s are the penalty parameters. It can be shown

that when the penalty parameters grow to infinity, the optimal

solutions of (43) converge to the optimal solutions of (42) [9].

Moreover from (8), (43) can be equivalently expressed as a

functional optimization problem, where the proof is referred

to [8].

Proposition 12. For given matrices Φ̃
Xi|W ∈ R

|Xi|×k
, i =

1, . . . , d, define the feature functions fi : Xi 7→ R
k

such that

fi(xi) =
(

Φ̃
Xi|W (xi)

)T

/
√

PXi
(xi), for all i = 1, . . . , d and

xi ∈ Xi, where Φ̃
Xi|W (xi) denotes the xith row of Φ̃

Xi|W .

Then, minimizing (43) is equivalent to the optimization problem

min
fi : Xi 7→R

k

1

2

d
∑

i=1

E

[

‖fi(Xi)‖2
]

−
∑

i<j

γijH(fi(Xi), fj(Xj)),

(44)

where H(fi(Xi), fj(Xj)) denotes the H-score [10] of fi and

fj , defined as

H(fi(Xi), fj(Xj))

, E

[

f
T
i (Xi)fj(Xj)

]

− (E [fi(Xi)])
T
E
[

fj(Xj)
]

− 1

2
tr
{

E

[

fi(Xi)f
T
i (Xi)

]

E

[

fj(Xj)f
T
j (Xj)

]}

.

In practice, instead of the true joint distribution PXd
, it

is often observed a sequence of training data (x
(i)
1 , . . . , x

(i)
d )

sampled from P
X

d , for i = 1, . . . , n. In such cases, we

notice that all the expectations in (44) can be computed by

empirical averages of the training data, e.g., E
[

‖fi(Xi)‖2
]

can be computed by 1
n

∑n
j=1 ‖fi(x

(j)
i )‖2. As such, (44) can

be treated as a loss function, and the optimization problem

can be solved by implementing d neural networks, where

each function fi is modeled by a neural network. Then, the

parameters of the neural networks are trained by the training

data to minimize (44) as the loss.

In particular, an algorithm similar to (44) was proposed

in [11, Eq. (20)] to also extract the common structure between

Xd
by feature functions fi(Xi) via minimizing the loss:

min
fi : Xi 7→R

k
−1

2

d
∑

i=1

H(fi(Xi), fi(Xi))−
∑

i<j

H(fi(Xi), fj(Xj))

(45)

We note from (45) and (44) that both approaches have the

same target of extracting pairwise correlations of the random

variables Xd
via maximizing the H-scores H(fi(Xi), fj(Xj)),

for i < j, and the difference between these two approaches

can be viewed as applying different regularization terms in

the loss functions. In practice, by fine tuning the parameters

γij’s, the features extracted from optimizing the loss (44) can

perform better than optimizing the loss (45). For example, on

the MNIST dataset, following the same setup as in [11], the

k-dimensional features are extracted from d = 64 sub-images

of the MNIST image via optimizing (44), with the parameters

γij set to γij = γ, for all i < j. The extracted features are

then used for label prediction, and the prediction errors (in

percentages) are compared with (45), as shown in the following

table. From the results we can see some performance gain by

tuning γij .

k 4 8 12 16 20 24

Approach (45) 3.46 1.73 1.43 1.17 1.15 1.11

(44), γ = 10 3.52 1.69 1.38 1.21 1.10 1.03

(44), γ = 500 3.33 1.71 1.48 1.27 1.30 1.14

(44), γ = 1000 3.47 1.80 1.34 1.17 1.27 1.17
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