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Abstract
An efficient solution of calculating the spherical surface integral of a Gauss function 
defined  as h(s,�) = ∫ 2�

0
∫ �

0
(� +�)

i
x
(� +�)

j
y
(� +�)

k
z
e−�(�+�)

2

sin �d�d�  is pro-
vided, where � ≥ 0 , and i, j, k are nonnegative integers. A computationally concise 
algorithm is proposed for obtaining the expansion coefficients of polynomial terms 
when the coordinate system is transformed from cartesian to spherical. The resulting 
expression for h(s,�) includes a number of cases of elementary integrals, the most 
difficult of which is II(n,�) = ∫ �

0
cosn �e−� cos �d� , with a nonnegative integer n and 

positive μ. This integral can be formed by linearly combining modified Bessel func-
tions of the first kind B(n,�) = 1

�

�

∫
0

e� cos � cos (n�)d� , with a nonnegative integer n 

and negative μ. Direct applications of the standard approach using Mathematica and 
GSL are found to be inefficient and limited in the range of the parameters for the 
Bessel function. We propose an asymptotic function for this expression for n = 0,1,2. 
The relative error of asymptotic function is in the order of 10−16 with the first five 
terms of the asymptotic expansion. At last, we give a new asymptotic function of 
B(n,�) based on the expression for e−�II(n,�) when n is an integer and μ is real and 
large in absolute value.
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1  Introduction

In this paper, we provide a solution for the following surface integral in the spherical 
coordinates (s, �,�) , where the integrand is a Gauss function situated at point Q:

where

Gauss functions in the form of Eq. (2) is routinely applied in numerical solutions 
in science and engineering. The surface integral Eq. (1) is often encountered when the 
field strength pertains to the distance s only, e.g. quantum exchange effect [1, 2].

Critically, the solution includes a solution for the following novel integral:

where

This integral can be formed by linearly combining of the modified Bessel functions 
of the first kind [3, 4]:

In this paper, we provide  a solution for the spherical surface integration Eq. (1). We 
also provide a new efficient solution for B(n,�) when n is an integer and μ is real and 
large in absolute value. The solutions involve a recursive relation for n and an asymp-
totic expansion for large |�|. We note that an apparently different approach for solving 
Eq. (1) is mentioned in ref. [5].

2 � Spherical surface integration

In Eq. (2), we notice that the original coordinate is not convenient for the exponential 
term e−�(�+�)

2 . Thus, we rotate the coordinate to make the direction of Q be the new 
z-axis. Suppose

(1)h(s,�) =
∫

2�

0 ∫

�

0

g(�,�) sin �d�d�,

(2)
g(�,�) = (� +�)

i
x
(� +�)

j
y
(� +�)

k
z
e−�(�+�)

2

,

� ≥ 0.

(3)II(n,�) =
∫

�

0

cosn �e−� cos �d�,

� ≥ 0, n ∈ ℤ
∗. (ℤ∗ is the set of non - negative integer).

(4)B(n,�) =
1

�

�

∫
0

e� cos � cos (n�)d�.

(5)� =
(
Q sin 𝜃 cos 𝜑̃ Q sin 𝜃 sin 𝜑̃ Q cos 𝜃

)T
,
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The relationship between (x, y, z) and new coordinate (x̃, ỹ, z̃) after the rotation is:

where

Now we need to collect the new coefficients in terms of new coordinates. We 
notice that once we have the rotation matrix A, the function g(�,�) can be expressed 
as:

where

The e−��� inside Eq. (10) can be simplified as e−�sQ cos � within the rotation, where 
� is the angle between s and Q. In Eq.  (10), g(�,�) will be linear combination of 
new coordinate (x̃, ỹ, z̃) . That is, we want to get the form of:

where

The original integral h(s,�) now becomes a linear combination of the following 
term in general:

(6)
⎛
⎜⎜⎝
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⎞
⎟⎟⎠
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⎛
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⎞
⎟⎟⎠
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(7)
⎛
⎜⎜⎝

x

y

z

⎞
⎟⎟⎠
= A−1

⎛
⎜⎜⎝

x̃

ỹ

z̃

⎞
⎟⎟⎠
,

(8)A = A2A1

(9)A1=

⎛
⎜⎜⎝

cos 𝜑̃ sin 𝜑̃ 0

− sin 𝜑̃ cos 𝜑̃ 0

0 0 1

⎞
⎟⎟⎠
, A2=

⎛
⎜⎜⎝

cos 𝜃 0 − sin 𝜃

0 1 0

sin 𝜃 0 cos 𝜃

⎞
⎟⎟⎠
.

(10)

g(�,�) = xiyjzke−𝛾(�+�)
2

= f
(
a1x̃ + b1ỹ + c1z̃

)i(
a2x̃ + b2ỹ + c2z̃

)j(
a3x̃ + b3ỹ + c3z̃

)k
e−2𝛾��−2𝛾sQ,

f = e−�(s
2+Q2)+2�sQ.

(11)g(�,�) =
∑
t

∑
s

∑
r

ftsrx̃
tỹsz̃re−𝜇(cos 𝜃+1),

� = 2�sQ.

(12)Fijkl = ∫

2�

0 ∫

�

0

sini � cosj � sink � cosl �e−�(cos �+1)d�d�.
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It is tedious and cumbersome to expand directly the products of the polynomi-
als in Eq. (10) and collect the coefficients for different Fijkl . Here we provide an 
algorithm that speeds up this step. We define 

where

Then, we have:

where

Yi−l
1
Y
j−m

2
Yk+l+m−t
3

 can be done using Eqs.  (13) and (14) again to obtain the coeffi-
cients for various powers of ỹ and z̃ . Those coefficients are multiplied together to 
yield ftsr in Eq. (11). The advantage of this formalism over the direct expansion is 
that the coefficient for x̃t is only calculated once when ỹ and z̃ terms are expanded.

The integral of Fijkl in Eq. (12) involves two parts: I
ij
 and J

kl
:

where

We show the details of integral J
kl

 first. It has two cases:
Case 1: Either k or l is odd or both are odd in Eq. (17). Let k be odd and define 

P:

We notice that the function P(�) is an odd function centered at � . That is 
P(� − �) = −P(� + �).

(13)p(x̃) =
(
a1x̃ + Y1

)i(
a2x̃ + Y2

)j(
a3x̃ + Y3

)k
,

Ys = bsỹ + Cs

Zs = csz̃.

(14)p(x̃) =

i+j+k∑
t=0

f �(t, i, j, k)x̃t,

f �(t, i, j, k) =

min{i,t}∑
l=max{0,t−(j+k)}

min{t−l,j}∑
m=max{0,t−l−k}

al
1
am
2
at−l−m
3

(
i

l

)(
j

m

)(
k

t − l − m

)
Yi−l
1

Y
j−m

2
Yk+l+m−t
3

.

(15)Fijkl = IijJkl,

(16)Iij =

�

∫
0

sini � cosj �e−�(cos �+1)d�,

(17)Jkl =

2�

∫
0

sink � cosl �d�.

(18)P(�) = sink � cosl �
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Proof 
.� □

Thus, the integral J
kl

 will be zero. If l is an odd number and k is an even num-
ber, we can find that P(�) is still an odd function centered by �∕2 with period � . 
That is P(�∕2 − �) = −P(�∕2 + �).

Proof 
� □

All the above shows J
kl
= 0 in this case.

Case 2: Both of k and l are even. 
(
k = 2k�, l = 2l�

)

where

The trigonometric integral ∫ �

0
cost �′d�′ 

(
�� = 2�

)
 has the following recursive 

relation:

The integral Iij has two cases too, depending on the parity of i.
Case 1: When i is odd 

(
i = 2i� + 1

)
 , with i′ being an integer,

(19)
P(� − �) = sink (� − �) cosl (� − �)

= (−1)k sink (� − �) cosl (� − �)

= −P(� + �).

(20)

P(�∕2 − �) = sink (�∕2 − �) cosl (�∕2 − �)

= (−1)k sink (−�∕2 + �) cosl (−�∕2 + �)

= (−1)2k+l sink (�∕2 + �) cosl (�∕2 + �)

= −P(�∕2 + �)

(21)

Jkl =

2�

∫
0

sin2k
�

� cos2l
�

�d�

=

2�

∫
0

(
1 − cos 2�

2

)k�(
1 + cos 2�

2

)l�

d�

= 2−(k
�+l�+1)

k�+l�∑
t=0

f
(
t, k�, l�

)
∫

2�

0

cost 2�d2�,

(22)f
(
t, k�, l�

)
=

min{k�,t}∑
s=max{0,t−l�}

(
k�

s

)(
l�

t − s

)
(−1)s

(23)∫
cosn xdx =

cosn−1 x sin x

n
+

n − 1

n ∫
cosn−2 xdx
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The trigonometric integral inside Eq. (24) can be calculated as the following:

where

Case 2: When i is even, i.e. i = 2i� with i′ being an integer,

We define I(n,�):

We tried to use Mathematica [6] and GSL [7] to evaluate Eq. (27). The solution 
from Mathematica involves modified Bessel functions of the first kind. It is slow and 
the computational time grows exponentially with respect n, as show in Fig. 1. This 
is undesirable when Eq. (27) is computed repeatedly in a practical application with 
numerous μ and n combinations.

(24)

Iij =

�

∫
0

sin2i
�+1 � cosj �e−�(cos �+1)d�

= −

�

∫
0

(
1 − cos2 �

)i�
cosj �e−�(cos �+1)d cos �

=

i�∑
s=0

(−1)s+1
(
i�

s

)
e−�

�

∫
0

cosj+2s �e−� cos �d cos �.

(25)

−1

∫
1

x
�j�e−�x

�

dx� = e−�x
�

j�∑
s=0

(−1)j
�−s j�!

s!(−u)j
�−s+1

x�s
||||||

−1

1

,

x� = cos �, j
�

= j + 2s

(26)

Iij =

�

∫
0

sin2i
�

� cosj �e−�(cos �+1)d�

=

�

∫
0

(
1 − cos2 �

)i�
cosj �e−�(cos �+1)d�

=

i�∑
s=0

(−1)s
(
i�

s

) �

∫
0

cosj+2s �e−�(cos �+1)d�.

(27)I(n,�) =

�

∫
0

cosn �e−�(cos �+1)d�
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Second, the computation of the Bessel function B(n, μ) (Eq. (4)) in Mathematica 
and GSL has the drawback that the result is out of range quickly for large μ. To our 
knowledge, the current way of computing B(n, μ) uses the following formula [8]:

where Cn(μ) is the Chebyshev polynomial of the first kind [9]. B(0, μ) is computed 
with the following expansion [8]:

This expansion can be long for a large μ, causing an overflow on a computer. In 
practice, we find that GSL library fails when μ ≥ 500.

We derive the following recursive relation to improve the efficiency for large n:

The derivation of this recursive relation is based on integration by parts:

(28)B(n,�) = Cn

(
d

d�

)
B(0,�),

(29)B(0,�) =

∞∑
k=0

(
�2∕4

)k
(k!)2

.

(30)I(n,�) =
n − 1

�
I(n − 1,�) + I(n − 2,�) +

n − 1

�
I(n − 3,�).

Fig. 1   Time of I(n,�) = ∫ �

0
cosn �e−�(cos �+1)d� (μ = 20) with respect to n using Mathematica on an 

Intel(R) Core™ i5-4300U
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The first three terms need to be evaluated explicitly for this recursive relation. Using 
Mathematica yields the following results based on B(n, μ)(Eq. (4)):

We developed the following asymptotic expansions for I(n, μ) (n = 0, 1, 2) for large 
μ since the standard method fails as explained above. I(0,�) can be transformed into:

where �� = �∕2 . Let T = cos �� , the Eq. (35) becomes:

1∕
√
1 − T2 expanded by Taylor expansion:

Finally, we get the asymptotic function for I(0,�):

(31)

I(n,�) = e−�

�

∫
0

cosn−1 �e−� cos �d sin �

= e−�
⎛⎜⎜⎝
sin � cosn−1 �e−� cos ����

�

0
−

�

∫
0

sin �d
�
cosn−1 �e−� cos �

�⎞⎟⎟⎠

= e−�
⎛
⎜⎜⎝
−

�

∫
0

(n − 1)
�
− sin2 �

�
cosn−2 �e−� cos � + � sin2 � cosn−1 �e−� cos �d�

⎞
⎟⎟⎠

= (n − 1)

�

∫
0

cosn−2 �e−�(cos �+1)d� − (n − 1)

�

∫
0

cosn �e−�(cos �+1)d�

− �

�

∫
0

cosn−1 �e−�(cos �+1)d� + �

�

∫
0

cosn+1 �e−�(cos �+1)d�

(32)I(0,�) = �e−�B(0,�),

(33)I(1,�) = �e−�B(1,�),

(34)I(2,�) =
�e−�

�
(B(1,�) + �B(2,�)),

(35)I(0,�) = 2

�∕2

∫
0

e−2� cos2 ��d��,

(36)I(0,�) = 2

1

∫
0

e−2�T
2 1√

1 − T2

dT .

(37)
1√

1 − T2

=

∞�
n=0

�
−1∕2

n

��
−T2

�n
.
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The formulas for ∫ 1

0
e−2�T

2

T2ndT  can be obtained using Mathematica. The 
resulted expression involves the error function, which can be computed efficiently 
on modern computers. The formulas are listed in the appendix for the reader’s 
convenience.

The formulas for I(1, μ) and I(2, μ) can be derived the same way:

We tested those asymptotic functions (Eqs.  (38)–(40)) for 0 ≤ μ ≤ 8000 and 
found that the relative error is in the order of 10−16 by keeping the first 5 terms. 
The combination of this short expansion and the recursive relation ensures not 
only efficiency, but also precision. The integral II(n, μ) in Eq. (3) can be evalu-
ated as:

This concludes the solution for the surface integral in Eq. (1).
As one may see, the above derivations also provide a new way for solving Bes-

sel function B(n, μ) (Eq. (4)). First, we recognize that B(n, μ) can be computed as 
B(n, - μ) when μ > 0:

This becomes obvious from the following ascending series [3]:

(38)I(0,�) = 2

∞∑
n=0

(
−1∕2

n

)
(−1)n

1

∫
0

e−2�T
2

T2ndT .

(39)

I(1,�) = 2

�∕2

∫
0

�
2 cos2 �� − 1

�
e−2� cos2 ��d��

= 4

1

∫
0

e−2�T
2 T2

√
1 − T2

dT − 2

1

∫
0

e−2�T
2 1√

1 − T2

dT

= 4

∞�
n=0

�
−1∕2

n

�
(−1)n

1

∫
0

e−2�T
2

T2n+2dT − 2

∞�
n=0

�
−1∕2

n

�
(−1)n

1

∫
0

e−2�T
2

T2ndT ,

(40)

I(2,�) = 2

�∕2

∫
0

(
2 cos2 �� − 1

)2
e−2� cos2 ��d��

= 4

∞∑
n=0

(
−1∕2

n

)
(−1)n

1

∫
0

e−2�T
2

T2n+4dT − 4

∞∑
n=0

(
−1∕2

n

)
(−1)n

1

∫
0

e−2�T
2

T2n+2dT

+ 2

∞∑
n=0

(
−1∕2

n

)
(−1)n

1

∫
0

e−2�T
2

T2ndT .

(41)II(n,�) = e�I(n,�).

(42)B(n,�) = (−1)nB(n,−�).
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Consider B(n, μ) when μ > 0. It can be rewritten using Cn( cos θ)(Eq. (28)) [8, 
9]:

The Chebyshev polynomial can also be defined as the following [9]:

Combing Eqs. (27), (44) and (45) yields:

B( − n, μ) has the same formula since B(−n,�) = B(n,�).

3 � Conclusion

An efficient solution of calculating the spherical surface integral of a Gauss func-
tion defined as h(s,�) in Eq. (1) is provided. A computationally concise algorithm 
is proposed for obtaining the expansion coefficients of polynomial terms when 
the coordinate system is transformed from cartesian to spherical. The resulting 
expression for h(s,�) includes a number of cases of elementary integrals, the 
most difficult of which is e−�II(n,�) as defined in Eq.  (3). This integral can be 
formed by linearly combining of Bessel functions B(n, μ) (Eq.  (4)) with a non-
negative integer n and negative μ. Direct applications of the standard approach 
using Mathematica and GSL are found to be inefficient and limited in the range 
of the parameters for the Bessel function. We propose an asymptotic function for 
this expression for n = 0,1,2. The relative error of the asymptotic function is in the 
order of 10−16 with the first five terms of the asymptotic expansion. At last, we 
give a new asymptotic function of B(n, μ) based on the expression for e−�II(n,�) 
when n is an integer and μ is real and large in absolute value.
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(43)B(n,�) = (�∕2)n
∞∑
k=0

(
�2∕4

)k
k!� (n + k + 1)

.

(44)B(n,�) =
(−1)n

�

�

∫
0

e−� cos �Cn(cos �)d�,

(45)Cn(cos �) =
n

2

⌊n∕2⌋�
r=0

(−1)r

n − r

�
n − r

r

�
2n−2r cosn−2r �

(46)B(n,�) =
(−1)nn

2�
e�

⌊n∕2⌋�
r=0

(−1)r

n − r

�
n − r

r

�
2n−2rI(n − 2r,�), n ≥ 1,

(47)B(0,�) =
e�

�
I(0,�).
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Appendix

Formulas for ∫ 1

0
e−2�T

2

T2ndT  used in Eqs. (38) to (40).

n ∫ 1

0
e
−2�T2

T
2n
dT

0 1

2

�
�

2�
Erf

�√
2�

�

1 −4e−2u
√
u+

√
2�Erf

�√
2
√
u

�

16u3∕2

2 −4e−2u
√
u(3+4u)+3

√
2�Erf

�√
2
√
u

�

64u5∕2
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