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Abstract

An efficient solution of calculating the spherical surface integral of a Gauss function
defined as h(s, Q) = /02” Jy 5+ Qs+ Qs + Q)]Z‘e‘Y(HQ)Z sin@dOde is pro-
vided, where y > 0, and i, j, k are nonnegative integers. A computationally concise
algorithm is proposed for obtaining the expansion coefficients of polynomial terms
when the coordinate system is transformed from cartesian to spherical. The resulting
expression for A(s, Q) includes a number of cases of elementary integrals, the most
difficult of which is II(n, u) = ;" cos” fe~#**?dp, with a nonnegative integer n and
positive u. This integral can be forr}rled by linearly combining modified Bessel func-

tions of the first kind B(n, u) = % f "9 cos (nf)dh, with a nonnegative integer n
0

and negative u. Direct applications of the standard approach using Mathematica and
GSL are found to be inefficient and limited in the range of the parameters for the
Bessel function. We propose an asymptotic function for this expression for n=0,1,2.
The relative error of asymptotic function is in the order of 107! with the first five
terms of the asymptotic expansion. At last, we give a new asymptotic function of
B(n, u) based on the expression for e #II(n, 1) when n is an integer and u is real and
large in absolute value.
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1 Introduction

In this paper, we provide a solution for the following surface integral in the spherical
coordinates (s, 8, @), where the integrand is a Gauss function situated at point Q:

2 V3
h(s,Q)=/ / (s, Q) sin 0dOd g, (D
0 0
where

8(5,Q) = (s+ Q)i(s + Q);(S + Q)’;e—r(ﬁQ)z’
y > 0.

@)

Gauss functions in the form of Eq. (2) is routinely applied in numerical solutions
in science and engineering. The surface integral Eq. (1) is often encountered when the
field strength pertains to the distance s only, e.g. quantum exchange effect [1, 2].

Critically, the solution includes a solution for the following novel integral:

H(n,p) = / cos™ e+, 3)
0

where
u>0,ne”Z* (Z is the set of non - negative integer).

This integral can be formed by linearly combining of the modified Bessel functions
of the first kind [3, 4]:

V.3
B(n, u) = 1 / e"°%5% cos (n0)de. 4)
T
0
In this paper, we provide a solution for the spherical surface integration Eq. (1). We
also provide a new efficient solution for B(n, ) when 7 is an integer and y is real and
large in absolute value. The solutions involve a recursive relation for n and an asymp-

totic expansion for large || We note that an apparently different approach for solving
Eq. (1) is mentioned in ref. [5].

2 Spherical surface integration
In Eq. (2), we notice that the original coordinate is not convenient for the exponential

term e~7+Q’, Thus, we rotate the coordinate to make the direction of Q be the new
z-axis. Suppose

Q= (Qsinfcos @ Qsinfsin Qcosé)T, )
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x s +Q),
y[=]6+Q), | (6)
Z (s+Q),

The relationship between (x, y, z) and new coordinate (%, y, Z) after the rotation is:

X X
y{=a3} )
Z Z
where
cos@ sing 0 cosf 0 —sinf
A=| —=sinp cos@ 0| A= 0 1 0 | 9)
0 0 1 sind 0 cosf

Now we need to collect the new coefficients in terms of new coordinates. We
notice that once we have the rotation matrix A, the function g(s, Q) can be expressed
as:

2(s,Q) = xiy/he 7@’

= f(aF+ b5+ c,2) (a3 + b,y + 022) (a3 + by3 + ¢37) e2r°Q210,
(10)
where

f= e—y(x2+Q2)+2ysQ.

The e 7*Q inside Eq. (10) can be simplified as e™7*?°5¢ within the rotation, where
0 is the angle between s and Q. In Eq. (10), g(s, Q) will be linear combination of
new coordinate (X, §, Z). That is, we want to get the form of:

2(s,Q) = Z Z mejtyszre—y(mséHl)’ an

where
u = 2ysQ.

The original integral i(s, Q) now becomes a linear combination of the following
term in general:

2r F 3
Fiyy = / / sin’ @ cos’ 0 sin® ¢ cos! pe 9+ Dghdep. (12)
o Jo
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It is tedious and cumbersome to expand directly the products of the polynomi-
als in Eq. (10) and collect the coefficients for different F;,. Here we provide an
algorithm that speeds up this step. We define

p(® = (a3 +Y,) (ay%+ 1, ) (a5 + ¥3)", (13)

where

Then, we have:

i+j+k

pE® = Y f(ti.j, k¥, (14)
t=0

where

min{i,} min{r-1;} . . X
i k) = Z Z dam at—l—m( ! >< J >< >Yi—lyjmyk+l+m—t
19243 1 1 1 :
[=Max {0,—(j+k)} m=max{0,i—I—k} l m t=l—m

Yi_lYé_mY§+l+”1_’ can be done using Egs. (13) and (14) again to obtain the coeffi-

cients for various powers of ¥ and Z. Those coefficients are multiplied together to

yield f,,, in Eq. (11). The advantage of this formalism over the direct expansion is

that the coefficient for ¥’ is only calculated once when ¥ and 7 terms are expanded.
The integral of Fyy, in Eq. (12) involves two parts: Il,j and J,:

where
I, = /sini 0 cos’ GeHCos9+Dgg. (16)
0
2
Jy = / sin® @ cos! pdg. (17)
0

We show the details of integral J, first. It has two cases:
Case 1: Either k or [ is odd or both are odd in Eq. (17). Let k be odd and define
P:

P(@) = sin* g cos’ ¢ (18)

We notice that the function P(¢) is an odd function centered at z. That is
Pz — @) =—P(x + @).
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P(z — @) = sin* (x — @) cos' (x — @)
= (=D)¥sinf (¢ — 7) cos’ (¢ — 7) (19)

= —P(% + @).
Proof 7+ )

O

Thus, the integral J,, will be zero. If / is an odd number and k is an even num-
ber, we can find that P(¢) is still an odd function centered by /2 with period 7.
That is P(n /2 — @) = —P(x /2 + ).

P(r/2 — @) = sin* (x/2 — @) cos' (n/2 — @)
= (=) sin* (=7 /2 + @) cos' (-7 /2 + @)

(20)
= (=D sinf (z/2 + @) cos! (x/2 + @)
=—P(x/2+
Proof (x/2+ @)
O
All the above shows Jy= 0 in this case.
Case 2: Both of k and [ are even. (k = 2k', [ =2I')
2
Ju= / sin?* (pcoszll Qpdp
0
2 Y v
1 —cos2¢ 1+ cos2¢ 21
= d (21)
[(=52) (557
0

K+ 2
— 2—(k!+l/+l) Zf(t’ k/,l/> / COSt 2(pd2§0,
=0 0
where
min{x'.r}

fek )= <'§ ><tl_s>(—1)f (22)
s=max{0,-—I'}

The trigonometric integral /;" cos’ ¢’d’ (¢’ = 2¢) has the following recursive
relation:

n—1 H -1
cos xdx = == XML 7 cos" ™ xdx (23)
n n

The integral /; has two cases too, depending on the parity of i.
Case 1: When i is odd (i =2i + 1), with i/ being an integer,
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)

3
I;= / sin®*! g cos’ g+ dp
0

=— / (1 - cos? G)i/ cos’ @e 30+ cos 9 (24)

0
4

7 ) ‘
= Z (=1)**! < ls >e‘” / cos™? Be™#<% 0 cos 6.
s=0 0
The trigonometric integral inside Eq. (24) can be calculated as the following:

—1 , -1

J A
T - g ]
x'eH gy = emHF (=1 ™ ——————| (25)
/ ; S'(—u)] —s+1 l
where
X =cosh, j =j+2s
Case 2: When i is even, i.e. i = 2i’ with i’ being an integer,
I; = / sin?’ @ cos/ PeHos0+D) gp
0
= / (1 - cos? 6)“ cos/ e o0+ gg (26)
0
= (—1)S< ls, ) /cos’”x Qe Hcost+D g
5s=0 0
We define I(n, u):
I(n,u) = /cos” Qe Heos0+D gg 27
0

We tried to use Mathematica [6] and GSL [7] to evaluate Eq. (27). The solution
from Mathematica involves modified Bessel functions of the first kind. It is slow and
the computational time grows exponentially with respect n, as show in Fig. 1. This
is undesirable when Eq. (27) is computed repeatedly in a practical application with
numerous y and n combinations.
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Fig.1 Time of I(n,p) = [,

[ cos™ 9e#Cos9+Ddg (4 =20) with respect to n using Mathematica on an
Intel(R) Core™ i5-4300U

Second, the computation of the Bessel function B(n, u) (Eq. (4)) in Mathematica
and GSL has the drawback that the result is out of range quickly for large x. To our
knowledge, the current way of computing B(n, ) uses the following formula [8]:

_c~ (4
By =C, < - >B(o, ), 28)

where C,(u) is the Chebyshev polynomial of the first kind [9]. B(0, u) is computed
with the following expansion [8]:

k

& (u2/4)
B, ) = .
g % «))?

This expansion can be long for a large y, causing an overflow on a computer. In
practice, we find that GSL library fails when u >500.
We derive the following recursive relation to improve the efficiency for large n:

(29)

2Lt o+ 10 =2, + 2

I(n, p) = I(n—3, p). (30)

The derivation of this recursive relation is based on integration by parts:
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T
In,u)=e* / cos" 1 g7+ sin 9
0

/2

" / sin Hd(cos”_l Ge™H 0059)
0
0

= ¢ "] sin @ cos" ! geH 08!

T
=e - / n— 1)(— sin? 9) cos" 2 0750 + ysin® 0 cos" ! e H<0 g
0

” z
- (}’l _ 1) / COSn_Z 0e—y(cos€+l)d0 _ (n _ l) / COS" ee—u(cosﬁ+l)d9
0 0

T T

—u / cos" 1 ge#Cos+Dgg 4 / cos™! geHCos 0+ gg
0 0
(3D
The first three terms need to be evaluated explicitly for this recursive relation. Using
Mathematica yields the following results based on B(n, u)(Eq. (4)):

10, u) = me™"B(0, ), (32)
I(1, u) = me™"B(1, p), (33)

e H
12, p) = (B(1, p) + uB(2, u)), (34)

We developed the following asymptotic expansions for I(n, u) (n=0, 1, 2) for large
4 since the standard method fails as explained above. (0, 1) can be transformed into:

/2

1(0’ /4) — 2/6_2”%529/(1’9/’ (35)
0

where 8’ = 0/2. Let T = cos &, the Eq. (35) becomes:
1

10, =2 [ e 1

—dT.
o V1-T2

1/v/1 = T? expanded by Taylor expansion:

< [ —1/2 n
—EII_TZ =§)< n/ >(_T2) : (37)

Finally, we get the asymptotic function for (0, u):

(36)
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e T TngT. (38)

10.0=2Y <‘1n/2>(—1>”

n=0

o\_

The formulas for ﬁ:)] e~ T2gT can be obtained using Mathematica. The
resulted expression involves the error function, which can be computed efficiently
on modern computers. The formulas are listed in the appendix for the reader’s
convenience.

The formulas for (1, u) and I(2, i) can be derived the same way:
/2

10=2 [ (eosd = 1) o

1
/ —2uT? dr
° 1- T2

1 1
=4Z (_1/2> )n/ 72;4T2T2n+2dT_22 <_1n/2>(_1)n/672}lT2T2ndT,
0 n=0 0

(39)

12, u) =2 / (2cos? 0’ — 1)2e—2/‘°°*29’d0’
0
© 1 1
=4 Z < _ln/2 >(_1)n / —2;1T2T2n+4dT 4 z < 1/2 )(_l)n / e—ZMT2 T2n+2dT
n=0
0 0

n=0
© 1
+2 Z ( —11/2 >(—1)" / e M g,
n=0 0
(40)

We tested those asymptotic functions (Eqgs. (38)-(40)) for 0 <p <8000 and
found that the relative error is in the order of 107'® by keeping the first 5 terms.
The combination of this short expansion and the recursive relation ensures not
only efficiency, but also precision. The integral II(n, x) in Eq. (3) can be evalu-
ated as:

1 (n, p) = e"I(n, ). 41

This concludes the solution for the surface integral in Eq. (1).

As one may see, the above derivations also provide a new way for solving Bes-
sel function B(n, u) (Eq. (4)). First, we recognize that B(n, u) can be computed as
B(n, - p) when u>0:

B(n, u) = (=1)"B(n, —p). (42)

This becomes obvious from the following ascending series [3]:
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¢S] 2 4 k
B = uf2 3 — V)
k=0

L (43)
ST+ k+ 1)

Consider B(n, u) when p> 0. It can be rewritten using C,( cos 8)(Eq. (28)) [8,
9]:

/

/ e H30C (cos 0)do, (44)
0

—1 n
B(n, p) = ( ”)

The Chebyshev polynomial can also be defined as the following [9]:

C 0) = n A (_1)r n—r 2n—2r n—2r9 45
(cos )—EZ(;”_F - cos (45)
Combing Egs. (27), (44) and (45) yields:
n [n/2] r
-1 -1 _
B = S e Y D (" r)2"‘2’1(n —2r, n2l, (46)
2w — n-r r
P
B, u) = ;1(0, W) 47)

B( — n, u) has the same formula since B(—n, ) = B(n, p).

3 Conclusion

An efficient solution of calculating the spherical surface integral of a Gauss func-
tion defined as &(s, Q) in Eq. (1) is provided. A computationally concise algorithm
is proposed for obtaining the expansion coefficients of polynomial terms when
the coordinate system is transformed from cartesian to spherical. The resulting
expression for A(s, Q) includes a number of cases of elementary integrals, the
most difficult of which is e #II(n, u) as defined in Eq. (3). This integral can be
formed by linearly combining of Bessel functions B(n, u) (Eq. (4)) with a non-
negative integer n and negative u. Direct applications of the standard approach
using Mathematica and GSL are found to be inefficient and limited in the range
of the parameters for the Bessel function. We propose an asymptotic function for
this expression for n=0,1,2. The relative error of the asymptotic function is in the
order of 107'® with the first five terms of the asymptotic expansion. At last, we
give a new asymptotic function of B(n, u) based on the expression for e #II(n, u)
when 7 is an integer and u is real and large in absolute value.
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Appendix

Formulas for /01 e~ T2 T ysed in Eqgs. (38) to (40).

n Ji e 12 ar
0 1 [=x
1/EEr(Van)
1 —de i\ fuy \/EErf( N \ﬁ)
16u3/2

2 —ge=2u \/;(3+4u)+3\/ﬁ15rf( V2yu )

64u5/2
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