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Abstract. Large-margin classifiers are popular methods for classification. We
derive the asymptotic expression for the generalization error of a family of large-
margin classifiers in the limit of both sample size n and dimension p going to ∞
with fixed ratio α = n/p. This family covers a broad range of commonly used clas-
sifiers including support vector machine, distance weighted discrimination, and
penalized logistic regression. Our result can be used to establish the phase tran-
sition boundary for the separability of two classes. We assume that the data are
generated from a single multivariate Gaussian distribution with arbitrary covari-
ance structure. We explore two special choices for the covariance matrix: spiked
population model and two layer neural networks with random first layer weights.
The method we used for deriving the closed-form expression is from statistical
physics known as the replica method. Our asymptotic results match simulations
already when n, p are of the order of a few hundreds. For two layer neural net-
works, we reproduce the recently observed ‘double descent’ phenomenology for
several classification models. We also discuss some statistical insights that can
be drawn from these analysis.
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1. Introduction

Classification is a very useful supervised learning technique for information extraction
from data. The goal of classification is to construct a classification rule based on a
training set where both covariates and class labels are given. Once obtained, the classi-
fication rule can then be used for class prediction of new objects whose covariates are
available. There are a large number of methods for classification in the literature. Exam-
ples include Fisher linear discrimination analysis, logistic regression, k-nearest neighbor,
decision trees, neural networks, boosting, and many others. See Hastie et al (2001) for
more comprehensive reviews of various classification methods. Among numerous clas-
sification techniques, margin-based classifiers have attracted tremendous attentions in
recent years due to their competitive performance and ability in handling high dimen-
sional data. The margin-based classifiers focus on the decision boundaries and bypass
the requirement of estimating the class probability given input for discrimination.

The support vector machine (SVM) is one of the most well known large margin
classifiers. Since its introduction, the SVM has gained much popularity in both machine
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learning and statistics. However, as pointed out by Marron et al (2007), SVM may suffer
from a loss of generalization ability in the high-dimension-low-sample size (HDLSS)
setting due to data-piling problem. They proposed distance weighted discrimination
(DWD) as a superior alternative to SVM. Liu et al (2008) proposed a family of large-
margin classifiers, namely, the large-margin unified machine (LUM) which embraces
both SVM and DWD as special cases. Besides SVM, DWD, and LUM, there are a
number of other large margin classifiers introduced in the literature. Examples include
the penalized logistic regression (PLR) (Wahba 1999; Lin et al 2000), ψ-learning (Shen
et al 2003), the robust SVM (Wu and Liu 2007), and so on.

Despite some known properties of these methods, a practitioner often needs to face
one natural question: which method should one choose to solve the classification problem
in hand? The choice can be difficult because typically the behaviors of different classi-
fiers vary from setting to setting. Most of the previous studies in this area are empirical.
For example, simulation and real data analysis indicate that DWD performs better than
SVM especially in HDLSS cases, see e.g. Benito et al (2004); Qiao et al (2010); Qiao and
Zhang (2015); Wang and Zou (2016); Wang and Zou (2017). Also simulation studies in
Liu et al (2008) have shown that soft classifiers tend to give more accurate classification
results when the true probability functions are relatively smooth. Despite such sub-
stantial effort, not too much theoretical studies have been conducted to quantitatively
characterize the performance of different classification methods.

The objective of this paper is to follow up on a recent wave of research works aiming
at providing sharp performance characterization of classical statistical learning methods
including regression, classification, and principle component analysis. Particularly, we
derive the asymptotic behavior of margin based classification methods in the limit of
both large sample size n and large dimension p with fixed ratio α = p/n. The main litera-
ture related to this work is represented by a series recent papers which derive asymptotic
results for classification in the joint limit p,n→∞ with n/p = α. Huang (2017); Mai
and Couillet (2018) studied SVM under Gaussian mixture models in which the data
are assumed to be generated from Gaussian mixture distribution with two components,
one for each class. The covariance matrix is assumed to follow a spiked population
model. Under the same setting, Mai et al (2019); Huang and Yang (2019) studied regu-
larized logistic regression and general margin based classification methods respectively.
Mignacco et al (2020) studied the classification error for PLR and SVM for Gaussian
mixture models with standard Gaussian components. Montanari et al (2019) studied
the hard margin SVM under the single Gaussian model in which the data are assumed
to be generated from a single Gaussian distribution. Gerace et al (2020) studied the reg-
ularized logistic regression under the single Gaussian model with covariance structure
generated from two layer neural network model with random first layer weights.

In this paper, we derive the asymptotic performance of the general margin based clas-
sification method under the single Gaussian model with arbitrary covariance structure.
Our result is quite general in the sense that the family covers many of the aforemen-
tioned classifiers such as SVM, DWD, and PLR. Moreover, the covariance structure
also includes spiked population model and two layer neural network model as special
cases. We derive the analytical results using the heuristic replica method developed in
statistical mechanics. Our result provides some insights on the behavior change among
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different classification methods. It also helps to shed some light on how to select the best
model and optimal tuning parameter for a given classification task. As a corollary, we
derive the phase transition boundary for the separability of two classes which embraces
the previous results in Candès and Sur (2020) and Sifaou et al (2019) as special cases.

Moreover, for the two layer neural network covariance structure, our results exhibit
the recently observed ‘double descent’ phenomenon which has been demonstrated empir-
ically in Belkin et al (2019a). It is referred to as a peculiar behavior of the test error
as a function of overparametrization ratio ψ1 = p/n. Namely, the test error peaks at
a critical value of ψ1 where the training error vanishes, and descends again after that.
This picture have been theoretically studied in Belkin et al (2019b); Belkin et al (2018);
Hastie et al (2019) for simple least square estimators. It was also studied in Mei and
Montanari (2019) for nonlinear regression and in Gerace et al (2020) for logistic regres-
sion. Here we can reproduce this phenomenon for general margin based classification
methods.

Note that the replica method used in the present work is a non-rigorous calculation
procedure that has proved successful in many difficult problems in machine learning.
In particular, the replica method has been used to derive a number of fascinating
results in the analysis of high-dimensional regression and classification. Rigorous anal-
ysis subsequently confirmed these heuristic calculations in several cases. For example,
in aforementioned literature, the result in Candès and Sur (2020) was derived rigor-
ously using convex random geometry and the results in Mei and Montanari (2019);
Sifaou et al (2019); Mignacco et al (2020) were derived rigorously using Gaussian com-
parison methods based on Gordon’s inequality. Other rigorous analysis methods include
message-passing algorithms (Bayati and Montanari 2012; Gerbelot et al 2020) and inter-
polation techniques motivated from statistical physics (Barbier and Macris 2017). The
rigorous work so far mainly focuses on ‘i.i.d. randomness’, corresponding to the case
of standard Gaussian design. For arbitrary covariance structure models considered in
the present work, while it remains an open problem to derive a rigorous proof for our
results, we shall use simulations under finite size system to provide numerical support
that the formula is indeed exact in the high-dimensional limit.

Most closely related to the current paper are results by Gerace et al (2020) that
also use the heuristic replica method to derive the generalization error for PLR with
non-i.i.d. covariance structure. However, the major difference is that Gerace et al (2020)
only considers the two layer neural network covariance structure, while we focus on more
general setting with arbitrary eigenvalue distribution and arbitrary signal decomposition
in the basis of the eigenvectors.

The rest of this paper is organized as follows. In section 2, we first present the general
result for the asymptotic generalization error of margin based classification methods
and then apply it to two special covariance structures: spiked population model and two
layer neural network model. The phase transition boundaries under different settings
for the separability of two classes are also discussed. In section 3, we demonstrate the
numerical analysis of prediction error and compare them with the simulation results
based on finite size system. Some discussion is provided in section 4. The technical
derivations are collected in the appendix.
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2. Main analytical results

2.1. Overview of the margin-based classification method

In the binary classification problem, we are given a training dataset consisting of
n observations {(xi, yi) ; i = 1, · · · ,n} where xi ∈ R

p represents the input vector and
yi ∈ {+1,−1} denotes the corresponding output class label, n is the sample size, and p
is the dimension. Assume that the data are drawn i.i.d from an unknown joint probability
distribution P (x, y).

The goal of linear classification is to find a linear function f(x) = xTθ with θ ∈ R and
predict the class labels using sign(f(x)). Define the functional margin as yf(x) which
is larger than 0 if correct classification occurs. In this paper, we focus on large-margin
classification methods which can be fit in the regularization framework of loss + penalty.
The loss function is used to keep the goodness of fit to the data while the penalty term
is to avoid overfitting. Using the functional margin, the regularization formulation of
binary large-margin classifiers can be summarized as the following optimization problem

θ̂ = argminθ∈Rp

{
n∑
i=1

V (yix
T
i θ) +

p∑
j=1

Jτ (θj)

}
, (1)

where V (·) � 0 is a loss function, Jτ (·) is the regularization term, and τ > 0 is the tuning
parameter for penalty.

The general requirement for loss function is convex decreasing and V (u)→ 0 as
u→∞. Many commonly used classification techniques can be fit into this regularization
framework. The examples include penalized logistic regression (PLR; Lin et al (2000)),
support vector machine (SVM; Vapnik (1995)), and distance weighted discrimination
(DWD; Marron et al (2007)). The loss functions of these classification methods are

PLR : V (u) = log[1 + exp(−u)],

SVM : V (u) = (1− u)+,

DWD : V (u) =

⎧⎪⎨
⎪⎩
1− u if u � 1

2
1

4u
if u >

1

2

.

Besides the above methods, many other classification techniques can also be fit into
the regularization framework, for example, the large-margin unified machine (Liu et al
2011), the AdaBoost in boosting (Freund and Schapire 1997; Friedman et al 2000), the
import vector machine (IVM; Zhu and Hastie (2005)), and ψ-learning (Shen et al 2003).

The commonly used penalty functions include Jτ (θ) =
τ
2
θ2 for L2 regularization and

Jτ(θ) = τ |θ| for sparse L1 regularization. In this paper, we focus on the standard L2

regularization.
Figure 1 displays three loss functions: PLR, SVM, and DWD. Note that all loss

functions have continuous first order derivatives except the hinge loss of SVM which is
not differentiable at u = 1. Among the three loss functions, PRL has all order derivatives
while DWD only has first order derivative. As u→−∞, V (u)→−u for all methods. As
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Figure 1. Plots of various loss functions.

u→∞, V (u) decays to 0 but with different speeds. The fastest one is SVM, followed by
PLR and DWD. We will see in section 3 that the decay speed of the loss function has
big influence on the classification performance in situations where the tuning parameter
τ is small.

2.2. Asymptotic generalization error

For the training data, denote the design matrix as X = [x1, . . . ,xn]
T and the response

vector as y = [y1, . . . , yn]. Let the test error be defined by

E(y,X) = P (ynewx
T
newθ̂(y,X) � 0),

where expectation is with respect to a fresh sample (ynew,xnew) independent of the
training data (y,X). We will sometimes refer to E(y,X) as the prediction error. We
will determine the precise asymptotics of the test error in the limit of n, p→∞ with
n/p→ α ∈ (0,∞).

We assume covariates xi ∼ N(0,Σ) to be independent draws from a p-dimensional
centered Gaussian with covariance Σ and responses to be distributed according to

P (y1 = +1|xi) = 1− P (y1 = −1|xi) = g(xT
i θ�) (2)

for some vector θ� ∈ R
p and monotone nonlinear function g(·): R→ [0, 1]. In what follows

we will index sequence of instances by n ∈ N, and it will be understood that p = pn. In
order for the limit to exist and be well defined, we need to make specific assumptions
about the behavior of the covariance matrix Σ = Σn and the true parameters vector
θ� = θ�,n. Let Σn =

∑p
j=1 λjvjv

T
j be the eigenvalue decomposition of Σ with λ1 � λ2 �

· · · � λp and vj ∈ R
p being orthonormal vectors for 1 � j � p. Similar to Montanari

et al (2019), our first assumption requires that Σ is well conditioned.

Assumption 1. Let λmin(Σn) = λp(Σn) and λmax(Σn) = λ1(Σn), then λ1(Σn) = Op(1)
and λp(Σn) = Op(1).
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Assumption 1 indicates that there exist constants C1,C2 ∈ (0,∞) such that,

C1 � λmin (Σn) � λmax (Σn) � C2.

Our second assumption concerns the eigenvalue distribution of Σn as well as the
decomposition of θ�,n in the basis of eigenvectors of Σn.

Assumption 2. Let limn→∞‖θ�,n‖2 = c, ρn = (θT
�,nΣnθ�n)

1/2, and wj =
√
pλjθ

T
�,nvj/ρn.

Then the empirical distribution of {(λj,wj)}1�j�p converges to a probability distribution
μp on R>0 × R

1

p

p∑
j=1

δλj ,wj
→ μp.

In particular,
∫
w2μp(dλ, dw) = 1, and ρn → ρ, where 1/ρ2 =

∫
(w2/cλ)μp(dλ, dw).

Let us begin by introducing some functions. For a given loss function V (u), we define
the proximal operator function

ψ(a, b) = argminu

{
V (u) +

(u− a)2

2b

}
, (3)

for b > 0 which can be considered as the solution of equation

∂V (u) +
u− a

b
= 0,

where ∂V (u) is one of the sub-gradients of V (u). For convex V (u), this equation has
unique solution. Specifically, for SVM loss, we have closed form expression

ψ(a, b) =

⎧⎪⎪⎨
⎪⎪⎩

a if a � 1

1 if 1− b � a < 1

a+ b if a < 1− b

. (4)

For DWD loss, we have

ψ(a, b) =

{
a+ b if a � 1/2− b

ũ if a > 1/2− b
,

where ũ is the solution of the cubic equation 4u3 − 4au2 − b = 0. For other loss functions,
we have to rely on certain numeric algorithms. Particularly for logistic loss, we can easily
implement Newton-Raphson algorithm because the loss function has closed form second
order derivatives.

Define functions φ1(·, ·, ·), φ2(·, ·, ·), and φ3(·, ·, ·) on R>0 × R>0 × R>0 as

φ1(c1, c2, q) = E {[ψ(c1Y Z1 + c2Y Z2, q)− c1Y Z1 − c2Y Z2]Y Z1} ,
φ2(c1, c2, q) = E {[ψ(c1Y Z1 + c2Y Z2, q)− c1Y Z1 − c2Y Z2]Y Z2} ,
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φ3(c1, c2, q) = E
{
[ψ(c1Y Z1 + c2Y Z2, q)− c1Y Z1 − c2Y Z2]

2
}
,

where

Z2⊥(Y ,Z1), Z1 ∼ N(0, 1), Z2 ∼ N(0, 1),

P (Y = +1|Z1) = g(ρZ1), P (Y = −1|Z1) = 1− g(ρZ1).

We further define the asymptotic generalization error E� by

E�(μp,α, τ) = P

(
R�√

q�0 −R�2
Y Z � 0

)
, (5)

where probability is over Z, Y with Z ∼ N(0, 1) and P (Y = +1|Z) = g(ρZ) = 1
− P (Y = −1|Z) and q�0 and R� are the solution of the following equations:

ξ0 =
α

q2
φ3

(
R,
√
q0 −R2, q

)
, (6)

ξ = −
αφ2

(
R,
√
q0 −R2, q

)
q
√
q0 −R2

, (7)

R̂ =
α

q

⎡
⎣φ1

(
R,
√
q0 −R2, q

)
−

Rφ2

(
R,
√
q0 −R2, q

)
√
q0 −R2

⎤
⎦ , (8)

q0 = ξ0f2(ξ, τ) + R̂2f3(ξ, τ), (9)

R = R̂f1(ξ, τ), (10)

q = f0(ξ, τ), (11)

where

f0(ξ, τ) =

∫
X

ξX + τ
μp(dX , dW ), f1(ξ, τ) =

∫
W 2X

ξX + τ
μp(dX , dW ),

f2(ξ, τ) =

∫
X2

(ξX + τ)2
μp(dX , dW ), f3(ξ, τ) =

∫
W 2X2

(ξX + τ)2
μp(dX , dW ). (12)

Our main mathematical results are based upon the following proposition for the
asymptotic prediction error of the estimators θ̂ obtained from (1).

Proposition 1. Consider i.i.d. data (y,X) = {(yi,xi)}i�n where xi ∼ N(0,Σn) and
P (yi = +1|xi) = g(xT

i θ�,n). Under assumptions 1 and 2, in the limit of n, p→∞ with

n/p→ α for some positive constants α. Let En(y,X) = P (ynewx
T
newθ̂(y,X) � 0) and E�

be determined as per definition (5). Then we have, almost surely

lim
n→∞

En(y,X)→ E�(μp,α, τ).
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The derivation is given in the appendix A based on the replica method developed in
statistical physics. Proposition 1 allows us to assess the performance of different classi-
fication methods and obtain the tuning parameter value of τ that yields the maximum
precision for a given method.

2.3. Phase transition

In this section, we derive the phase transition for the non-regularized classification
methods which solve the following optimization problem

argminθ∈Rp

{
n∑
i=1

V (yix
T
i θ)

}
. (13)

A special case is that if one chooses logistic loss V(·), this is equivalent to the maximum
likelihood estimator of logistic regression. It is well-known that the solution of (13)
does not exist in all situations, even when the number of covariates p is much smaller
than the sample size n. For instance, if the n data points (xi, yi) are completely linear
separated in the sense that we can find a vector b ∈ R

p with the property yix
T
i b > 0,

for all i , then the solution of (13) does not exist. If the data points overlap in the
sense that for every b 	= 0, there is at least one data point satisfying yix

T
i b > 0 and at

least another one satisfying yix
T
i b < 0, the solution of (13) does exist. Therefore, the

existence for the non-regularized classification methods undergoes a phase transition.
Cover (1965) studied the phenomenon in special case where yi is independent of xi. This
result was recently generalized by Candès and Sur (2020) under the significantly more
challenging setting in which P (yi = +1|xi) = 1/[1 + exp(−xT

i θ�)] and xi is Gaussian.
Here we derive a more general result. The following corollary allows one to characterize
the minimum number of training samples per dimensions that are required in order for
the non-regularized classification method (13) to have a solution.

Corollary 1. Define αmin(ρ) as

1/αmin (ρ) = min
c∈R

E
{
(cY Z1 + Z2)

2
+

}
(14)

where x+ = max(x, 0) and

Z2⊥(Y ,Z1), Z1 ∼ N(0, 1), Z2 ∼ N(0, 1),

P (Y = +1|Z1) = g(ρZ1), P (Y = −1|Z1) = 1− g(ρZ1).

In the setting from section 2.1, if the sample size is larger enough such that α > αmin ,
then the solution of equation (13) asymptotically exists with probability one. Conversely,
if α < αmin, then the solution does not exist with probability one.

Corollary 1 is a generalization of the result of Candès and Sur (2020), which concerns
the phase transition for the existence of the maximum likelihood estimate in high-
dimensional logistic regression, i.e. g(x) defined in (2) is a logistic function. Corollary 1
applies to any cumulative distribution function g(x).

Note that our result is equivalent to establishing the maximum number of training
samples per dimensions below which the hard-margin SVM can have solution as shown
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in Montanari et al (2019). The reason is that the hard-margin SVM can only be used
if the two classes in the training data are linearly separable with a positive margin.
If this was not the case, the optimization problem of the hard-margin SVM would be
unfeasible. Such a situation is likely to occur as a larger number of training data is used.

For comparison, now we generalize the phase transition result for data drawn from
a Gaussian mixture distribution studied in Sifaou et al (2019). Let us specify the joint
probability distribution P(x, y) in that scenario. Conditional on y = ±1, x follows mul-
tivariate Gaussian distributions P(x|y = ±1) with mean ±μ and covariance matrices Σ.
Here μ ∈ R

p and Σ denotes the p× p positive definite matrices. From this model, we
obtain the conditional distribution of y given x as

P (y = +1|x) = exp{−(x− μ)TΣ−1(x− μ)/2}
exp{−(x− μ)TΣ−1(x− μ)/2}+ exp{−(x+ μ)TΣ−1(x+ μ)/2}

=
1

1 + exp(−2μTΣ−1x)
, (15)

which, by comparing to (2), is equivalent to the logistic g(xTθ�) with coefficient
θ� = 2Σ−1μ. The following proposition characterizes the phase transition of this model
in terms of the overall magnitude of the regression coefficient defined as ρ2 = θT

�Σθ� =
4μTΣ−1μ.

Proposition 2. Define αmin(ρ) as the solution of

1 = α

∫ zc

−∞
(zc − z)2Dz +

{
αρ

∫ zc

−∞
(zc − z)Dz

}2

, (16)

where Φ(zc) = 1/α and Dz = 1√
2π

exp(−z2/2)dz. In the above Gaussian mixture setting,

if the sample size per dimensions is larger enough such that α > αmin, then the solution
of equation (13) asymptotically exists with probability one. Conversely, if α < αmin, then
the solution does not exist with probability one.

Note that the critical value αmin depends on Σ only through the overall magnitude of
the regression coefficient ρ. Proposition 2 generalizes the result of Sifaou et al (2019) for
hard margin SVM which can be considered as a special case here if one chooses Σ = Ip,
where Ip is p-dimensional identity matrix. Mignacco et al (2020) also studied the phase
transition for the separability of the data drawn from Gaussian mixture distribution
with Σ = Ip but random μ ∼ N(0, Ip).

2.4. Special examples

In this section we illustrate our main results presented in section 2 by considering a few
special cases, namely special sequences of the true parameter vector θ�,n, and covariance
matrix Σn.

2.4.1. Spiked population model. We begin by considering data sets generated from the
spiked covariance models which are particularly suitable for analyzing high dimensional
statistical inference problems, because, for high dimensional data, typically only few
components are scientifically important. The remaining structures can be considered as
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i.i.d. background noise. Therefore, we use a low-rank signal plus noise structure model
(Ma 2013; Liu et al 2008), and assume that each observation vector x can be viewed as
an independent sample from the generative models

x =

K∑
k=1

√
λkvkzk + ε, (17)

where λk > 0, vk ∈ R
p are orthonormal vectors, i.e. vT

kvk = 1 and vT
kvk′ = 0 for k 	= k′.

The random variables z1, . . . , zK are i.i.d N (0, 1). The elements of the p-vector
ε = {ε1, . . . , εp} are i.i.d N(0, 1) which are independent of zk. In model (17), λk represents
the strength of the k th signal component. The real signal is typically low-dimensional,
i.e. K � p. Note that the eigenvalue λk is not necessarily decreasing in k and λ1 is not
necessarily the largest eigenvalue. From (17), the covariance matrix becomes

Σ = Ip +

K∑
k=1

λkvkv
T
k . (18)

The kth eigenvalue of Σ is 1 + λk for k = 1, . . . ,K and 1 for k = K+ 1, . . . , p.
Denote the projections of θ� on eigenvectors as Rk = vT

k θ�/‖θ�‖ for k = 1, . . . ,K;

RK+1 =
√

1−
∑K

k=1R
2
k; and Rk = 0 for k = K+ 2, . . . , p. Substituting into (12), we have

f0(ξ, τ) =
1

ξ + τ
, f1(ξ, τ) =

1∑K+1
k=1 (1 + λk)R2

k

K+1∑
k=1

(1 + λk)
2R2

k

(1 + λk)ξ + τ
,

f2(ξ, τ) =
1

(ξ + τ)2
, f3(ξ, τ) =

1∑K+1
k=1 (1 + λk)R

2
k

K+1∑
k=1

(1 + λk)
3R2

k

[(1 + λk)ξ + τ ]2
.

2.4.2. A random features model. We next consider a special structure of (Σ, θ�) that
captures the behavior of nonlinear random feature models, i.e. two-layers neural net-
works with random first layer weights. Random features methods were originally studied
by Neal (1996), Balcan et al (2006), and Rahimi and Recht (2008). It was suggested in
Goldt et al (2019); Aubin et al (2019); Mei and Montanari (2019); Gerace et al (2020)
that the behavior of multilayer networks can be well approximated by certain random
features model. Goldt et al (2020) proved that asymptotic behavior of the random fea-
ture models is the same as an appropriately chosen Gaussian feature model. Therefore,
the two-layer neural network model can be fit within our general setting.

Assume that we perform classification on a training dataset consisting of n obser-
vations {(xi, yi) ; i = 1, . . . , n} generated by the latent variable zi ∈ N(0, Id) through
the following mechanism. The features xi are generated according to xij = σ(wT

j zi)
where σ :R→ R is a non-linear function and wj are d-dimensional vectors drawn

from N(0, Id/
√
d). The labels yi ∈ {+1,−1} are generated according to P (yi = +1|zi)

= f+(z
T
i β�), where β� ∼ N(0, Id/

√
d). Denote W ∈ R

p×d the matrix with row wj,
1 � j � p, we have xi = σ(Wzi) which can be described as a two layers neural network
with random first-layer weights W.
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Without loss of generality, we assume E{σ(Z)} = 0 with Z ∼ N(0, 1). According to
Montanari et al (2019), the activation function can be decomposed as

σ(u) = γ1u+ γ�σ⊥(u),

where γ1 = E{Zσ(Z)} and γ2
� = E{σ(Z)2} − E{Zσ(Z)}2 −E{σ(Z)}2. Then the above

random feature model can be described as

xij = γ1w
T
j zi + γ�ξij, ξij⊥zi, ξij ∼ N(0, 1),

gi = zTi β�, P (yi = +1|gi) = f+(gi).

Note that under this model xi and gi are jointly Gaussian with xi ∼ N(0,Σ),
and conditional on xi, gi is normal with mean γ1β

T
�W

TΣ−1xi and variance
βT

�β� − γ2
1β

T
�W

TΣ−1Wβ�, where Σ = γ2
1WWT + γ2

�Ip. For sign activation function

yi = sign(gi), γ1 =
√

2/π and γ� =
√
1− 2/π, we have

f+(gi) = P (sign(gi) = +1) = E(gi � 0) = Φ(xT
i θ�/τ̃), (19)

where θ� = γ1Σ
−1Wβ�, τ̃ 2 = βT

�β� − γ2
1β

T
�W

TΣ−1Wβ�, and Φ(·) denotes the stan-
dard Gaussian distribution function. By Marchenko–Pastur’s law, the empirical spec-
tral distribution of WWT converges to μs almost surely as p, d→∞ with p/d→ ψ1,
where

μs(dx) =

{
(ψ1 − 1)δ0 + ν1/ψ1

(x)dx if ψ1 � 1

νψ1
(x)dx if ψ1 ∈ (0, 1],

νλ =

√
(λ+ − x)(x− λ−)

2πλx
,

λ± = (1±
√
λ)2.

Denote the decomposition of W as W =
∑p

i=1

√
siviu

T
i , where the orthonormal vectors

v ∈ R
p and u ∈ R

d. Then we have Σ =
∑p

i=1 λiviv
T
i with λi = γ2

1si + γ2
� . According to

the definition of ρ2 = θT
�Σθ� and wi =

√
pλiv

T
i θ�/ρ, we can derive

ρ2 = γ2
1β

T
�W

TΣ−1Wβ� =

p∑
i=1

γ2
1si(u

T
i β�)

2

γ2
1si + γ2

�

→ ψ1E
γ2
1X̃

γ2
1X̃ + γ2

�

,

wi =
√

pλiγ1

√
si(u

T
i β�)

ρλi

→
γ1

√
ψ1X̃Z

ρ(γ2
1X̃ + γ2

�)
1/2

,

τ̃ 2 → 1− ψ1E
γ2
1X̃

γ2
1X̃ + γ2

�

= 1− ρ2,

where X̃ ∼ μs independent of Z ∼ N(0, 1). Then the joint distribution of λ,w converges
to Law(X,W), where
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X = γ2
1X̃ + γ2

� ,W =
γ1

√
ψ1X̃Z

ρ(γ2
1X̃ + γ2

�)
1/2

.

3. Numerical analysis

In this section, we apply the general theoretical results derived in section 2 to three
specific classification methods PLR, SVM, and DWD by numerically solving the non-
linear equations (6)–(11) using the corresponding loss functions. The performance of a
classification method is measured in terms of test error where the probability is over a
fresh data point. Our theoretical results are verified using numerical simulations under
finite size system. We aim at exploring and comparing different types of classifiers under
various settings. In section 3.1, we present the phase transition boundary for the sepa-
rability of two classes under several settings. Then we compare the test errors of three
classification methods under the spiked population model in section 3.2 and the two
layer neural network model in section 3.3.

3.1. Phase transition

Figure 2 displays the phase transition boundaries in the plane of ρ and 1/α for the
separability of the two classes under different settings. Above the curve is the region
where the probability of separating the two classes tends to one and below is the region
where the probability of separating the two classes tends to zero. It can be seen that
under the same α, the single Gaussian model needs larger ρ value in order to be separated
than the two Gaussian mixture model. This indicates that the data generated from a two
Gaussian mixture model are easier to be separated than from a single Gaussian model.
For the single Gaussian model, the data generated based on a probit distribution is
easier to be separated than the data generated based on a logit distribution.

3.2. Spiked population model

To examine the validity of our analysis and to determine the finite-size effect, we first
present some Monte Carlo simulations to confirm that our theoretical estimation derived
in section 2.2 is reliable. Figure 3 plots the test error as a function of tuning param-
eter τ . The comparison between our asymptotic estimations and simulations on finite
dimensional datasets are also provided. We use the R packages kernlab, glmnet, and
DWDLargeR for solving SVM, PLR, and DWD classification problem respectively. Here
the dimension of the simulated data p = 300 and the data are generated according to
(17) for spiked population model with i.i.d standard normal noise. We repeat the sim-
ulation 20 times for each parameter setting. The mean and standard errors over 20
replications are presented. From figure 3, we can see that our analytical curves show
fairly good agreement with the simulation experiment. Thus our analytical formula (5)
provides reliable estimates for average precision even under moderate system sizes.

Figure 4 compares the performance of three classification methods after optimally
tuning the parameter τ . Define μ = ‖θ�‖. The left panel represents the dependence on
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Figure 2. Theoretical prediction for the phase transition curves. The black curve
represents the boundary for Gaussian mixture model. The blue and red curves
represent the boundaries for single Gaussian model with the distribution functions
being probit and logit respectively.

Figure 3. Dependence of generalization error on the tuning parameter τ for different
methods under spiked population model. Here α = 2 and the number of spikes
K = 2. The two spiked eigenvalues λ1 = λ2 = 4. The two projections R1 = 1/

√
2

and R2 = 0. The simulations are based on 20 samples with dimension p = 300.

α with μ fixed while the right panel represents the dependence on μ with α fixed. In
both cases except for small μ, PLR performs the best and SVM performs the worst
while DWD is in between. For small μ with fixed α, SVM is slightly better than DWD
as shown by the inset in the right plot. We have tried other settings for the spiked
covariance structure and the conclusions are very similar.
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Figure 4. Performance comparison of three classifiers at optimal tuning τ under
spiked population model. Here the number of spikes K = 2. The two spiked eigen-
values λ1 = λ2 = 4. The two projections R1 = 1/

√
2 and R2 = 0. The inset in the

right plot shows the comparison of SVM and DWD for small μ.

Figure 5. Dependence of generalization error on the tuning parameter τ for dif-
ferent methods under the two layer neural network model. Here ψ1 = p/d = 1,
ψ2 = n/d = 3. The simulations are based on 20 samples with d = 200. Sign
activation function is used thus γ1 =

√
2/π and γ� =

√
1− 2/π.

The settings of figures 3 and 4 are quite general in such that the spike vectors
vk(k = 1, . . . ,K) are neither aligned with nor orthogonal to the signal vector θ�.

3.3. Two layer neural network model

Figure 5 shows the dependence of generalization error on the tuning parameter τ for the
two layer neural network model. The comparisons with numerical simulations are also
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Figure 6. Generalization error plotted against the number of features per sample
at small tuning parameter τ = 10−4. Here ψ2 = n/d = 3. The simulations are based
on 20 samples with d = 200. Sign activation function is used thus γ1 =

√
2/π and

γ� =
√
1− 2/π.

Figure 7. Performance comparison of three classifiers at optimal tuning τ under the
two layer neural network model. Sign activation function is used thus γ1 =

√
2/π,

γ� =
√
1− 2/π. The insets in the plots show the comparison of the three methods

at low p/n.

included. The results show a fairly good agreement between theoretical prediction and
Monte Carlo simulations which indicates the correctness of our analytical derivation.

In figure 6, we plot the value of the generalization error as a function of p/n with
fixed ψ2 = n/d at small values of the regularization parameter τ = 10−4. We show the
so-called double descent behavior for all three classification methods with a peak at the
threshold value where the data become linearly separable. This finding agrees with the
recently observed ‘double descent’ phenomenology for hard margin SVM in Montanari
et al (2019) and logistic regression in Goldt et al (2019).

Figure 7 compares the performance of three classification methods after optimally
tuning the parameter τ for two layer neural network model. For two fixed ratios between
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the number of samples and dimension d, the generalization errors of the three methods
are very close at small value of overparametrization ratio p/n as shown by the insets
in the plots. For large p/n, DWD performs the best and PLR performs the worst while
SVM is in between. This is different from the performance under the spiked population
model as shown in figure 4. We have tried other values for the ratio of n/d and the
conclusions are very similar.

4. Conclusion

Large margin classifiers are commonly used in practice. In this paper, we examine the
limiting behavior of a general family of large-margin classifiers as p, n→∞ with fixed
α = n/p. This family is very general and it includes many popular classification methods
as special cases. We illustrate our main results by considering two special covariance
structures: spiked population model and two layer neural network model with random
first layer weights. We explore the phase transition behavior for the separability of the
two classes and our general conclusion covers several existing results as special cases.
Although our theoretical results are asymptotic in the problem dimensions, numerical
simulations have shown that they are accurate already on problems with a few hundreds
of variables. Our main observations from the derived analytic formulas are

• Under the same condition, data generated from Gaussian mixture distribution are
easier to be separated than from single Gaussian distribution.

• Except in the situation where the signal is very small, e.g. for small μ under spiked
structure or small p/n under random feature structure, DWD usually yields a better
performance than SVM. The performance of PLR depends on the choice of activa-
tion. For probit probability distribution and sign activation function, PLR performs
the best under spiked population covariance structure and the worst under the two
layer neural network covariance structure for large value of p/n.

• For two layer neural network covariance structure, we reproduce the double descent
phenomenon for all three methods. We show that the test error peaks at a critical
value of ψ1 when the two classes become separable.

It is interesting to note that our findings provide theoretical confirmations to the
empirical results observed in Marron et al (2007) that DWD yields superior performance
to SVM in HDLSS situations. This statement has been confirmed in Huang and Yang
(2019) for the Gaussian mixture model. Here it is also confirmed to be true for the single
Gaussian model. Although our observations may not hold for all covariance structure,
it can help us to understand the classification behaviors of different methods better.

We have tried other settings and found that our results are not sensitive to the
choice of K, λk, and Rk for spiked population model. One of our future research topics
is to study the dependence of the generalization errors on the choice of the probability
distribution g(·), the activation function σ(·), and other types of covariance structure in
order to provide some practical guidelines in real application. So far we assumed that
the covariance structures and their associated parameters are all known, but in practice,
we need to estimate them from the data.
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Appendix A

A.1. Derivation of proposition 1

This appendix outlines the replica calculation leading to propositions 1. We limit our-
selves to the main steps. For a general introduction to the method and its motivation,
we refer to Mezard et al (1987); Mézard and Montanari (2009); Krzakala et al (2012).

Denote X = [x1, . . . ,xn]
T, y = (y1, . . . , yn)

T. We consider regularized classification of
the form

θ̂ = argminθ

{
n∑

i=1

V

(
yix

T
i θ√
p

)
+

p∑
j=1

Jτ (θj)

}
. (A1)

After suitable scaling, the terms inside the bracket {·} are exactly equal to the objective
function of model (1) in the main text.

The replica calculation aims at estimating the following moment generating function
(partition function)

Zβ(X,y) =

∫
exp

{
−β

[
n∑

i=1

V

(
yix

T
i θ√
p

)
+

p∑
j=1

Jτ (θj)

]}
dθ (A2)

where β > 0 is a ‘temperature’ parameter. In the zero temperature limit, i.e. β →∞,
Zβ(X,y) is dominated by the values of θ which are the solution of (A1).

Within the replica method, it is assumed that the limits p→∞, β →∞ exist almost
surely for the quantity (pβ)−1 logZβ(X,y), and that the order of the limits can be
exchanged. We therefore define the free energy

F = − lim
β→∞

lim
p→∞

1

pβ
log Zβ(X,y) = − lim

p→∞
lim
β→∞

1

pβ
log Zβ(X,y).

It is also assumed that p−1 logZβ(X,y) concentrates tightly around its expectation so
that the free energy can in fact be evaluated by computing

F = − lim
β→∞

lim
p→∞

1

pβ
〈log Zβ(X,y)〉X,y, (A3)

where the angle bracket stands for the expectation with respect to the distribution of
training data X and y. Notice that, by (A3) and using Laplace method in the integral

https://doi.org/10.1088/1742-5468/abbed5 18

https://doi.org/10.1088/1742-5468/abbed5


J.S
tat.

M
ech.

(2020)
103407

Large scale analysis of generalization error in learning using margin based classification methods

(A2), we have

F = lim
p→∞

1

p
min
θ

{
n∑

i=1

V

(
yix

T
i θ√
p

)
+

p∑
j=1

Jτ (θj)

}
.

In order to evaluate the integration of a log function, we make use of the replica
method based on the identity

log Z = lim
k→0

∂Zk

∂k
= lim

k→0

∂

∂k
log Zk, (A4)

and rewrite (A3) as

F = − lim
β→∞

lim
p→∞

1

pβ
lim
k→0

∂

∂k
log Ξk(β), (A5)

where

Ξk(β) = 〈{Zβ(X,y)}k〉X,y =

∫
{Zβ(X,y)}k

n∏
i=1

P (xi, yi)dxi dyi. (A6)

Equation (A5) can be derived by using the fact that limk→0 Ξk(β) = 1 and exchanging
the order of the averaging and the differentiation with respect to k. In the replica
method, we will first evaluate Ξk(β) for integer k and then apply to real k and take the
limit of k → 0.

For integer k, in order to represent {Zβ(X,y)}k in the integrand of (A6), we use the
identity (∫

f(x)μ(dx)

)k

=

∫
f(x1) . . . f(xk)μ(dx1) . . . μ(dxk),

and obtain

{Zβ(X,y)}k =
k∏

a=1

[∫
exp

{
−β

[
n∑
i=1

V

(
yix

T
i θ

a

√
p

)
+

p∑
j=1

Jτ (θ
a
j )

]}
dθa

]
(A7)

where we have introduced replicated parameters

θa ≡ [θa1, . . . , θ
a
p]

T, for a = 1, . . . , k.

Exchanging the order of the two limits p→∞ and k → 0 in (A5), we have

F = − lim
β→∞

1

β
lim
k→0

∂

∂k

(
lim
p→∞

1

p
log Ξk(β)

)
. (A8)

Define the measure ν(dθ) over θ ∈ R
p as follows

ν(dθ) = exp

{
−β

p∑
j=1

Jτ (θj)

}
dθ.

https://doi.org/10.1088/1742-5468/abbed5 19

https://doi.org/10.1088/1742-5468/abbed5


J.S
tat.

M
ech.

(2020)
103407

Large scale analysis of generalization error in learning using margin based classification methods

Similarly, define the measure ν(dx) as ν(dx) = P (x)dx. In order to carry out the cal-
culation of Ξk(β), we let νk(dθ) ≡ ν(dθ1)× · · · × ν(dθk) be a measure over (Rp)k, with
θ1, . . . , θk ∈ R

p. Analogously νn(dx) ≡ ν(dx1)× · · · × ν(dxn) with x1, . . . ,xn ∈ R
p and

νn(dy) = ν(dy1) . . . ν(dyn). With these notations, we have

Ξk(β) =

∫
exp

{
−β

n∑
i=1

k∑
a=1

V

(
yix

T
i θ

a

√
p

)}
νk(dθ)νn(dx)νn(dy)

=

∫
{I(θ)}nνk(dθ), (A9)

where

I(θ) =

∫∫
exp

{
−β

k∑
a=1

V

(
yxTθa

√
p

)}
ν(dx)ν(dy)

=

∫ [
exp

{
−β

k∑
a=1

V

(
xTθa

√
p

)}
f+(

xTθ�√
p
)

+ exp

{
−β

k∑
a=1

V

(
−xTθa

√
p

)}
f−(

xTθ�√
p
)

]
ν(dx), (A10)

where f+(
xTθ�√

p
) = g(xT

i θ�/
√
p) and f−(

xTθ�√
p
) = 1− g(xT

i θ�/
√
p) as shown in (2). Notice

that above we used the fact that the integral over (x1, . . . ,xn) ∈ (Rp)n factors into n
integrals over (R)p with measure ν(dx). We next use the identity

f(x) =
1

2π

∫ ∞

−∞

∫ ∞

−∞
f(q)ei(q−x)q̂ dq dq̂. (A11)

We apply this identity to (A10) and introduce integration variables dua, dûa for 1�a�k.
Letting νk(du) = du1 . . .duk and νk(dû) = dû1 . . .dûk

I(θ) =

∫ [
exp

{
−β

k∑
a=1

V (ua)

}
f+(u

�) + exp

{
−β

k∑
a=1

V (−ua)

}
f−(u

�)

]

× exp

{
i
√
p

k∑
a=1

(
ua − xTθa

√
p

)
ûa + i

√
p

(
u� − xTθ�√

p

)
û�

}

× ν(dx)νk(du)νk(dû)ν(du�)ν(dû�)

=

∫ [
exp

{
−β

k∑
a=1

V (ua)

}
f+(u

�) + exp

{
−β

k∑
a=1

V (−ua)

}
f−(u

�)

]

× exp

{
i
√
p

k∑
a=1

uaûa + i
√
pu�û� − 1

2

∑
ab

(θa)TΣθbûaûb

https://doi.org/10.1088/1742-5468/abbed5 20

https://doi.org/10.1088/1742-5468/abbed5


J.S
tat.

M
ech.

(2020)
103407

Large scale analysis of generalization error in learning using margin based classification methods

− 1

2
(θ�)

TΣθ�û
�û� −

∑
a

(θa)TΣθ�û
aû�

}
νk(du)νk(dû)du� dû�. (A12)

In deriving (A12), we have used the fact that the low-dimensional marginals of x can
be approximated by Gaussian distribution based on multivariate central limit theorem.

Next we apply (A11) to (A9), and introduce integration variables Qab, Q̂ab and

Ra, R̂a associated with (θa)TΣθb/p and (θa)TΣθ�/p respectively for 1 � a, b � k. Denote

Q ≡ (Qab)1�a,b�k, Q̂ ≡ (Q̂ab)1�a,b�k, R ≡ (Ra)1�a�k, and R̂ ≡ (R̂a)1�a�k. Note that, con-
stant factors can be applied to the integration variables, and we choose convenient
factors for later calculations. Letting dQ ≡

∏
a,b dQab, dQ̂ ≡

∏
a,bdQ̂ab, dR ≡

∏
a dR

a,

and dR̂ ≡
∏

adR̂
a, we obtain

Ξk(β) =

∫
{ξ̂(Q,R)}n exp

{
i
∑
ab

pQabQ̂ab + i
∑
a

pRaR̂a − i
∑
ab

(θa)TΣθbQ̂ab

− i
∑
a

(θa)TΣθ�R̂a

}
dQ dQ̂ dR dR̂νk(dθ), (A13)

where

ξ̂(Q,R) =

∫ [
exp

{
−β

k∑
a=1

V (ua)

}
f+(u

�) + exp

{
−β

k∑
a=1

V (−ua)

}
f−(u

�)

]

exp

{
i
√
p

k∑
a=1

uaûa + i
√
pu�û� − 1

2

∑
ab

pQabû
aûb

− 1

2
pρ2û�û� −

∑
a

pRaûaû�

}
νk(du)νk(dû)du� dû�. (A14)

Now we can rewrite (A13) as

Ξk(β) =

∫
exp

{
−pSk(Q, Q̂,R, R̂)

}
dQ dQ̂ dR dR̂, (A15)

where

Sk(Q, Q̂,R, R̂) = −iβ

(∑
ab

QabQ̂ab +
∑
a

RaR̂a

)
− 1

p
log ξ(Q̂, R̂)− α log ξ̂(Q,R),

ξ(Q̂, R̂) =

∫
exp

{
−i
∑
ab

Q̂ab(θ
a)TΣθb − i

∑
a

(θa)TΣθ�R̂a

}
νk(dθ). (A16)

Now we apply steepest descent method to the remaining integrations. According to
Varadhan’s proposition (Tanaka 2002), only the saddle points of the exponent of the
integrand contribute to the integration in the limit of p→∞. We next use the saddle
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point method in (A15) to obtain

− lim
p→∞

1

p
Ξk(β) = Sk(Q

�, Q̂�,R�, R̂�),

where Q�, Q̂�,R�, R̂� are the saddle point location. Looking for saddle-points over all
the entire space is in general difficult to perform. We assume replica symmetry for
saddle-points such that they are invariant under exchange of any two replica indices a
and b, where a 	= b. Under this symmetry assumption, the space is greatly reduced and
the exponent of the integrand can be explicitly evaluated. The replica symmetry is also
motivated by the fact that Sk(Q

�, Q̂�,R�, R̂�) is indeed left unchanged by such change

of variables. This is equivalent to postulating that Ra = R, R̂a = iR̂,

(Qab)
� =

{
q1 if a = b

q0 otherwise
, and (Q̂ab)

� =

⎧⎪⎨
⎪⎩
i
βξ1
2

if a = b

i
βξ0
2

otherwise
, (A17)

where the factor iβ/2 is for future convenience. The next step consists in substituting

the above expressions for Q�, Q̂�,R�, R̂� in Sk(Q
�, Q̂�,R�, R̂�) and then taking the limit

k → 0. We will consider separately each term of Sk(Q
�, Q̂�,R�, R̂�). Let us begin with

the first term

−iβ

(∑
ab

QabQ̂ab +
∑
a

RaR̂a

)
=

kβ2

2
(ξ1q1 − ξ0q0) + kβRR̂. (A18)

Let us consider log ξ(Q̂, R̂). For p-vectors u,v ∈ R
p and p× p matrix Σ, introducing

the notation ‖v‖2Σ ≡ vTΣv and 〈u,v〉 ≡
∑p

j=1 ujvj/p, we have

ξ(Q̂, R̂) =

∫
exp

{
β2

2
(ξ1 − ξ0)

k∑
a=1

‖θa‖2Σ +
β2ξ0
2

k∑
a,b=1

(θa)TΣθb

+ β

k∑
a=1

R̂(θa)TΣθ�

}
νk(dθ)

= E

∫
exp

{
β2

2
(ξ1 − ξ0)

k∑
a=1

‖θa‖2Σ + β
√

ξ0

k∑
a=1

(θa)TΣ1/2z

+ β
k∑

a=1

R̂(θa)TΣθ�

}
νk(dθ), (A19)

where expectation is with respect to z ∼ N(0, Ip). Notice that, given z ∈ R
p, the integrals

over θ1, . . . , θk factorize, whence
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ξ(Q̂, R̂) = E

{[∫
exp

{
β2

2
(ξ1 − ξ0)‖θ‖2Σ + β

√
ξ0θ

TΣ1/2z

+ βR̂(θ)TΣθ�

}
ν(dθ)

]k}
.

Finally, after integration over νk(dû), (A14) becomes

ξ̂(Q,R) =

∫ [
exp

{
−β

k∑
a=1

V (ua)

}
f+(u

�) + exp

{
−β

k∑
a=1

V (−ua)

}
f−(u

�)

]

exp

{
i
√
pu�û� − 1

2
pρ2û�û� − 1

2

∑
ab

(ua + i
√
pRaû�)(Q−1)ab

(
ub + i

√
pRbû�

)
− 1

2
log det Q

}
νk(du)du� dû�. (A20)

We can next take the limit β →∞. The analysis of the saddle point parameters
q0, q1, ξ0, ξ1 shows that q0, q1 have the same limit with q1 − q0 = (q/β) + o(β−1) and ξ0, ξ1
have the same limit with ξ1 − ξ0 = (−ξ/β) + o(β−1). Substituting the above expression
in (A18) and (A19), in the limit of k → 0, we then obtain

−iβ

(∑
ab

QabQ̂ab +
∑
a

RaR̂a

)
=

kβ

2
(ξ0q − ξq0) + kβRR̂, (A21)

and

ξ(Q̂, R̂) = E

{[∫
exp

{
−βξ

2
‖θ‖2Σ + β

√
ξ0θ

TΣ1/2z

+ βR̂(θ)TΣθ�

}
ν(dθ)

]k}
. (A22)

Similarly, using (A17), we obtain∑
ab

(ua + i
√
pRaû�)(Q−1)ab(u

b + i
√
pRbû�)

=
β
∑

a(u
a + i

√
pRaû�)2

q
− β2q0{

∑
a(u

a + i
√
pRaû�)}2

(q)2
,

log det Q = log

[
(q1 − q0)

k

(
1 +

kq0
q1 − q0

)]
=

kβq0
q

,

where we retain only the leading order terms. Therefore, (A14) becomes

ξ̂(Q,R) =

∫ [
exp

{
−β

k∑
a=1

V (ua)

}
f+(u

�) + exp

{
−β

k∑
a=1

V (−ua)

}
f−(u

�)

]
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exp

{
i
√
pu�û� − 1

2
pρ2û�û� − β

∑
a(u

a)2

2q
− i

√
pβû�

∑
au

aRa

q

+
β2q0(

∑
au

a)2

2q2
− kβq0

2q

}
νk(du)

= Eu�

∫ [
exp

{
−β

k∑
a=1

V (ua)

}
f+(u

�) + exp

{
−β

k∑
a=1

V (−ua)

}
f−(u

�)

]

exp

{
−β
∑

a(u
a)2

2q
+

β2(q0 −R2/ρ2)(
∑

au
a)2

2q2
+

βRu�
∑

au
a

qρ2
− kβq0

2q

}
νk(du)

= exp

(
−kβq0

2q

)
EzEu�

⎡
⎣
{∫

exp

{
−βV (u)− βu2

2q
+

β
√
q0 −R2/ρ2zu

q
+

βRu�u

qρ

}
du

}k

f+(ρu
�)

+

{∫
exp

{
−βV (−u)− βu2

2q
+

β
√
q0 −R2/ρ2zu

q
+

βRu�u

qρ

}
du

}k

f−(ρu
�)

⎤
⎦

= exp

(
−kβq0

2q

)
EzEu�Ey�

(∫
exp

{
−βV (u)− β(u− y�u�R/ρ−

√
q0 − R2/ρ2y�z)2

2q

+
β(
√
q0 − R2/ρ2y�z + y�u�R/ρ)2

2q

}
du

)k

,

where the expectation z ⊥ u, z ∼ N(0, 1), u� ∼ N(0, 1), and P (y� = ±|u�) = f±(ρu
�).

Substituting this expression in (A16), we obtain

log ξ̂(Q,R) = −kβE

{
min
u

[
V (u) +

(u− y�u�R/ρ−
√

q0 −R2/ρ2y�z)2

2q

]}
, (A23)

where the expectation is with respect to z, u�, and y�. Putting (A21), (A22), and (A23)
together into (A15) and then into (A5), we obtain

F =
1

2
(ξ0q − ξq0) +RR̂

+ αE

⎧⎪⎨
⎪⎩min

u

⎡
⎢⎣V (u) +

(
u− y�u�R/ρ−

√
q0 −R2/ρ2y�z

)2
2q

⎤
⎥⎦
⎫⎪⎬
⎪⎭

+
1

p
E min

θ∈Rp

{
ξ

2
‖θ‖2Σ −

〈√
ξ0Σ

1/2z+ R̂Σθ�,w
〉
+

p∑
j=1

Jτ (θj)

}
, (A24)

where the expectations are with respect to z, u�, and y�. Here ξ, ξ0, q, q0, R, R̂ are
order parameters which can be determined from the saddle point equations of F . Define

https://doi.org/10.1088/1742-5468/abbed5 24

https://doi.org/10.1088/1742-5468/abbed5


J.S
tat.

M
ech.

(2020)
103407

Large scale analysis of generalization error in learning using margin based classification methods

functions φ1, φ2, and φ3 as

φ1 = E
{(

û− y�u�R/ρ−
√
q0 −R2/ρ2y�z

)
y�u�

}
,

φ2 = E
{(

û− y�u�R/ρ−
√
q0 −R2/ρ2y�z

)
y�z
}
,

φ3 = E

{(
û− y�u�R/ρ−

√
q0 −R2/ρ2y�z

)2}
,

where

û = argminu∈R

⎧⎪⎨
⎪⎩V (u) +

(
u− y�u�R/ρ−

√
q0 −R2/ρ2y�z

)2
2q

⎫⎪⎬
⎪⎭ .

The result in (A24) is for general penalty function Jτ (w). For quadratic penalty
Jτ(w) = τw2, we get the closed form limiting distribution of w as

θ̂ = (ξΣ+ τIp)
−1
(√

ξ0Σ
1/2z+ R̂Σθ�

)
. (A25)

All the order parameters can be determined by the following saddle-point equations:

ξ0 =
α

q2
φ3, (A26)

ξ = − αφ2

q
√

q0 −R2/ρ2
, (A27)

R̂ =
α

q

(
φ1

ρ
− Rφ2

ρ2
√
q0 −R2/ρ2

)
, (A28)

q0 =
1

p
E‖θ̂‖2Σ, (A29)

q =
1

p
√
ξ0
E
〈
Σ1/2z, θ̂

〉
(A30)

R =
1

p
E〈Σθ�, θ̂〉. (A31)

Note that two types of Gaussian random variables are introduced, one is in primary
θ̂ and another one is in conjugate û. The variances of these two random variables are
controlled by ξ0 and q0 respectively. It is interesting to see that ξ0 is determined by the
expectation over a quadratic form of û while ξ0 is determined by the expectation over

a quadratic form of θ̂.
The above formulas are for general positive definite covariance matrix Σ. Then after

applying the random features model and integrating over z, we obtain the explicit
nonlinear equations (A29)–(A31) for determining six parameters q0, q, and R as

q0 =
1

p
ξ0 Tr

(
Σ1/2(ξΣ+ τIp)

−1Σ(ξΣ+ τIp)
−1Σ1/2

)
(A32)
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+
1

p
R̂2(θ�)

TΣ(ξΣ+ τIp)
−1Σ(ξΣ+ τIp)

−1Σθ� (A33)

= ξ0f2(ξ, τ) + R̂2ρ2f3(ξ, τ),

R = R̂ρ2f1(ξ, τ),

q = f0(ξ, τ), (A34)

where

f0(ξ, τ) =

∫
X

ξX + τ
μp(dX , dW ), f1(ξ, τ) =

∫
W 2X

ξX + τ
μp(dX , dW ),

f2(ξ, τ) =

∫
X2

(ξX + τ)2
μp(dX , dW ), f1(ξ, τ) =

∫
W 2X2

(ξX + τ)2
μp(dX , dW ).

After variable substitution R/ρ→ R and ρR̂→ R̂, we derive the equations (6)–(11) in
the main text.

A.2. Derivation of corollary 1

Under τ = 0, from (A32)–(A34), we have

q0 =
ξ0 + R̂2ρ2

ξ2
, q =

1

ξ
, R =

R̂ρ2

ξ2
.

Substitute into (A26)–(A28), we have

q0 −
R2

ρ2
= αφ3, (A35)

1 = − αφ2√
q0 −R2/ρ2

, (A36)

R

ρ
= α

(
φ1 −

Rφ2

ρ
√
q0 −R2/ρ2

)
. (A37)

Substituting (A36) into (A37), we have φ1 = 0. From (A35), we have

q0 −
R2

ρ2
= αE

{(
û− y�u�R/ρ−

√
q0 −R2/ρ2y�z

)(
û− y�u�R/ρ−

√
q0 −R2/ρ2y�z

)}
,

where u� ⊥ z, u� ∼ N(0, 1), z ∼ N(0, 1), and P (y = +1|u�) = f+(ρu
�). Substituting

(A36) and (A37), we obtain

E
{(

û− y�u�R/ρ−
√

q0 −R2/ρ2y�z
)
û
}
= 0.

Denote r = R/ρ/
√
q0. For SVM, we get
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0 = E
{(

1−√
q0(ry

�u� +
√
1− r2y�z)

)
I(1− q � √

q0(ry
�u� +

√
1− r2y�z) � 1)

}
+ E

{
q
(
q +

√
q0(ry

�u� +
√
1− r2y�z)

)
I(
√
q0(ry

�u� +
√
1− r2y�z) � 1− q)

}
.

We are interested in the separability, i.e. the behaviour of q0 →∞. The above equation
implies that q/

√
q0 →∞. Therefore from (A35) and (A37), we obtain

1/α = E

{(
r√

1− r2
y�u� + y�z

)2

+

}
(A38)

0 = E

{(
r√

1− r2
y�u� + y�z

)
+

y�u�

}
, (A39)

which is equivalent to find

1/α = min
c∈R

E
{
(cy�u� + z)2+

}
.

A.3. Derivation of proposition 2

From equations (14)–(16) in proposition 3 of Huang and Yang (2019), we obtain

q0 −
R2

γ2
= αE{(û− a)2},

R

γ2
= αμE(û− a),

1 = − α
√
q0
E{(û− a)z},

where a = Rμ+
√
q0z. For SVM, define γ2 = μ̂TΣ−1μ̂, zc = (1−Rμ)/

√
q0, x = q/

√
q0,

and r = R/
√
q0, we have

1− r2

γ2
= α

{∫ zc

zc−x

(zc − z)2Dz + x2

∫ zc−x

−∞
Dz

}
(A40)

r

γ2
= αμ

{∫ zc

zc−x

(zc − z)Dz + x

∫ zc−x

−∞
Dz

}
(A41)

1 = α

∫ zc

zc−x

Dz. (A42)

From (A40) and (A41), we have

1 = α

{∫ zc

zc−x

(zc − z)2Dz + x2

∫ zc−x

−∞
Dz

}

+

{
αγμ

(∫ zc

zc−x

(zc − z)Dz + x

∫ zc−x

−∞
Dz)

)}2

.
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For fixed α, μ has upper bound in order to have solution. Because of (A42), the biggest
value for μ we can achieve is when x→∞. Therefore the phase transition for Gaussian
mixture model is determined by

1 = α

∫ zc

−∞
(zc − x)2Dz +

{
αγμ

∫ zc

−∞
(zc − z)Dz

}2

,

where Φ(zc) = 1/α.
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to statistical gaps in learning a two-layers neural network J. Stat. Mech. 124023

Balcan M-F, Blum A and Vempala S 2006 Kernels as features: on kernels, margins, and low-dimensional mappings
Mach. Learn. 65 79–94

Barbier J and Macris N 2017 The adaptive interpolation method: a simple scheme to prove replica formulas in
bayesian inference (arXiv:1705.02780)

Bayati M and Montanari A 2012 The LASSO risk for Gaussian matrices IEEE Trans. Inf. Theory 58 1997–2017
Belkin M, Hsu D and Mitra P P 2018 Overfitting or perfect fitting? Risk bounds for classification and regression

rules that interpolate Proc. 32nd Int. Conf. on Neural Information Processing Systems, NIPS’18 (Red Hook,
NY: Curran Associates Inc.) pp 2306–17

Belkin M, Hsu D, Ma S and Mandal S 2019a Reconciling modern machine-learning practice and the classical bias-
variance trade-off Proc. Natl Acad. Sci. USA 116 15849–54

Belkin M, Hsu D and Xu J 2019b Two models of double descent for weak features (arXiv:1903.07571)
Benito M, Parker J, Du Q, Wu J, Xiang D, Perou C M and Marron J S 2004 Adjustment of systematic microarray

data biases Bioinform. 20 105–14
Candès E J and Sur P 2020 The phase transition for the existence of the maximum likelihood estimate in high-

dimensional logistic regression Ann. Stat. 48 27–42
Cover T M 1965 Geometrical and statistical properties of systems of linear inequalities with applications in pattern

recognition IEEE Trans. Electron. Comput. EC-14 326–34
Freund Y and Schapire R E 1997 A decision-theoretic generalization of on-line learning and an application to boosting

J. Comput. Syst. Sci. 55 119–39
Friedman J, Hastie T and Tibshirani R 2000 Additive logistic regression: a statistical view of boosting (with discussion

and a rejoinder by the authors) Ann. Stat. 28 337–407
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Mézard M and Montanari A 2009 Information, Physics, and Computation (Oxford Graduate Texts) (Oxford: Oxford

University Press)
Mezard M, Parisi G and Virasoro M 1987 Spin glass theory and beyond: an introduction to the replica method and

its applications World Scientific Lecture Notes in Physics (New York: World Scientific)
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