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Abstract— Tear film plays a key role in protecting the cornea
surface against contaminations and dry eye syndrome which
can lead to symptoms of discomfort, visual trouble, and tear
film instability with the potential to damage the ocular surface.
In this paper, coupled nonlinear partial differential equations
of the fourth order proposed by Aydemir et al. to describe the
evolution of tear film dynamics are considered. These equations
are of Benney type and known to suffer from unbounded
behavior and lack of a global attractor. The objective here is to
identify a reduced order modeling framework with the potential
to be used as a basis for control in future work using smart
tears with a surfactant that can modify the surface tension
to prevent tear film breakup. Since the dynamics are infinite
dimensional and nonlinear, a reduced order model based on the
proper orthogonal decomposition (POD) is developed, analyzed,
and compared to the full order model. Numerical simulations
illustrate that only a small number of POD modes are required
to accurately capture the tear film dynamics allowing for the
full partial differential model to be represented as a low-
dimensional set of coupled ordinary differential equations.

I. INTRODUCTION

Tear film, as shown in figure (1), is a thin multicomponent
fluid that coats the ocular surface after each blink, a period
during which the eye remains open [1]. During the interblink
period, which lasts approximately 5 to 10 seconds, the tear
film protects the cornea surface from contamination, keeps
the eye moist, provides a high-quality optical surface, cleans
the eye of foreign bodies, and lubricates the gap between
the eyelids and the cornea. During this period, the tear film
thins and eventually breaks leading to the formation of dry
spots over the surface of the cornea, around which, saltiness
(osmolarity) increases. This causes irritation of the cornea,
sensation of discomfort, persistent headaches, watering of the
eyes and blurred vision. These are considered as symptoms
of a common wide spread disease condition, known as dry-
eye syndrome[2]. Dry eye syndrome (DES) is a worldwide
growing ophthalmological concern [3]. Nowadays, DES does
not affect only elder persons, but also affects children be-
cause the prolonged exposure to the screens of the electronics
devices such as smart phones, tablets and computers. The
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chances that tear film breaks become higher, when blinking
frequency decreases [4].
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Fig. 1. Tear film layers (Image from [5])

The need for understanding DES from a fluid dynamics
perspective gave rise to a growing interest in the problem of
tear film dynamics. A variety of investigations dealing with
evaporation, gravity, viscosity and surface tension effects
are conducted in [6], [7], [8], [9]. Almost all proposed
models were developed based on lubrication theory. The first
proposed models are typically one-dimensional nonlinear
partial differential equation for the thickness of the aqueous
layer where gravitational and evaporative effects are added
to the single-layer model of the tear film dynamics [10],
[11], [8]. The one-dimensional models were solved within
time dependent domains, where the lower eyelid is assumed
to be stationary while the upper eyelid is moving [12],
[13]. The lubrications models were used for instance to
investigate the effect of the velocity of the eyelid and the
nonuniform surface tension on the stability of the tear layer.
The lubrication models were improved by considering a
realistic eyelid motion and including effects of the variation
of the concentration of the lipid layer above the aqueous one.
The evolution of the lipid concentration is also described
by a non-linear partial differential equation coupled to the
evolution of the film thickness equation [7], [14]. The system
of two coupled PDEs was solved in moving domain on flat
substrate. This approximation is justified since the tear film’s
thickness, which is of the order of a few microns, is very
small compared to the average radius of curvature of the
cornea surface, which is of the order of a centimeter [15].

In this paper, we rely on the success of mathematical
models in explaining the thinning mechanism of the tear film
and their breakup on the ocular surface. In particular, we are
interested in extending the study of Aydemir et al. [7] by
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the film thickness of the tear film during the inert blink
period using an optimal initial lipid function. To do so we are
first using a model reduction approach based on the Proper
Orthogonal Decomposition (POD).

POD is a model reduction technique with proven efficient

when used to reduce models that approximate nonlinear
infinite dimensional systems by high order finite dimensional
systems, especially those who describe the dynamics of fluid
flows [16], [17], [18].
The remainder of the paper proceeds as follows. In section
II the PDE model of the tear film dynamics is described and
solved numerically. In section III the POD method is applied
and POD modes are extracted. In section IV the reduced
order system is computed using Galerkin projection, finally
section V includes the conclusions and future work.

II. TEAR FILM DYNAMICS

The model that describes the effect of polar lipids, natu-
rally excreted by glands in the eyelid, on the evolution of
a pre-corneal tear film is governed by a two coupled non-
linear partial differential equations for the film thickness A
and the concentration of lipid I', given by the following non-
dimensionalized form [7]:

= ML) = 300 =B (D)
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where 0 < x < L(r) is the spacial domain assuming the lower
eyelid is stationary at x =0 and the upper eyelid is moving
with position x = L(¢) and speed L,(¢). M is the Marangoni
number, C is the capillary number, and B is a Bond number.
The initial conditions at t =0 are given by h=H and ' =1,
where boundary conditions at x =0 are:

h=%, r,=0, hyx =B,
while boundary conditions at x = L(t) are:
2L, 6L,
h=XH I'i=— Moy = B+ —.
’ X Mg_(:v XXX + ej‘(

Expressions for L(¢) and L, () used in this paper are taken
from [7] and their profiles are shown in figure (2).

The challenge in solving the coupled system (1) and (2)
numerically is the moving boundary for the upper eyelid. As
done in [19], [20], [21] and others, a change of variables x —
7y and h— % is performed such that the coupled system
(1) and (2) is transformed into the following equivalent fixed
boundary system:

MH, , CH? (5 K L
h = W(h Co)x— 3L <h (thxx* B))erthx €)
MH CH? [, K L
I,= —L2 (hl"l"x)x— T (/’l F(thxx_3)>x+xzr)&4)

in which the spacial domain is now 0 < x <1 and initial
conditions at t =0 become 2 =1 and I" = 1 where boundary
conditions at x = 0 become:

h=1, T,=0,

Upper eyelid position L(t)
Upper eyelid speed Li(l)
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Fig. 2. Upper eyelid normalized position and speed profiles. The eye is
closed at L =0.2 and fully open at L =1

while boundary conditions at x = 1 become:

2LL, r? 6L,
I’l—l, FX—W, hxxx—§<3+w>

The transformed system (3) and (4) is solved numerically
using finite difference with cell-edge and cell-center points
(see Appendix A), with parameters 3 = 100, € = 7.87 x
1077, B =2.18 x 10, M = 1.75 x 1072, then solution is
transformed back to the original form in (1) and (2). Figures
3, 4 and 5 show the film thickness solution and figures (6),
(7) and (8) show the lipid concentration for different time
stages.

0<t<0.2

Fig. 3. Film thickness £, early stage

III. POD BASiS COMPUTATION

Let the solution to (1) and (2) be represented by a linear
combination of space dependent basis functions and temporal
coefficients as follows:

ner) = Y (00 () )

F(xn) = Y o (007 () ©
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Fig. 4. Film thickness &, mid stage
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Fig. 5. Film thickness £, late stage

The equalities above are understood to be in the
L*(Q,]0,T))-sense, i.e.,
1 n
lim / / h(x,t) = Y o (1) (x)[Pdxdt = 0 7
Jim [ [ )~ Rl ™

Let R be the desired reduced order then (5) and (6) can be
approximated by:

he(x,1) ==} o (1) (x) (8)
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POD provides an optimal set of basis functions such that a

low dimensional subspace is obtained by the basis functions

projection on the governing coupled PDE system in (1) and

(2). The fundamental idea behind POD is as follows: Given

the functions A(x,#) and I'(x,7) in the standard Hilbert space

L?(Q,[0,T)) where x € Q and T is a finite time interval, the

R POD basis functions {¢/}* | and {¢}}R | are computed
by minimizing the following cost functlons.

T R , \ ,
:/0 /gllh@ﬁ)—i_zlai (1)9]! (x)|*dxdr

(10)

0<t<0.2

05 06 07 08 09 1

Fig. 6.

Lipid Concentration I, early stage
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Fig. 7. Lipid Concentration I', mid stage
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where h(x,7) and I'(x,t) are the solution of the governing
coupled PDE system in (1) and (2).
The constrained orthogonality condition for (10) and (11) is:

(xX)||?dxdr  (11)

(06) = [ 00dx =3, (12)
where (,) is the inner product in Lr(Q) and §—; =1 if i=j
and zero otherwise.

Since no explicit solutions are known for the PDEs (3)
and (4) numerical solution snapshots obtained are used
at N different times as entries in the snapshots matrices
{SM¥ | and {S'}Y . The optimization problem becomes
then dlscrete as follows:

R

ZDshxm,rk - Y d @) (13)
i=1
R

ZZ|S Consti) = Y of (1)@ (e (14)
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Fig. 8.

Lipid Concentration I, late stage

Both (13) and (14) optimization problems have the discrete
orthogonality constraints ¢ ¢" = Iy and @' 9" = I, respec-
tively and the subscript * denotes the complex transpose.
Solutions are given by the R eigenvectors that correspond to
the largest R eigenvalues in the eigenvalue problems [16]:

Shst ot = At (15)

STST ol = ATgT. (16)

The first 4 POD modes for /# are shown in figure (9).

h POD modes

0 0.1 02 03

Fig. 9. First 4 POD modes for i

IV. REDUCED ORDER SYSTEM BY GALERKIN
PROJECTION

Galerkin projection is done by performing the inner prod-
uct defined in (12) for both sides of the PDEs in (3) and (4)
with the j basis functions ¢7(x) and ¢} (x) (see Appendix
B for details). The result is the reduced order system of size
R that describe how the POD modes evolve in time. The
reduced order system becomes:

= fla) a7
o(0) = .

Temporal Coefficients 1
Galerkin Reduced Order Model

a
1
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Fig. 10. Reduced order system states

where the initial condition in (3) and (4) is projected onto
the POD basis to find the initial values ¢g. Full expression
of f(e) is shown in Appendix B. Since the POD modes are
orthogonal, it is easy to find the temporal coefficients in (8)
and (9) and use them to validate the reduced order system
accuracy in capturing the true dynamics of the full order
system. The states of the Galerkin reduced order system
of size 4 is shown in figure (10) where it is shown that
the reduced order system shows acceptable agreement with
the full order system as time evolves. Both 4 and I'" for the
reduced order system compared to the full order system are
shown at different times in figures (11), (12), (13) and (14).
Results are promising. With a small number of states (we
used 4 in our numerical example), we obtained a reduced
order system that accurately captures the full order system
dynamics. This is important since it is very difficult to control
the PDE system in its infinite dimensional form while control
theories are well developed for finite dimensional systems.

120
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Fig. 11. Tear film thickness, full Vs reduced order systems at r =0.5.

V. CONCLUSIONS

In this paper, Benney-type coupled nonlinear partial differ-
ential equations of the fourth order governing the evolution of
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Fig. 12. Tear film thickness, full Vs reduced order systems at t = 4.
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Fig. 13. Lipid concentration, full Vs reduced order systems at t = 0.5.

the film thickness and lipid concentration of tears proposed
in [7] as are solved using a cell-edge-cell-center point finite
difference scheme. The numerical snapshots are used to
derive reduced order POD-based models for the film tickness
and lipid concentration. A Galerkin model for the temporal
coefficients is obtained by conducting Galerkin projections
on the POD modes. The latter is solved to obtain the
temporal coefficients and thus the reduced order solutions
that are compared with the full order numerical solutions
with favorable results. Future work includes the use of the
reduced order models as a control basis for smart tears with a
surfactant that can modify the surface tension to prevent tear
film breakup. Other reduced order such as cluster POD [17]
and Isolable coordinates [22] will be explored as improved
model reduction techniques alternatives to POD.
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Fig. 14. Lipid concentration, full Vs reduced order systems at t = 4.

APPENDICES
A. Numerical Method

In this appendix we give some details of the numerical
method employed for solving the system of PDEs. The
spacial domain is Q = [0,1]. We use a finite difference
method with a uniform grid spacing 8 := 1/N, where N is a
positive integer. We set p; := (i—1/2)8. The cell-edge and
cell-center point sets are defined, respectively, as

E:={pit1 |[i=0,....,N } and C:={p; |i=1,...,N}.

To handle boundary conditions, we add the two cell-center
ghost points po = —6/2 and pyi; = 1+ 6/2. The larger
cell-center point set that includes the ghost cells is denoted
C,:

Co:={pi | i=0,....,N+1} =CU{po, pn+1}-

Next, we introduce spaces of cell-edge and cell-center grid
functions, respectively, via

E={fE—=R}, C:={u:C—R}, C:={u:C,—R}.

We define the edge-to-center difference and averaging oper-
ators d,a : € — C point-wise via

T LR Ve iV S o2 VeR [ VY

5 afi= 2

The center-to-edge difference and averaging operators D,A :
C, — € are defined point-wise via
Uir1 — Ui

6 b
The second difference operator Ag : €, — C is the composi-
tion of d and D and is defined as
Uil — 2ui Uiy
DR a—
The solution A(x,t) is approximated by the cell-center grid
function Ag(t), and, similarly, T'(x,?) is approximated by the
cell-center grid function I's(¢). We introduce the cell-center
grid function gg(¢) as an approximation of #,,. Specifically,

q5(t) == Ashs(t).

Uit +u;

Duiy )y = Auiy )y = 5

A5ui = d(Du),
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The second-order-in-space semi-discretized equations are

ddits :x%a(Dha) - CTIZZd (A(h%) <£I3Dq5 B)>
+%d(A(h§)DF5)7

% = x%a(Dl"(g) - CTIZZd (A(h%l—‘g) (ZD% _B>)
+ %d(A(h,st)Dra),

where x € C is the cell-center grid function satisfying x; = p;.
The boundary conditions are handled as follows:

Ahs(t)), =1, Ahs(t)y 11 =1,

L*B I3 L
D%(f)uz:?, D%(f)zvﬂ/z:ﬁ B+6m ,
LL,

DI's(t =0 DI's(t =2—.
§(1)12=0, 812 =25

The resulting coupled system of ODEs is integrated in time
using a stiff ODE solver in Matlab.

B. Galerkin Projection

Galerkin projection is done by performing the inner prod-
uct defined in (12) for both sides of (3) and (4) with the j"
basis functions ¢7(x) and ¢} (x). Due to the orthogonality of
POD basis, the left hand sides of (3) and (4) become:

/ B0l Wdx = al(r)
Q

[ rnelmar = af)
Q

Integrating the first term in the right hand sides yields:

/ (WT)) oldx = KTl - / T49y dx

Dy

/Q (ATTy), ¢ dx = o /Q KT ¢y dx

Integrating the second term in the right hand sides yields:

H
3 h
/Q<h (L3hm—B)>x ldx

H H
7.3 h 3 h
= 1P (3he— B! agf/gh (S5hee — B) 9l dx

/Q <h2r(ghm - B)>x¢jrdx

H H
= T (fhee—B)OF| - /Q PPT(xhes — B)OL dx
aQ
Integrating the third term in the right hand sides yields:
/ xhepldx = xh¢l| - / h(] +x0y )dx
Q 0 JQ J
/ ATgldx = xTol| — / L9} +x0L )dx
Q 20 Q ’
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