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Abstract—Highly constrained manipulation tasks continue to
be challenging for autonomous robots as they require high levels
of precision, typically less than 1mm, which is often incompatible
with what can be achieved by traditional perception systems.
This paper demonstrates that the combination of state-of-the-art
object tracking with passively adaptive mechanical hardware can
be leveraged to complete precision manipulation tasks with tight,
industrially-relevant tolerances (0.25mm). The proposed control
method closes the loop through vision by tracking the relative 6D
pose of objects in the relevant workspace. It adjusts the control
reference of both the compliant manipulator and the hand to
complete object insertion tasks via within-hand manipulation.
Contrary to previous efforts for insertion, our method does not
require expensive force sensors, precision manipulators, or time-
consuming, online learning, which is data hungry. Instead, this
effort leverages mechanical compliance and utilizes an object-
agnostic manipulation model of the hand learned offline, off-
the-shelf motion planning, and an RGBD-based object tracker
trained solely with synthetic data. These features allow the
proposed system to easily generalize and transfer to new tasks
and environments. This paper describes in detail the system
components and showcases its efficacy with extensive experiments
involving tight tolerance peg-in-hole insertion tasks of various
geometries as well as open-world constrained placement tasks.

I. INTRODUCTION

Developing robotic systems capable of operating in contact-
rich environments with tight tolerances has remained an open
research challenge. Despite progress, this is especially true for
precision manipulation, where an object must be perceived,
grasped, manipulated, and then appropriately placed given
task requirements [1, 2, 3]. Such functionality is common for
everyday insertion tasks e.g. stacking cups into one another,
placing a key into a lock, or packing boxes, which are skills
particularly advantageous to investigate for developing more
capable robots in various application domains [4, 5].

A robotic system’s compliance, i.e., the adaptability of
its kinematic configuration, has been key in dealing with
uncertainty. Failures during manipulation are often attributed
to uncertainty introduced in internal modeling, sensor readings,
or robot state, which makes the system act undesirably in
contact-rich scenarios, such as peg-in-hole or assembly tasks.
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Fig. 1: (a) An RGBD-based 6D object pose tracker monitors the task state,
serving as the primary sensing modality for the robot performing a variety of
insertion tasks with tight tolerances, (b) the sequence of cup stacking.

Mechanical compliance, unlike its algorithmic counterpart
[6, 7], is inherent to the robot’s design and enables the system
to passively reconfigure when external contact is enacted [8, 9].
Although beneficial, the robot typically lacks otherwise required
sensing modalities for precision control, i.e., joint encoders and
force sensors can be absent. This poses a limitation, as there
exists little knowledge about the robot’s true state [10, 11, 12],
which complicates the achievement of sub-mm accuracy.

Estimating the task’s state dynamically, such as the object’s
6D pose [13, 14, 15], when onboard sensing is unavailable
can be achieved through feedback from inexpensive, external
alternatives, such as RGBD cameras [16, 17]. Although
requiring additional computation, this sensing modality is
advantageous as it does not require invasive, bulky sensor
suites on the robot, while also providing a wider “field of
sensing” for perceiving an extended workspace.

This work investigates whether a framework for compliant



systems using exclusively visual feedback can perform preci-
sion manipulation tasks. It showcases a complete system and
conducts numerous peg-in-hole insertions of varied geometries,
in addition to completing several open world constrained
placement tasks. In this way, it tests the boundaries of what is
possible for vision-driven, compliance-enabled robot assembly,
focusing on three main goals: 1) Perform tight tolerance
insertion tasks without force sensing, a precise manipulator,
or task-specific, online learning; 2) Leverage the extended
workspace afforded by compliant, within-hand manipulation
to increase the reliability of insertion; and, 3) Demonstrate
the role of vision-based feedback for tight tolerance tasks
with system compliance. To accomplish these goals, this effort
brings together the following components:
• Vision-based Object Pose Tracker: Utilizes state-of-the-

art low-latency RGBD-based 6D object pose tracking [15],
which is shown to be accurate enough when combined
with mechanical compliance to solve the target tasks. The
visual tracking monitors the task’s state in the form of
the object’s 6D pose in a way that is robust to occlusions
and varied lighting conditions, while trained solely offline
on simulated data (Sec. III-A).

• Object-Agnostic Within-Hand Manipulation: Uses a
learned model of the inverse system dynamics of an
open source and underactuated dexterous hand that is
object agnostic [18]. The model is used to perform within-
hand manipulation for object orientation alignment that
facilitates insertion (Sec. III-B).

• Visual Feedback Controller: Develops an insertion
control strategy that relies exclusively on the task’s state,
which closes the loop through the object tracker’s 6D pose
estimate and generalizes to objects of differing geometries
so that it is applicable to different scenarios (Sec. IV-B).
The controller intentionally leverages contacts with the
environment and compliance in order to increase reliability,
similar to the notion of extrinsic dexterity [19].

This article evaluates the efficacy of the complete system by
performing a variety of high-precision manipulation tasks. The
results in Sec. V showcase that the proposed general object
insertion algorithm, which relaxes rigid insertion constraints
due to compliance, exhibits a high rate of success for tight
tolerance applications. There are demonstrations indicating
that the system further generalizes to a variety of everyday
precision placement tasks – stacking cups, plugging a cord
into an outlet, inserting a marker into a holder, and packing
boxes – underscoring the system’s practical use for complex
manipulation scenarios.

II. RELATED WORK

Strategies for peg-in-hole insertion, or more generally robot
assembly tasks, have been studied from numerous viewpoints
for several decades raising many challenges [1]. Insertion
strategies for pegs of various geometries have been previously
studied and attempted via a variety of possible techniques and
system models: standard cylinders [20, 21, 22], multiple-peg
objects [23, 24], soft pegs [25], industrial inserts [26], and

open world objects [27, 28, 29, 30, 31]. This work seeks to
generalize insertion for various geometries.

Model-Based Insertion: Approaches using contact models
reason about state conditions and optimal insertion trajectories
while controlling the manipulator [24, 25]. These techniques
typically require expensive force-torque sensing to detect peg-
hole interactions [21, 32]. Visual-based methods have been
less successful, as estimation uncertainty often causes the
manipulator to apply unwanted forces either damaging the
robot or its environment [33].

Compliance-enabled architectures, both hardware-based [27,
29] and software-based [20], are widely used to overcome
uncertainties in modeling, sensing, and control of a purely
rigid system. Such solutions can be applied to the manipulator,
the end effector, or both. The majority of previous peg-in-hole
insertion works investigate compliance in the manipulator’s
control – fixing the object directly to the manipulator and
evaluating trajectory search spaces or force signatures [20, 32].
Principally, these works do not address robot assembly tasks, as
an end effector is vital for the completion of a pick-and-place
style objective. Few works have previously investigated the role
of within-hand manipulation for peg-in-hole [34], finding that
compliance in a dexterous hand extends the workspace for task
completion success. This prior work utilizes a rigid hand with
tactile sensors and impedance control, which is computationally
inefficient compared to the proposed framework.

Learning-Based Insertion: Regardless of whether a sys-
tem is rigid or compliant, developing the control policies
associated with tight tolerance tasks remain difficult [33]. To
address this, learning has been widely performed on such
systems – either collecting data through robot interactions in
its environment or from human-in-the-loop demonstrations
[22]. Reinforcement learning and self-supervised learning
[35, 36] have been popular, as they enable optimal policy
acquisition without manual data intervention. Conceptually, this
feature can be favorable for manipulation learning, as it allows
the robot to sufficiently explore its environment and collect
representative data of its interactions [26, 28, 37, 38]. But it
is also time consuming, computationally expensive, and the
extensive number of interactions needed to learn in a physical
environment increases the likelihood of robot damage. It is
thus advantageous to develop planning and control techniques
that do not require task-specific learning or numerous physical
interactions, allowing the system to more easily generalize to
novel tasks and environments, as the method proposed here.

Visual Feedback Closed-loop Manipulation: Tremendous
progress has been made to adapt control policies reactively
with sensing feedback. With recent advances in deep learning,
a number of prior works learn a visuomotor controller either
by directly mapping raw image observations to control policies
[39, 40, 41, 42] or by using reinforcement learning based on
learned visual dynamics models [43, 44, 45, 46]. However,
this method usually requires a nontrivial amount of training
data which is costly to collect in the real world, struggles to
transfer to new scenarios, and suffers from the curse of under-
modeling or modeling uncertainties [47]. Our work shares the
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Fig. 2: System pipeline: (red) a visual tracking framework trained solely with synthetic data to estimate 6D pose differences, provides feedback for (blue)
manipulation planning and control of a low-impedance manipulator and a compliant end-effector performing within-hand manipulation for insertion tasks.

spirit of another line of research that decouples the system
into individual sensing and planning components. In particular,
[48] developed a compliant manipulation system by integrating
a 6D object pose tracker and a reactive motion planner. To
generalize to objects of unknown shapes, [49] presents a system
that maintains a dual representation of the unseen object’s
shape through visual tracking, achieving constrained placement.
Although promising results of manipulating one or a few objects
have been shown, their scalability to other objects or precision
placement tasks remains unclear. In [50], both vision and torque
feedback were used for tight insertion. Our work aims instead to
robustly tackle a wide range of high precision placement tasks
by leveraging the synergy between mechanical compliance and
visual feedback, without force or torque feedback.

III. PROPOSED FRAMEWORK

The proposed framework integrates the following compo-
nents to complete tight tolerance and open world insertion tasks:
a 6D object pose tracker given RGBD data, and a compliance-
enabled insertion algorithm for a passively compliant arm and
dexterous hand. As depicted in the system pipeline (Fig. 2),
during manipulation, the object tracker (red) asynchronously
estimates object poses in the task space, i.e., both the peg and
the hole, based on a learned pose difference model, and provides
feedback for the insertion planning and control algorithm (blue)
to compute action decisions based on an arm motion planner
and a learned control mapping of the hand. The following
subsections describe these components in more detail.

A. Visual 6D Object Pose Tracking based on Synthetic Training

Uncertainty about the task’s state can arise from multiple
sources in the target application: (a) the compliant robot arm,
(b) the adaptive hand, (c) the potentially occluded object, and
(d) the location of the hole. Therefore, dynamic reasoning
about the spatial relationship between the peg and the hole is
required to achieve reliable tight insertion. This work leverages
recent advances in visual tracking that employ temporal cues
to dynamically update the 6D pose of tracked objects. In
particular, recent work in visual tracking [15] achieves robust
and accurate enough estimates at a low latency to work with a
wide range of objects. This allows easy integration of visual
tracking with planning and control for closing the feedback loop.
Additionally, it is also possible to disambiguate the 6D pose of

geometrically symmetric objects from semantic textures, thanks
to jointly reasoning over RGB and depth data, enabling the
overall system to perform a wider range of tasks. Alternative
6D pose tracking methods, which are based solely on depth
data [51, 52], often struggle with this aspect. For instance, the
green charger (Fig 6) exhibits a 180◦ shape symmetry from
the top-down view, whereas only one of the orientations can
result in successfully plugging it into a power strip.

The tracker requires access to a CAD model of the manipu-
lated object for training purposes but does not use any manually
annotated data. It generalizes from synthetic data to real-world
manipulation scenarios. CAD models for this purpose can be
imperfect and obtained through inexpensive depth scanning
processes [53] or from online CAD libraries. The dimensional
error of the CAD model can be larger than that of the tight
insertion task considered – given the adaptability afforded to
the system via compliance (see plug insertion in Sec. V-C). At
time t, the visual tracker operates over a pair of RGBD images
It and It−1 and predicts the relative pose of the tracked objects
parametrized by a Lie Algebra representation ∆ξ ∈ se(3). The
6D object pose in the camera’s frame is then recovered by
Tt = exp(∆ξ)Tt−1. During both training and testing, It−1 is
a synthetically rendered image given the pose Tt−1 and the
CAD model. During training, It is also synthetic but it is
the real image during online operation of the system. Thus, a
sim-to-real domain shift exists only for the current It image.

The synthetic data generation process is physics-aware and
aims for generalization and high-fidelity by leveraging domain
randomization techniques [54], as shown in Fig. 3. To do so,
external lighting positions, intensity, and color are randomized.
The training process includes distractor objects from the YCB
dataset [55] beyond the targeted objects for manipulation, which
introduce occlusions and a noisy background. Object poses are
randomly initialized and perturbed by physics simulation with
random gravity directions until no collision or penetrations
occurs. Background wall textures are randomly selected [56]
for each rendering. This rendered image serves as the frame
It. In order to generate the paired input image It−1 for the
network, the process randomly samples a Gaussian relative
motion transformation T t

t−1 ∈ SE(3) centered on the identity
relative transform to render the prior frame It−1. During
training, data augmentations involving random HSV shift,
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Fig. 3: (a) Physics-aware, high-fidelity synthetic training data are augmented
via domain randomization. (b) 6D pose tracking on RGBD image observations
streamed from the camera.

Gaussian noise, Gaussian blur, and depth-sensing corruption
are applied to the RGB and depth data in frame It, following
bi-directional domain alignment techniques [15]. Training on
synthetic data takes 250 epochs and is readily applicable to
real world scenarios without fine-tuning.

During the task execution, the proposed process tracks all
manipulated objects at 30Hz, and provides 6D poses for
the planning and control module (Fig. 2). Before grasping,
the initial 6D pose of each object on the support surface is
estimated once via RANSAC-based plane fitting and removal
[57], followed by a single-shot pose estimation approach [58] to
initialize tracking. The tracking process is robust to occlusions
and does not require pose re-initialization during manipulation,
which is continuously executed until task completion.

B. Learning Object-Agnostic Within-hand Manipulation

The employed within-hand manipulation model of a 3-
fingered, tendon-driven underactuated hand described is object-
agnostic. It relies solely on the reference velocities of the object
to suggest manipulation actions [18]. This learned model is
realized by first generalizing grasp geometry – the object is
represented according to the relative pose of the fingertip
contacts after a grasp is acquired. From these contacts, it is
possible to strictly define an object frame, X , according to
Gram-Schmidt orthogonalization. More formally, given k points
of contact, P = p1, . . . , pk where pi ∈ R3, ∀i ∈ {1, . . . , k}
between the fingertips and the object with respect to the hand
frame, we use P to calculate X in a closed form [59]. Notably,
the relative position of contacts in P can sufficiently represent
the local geometry of the object in its manipulation plane.
From this observation, it is possible to calculate the contact
triangle relationship, or distance between the fingertips,

T = (||p1 − p2||2, ||p2 − p3||2, ||p3 − p1||2) ∈ R3 (1)
where T = (T1, T2, T3) (Fig. 4). Note that this representation
generalizes object geometry, but not necessarily object dynam-

ics, as the global geometry, Γ, and associated inertia terms of
the object are disregarded for simplicity.

Given the object frame Xt ∈ SE(3) at time t, it is possible
to model the configuration, and thus the next-state object
frame Xt+1 of an underactuated system given an actuation
velocity ȧ based on the system’s energy. With the hand’s joint
configuration, q ∈ R

∑k
i=1 ji , which has ji joints per finger, the

system’s equilibrated joint configuration q∗ can be calculated
such that the sum of potential energies between the fingers is
minimized. As in any mechanically compliant mechanism, an
underactuated system’s degrees of actuation are fewer than that
of its configuration, i.e., dim(a) < dim(q). For the adaptive
hand, the fingers are actuated via a tendon transmission routed
through the joints, providing a constraint:

raiȧi = rpiq̇pi + rdiq̇di, (2)

where rai, rpi, rdi represent pulley radii of the actuator and
joints in finger i, respectively, and ȧi, q̇pi, q̇di are the velocities
of the actuator and joints, respectively (Fig. 4). Given this
tendon constraint, and while ensuring Tt = Tt+1, i.e., by
maintaining integrity on the contact triangle relationship, it is
possible to solve for the equilibrated joint configuration:

q∗ = arg min
q

∑
i

Ei(qi) s.t. (1), (2), (3)

where Ei represents the potential energy in the ith finger:

Ei(qi) =
1

2
(kpq

2
pi + kdq

2
di). (4)

Through Eq. (3), which has been shown to successfully
transfer physically to an underactuated hand [18], this work
efficiently generates system dynamics data by varying relation-
ships in T and providing random actuation velocities ȧ to the
hand. In doing so, we fill a buffer of 200k object transitions,
(Xt, ȧ) −→ Xt+1, from 50 contact triangle relationships. By
taking the element-wise difference of Xt and Xt+1, we calculate
Ẋ ∈ se(3). Given these action-reaction pairs, we train a
fully-connected network to compute the model, or partially
constrained Jacobian:

g : (Ẋx, Ẋy) −→ ȧ (5)

that maps the desired rotational velocity of the object about the
x− and y−axes to an actuation velocity of the hand, ȧ ∈ R3.

(a) (b)

Fig. 4: (a) Object geometry can be generalized by its resultant contact triangle
relationship, T . (b) The response of a tendon-driven underactuated finger
given actuation is dependent on spring constants and pulley radii.
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the hole contacts to align for insertion, while aided by virtual spring forces kc supplied by compliance.

IV. INSERTION STRATEGY

Assume the geometry of the peg, Γ, consists of two opposing,
parallel faces with a continuous or discrete set of sidewalls
connecting them, where, for the set of all antipodal point
contacts on the object’s sidewalls, each pair in the set has
parallel contact normal force vectors. Conceptual examples of
Γ could include standard cylinders or triangular prisms. This
section analyzes spatial peg insertion as a planar problem as
depicted in Fig. 5, i.e., along cross sections of the object. This
approach leverages the notion that in practice we can rely on
compliance and closed loop control to account for any out of
plane misalignment as described in Sec. IV-B.

A. The Condition for Object Insertion

Consider that a rigid peg is grasped such that its antipodal,
i.e. set of opposing, contacts are distanced do from one another
across the width of the object. Moreover, the location of the
contacts defines the height, h, of the grasp. Given do and h, it
is possible to define the object’s grasp frame, X ∈ SE(2), with
a pose determined by the grasp-contact vector. The task goal is
to insert a peg into its corresponding rigid hole, H ∈ SE(2),
which is parameterized by a width of dh. Given Γ, it is possible
to define a manipulation frame, M ∈ SE(2), defined by a
transformation, T , from X , that acts as the initial controlled
frame for object insertion. Determining M for generalized
geometries is achieved through PCA, as discussed in the
accompanying Appendix.

In the context of insertion tasks, this work investigates the
role of object rotation via within-hand manipulation while
keeping the relative translational pose between the object frame
and the hole fixed. To do so, the process vertically aligns H,
M, and X such that the horizontal component of T is equal to
0. This therefore sufficiently defines an initial object rotation
and sets up spatial peg insertion as a planar problem with a
starting angle:

β0 = tan−1(
do
2h

) (6)

to satisfy the alignment constraint. It is possible to start in a
different angle than β0, but the position of M will need to

change accordingly. Once β0 is achieved, the system controls
a vertical displacement, δ, between M and H, which can be
calculated in closed form such that a pure rotation about X
places the object in a state aligned with the hole. This final
angle of alignment, βf , can be calculated as:

|βf |≤ cos−1(
do
dh

), (7)

which is dependent on the peg’s two-contact case (Fig. 5.d).
Thus, the initial insertion height δ before rotation is given as

δ = h (cos(β0) + cos(βf )) +
do
2

(sin(β0) + sin(βf )) . (8)

The sequential progression of steps for rotation-based object
insertion are outlined in Fig. 5. In summary: 1) Rotate M
such that it aligns with H; 2) Translate M downward to δ;
and, 3) Rotate about X until the two-contact case is overcome,
i.e., rotation of X < |βf |, and the peg is aligned with the
hole. Once satisfied, the remaining actions for insertion seek
object translation downward while avoiding jamming along the
sidewalls. To account for this, this work leverages compliance
and controlled object spiral motions [32] provided by within-
hand manipulation.

On the Role of Compliance: While the above formulation
holds for rigid insertion in the relaxed planar representation,
the bounds of δ are extremely small for tight tolerance cases
(< 1.5mm if perfectly aligned). Moreover, when considering
any out-of-plane misalignment in the true additional dimension
that is not modeled, the peg can easily become off-centered
with respect to the hole. The features inherent to compliance
benefit this task, as it not only enables adaptability to the
out-of-plane misalignment, but also allows to relax these strict
bounds of δ by developing a compliance-enabled insertion
distance, δc (Fig. 5.c). This deviation in depth is nontrivial
to determine in its closed form – as it depends on models of
the manipulator-hand system’s compliance, the forces that can
be applied to the object via the hand, and an approximation
of the nonlinear contact dynamics associated with peg-hole
interactions (Fig. 5.d). Although difficult to model, a properly
tuned translational deviation in δc towards the hole from δ is



advantageous, as it encourages contact between the hole and
the object prematurely so that the contact constraints encourage
and assist in alignment before insertion.

B. Insertion Algorithm

The proposed system is controlled by closing the loop
through visual feedback. In real time, the visual tracker
monitors the state of the task space; specifically, the relative
pose between the peg and the hole. This relationship is used to
adjust the control reference setpoints of both the manipulator’s
joints and the tendons in the hand, regardless of their believed
configuration states. By continually servoing the object’s SE(3)
pose relative to the hole, it is possible to complete tight insertion
tasks while adapting to external disturbances and noisy pose
estimates (Sec. V).

Vision-Driven Object Insertion: The insertion sequence
shown in Alg. 1 begins with the object tracker asynchronously
monitoring the pose of both, the object and the hole. Once the
object is grasped off of the support surface, the precomputed
transformation, T , via PCA (9), from the manipulation frame,
M, can be rigidly attached to X .

Algorithm 1 Vision-Driven Object Insertion

Input: Γ, (β0, βf , δc, γ, σ) .object geometry,
hyparams(initial object angle, final object angle, insertion
depth, alignment tolerance, step length)

1: T, π1 ← PCA(Γ) .POM transform, principal axis (9)
2: tracker.start async perceive(Γ) .start tracking thread
3: tracker.attach transform(T ) .attach T to X for M
4: X ,H ← tracker.get poses() .object & hole 6D poses
5: system.grasp(X , π1) .grasp and lift object
6: hand.rotation servo(tracker, π1, β0) .Alg. 2
7: M,H ← tracker.get poses()
8: arm.move above(M,H) .place edge above hole
9: arm.translation servo(tracker, δc, γ, σ) .Alg. 3

10: hand.rotation servo(tracker, π1, βf ) .Alg. 2
11: system.spiral insertion() .coordinated spiral insertion

Upon doing so, within-hand manipulation is performed such
that the initial insertion angle, β0 from Sec. IV-A is achieved
along the principal axis, π1 (Alg. 2). The velocity references,
Ẋx and Ẋy , during this within-hand manipulation process are
chosen so as to minimize any rotation not along this principal
axis. Upon reaching β0, the robot arm plans a trajectory such
that the resultant position of the manipulation frame is directly
above the hole. Due to the robot’s imprecision, however, the
desired pose of M above H is often not accurately achieved.

At this point, the translation servo method begins by
sequentially adjusting the control reference of the manipulator
based on feedback from the object tracker (Alg. 3). Specifically,
given the hyper-parameter γ, if the hole xy-plane translational
difference betweenM and H is within γ, the manipulator will
move a step, σ, which can be fixed or adaptive, downward
towards the hole by adjusting the joint target values of the
robot. Otherwise, the robot will move in the Cartesian step,

σ, towards aligning M with H. This process is continually
repeated until the vertical threshold, δc, is reached.

Algorithm 2 Within-Hand Rotation Visual Feedback Control

Input: tracker, π1, θ ∈ {β0, βf}
.principal axis of rotation, object target angle

1: X ,H ← tracker.get poses() .object and hole 6D pose
2: R∆ ← X .R−H.R .relative rotation ∈ SO(3)
3: if θ is β0 then .increase angle for edge insertion
4: while H.R(π1)−X .R(π1) ≤ β0 do
5: Ẋ ← [−R∆(π1x

),−R∆(π1y
)] .rotate along π1

6: ȧ← hand.model.predict(Ẋ ) .Eq. (5)
7: hand.actuate(ȧ) .send action to motors
8: X ,H ← tracker.get poses()
9: R∆ ← X .R−H.R

10: if θ is βf then .decrease angle, align with hole
11: while R∆x ≥ βf or R∆y ≥ βf do
12: Ẋ ← [R∆x, R∆y]
13: ȧ← hand.model.predict(Ẋ )
14: hand.actuate(ȧ)
15: X ,H ← tracker.get poses()
16: R∆ ← H.R−X .R

Algorithm 3 Arm Translation Visual Feedback Control

Input: tracker, δc, γ, σ
.insertion depth, alignment tolerance, step length

1: M,H ← tracker.get poses()
2: while M.tz −H.tz > δc do .check translation along z
3: E∆x, E∆y, E∆z ← 0, 0, 0
4: if −γ ≤M.tx −H.tx ≤ γ and

− γ ≤M.ty −H.ty ≤ γ then
5: E∆z ← −σ .servo end effector pose downward
6: else
7: εx ← X .tx −H.tx
8: εy ← X .ty −H.ty
9: E∆x, E∆y ← −sgn(εx)σ, −sgn(εy)σ

.servo translation to align with hole
10: A ← arm.motion planner(E∆) .plan motion delta
11: arm.execute(A) .move end effector
12: M,H ← tracker.get poses()

The hand then attempts to reorient X with H while
maintaining a small downward force between the object and
the hole’s edges, provided by system compliance and δc.
Orientation alignment of the peg is solely achieved through
within-hand manipulation (Alg. 2); where the object no longer
follows rotations along π1, but now by the true rotational
difference R∆ between the hole and the peg. This process
continues until the rotational angle is less than βf .

The algorithm concludes by performing a spiral insertion
technique along the roll and pitch axes of the object. If the
object were unconstrained, the hand’s actuation would provide
a spiral pattern of M, as in related work [32, 20], while the
arm attempts to slowly translate downward. This coordinated
hand/arm motion helps limit jamming and encourages proper
insertion until the object is fully seated into the hole.



V. EXPERIMENTS

We test the proposed insertion framework using a robotic
system comprised of a low-impedance manipulator for object
translation, an underactuated hand performing within-hand
manipulation for object rotation, and a low latency 6D object
pose tracker based on RGBD data (Figs. 1, 7). The manipu-
lator, a 7-DOF Barrett WAM arm, utilizes the RRTConnect
algorithm in OMPL [60] and is imprecise due to an inaccurate
internal model of its true system dynamics, with translational
errors as large as 2.6cm. The end effector, an adapted Yale
OpenHand Model O [61], is a mechanically adaptive hand
comprised of six joints and three controlled actuators, and is
not equipped with joint encoders or tactile sensors. Changes to
the open source design include joint bearings to reduce friction,
and rounded fingertips to assist in within-hand manipulation.
Finally, the 6D object pose tracker, which was calibrated to the
robot’s world frame, takes the RGBD images streamed from
an external, statically mounted Intel Realsense D415 camera,
and in real-time, estimates the 6D pose of the manipulated
object to provide feedback for the control loop.

(a) (b) (c) (d)

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n)

(o)

38.1

50.8

65.9

57.1

5822
38.1

Tight Insertion Tasks Open World Tasks

Fig. 6: Experimental objects considered in the Tight Tolerance Tasks and
Open World Tasks. All lengths are in mm and points on object faces
indicate PCA-determined edge manipulation frames. (a) small circle, (b) large
circle, (c) pear, (d) triangle, (e) rectangle, (f) YCB 004 sugar box, (g) YCB
008 pudding box, (h) YCB 009 gelatin box, (i) YCB 040 large marker, (j)
green charger. (k)-(n) YCB 065-cups.

The system is tested via numerous insertion tasks. First, five
3D printed peg-in-hole objects were designed with < 0.25mm
hole tolerances and were painted different colors and/or patterns,
for evaluation on both textured and textureless objects. These
objects are described based on their face geometries: namely,
the small circle, large circle, pear, triangle, and rectangle (Fig.
6). Insertion was tested for each of these objects individually,
where we then sequentially isolate individual system compo-
nents – compliance, control, and sensing – to evaluate their
effects on task success. Finally, we assessed the efficacy of
the approach with six open world insertion tasks, involving
nine different objects with diverse and challenging properties
(textureless, reflective, flat and thin shapes, etc.), to underscore
the utility of the framework in complex manipulation scenarios
(Fig. 7).
A. Tight Tolerance Object Insertion

This test involved 12 insertions for each of the five objects
using Alg. 1. Upon task reset, objects were placed back onto
the support surface in no predefined pose; it was up to the
system to initialize and track this pose and reacquire a grasp.
The results, presented in Table I, depict the planning time, total
execution time, number of hand actions used for within-hand

TABLE I: PRECISION INSERTION FOR PROPOSED SYSTEM

Obj. Planning (s) Total (s) Hand Actions Success

Small Cir. 4.1 ± 0.92 94.8 ± 10.78 48.9 ± 8.76 10/12
Large Cir. 3.5 ± 0.52 88.8 ± 11.54 44.9 ± 9.10 11/12

Pear 4.0 ± 1.05 77.9 ± 10.34 35.2 ± 8.62 9/12
Triangle 3.7 ± 2.08 90.9 ± 14.00 27.4 ± 4.60 8/12

Rectangle 6.2 ± 3.53 106.4 ± 23.43 40.9 ± 5.90 9/12

manipulation, and success rate for each object scenario. The
large circle had the highest rate of success compared to any of
the other objects, while the triangle had the lowest. The two
objects that did not have curved edges, i.e., the triangle and
the rectangle, were the most difficult out of the five to insert.
The interpretation is that the constraints of the task, i.e., sharp
edges of the object’s face, did not enable system compliance
to easily align the yaw rotation of the object with the hole.
This posed a slight challenge for the relaxed planar insertion
strategy from Sec. IV-A, and required precise yaw rotation via
the manipulator, which was not required for the other objects.

TABLE II: SYSTEM ABLATION ANALYSIS

Obj. Planning (s) Total (s) Hand Actions Success
R

ed
uc

in
g

C
om

pl
ia

nc
e

Rigid Hand / Compliant Arm / Rigid Hole
Large Cir. 7.8 ± 1.65 62.3 ± 8.74 - 6/12

Pear 11.0 ± 6.76 76.4 ± 28.10 - 5/12
Rectangle 12.6 ± 4.37 92.3 ± 24.95 - 3/12

Rigid Hand / Rigid Arm / Compliant Hole
Large Cir. 1.4 ± 0.12 65.6 ± 3.53 - 9/12

Pear 1.5 ± 0.13 68.9 ± 3.92 - 4/12
Rectangle 1.5 ± 0.12 71.3 ± 4.35 - 12/12

Rigid Hand / Rigid Arm / Rigid Hole
Large Cir. 2.2 ± 0.37 88.9 ± 10.48 - 6/12

Pear 2.2 ± 0.25 91.4 ± 8.46 - 0/12
Rectangle 2.1 ± 0.14 90.4 ± 13.09 - 2/12

L
im

iti
ng

C
on

tr
ol

Naive (omit Alg. 2)
Large Cir. 4.8 ± 1.78 78.0 ± 22.64 - 2/12

Pear 7.7 ± 1.25 81.9 ± 10.13 - 0/12
Rectangle 8.9 ± 0.95 103.5 ± 5.78 - 0/12

Open Loop (omit Alg. 2 and Alg. 3)
Large Cir. 3.8 ± 1.09 53.47 ± 9.78 - 0/12

Pear 5.1 ± 1.62 61.96 ± 4.01 - 0/12
Rectangle 5.1 ± 1.22 65.45 ± 5.18 - 0/12

N
oi

sy
Se

ns
in

g

Uniform Noise – 5mm / 5◦

Large Cir. 5.9 ± 0.99 127.5 ± 18.11 50.6 ± 18.23 7/12
Pear 10.7 ± 2.29 138.9 ± 12.46 40.2 ± 7.99 4/12

Rectangle 9.9 ± 1.70 137.1 ± 6.28 49.7 ± 4.19 4/12
Uniform Noise – 10mm / 10◦

Large Cir. 11.7 ± 2.29 148.5 ± 12.46 39.6 ± 11.19 1/12
Pear 12.6 ± 0.33 134.1 ± 8.82 34.9 ± 7.19 0/12

Rectangle 13.4 ± 1.97 212.6 ± 13.58 51.9 ± 11.79 0/12

B. System Analysis

Several ablation studies were performed using three of
the five evaluated objects – the large circle, the pear, and
the rectangle – in order to better understand how different
components of the system contribute to task success. In
particular, these tests evaluate the effects of: 1) reducing system
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Fig. 7: (a) System setup overview. (b) Tight tolerance insertion of 5 peg geometries, highlighting the observational/external view and the tracked 6D pose via
the RGBD camera. (c) System ablations include reducing compliance of the hand and the arm, in addition to deliberately adding noise to the pose estimate. (d)
The open world task of plug insertion is highlighted, showcasing the sequence of actions taken from grasp to insertion. (e) Five other open world tasks were
also evaluated – box packing, marker insertion, and cup stacking. Please refer to the supplementary video for a complete overview of evaluated tasks.

compliance via the hand, the arm and the environment; 2)
performing insertion with differing levels of feedback, i.e.,
naive and open loop control; and, 3) deliberately introducing
noise into the object tracker’s pose estimation to simulate higher
perception uncertainty. (Table II). The Appendix describes how
the system compensated for disturbances.

Reducing system compliance: To test the role of com-
pliance for task success, three altered system configurations
were developed: 1) A system with a rigid, parallel Yale
Openhand Model GR2 gripper [62] with custom fingertips
as to immobilize the object to the end of a low-impedance
manipulator; 2) A system with a rigid 3-fingered Robotiq
hand affixed to the end of a rigid Kuka IIWA manipulator
but allowing compliance in the environment by attaching a
standard packing box at the base of the hole; and, 3) The
same rigid robot setup with the Robotiq hand and the Kuka

manipulator but with a fixed hole, removing any presence of
compliance. Fig. 9 in the Appendix highlights the different
variations considered in terms of compliance. Twelve insertions
for each of the three test objects were performed in each
case while following Alg. 1. During task execution, all object
rotations that were performed by the hand originally, were
now controlled solely by the manipulator. Results indicate, as
presented in Table II, that compliance at some level in the
arm/hand/object system is beneficial for task completion. The
worst success rate arises for a fully rigid system, task, and
environment. The Kuka setup with a compliant hole performed
well, especially for the difficult rectangle insertion task, assisted
by the precision of the object tracker and the higher accuracy
of the rigid Kuka manipulator. Planning time between systems
varied due to differences in computational resources, and thus
it is not directly compared.



Naive and open loop control: These tests evaluate the
effects of relinquishing feedback by limiting the amount
of information transferred from the tracker to the insertion
algorithm. This is tested both via naive control and an open
loop configuration of the system. Naive control attempted
to perform the same sequence of actions as in Alg. 1, but
did not use any within-hand manipulation of the object after
grasping, i.e., visual servoing was purely translational with the
manipulator and Alg. 2 was not used. The compliant hand in
this case effectively acted as a remote center of compliance
[29, 63]. In open loop testing, a single plan was computed
and executed from the starting grasp configuration up until
object insertion without utilizing in-hand manipulation or any
visual feedback during the task, i.e., neither Alg. 2 or Alg. 3
were used. Notably, both of these ablations performed very
poorly in testing, as the imprecision of the manipulator and lack
of a controlled object rotation to aid in insertion, drastically
impeded task success (Table II).

Noisy pose estimate: The final ablation experiment eval-
uated how the accuracy of pose estimation played a role in
task success. While following the same sequence of actions
as in Alg. 1, uniformly sampled noise was introduced into
the pose output of the tracker at two different levels. The first
test introduced uniform sampled noise within 5mm and 5◦ to
the pose estimate. The second test introduced uniform noise
within the range of 10mm and 10◦. As indicated by the results
in Table II, the system was largely able to compensate for
this noise at the 5mm/5◦ level, successfully completing 7 for
the large circle, 4 for the pear, and 4 for the rectangle out
of 12 executions. The additional noise from the 10mm/10◦

test drastically decreased success. The total task time for both
noise level increased significantly as compared to the baseline
trials in Sec. V-A. This increase in execution time is attributed
to Alg. 3, where noise continually moves M outside of the γ
threshold insertion region, so the manipulator slowly oscillates
back and forth until δc is achieved. Conclusively, the ability
of the algorithm to complete sub-mm accuracy insertion tasks
with purposefully added noise indicates the robustness of the
overall framework.

C. Open World Tasks

Finally, a series of open world tasks were attempted to
highlight the utility of the proposed system in complex
manipulation scenarios: marker insertion, plug insertion, box
packing, and cup stacking (Fig. 7(e)). These tests mostly utilize
objects contained in the YCB Object and Model Set [55], which
provides object CAD models for tracking. The charging plug,
however, was 3D scanned using [53] with an inexpensive
RGBD sensor, providing a coarse representation of the true
object model (Fig. 6). The goal for each task was to grasp,
manipulate, and insert the object so as to reach its desired
hole configuration, which was predefined depending on task
requirements. Of the six tasks, three – gelatin box, pudding
box, and sugar box – came in the form of packing, where a
single box was removed from the case and had to be replaced.
Two other tasks – marker insertion and plug insertion – were

performed such that the marker was placed into a holder and
the plug was inserted into an outlet. The most difficult of
the open world tasks corresponded to cup stacking. This task
requires sequential tracking of both the cup that is to be stacked
on top of and the cup being manipulated. The proposed system
is able to complete this task placing four cups successfully on
top of one another. These evaluations showcase the tracking
and manipulation capabilities of the proposed system, which
are also highlighted in the supplementary video.

VI. DISCUSSIONS AND FUTURE WORK

This manuscript presented a vision-driven servoing frame-
work that tackles the problem of controlling compliant, pas-
sively adaptive mechanisms for precision manipulation. The
framework is able to perform 5 tight tolerance and 6 open
world tasks – regardless of whether the object CAD model
was imperfect or if pose estimate feedback was noisy (Sec.
V-C,V-B). In summary, the contributions of this work are
fourfold:

• Precision control with minimal on-board sensing: The
framework can reliably complete an array of insertion
tasks – including those with tight tolerances – without
force-torque sensors on the manipulator or tactile sen-
sors/joint encoders on the compliant hand.

• Passively compliant within-hand manipulation for in-
sertion: The system utilizes controlled hand actions to
extend the task’s workspace and provides an added layer
of compliance to limit object insertion jamming.

• Vision-driven feedback controller: The servoing inser-
tion algorithm is able to generalize to different object
geometries, and can be easily utilized for other robot
assembly and insertion tasks given compliance.

• Utilizing the environment to solve the task: The control
strategy intentionally leverages premature contacts by
relaxing the rigid constraints of the task, which is possible
and effective given compliant systems. In this way, this
work applies the principle of ”extrinsic dexterity” [19] in
the context of insertion tasks with tight tolerances.

There are several aspects of the proposed system that are
worth pursuing in future work: 1) Adapt the insertion algorithm
so as to better leverage compliance for complex out-of-plane
geometry, such as in cases of sharp edges or non-convex objects;
2) Optimize a passively compliant hand design that is capable
of performing both finger gaiting and in-hand manipulation
with a large workspace; 3) Develop and integrate a model-free
perception tracker into the visual feedback framework to reduce
dependence on the object’s CAD model; 4) Incorporate learning
into the insertion algorithm so as to first automatically tune
any object-specific hyperparameters and then incrementally
develop more effective strategies in a RL fashion; and finally,
5) Increase difficulty of the tasks by performing more advanced
and sequential assembly procedures, such assembling toys or
simple pieces of household furniture.
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[52] M. Wüthrich, P. Pastor, M. Kalakrishnan, J. Bohg, and S. Schaal,
“Probabilistic object tracking using a range camera,” in 2013 IEEE/RSJ
International Conference on Intelligent Robots and Systems. IEEE,
2013, pp. 3195–3202.

[53] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli,
J. Shotton, S. Hodges, D. Freeman, A. Davison et al., “KinectFusion:
real-time 3D reconstruction and interaction using a moving depth camera,”
in Proceedings of the 24th annual ACM symposium on User interface
software and technology, 2011, pp. 559–568.

[54] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
“Domain randomization for transferring deep neural networks from
simulation to the real world,” in 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2017, pp. 23–30.

[55] B. Calli, A. Singh, J. Bruce, A. Walsman, K. Konolige, S. Srinivasa,
P. Abbeel, and A. M. Dollar, “Yale-CMU-Berkeley dataset for robotic
manipulation research,” The International Journal of Robotics Research,
vol. 36, no. 3, pp. 261–268, 2017.

[56] B. Galerne, Y. Gousseau, and J.-M. Morel, “Random phase textures:
Theory and synthesis,” IEEE Transactions on image processing 2010,
vol. 20, no. 1, pp. 257–267, 2011.

[57] R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),” in
2011 IEEE International Conference on Robotics and Automation, 2011,
pp. 1–4.

[58] B. Wen, C. Mitash, S. Soorian, A. Kimmel, A. Sintov, and K. E.
Bekris, “Robust, occlusion-aware pose estimation for objects grasped by
adaptive hands,” in 2020 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2020, pp. 6210–6217.

[59] K. Tahara, S. Arimoto, and M. Yoshida, “Dynamic object manipulation
using a virtual frame by a triple soft-fingered robotic hand,” in 2010
IEEE International Conference on Robotics and Automation, 2010, pp.
4322–4327.

[60] I. A. Sucan, M. Moll, and L. E. Kavraki, “The open motion planning
library,” IEEE Robotics & Automation Magazine, vol. 19, no. 4, pp.
72–82, 2012.

[61] R. Ma and A. Dollar, “Yale OpenHand Project: Optimizing Open-Source
Hand Designs for Ease of Fabrication and Adoption,” IEEE Robotics

Automation Magazine, vol. 24, no. 1, pp. 32–40, 2017.
[62] W. G. Bircher, A. M. Dollar, and N. Rojas, “A two-fingered robot

gripper with large object reorientation range,” in 2017 IEEE International
Conference on Robotics and Automation (ICRA), 2017, pp. 3453–3460.

[63] J. Loncaric, “Normal forms of stiffness and compliance matrices,” IEEE
Journal on Robotics and Automation, vol. 3, no. 6, pp. 567–572, 1987.

[64] S. Sajjan, M. Moore, M. Pan, G. Nagaraja, J. Lee, A. Zeng, and
S. Song, “Clear Grasp: 3D Shape Estimation of Transparent Objects for
Manipulation,” in 2020 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2020, pp. 3634–3642.

http://proceedings.mlr.press/v78/viereck17a.html
http://proceedings.mlr.press/v78/viereck17a.html
https://journals.sagepub.com/doi/full/10.1177/0278364919887447
https://journals.sagepub.com/doi/full/10.1177/0278364919887447
https://arxiv.org/abs/1812.00568
https://arxiv.org/abs/1812.00568
https://arxiv.org/abs/1812.00568
https://arxiv.org/abs/2011.03882
https://arxiv.org/abs/2011.03882
https://corlconf.github.io/paper_149/
https://corlconf.github.io/paper_149/
https://corlconf.github.io/paper_149/
https://rse-lab.cs.washington.edu/papers/se3posenets_icra18.pdf
https://rse-lab.cs.washington.edu/papers/se3posenets_icra18.pdf
https://journals.sagepub.com/doi/full/10.1177/0278364913495721
https://journals.sagepub.com/doi/full/10.1177/0278364913495721
https://ieeexplore.ieee.org/document/8263622
https://ieeexplore.ieee.org/document/8263622
https://ieeexplore.ieee.org/document/9131812
https://ieeexplore.ieee.org/document/9131812
https://ieeexplore.ieee.org/document/9131812
https://arxiv.org/pdf/2102.06279.pdf
https://arxiv.org/pdf/2102.06279.pdf
https://ieeexplore.ieee.org/document/7487184
https://ieeexplore.ieee.org/document/6696810
https://dl.acm.org/doi/10.1145/2047196.2047270
https://dl.acm.org/doi/10.1145/2047196.2047270
https://ieeexplore.ieee.org/document/8202133
https://ieeexplore.ieee.org/document/8202133
https://journals.sagepub.com/doi/full/10.1177/0278364917700714
https://journals.sagepub.com/doi/full/10.1177/0278364917700714
https://ieeexplore.ieee.org/document/5484588
https://ieeexplore.ieee.org/document/5484588
https://ieeexplore.ieee.org/document/5980567
https://ieeexplore.ieee.org/abstract/document/9197350
https://ieeexplore.ieee.org/abstract/document/9197350
https://ieeexplore.ieee.org/document/5509372
https://ieeexplore.ieee.org/document/5509372
https://ieeexplore.ieee.org/document/6377468
https://ieeexplore.ieee.org/document/6377468
https://ieeexplore.ieee.org/document/7859295
https://ieeexplore.ieee.org/document/7859295
https://ieeexplore.ieee.org/document/7989394
https://ieeexplore.ieee.org/document/7989394
https://ieeexplore.ieee.org/abstract/document/1087148
https://ieeexplore.ieee.org/abstract/document/9197518
https://ieeexplore.ieee.org/abstract/document/9197518


time

System Disturbance Compensation

Hole Disturbance Arm Disturbance Object Disturbance Hole Disturbance Successful Insertion

6D
 O

bj
ec

t P
os

e 
Tr

ac
ke

r
O

bs
er

va
tio

na
l V

ie
w

0:00 1:39

Fig. 8: The proposed system is robust to external disturbances imposed during task execution. In this task sequence, the pose of the hole, arm, and object are
all manually perturbed and the system recovers such that the object successfully reaches its goal configuration. Refer to the supplementary video for the
complete results.
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Fig. 9: The ablations make use of two manipulators with different levels
of compliance at the arm, hand, or environment level. (a) A Barrett WAM
serves as a low-impedance, compliant manipulator and has been tested with
a compliant (left) and a rigid (right) hand; while the (b) Kuka IIWA is an
example of a rigid manipulator, which has been tested with a rigid hand and
a compliant (left) or rigid (right) hole.

APPENDIX

A. Selecting a Manipulation Frame

Selecting the best manipulation frame for object insertion,
as eluded to in Sec. IV-A, is important as the antipodal grasp
that defines M, limits the amount of torque that can be
applied by the contacts onto the object. Let’s consider two
objects that define different antipodal contact widths, d1

o and
d2
o, respectively. These distances fundamentally define the lever

arm by which contact forces can be applied by the manipulator,
or in the case of this work a hand, to the object. Assuming that

friction coefficients and contact force applications are identical,
the grasp with max(d1

o, d
2
o) will have a larger bound in the

torques than can be imparted onto the object to aid in insertion.
In addition to the case of supplying a larger torque to the

object, selecting the cross section of Γ that nearly maximizes
do is also advantageous, according to the defined condition
of insertion (Sec. IV-A). Fundamentally, while keeping the
tolerance between the hole and all candidate object cross
sections constant, as one increases do, βf will subsequently
decrease. By selecting do such that it is (near) maximized, this
condition is attempting to control the most difficult axis of the
object to insert while relying on compliance to account for any
out-of-plane reorientation of the other axis, which has a larger
βf . While the proposed approach for picking M is largely
heuristic, it suits well for insertion with a dexterous hand that
can apply much smaller forces than that of a manipulator.

More formally, in the case of selecting M ∈ SE(3), we
want to choose an insertion plane inside of an arbitrary 3D
object geometry, Γ, such that we maximize the projection of
T back onto the vector connecting the two antipodal contact
points. Assuming a given Γ, we can compute T and thus M
by analyzing properties of the object’s face. More formally,
consider that the outer geometry of a peg’s face is sufficiently
represented by a 2D point cloud of n points, i.e. F ∈ IRn×2. It
is possible to calculate the centroid of the point cloud, Fc, by
taking its dimension-wise mean. Using Principal Component
Analysis (PCA), we can compute the two principal axes of F ,
forming P = [π1, π2]. We solve for the outermost point, m, of
the point cloud geometry by solving the optimization problem,

m = arg max
f∈F

π1 · (f − Fc) (9)

The location of m, which lies, or almost lies, along π1, ap-
propriately maximizes the distance, do, between two antipodal
contacts on the 3D object geometry. We can then compute the
transformation T from m back to the object frame, X ∈ SE(3),
and thus providing our manipulation frame M∈ SE(3) that
will be used for guiding object insertion.



B. System Recovery to Disturbances

For robots that act in unknown, and contact-rich environment,
various forms of disturbances can arise depending on the robot’s
operating scenario. As aforementioned, these disturbances can
be self-induced, where for instance, a robot’s perception and
control noise causes the manipulated object to move differently
than the internal model predicted, and thus the system must
react. Similarly, disturbances can occur that are not caused
directly by the robot’s actions but by other objects or robots
in its environment, as in the case of highly cluttered scenarios.
We simulate such occurrences by deliberately disturbing the
arm, object, and hole during an execution (Fig. 8). More
specifically, during the task and in four separate occasions, we
move the location of the hole on the support surface, causing
our system to reactively adapt to the new goal configuration via
the continuous feedback from the object tracker. During this
sequence, we also push on the arm and the object, perturbing the
state of the hand-object configuration, as to require the system
to overcome such disturbances for successful insertion. These
task evaluations are included in this paper’s supplementary
video.

C. System Observations and Limitations

This subsection is part of a discussion on system limitations
(Sec. VI), and what can be improved about the system for
future advancements in robot assembly tasks.

Visual Perception: While the RGBD-based 6D pose tracker
is robust to a variety of objects with challenging properties such
as textureless, reflective, geometrical featureless, or thin/small
shapes, it struggles to track severely shiny, glossy, or transparent
objects, due to the degenerated depth sensing of the camera.
In future work, we hope to explore extending this framework
to these other types of scenarios with the techniques of depth
enhancement and completion [64]. In addition, the current
framework requires an object CAD model beforehand to
perform 6D pose tracking and for reasoning about the task of
peg-in-hole insertion. In future work, reconstructing the model
of novel objects on-the-fly [49] while with sufficient precision
to perform high-tolerance tight insertion tasks is of interest.

Inaccuracy of the Low-Impedance Manipulator for
Grasp Acquisition: While the manipulator leveraged in this
work was largely beneficial for task completion, it also intro-
duced difficulties in acquiring an initial grasp. Soft, compliant,
and underactuated hands are well suited for grasping, but in
cases of robot assembly where future within-hand manipulation
is necessary (especially with 40+ finger actions as we saw with
our tasks), acquiring a well-intended and stable grasp at the
fingertips is necessary from the start. Such grasps would be
especially possible with an accurate manipulator that is able
to appropriately position the hand over the object for grasping.
Though, for cases in this work where we saw task failure, it
was largely due to starting with a poor initial fingertip grasp,
which was directly attributed to the end effector’s deviation
from its commanded initial pose.
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