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Abstract Oil and gas pipeline leakages lead to not
only enormous economic loss but also environmental

disasters. How to detect the pipeline damages including
leakages and cracks has attracted much research atten-
tion. One of the promising leakage detection method

is to use lead zirconate titanate (PZT) transducers to
detect the negative pressure wave when leakage occurs.
PZT transducers can generate and detect guided waves
for crack detection also. However, the negative pressure

waves or guided stress waves may not be easily detected
with environmental interference, e.g., the oil and gas
pipelines in offshore environment. In this paper, a Gaus-

sian mixture model - hidden Markov model (GMM-
HMM) method is proposed to process PZT transduc-
ers’ outputs for detecting the pipeline leakage and crack

depth in changing environment and time-varying op-
erational conditions. Leakages in different sections or
crack depths are considered as different states in hid-
den Markov models (HMMs). One time domain dam-

age index and one frequency domain damage index are
extracted from signals collected from PZT transduc-
ers, then extracted indices are formed as observation
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emissions in the HMM. The observation probability dis-
tribution matrix in HMM is initialized by a Gaussian

mixture model (GMM) to address signal uncertainties.
After the HMM parameter initialization, an iterative
training process through the Baum-Welch algorithm is

applied to get the optimized parameters of the GMM-
HMM. Leakage location or crack depth is decided by
the maximum posterior probability from the trained

model. Two different experimental settings and results
show that the GMM-HMM method can recognize the
crack depth and leakage of pipeline such as whether
there is a leakage, where the leakage is.

Keywords Gaussian mixture model · Hidden Markove
model · Lead zirconate titanate (PZT) · Leakage

detection · Pipeline

1 Introduction

Thousands of miles of pipelines crisscrossed on the Gulf
of Mexico seafloor are the veins for offshore oil and gas

industry of the U.S. or even the whole world, while the
leaks and ruptures of those pipelines lead to not only
enormous economic loss but also environmental disas-
ters [1]. In the last few decades, many pipeline struc-
tural health monitoring techniques have been used to
monitor damages [1, 2]. One of the promising methods
for pipeline leakage detection is based on the negative
pressure wave (NPW) [3–7]. NPW is generated at the
leak point when the fluid or gas escapes in the form of
a high velocity jet [8]. Then the NPW propagates along
pipeline in both directions, i.e., the upstream and down-
stream of leakage point. The NPW can be detected by
lead zirconate titanate (PZT) transducers. PZT trans-

ducers are made of piezoelectric materials which can
convert mechanical energy to electrical energy and vice
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versa. This piezoelectric effect leads to PZT transducers
work as passive sensors or active actuators. PZT trans-
ducers can be effectively used as passive sensors to catch
the acoustic signals propagating along the pipeline. On
the other hand, the pipeline health condition needs to
be evaluated periodically to provide early warning. To
address this demand, PZT transducers have been used
in active sensing mode to detect crack [9]. PZT trans-
ducers have found lots of applications for structural
health monitoring. Samantaray et al. [10] used piezo-
electric transducer to monitor looseness in bolted joint
structure based on the electro-mechanical impedance
(EMI) method. Wang et al. [11] invented a wearable
PZT transducers which can be easily and noninvasively
“worn” onto the flanged valve for bolted joint in real-
time. Zhang et al. [12] proposed an active piezoelectric
sensing system for concrete crack detection based on the
energy diffusivity method. Gulizzi et al. [13] proposed
to use piezoelectric transducers bonded or embedded
to the structure for SHM based on the simultaneous
use of ultrasounds and EMI methods. Gong et al. [14]

developed an algorithm to process signals collected by
PZT sensor for automatic extraction of the stress wave
reflection period. In these applications, the structural

health condition is evaluated according to extracted
features. However, the changing environment and time-
varying operational conditions make the reliability of

damage evaluation facing the challenge in a real-world
application, especially for the offshore pipelines dam-
age detection in the submarine environment. In recent
years, many researchers set their sights on probabilistic

and statistical models to improve the damage evalua-
tion reliability under uncertainties . For example, coin-
tegration method was proposed to deal with the inter-

ference [15, 16]; a Dirichlet process Gaussian mixture
model (DP-GMM) is proposed to adaptively and un-
supervised learn structural data collected guided wave
sensor measurements [17]; a generalized hidden Markov
model (HMM) was used to classify the fault types and
fault severity levels of rolling bearings [18].

Among the existing probabilistic and statistical mod-
els, HMM has a strong capability in pattern classifi-
cation, especially for signals with non-stationary na-
tures and poor repeatability and reproducibility [19].
HMM and its variants have been extensively used for
speech recognition [20], hand gesture recognition [21],
handwritten word recognition [22], and newly applied
to spam SMS detection [23]. In recent years, this tech-

nology has been gradually applied to structural health
monitoring (SHM ) [24–28]. In the field of SHM, sev-
eral researchers have also applied the HMM to damage
evaluation. Rammohan and Taha [29] using a standard
HMM to model the simulated data of a pre-stressed

concrete bridge. Tschöpe and Wolff [30] studied the
HMM for damage degree classification on plate-like struc-
tures. Mei et al. [31] proposed an HMM based unweighted
moving average trend estimation (HMM-UMATE) method
to improve the damage evaluation reliability of real air-
craft structures under time-varying conditions. A Gaus-
sian mixture model-hidden Markov model (GMM-HMM)
was proposed to evaluate damage severity using guided
wave. These studies indicate that the HMM is robust
to uncertainties. The HMM and its variants have been
used for detect pipeline health monitoring also. Ai et
al. [32] designed a pipeline health monitoring and leak
detecting system based on extracted linear prediction
cepstrum coefficient from acoustic sensors. HMM was
used to recognize damage types. Qiu et al. [33] proposed
an early-warning model of compressor in gas pipeline.
A deep belief network (DNN) was used to extract sig-
nal features which formed the observation sequence for
HMM to estimate the operating status of compressor
unit. Tejedor et al. [34] proposed a smart surveillance
system for pipeline integrity detection using fiber op-
tic sensors. A GMM-HMM based pattern classification

combining with contextual feature information for de-
cision making was presented.

In this paper, a GMM-HMM method is proposed to

detect pipeline leakage and crack depths using piezo-
electric transducers. One time domain damage index
and one frequency domain damage index are extracted

from signals collected from PZT transducers. Different
from the existing work, our work aims to find the leak-
age location of a long pipeline based on the stress wave
collected by PZT sensors and detect the crack depth on

pipeline based on guided wave which is generated and
collected by PZT transducers.

2 GMM-HMM based leakage detection method

In this section, method for damage indices extraction
from the acoustic signals detected by PZT sensors is
discussed. Then the design and training of GMM-HMM
are presented.

2.1 Damage indices extraction

To establish the relationship between characteristics change
of the sampled waveform and damage parameters, two
damage indices are adopted to indicate the signal vari-
ations and serve as observations of the HMM model.
The first damage index (DI1) is a time-domain damage

index [35], defined in the Eq. (1):

DI1 = 1−

√ ∫
(s1(t)− s̄1)(s2(t)− s̄2) dt∫

(s1(t)− s̄1)2 dt
∫

(s2(t)− s̄2)2 dt
, (1)
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where s1(t) is the baseline waveform and s2(t) is the
comparison waveform at time t. The s̄1 and s̄2 is av-
erage value of s1(t) and s2(t). The baseline waveform
represent the incident waveform, and the comparison
waveform denote the captured waves detected by sen-
sors. Unity minus the absolute value of the Pearson cor-
relation coefficient is used as the time domain damage
index which can identify the signal difference. The time
domain damage index is different from the one used by
Mei et al. [31]. In [31], a signal energy was calculated
as the time domain damage index.

The second one (DI2) is a frequency-domain dam-
age index [31], the amplitude of peak frequency, as de-
fined in the Eq. (2):

DI2 = max
f1≤f≤f2

(|X(f)|), (2)

where X(f) =
∫ t2
t1
X(t)e−2πift dt, i =

√
−1, f1 and f2

are the start and stop frequency corresponding to the

selected frequency spectrum window.

2.2 HMM and the Baum–Welch algorithm

HMM is a powerful probabilistic and statistical model-
ing system and defines a probability distribution over

sequences of observations by invoking another sequence
of hidden states which has Markov dynamics. Each hid-
den state has a probability distribution over the possi-
ble leakage states. The posterior probabilities of leakage

states obtained by HMM can be used to obtain a prob-
abilistic evaluation of the pipeline damage.

To reduce the calculation complexity and keep the

model works efficiently, only first-order HMM with con-
tinuous observation is adopted in this study. A typical
HMM model can be defined by a three-tuple:

λ = {π,A,B}, (3)

where π is the initial probability distribution, A is the

state transition probability matrix and B is the obser-
vation probability distribution matrix or the emission
matrix. Common notations are used in this paper as
follows.

a) S: A set of N hidden states is denoted as S =
{s1, s2, s3, . . . , sN}. The state of model at time t is de-
noted by qt ∈ S, which denotes the current state.

b) V : A set of observed emissions in a specifically
range or a combination of time intervals. The observed
state at time t is denoted by Ot ∈ V .

c) π: an N × 1 initial probability distribution over
the state. πi is the probability that the Markov chain
will start in the state si. In general, we will denote it
by

π = (π1, π2, . . . , πN ). (4)

Initialization HMM with 0

Expectation step Maximization step
Recalculate the parameters of l+1

to maximize the model log-

likelihood which will not lower than 

the log-likelihood with 

Compute the log-likelihood of 

model based on the given 

observation sequence and current 

estimate 

END

START

|
l+1

l
| <

Y

N

Fig. 1 Baum-Welch algorithm (EM algorithm)

d) A: N ×N state transition probability matrix, N
is the number of hidden states. A = [aij ], 1 ≤ i, j ≤ N .

aij = P (qt+1 = sj |qt = si), (5)

where aij is the probability of transition from structural
damage state si at time t to structural damage state sj
at time t+ 1 and

∑N
j=1 aij = 1.

e) B: a state-dependent observation density column
vector B = (b1(Ot), b2(Ot), ..., bN (Ot))

τ , where bj(Ot)

is the probability density function of observation Ot at
time t since GMM is used to model the distribution of
two damage indices in this paper, given that it is in

state sj .

There are three basic problems in HMM: evaluation,
decoding, and learning [20]. Given a training set of ob-
servations, HMM is trained to find the optimized pa-

rameters λ = {π,A,B} by Baum-Welch expectation-
maximization algorithm (EM algorithm), which is a
learning problem of HMM. After the HMM trained, this
model can be applied to evaluate the damage states of
a new defective pipeline in various conditional environ-
ments.

The Baum-Welch algorithm is employed in HMM
to perform the training as shown in Fig. 1, which is an
iterative process to adjust the parameters of A, B, and
π.

It is an EM algorithm which uses dynamic program-
ming (forward and backward algorithm) to simplify the
calculation by terminating at iteration step j whenever

for a given small positive value d that

|logP (O|λj+1)− logP (O|λj)| < d, (6)

where O is the observation sequence and λj represents
the system after j-th step iteration.
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2.3 Gaussian mixture model

In this paper, the Gaussian mixture model[31, 36] is
chosen to model the distribution of observed damage
indices to obtain B in the hidden Markov model, which
elements are given by Eq. (7).

bj(Ot) =
K∑
k=1

cjkN(Ot, µjk, Σjk), (7)

where cjk, µjk and Σjk are the mixture weight, mean
vector, the covariance matrix of the K-component Gaus-
sian mixture model. The EM algorithm is implied in
the GMM model, which contains the 4 steps, i.e., ini-
tialization, expectation, maximization and iteration as
described below.
a) Initialization: Setting the number of mixture compo-
nent K, for each component initializing it with cjk, µjk
and Σjk.
b) Expectation step (E step): Calculate the posterior
probability based on current cjk, µjk and Σjk.

c) Maximization step (M step): Calculate new cjk, µjk,
Σjk based on the γ(ztk). γ(ztk) represents the proba-
bility of occupying mixture Gaussian component K of

structural damage state S at time t, which is used to
update the state-dependent observation density B.
d) Iteration: Iterate these steps until the GMM model
converges.

2.4 Flow chart of GMM-HMM method

Based on the proposed method in sections 2.2 and 2.3,
GMM-HMM method is shown in Fig. 2. There are five
major steps included in the damage detection process.

1) States of the HMM are designed based on the
placement of pipelines and sensors.

2) Stress waves are obtained from the sensors. Dam-
age indices are extracted from the stress waves. The
GMM model calculates the parameter of each Gaussian
model which formed matrix B in HMM.

3) A typical HMM model defined by a three-tuple:
λ = {π,A,B}. To initialize the HMM, π and A is
estimate by the prior probability.

4) After the parameter initialization of the HMM,
the training is implemented by an iterative process through
the Baum-Welch algorithm.

5) Given the trained HMM and the new observa-
tions to find out the current pipeline status.

3 Experimental Results

3.1 Leakage detection

3.1.1 Experiment setup

The purpose of the experiment is to detect pipeline
leakage utilizing PZT transducers. The negative pres-

sure wave is generated by leakage in the pipeline and
propagates along the pipeline from leakage point to
both ends.

The experimental pipeline that was built at the Uni-
versity of Houston is shown in Fig. 3. It consists of

a series of PVC plain-end pipe sections connected to-
gether to form a pipeline with a total length of 55.78
m. Six PZT sensors (P1 to P6, size is 15 mm × 10
mm) are directly mounted on the pipeline to detect

NPW signal arrival. A NI PXI-5105 digitizer is used
as a data acquisition system. The digitizer is triggered

Fig. 2 Flow chart of GMM-HMM model
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by the voltage signal of PZT sensor (p1) with the trig-
ger level at −0.02V and all the signals from six PZT
sensors are recorded simultaneously at a sampling rate
of 100 KS/s. The model is implemented based on the
hmmlearn Python package [37] and seqHMM R package
[38], ran on a desktop with 64 bit Windows 10 and Intel
core i7-8700 CPU. The seqHMM R package is used for
Gaussian mixture model component number K estima-
tion. The same computational environment is used for
leakage location detection and crack depth inspection
presented in Section 3.2. and 3.3. respectively.

Fig. 3 Settlement of the pipeline and sensors [4]

This experiment has served a published paper using
the latency of signal to locate leakage [4]. Although it is
not targeted to solve the problem of submarine pipeline
leakage detection, the experimental data are used to
validate the proposed GMM-HMM method.

Two states, leaking or not leaking, are chosen as the
states in left to right HMM model, where the transitions
only go from one state to itself or the unique follower.
Leakage signal collected by sensor P1 and baseline sig-
nals of three different sections used as original data of
the model.

3.1.2 Results of leakage detection

Signals of the different states are shown in Fig. 4. The
blue line represents leakage state signal and red solid

line represents no leakage state signal. For each test,
90000 samples have been used in calculation.

No leakage

Leakage    

V
o
lt
a
g
e
 (

V
)

Number of evaluation

Fig. 4 Signal of different states

The experiment of collecting signals for each leakage
state is repeated by 20 times. Randomly selected exper-
iment data from the same sensor are separated into two
groups, 70% of training data and 30% of testing data.
For training data, a total of 70 groups, 100000 samples
per group are collected.

Two damage indices, i.e, DI1 and DI2, in two states
are obtained by using Eq. 1 and Eq. 2 with 45 data
points for each state as shown in Fig. 5. 45 data points

D
I 2

State1 State2

Index

D
I 1

Fig. 5 Damage indices

for each state the time domain damage index DI1 and
frequency domain damage index DI2 in two states as
shown in Fig. 5. In the DI1, measurement scales from
-2.5 to -1.0 in state1 and scales from 1 to 3 in state2.
Form the distribution of data, the difference between
each state can be distinguished. The combined consid-

eration of two different dimensions DIs improves the
richness of the data and makes the results more re-
liable. The parameter of GMM can be calculated by
EM algorithm. After the calculation, damage indices
are gathered into two distributions which can be pre-
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dicted and measured by the negative log-likelihood as
shown in Fig. 6.

Negative log-likelihood detected by GMM 
103
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5.5

5.0
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3.0

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

102

101

100

6.5

Fig. 6 Negative log-likelihood predicted by GMM

As for this experiment, since the leaking and not
leaking are under investigation, the HMM state num-
ber has been set to 2. Also, by noting that two damage

indices are considered, the dimension of the correspond-
ing GMM is set by 2. By using the R seqHMM package,
the number of component number K is set as 2 simi-

lar as that in [38]. The parameters of HMM model are
initialized as:

π = [1, 0],A =

[
0.9 0.1
0 1

]
.

The parameters of two states HMM model are re-
assessed by the Baum-Welch algorithm based on Eq. 6.

The maximum number of iteration is set to 10 times
and the tolerance is 0.01 where EM will stop if the gain
in log-likelihood is below.

After training, without lose of generality we use
the same notations for state stationary probability and
state transmission matrix in the paper, the updated pa-
rameters are obtained as follows:

π = [1, 0],A =

[
0.983 0.017

0 1

]
.

Based on the two damage indices input, mixture weight
cjk, mean vector µjk and covariance matrix Σjk of the
2-component Gaussian mixture model obtained are as
follows:

As for the state 1, the corresponding two mixture
2-dimensional Gaussian models have the following pa-
rameters, respectively.

c1,1:2 = [0.794, 0.206],

µ1,1:2 = {
(

1.380

5.059

)
;

(
6.283

4.954

)
},

Σ11 =

(
0.0744 −0.0239
−0.0239 0.0501

)
;

Σ12 =

(
0.3572 0.0255
0.0255 0.0079

)
.

As for the state 2, the corresponding two mixture
2-dimensional Gaussian models have the following pa-
rameters, respectively.

c2,1:2 = [0.634, 0.366],

µ2,1:2 = {
(

1.380

5.059

)
;

(
6.283

4.954

)
},

Σ21 =

(
0.7378 0.0614
0.0614 0.0320

)
;

Σ22 =

(
0.2644 0.0496
0.0496 0.2192

)
.

The testing is performed after the training process of
the HMM model which parameters have been optimized.
The testing is used to validate the detection capability

of the HMM model and the result is showed in Fig. 7.
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Observation index

Detected State Sequence

Actual State Sequence

Fig. 7 Pipeline status output

The blue dashed line represents actual state sequence
and red solid line represents detected state sequence.

The accuracy of testing performance between detected
state sequence and actual state sequence are approach-
ing 92.51%. The accuracy is defined as the ratio of cor-
rectly detected states to the total number of state se-
quence.
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3.2 Leakage location detection

3.2.1 Experiment setup

In this experiment, all the data are based on the pre-
vious experimental setup. By changing the leakage state
to different leakage locations, the output of HMM model
will be changed to leakage location detection. As shown
in Fig. 8, there are three leakage locations correspond-
ing to three different states in HMM. State 1 denotes
leakage occurred at section 1 of pipeline, state 2 and 3
denote leakages occur at section 2 and 3 of pipeline.

Section 1 Section 2 Section 3

State 1

State 2

State 3

Leakage

Fig. 8 Schematic diagram of pipeline statues

Therefore, there are three states in this Markov pro-

cess which allowing for transitions from any emitting
state to any other emitting state.

Leakage signals are collected by sensor P1. As shown

in Fig. 9. The red solid line represents state 1, where
the leakage happened in section 1 of pipeline. The blue
dashed line denote state 2 where leakage happened in

section 2. The yellow solid line indicate state 3. A total
of 100 groups, 200000 samples per group are collected.
To reduce the computational volume, data for this ex-
perience are cropped from the original data by 90000
samples to each state.

Two damage indices are obtained by using Eq. 1

and Eq. 2 with 45 data points for each state in HMM
as shown in Fig. 10. These three states represent dif-
ferent leakage location on the pipeline. In the time do-
main DI1, there are clear difference between each states
which is not obvious in the raw data. The above pro-
cessing makes the size of the data suitable for HMM to
operate.By extracting DI the changes of states are pre-
sented more obvious without losing too many features.

3.2.2 Results of leakage location detection

The 100 groups of measurements from three different
leakage locations are separated into a training group

V
o
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a
g
e
 (

V
)

Number of evaluation

Fig. 9 Signal of different states

D
I 1

D
I 2

State 1 State 2 State 3

Fig. 10 Damage indices

and a testing group. In this experiment, leakage sec-
tion1, leakage section2, and leakage section3 are the
three hidden states of HMM. The dimension of GMM is
two because two damage indices are considered. By us-

ing the R seqHMM package, the number of component
number K is set to 3 similar as that in [38]. According
to the observation density estimation, the parameters
of GMM for each leakage state can be calculated by EM
algorithm. The parameters are initialized as:

π = [1, 0, 0],A =

 1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3

.
The parameters of three states HMM model are re-

assessed by the EM algorithm based on Eq. 6. The
maximum number of iteration is set to 10 times and
the tolerance is 0.01 where EM will stop if the gain
in log-likelihood is below. After training, the updated
parameters are obtained as follows:

π = [0, 0, 1],A =

 0.232 0.357 0.411
0 0.525 0.475

0.539 0.102 0.359

.
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Based on the two damage indices input, mixture
weight cjk, mean vector µjk and covariance matrix Σjk
of 3-component Gaussian mixture model obtained are
as follows:

As for the state 1, the corresponding three mixture
2-dimensional Gaussian models have the following pa-
rameters, respectively.

c1,1:3 = [0.298, 0.106, 0.596],

µ1,1:3 = {
(

8.640

20.344

)
;

(
9.835

22.195

)
;

(
1.785

21.097

)
},

Σ11 =

(
0.216 −0.622
−0.622 1.799

)
;

Σ12 =

(
0.062 −0.202
−0.202 1.301

)
;

Σ13 =

(
0.003 −0.057
−0.057 4.048

)
.

As for the state 2, the corresponding three mixture
2-dimensional Gaussian models have the following pa-

rameters, respectively.

c2,1:3 = [0.532, 0.390, 0.078],

µ2,1:3 = {
(

9.275

20.596

)
;

(
9.681

32.290

)
;

(
7.957

19.559

)
},

Σ21 =

(
0.009 0.053
0.053 2.838

)
;

Σ22 =

(
0.127 0.028
0.028 0.036

)
;

Σ23 =

(
0.098 −0.652

−0.652 4.367

)
.

As for the state 3, the corresponding three mixture
2-dimensional Gaussian models have the following pa-
rameters, respectively.

c3,1:3 = [0.389, 0.331, 0.280],

µ3,1:3 = {
(

9.572

22.944

)
;

(
9.474

22.675

)
;

(
5.619

19.705

)
},

Σ31 =

(
0.431 0.310
0.310 0.236

)
;

Σ32 =

(
1.009 −0.432
−0.432 0.5338

)
;

Σ33 =

(
1.262 −0.320
−0.320 0.219

)
.

Then, the testing is performed after the parame-
ter optimization of HMM model. The model calculates
posterior probability when new testing data are fed.
By maximizing the posterior probability, the detected

Detected State Sequence

Actual State Sequence

H
M

M
 D

e
te

c
te

d
 S

ta
te

s

Observation index

Fig. 11 Actual state vs. HMM detected state

state is obtained. The leakage location evaluation result
is shown in Fig. 11. The blue dashed line denote actual

state sequence. The red solid line indicate detected state
sequence giving by HMM. The accuracy of testing per-
formance between detected state sequence and actual
state sequence are approaching 94.81%, which shows

the high performance of this model.

3.3 Crack depth inspection

3.3.1 Experiment setup

The purpose of the experiment is to detect the depth of

cracks utilizing PZT sensors. The experimental pipeline
was built at the University of Houston is shown in Fig.
12. It consists of a section of galvanized steel pipe with
a total length of 3 meters. A PZT array with sixteen
PZT transducers are directly mounted on the pipeline
to detect defection signal. Longitudinal axially symmet-
ric mode, L(0,2), is utilized in this experiment.

3m

P
1 P

2

P
3

P
4

P
5

P
6

P
7

P
8

P
9

P
10

P
11

P
12

P
13

P
14

P
15

P
16

Different depth of defects Pipeline Sensor

4mm

Defect depth 1

Defect depth 2

Defect depth 3

Fig. 12 Setup of the defect detection experiment
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The guided wave is generated from sensors at the
left side of pipe at the frequency of 50 kHz, propa-
gates along the pipeline through the defect point, and
received by the sensors at other side. This PZT array
can detect the pipeline defect location based on time-
reversal method and matching pursuit de-noising [39].
In addition, this PZT array has been used for under-
water communication by using stress wave propagation
along pipelines [40].

Three states, defect depth 1, defect depth 2, and de-
fect depth 3, are chosen as the states in the left to right
HMM model, which means the depth of defect is in-
creased unidirectionally. Reflect signal is collected from
the right-hand side sensors. Raw data collected with
noise in three different depths will be used as original
data for the GMM-HMM model as shown in Fig. 13.

V
o
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V
)

Number of evaluation

0
.2

0
.1

0
.0

-0
.1

0e+00 2e+04 4e+04 6e+04 8e+04 1e+05

Depth 1

Depth 2

Depth 3

Fig. 13 Signal of different states

Damage indices extracted from defection signals are
shown in Fig. 14. Two damage indices calculation are
based on the Eqs. (1) and (2). These three states rep-
resent different depth of cracks on the pipeline. The
original data is noisy, without denoising procedure the
damage index extract the features and distinguish each

state efficiently.

3.3.2 Results of depth inspection

The 154 group samples from three defect depth inspec-
tion are separated into two groups. 70% measurements
is used as a training and the rest is used for testing.
In this experiment, there are three crack depth, in an
other word, the state number of HMM is 3. Since two
damage indices are considered, two dimension GMM is
applied. The parameters of the Gaussian mixture model
are also calculated based on the observation density es-

timation method and the number of Gaussian Mixture
K is calculated by the R seqHMM package, and is set

D
I 2

D
I 1

State1 State2 State3

Index

Fig. 14 Damage indices

to 3 similar as in [38]. The parameters of the left to
right HMM model are initialized as:

π = [1, 0, 0],A =

 0.9 0.1 0
0 0.9 0.1
0 0 1

.
The parameters of the three states HMM model are also

reassessed by the Baum-Welch algorithm based on Eq.
6. The maximum number of iteration is set to 10 times
and the tolerance is 0.01 where EM will stop if the gain
in log-likelihood is below. After training, the updated

parameters are obtained as follows:

π = [1, 0, 0],A =

 0.974 0.026 0

0 0.976 0.024
0 0 1

.
Based on the two damage indices input, mixture

weight cjk, mean vector µjk and covariance matrix Σjk
of 3-component Gaussian mixture model obtained are

as follows: As for the state 1, the corresponding three
mixture 2-dimensional Gaussian models have the fol-
lowing parameters, respectively.

c1,1:3 = [0.422, 0.522, 0.054],

µ1,1:3 = {
(
−0.432

1.624

)
;

(
0.439

1.666

)
;

(
−0.542

1.572

)
},

Σ11 =

(
4.888 4.998
4.998 8.517

)
;

Σ12 =

(
3.605 2.828
2.828 2.516

)
;

Σ13 =

(
6.182 3.852
3.852 2.545

)
.

As for the state 2, the corresponding three mixture
2-dimensional Gaussian models have the following pa-
rameters, respectively.

c2,1:3 = [0.081, 0.767, 0.152],
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µ2,1:3 = {
(

0.739

1.629

)
;

(
0.542

1.020

)
;

(
1.075

1.733

)
},

Σ21 =

(
1.597 2.437
2.437 4.448

)
;

Σ22 =

(
2.514 −2.392
−2.392 5.933

)
;

Σ23 =

(
7.849 7.833
7.833 9.896

)
.

As for the state 3, the corresponding three mixture
2-dimensional Gaussian models have the following pa-
rameters, respectively.

c3,1:3 = [0.124, 0.541, 0.335],

µ3,1:3 = {
(
−0.889

1.670

)
;

(
−0.313

1.690

)
;

(
−1.485

1.651

)
},

Σ31 =

(
2.026 8.372

8.372 4.173

)
;

Σ32 =

(
1.064 1.426
1.426 7.605

)
;

Σ33 =

(
2.170 1.153
1.153 6.182

)
.

Detected State Sequence

Actual State Sequence

H
M

M
 d

e
te

c
te

d
 S

ta
te

s

Observation index

Fig. 15 HMM output

By maximizing the posterior probability, the de-
tected state will be obtained. The crack depth evalu-

ation results are shown in Fig. 15. The blue dashed
line represent actual state sequence and the red solid
line indicate detected state sequence giving by HMM.
The accuracy of cracked depth inspection performance
is approaching 93.23%.

4 Conclusion

Pipeline leakage detection and crack depth identifica-
tion are difficult especially in changing environment and
time-varying operational conditions. This study applied
a GMM-HMM method on pipeline damage detection to
answer the research questions, i.e., whether the pipeline
has a leak, where the leakage location is and how deep
the crack is. One time domain damage index based on
the Pearson correlation was used to identify the sig-
nal difference and one frequency domain damage index
based on Fourier transform to find the peak frequency.
The experimental results illustrate the effectiveness of
proposed GMM-HMM method. In the future work, we
will use the signal energy as time domain damage in-
dex to see if it can improve the detection accuracy. The
hybrid damage indices will be explored also. In addi-
tion, a better way to extract the signal features will be
investigated.
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