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Abstract: In this paper, a deep neural network hidden Markov model (DNN-HMM) is proposed to
detect pipeline leakage location. A long pipeline is divided into several sections and the leakage
occurs in different section that is defined as different state of hidden Markov model (HMM). The
hybrid HMM, i.e., DNN-HMM, consists of a deep neural network (DNN) with multiple layers to
exploit the non-linear data. The DNN is initialized by using a deep belief network (DBN). The DBN is
a pre-trained model built by stacking top-down restricted Boltzmann machines (RBM) that compute
the emission probabilities for the HMM instead of Gaussian mixture model (GMM). Two comparative
studies based on different numbers of states using Gaussian mixture model-hidden Markov model
(GMM-HMM) and DNN-HMM are performed. The accuracy of the testing performance between
detected state sequence and actual state sequence is measured by micro F; score. The micro F; score
approaches 0.94 for GMM-HMM method and it is close to 0.95 for DNN-HMM method when the
pipeline is divided into three sections. In the experiment that divides the pipeline as five sections,
the micro F; score for GMM-HMM is 0.69, while it approaches 0.96 with DNN-HMM method. The
results demonstrate that the DNN-HMM can learn a better model of non-linear data and achieve
better performance compared to GMM-HMM method.
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1. Introduction

Damage detection has been widely studied especially in the pipeline to avoid enor-
mous economic loss and environmental disasters [1]. Pipeline leakage detection is an
essential component of risk management as it allows operators to respond in time to leaks
and to prevent further escalation of incidents. In the last few decades, many pipeline leak-
age detection techniques have been used to monitor damages for the offshore oil and gas
industry. Existing leakage detection techniques are acoustic emission [2], fiber optic sens-
ing [3], negative pressure wave (NPW) detection [4], etc. The extracted signals from these
techniques can be analyzed with statistical models to monitor the damages. For instance,
statistical models, such as support vector machine (SVM) [5-7] and hidden Markov model
(HMM) [8,9], have been adopted to facilitate and enhance the pipeline detection process
utilizing the various extracted signals from the detection techniques. Liu et al. evaluated
a deep neural network for spectrum recognition of underwater targets [10]. Sohaib et al.
compared detection performance between statistic models on the boiler tube [11]. How-
ever, these studies only focus on classification without considering the sequential changes
of damage states. Furthermore, to exploit the feature information in signals, Gaussian
mixture model-hidden Markov model (GMM-HMM) has been implemented to improve
the pipeline damage detection performance [12,13].

In our previous study, GMM-HMM was applied for pipeline leakage and crack depth
detection [14]. Each hidden state has a probability distribution over the possible leakage
states where the probability distribution matrix is initialized by a Gaussian mixture model
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(GMM). An iterative training process through the Baum-Welch algorithm is applied to
get the optimized parameters of the HMM. The posterior probabilities of leakage states
obtained by HMM is used to obtain a probabilistic evaluation of the pipeline damage.
The proposed GMM-HMM can recognize the crack depth by using the guided wave and
leakage location of the pipeline by using the negative pressure wave. Signals were collected
by Lead Zirconate Titanate (PZT) transducers. Different crack depths and different leakage
locations of pipeline were defined as different states in the hidden Markov model. That
work successfully answered our research questions, i.e., whether the pipeline has a leak,
where the leakage location is and how deep the crack is. In addition, the GMM-HMM
method [14] has the ability to detect the sequential changes of states. However, GMM-
HMM becomes less efficient for pipeline leakage detection due to the demands of a massive
amount of data to identify parameters of Gaussian mixtures. GMM typically has a large
number of Gaussians when there are many hidden states. The GMM with independently
parameterized means from such states may result in those Gaussians being highly localized
and thus may result in such models only performing local generalization. This situation
will become worse when changing environmental factors are considered. Therefore, in the
real-world application, the changing environment and time-varying operational conditions
make the reliability of pipeline leakage detection facing the challenge.

To overcome this predicament, one of the techniques is to replace the GMM with
reliable models that can tackle with a massive amount of data and achieve higher accu-
racy. With the surging of deep learning, neural networks can model multiple events and
learn richer representations that have the potential to learn better models of nonlinear
data [15-17]. With multiple layers, deep neural networks (DNNSs) [18,19] perform well
on decision boundary and feature engineering problems by using a massive amount of
data [20]. In recent years, a deep neural network hidden Markov model (DNN-HMM)
has been proposed as a novel hybrid architecture and has been widely used on acoustic
learning [21-23]. DNN computes the emission probabilities of states for the HMM, which
offers strong ability of feature learning and provides a better recognition result [24]. In
recent research, Qiu et al. presented an early-warning model of equipment chain in gas
pipeline based on DNN-HMM which demonstrated preferable generalization accuracy [25].
Schroder et al. conducted comparison study between GMM-HMM and DNN-HMM for
acoustic event detection and demonstrated that the performance may varied by using
different features [26].

In this study, the DNN-HMM hybrid model is proposed to detect pipeline leakage
locations as different states from lead zirconate titanate (PZT) transducer signals generated
by negative pressure wave. In the proposed DNN-HMM hybrid model, DNN consists
of the unsupervised deep belief network (DBN) that computes the emission probabilities
of leakage states for the HMM instead of GMM. First, the DBN pre-training is used to
make sure that training would be effective. The DBN is built by stacking top-down
restricted Boltzmann machines (RBMs). The RBM is bipartite connectivity structured and
has an unobserved subset of the variables. The cyclic process of serve inferred the result
of one RBM as training data for another RBM generated a multilayer feature detector.
Based on the pre-trained network, the DNN will outperform the random initialization
for more complex statistical structure extracted from the PZT signal. Then, the posterior
probabilities of leakage state as the output of the DNN will serve as the input parameter for
HMM. Differing from Tejedor et al. [13], who implemented the GMM-HMM based pattern
classification to monitor the pipeline integrity, the DNN-HMM is implemented in our study
to detect the pipeline leakage location. Thus far, there is only one work, presented by Qiu
et al. [25], that applied DNN-HMM for classifying the generalized damage causation in
equipment chain. Different from the existing work, we extract one time domain index and
one frequency domain index from noisy negative pressure wave signals collected by PZT
transducers when leakage occurs as observations for the proposed hybrid HMM method.
To illustrate the effectiveness of proposed method, two groups of experiments that contain
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different states are conducted. The comparison results of DMM-HMM and GMM-HMM
are also presented in the paper.

The rest of paper is organized as follows. The hybrid HMM method is presented in
Section 2. The experimental results and DNN-HMM leakage location detection results
are presented in Section 3. The conclusions are drawn and future work is discussed in
Section 4.

2. Hybrid HMM Method

In this section, we propose a deep neural network hidden Markov model for pipeline
leakage location detection. In the proposed hybrid HMM method, DNN computes the emis-
sion probabilities for the HMM instead of Gaussian mixtures. In the following subsections,
the main components of the proposed method, including the typical HMM, DNN-DBN
pre-training, hybrid HMM, are presented.

2.1. Hidden Markov Model

The hidden Markov model is a probabilistic graphical model in which the unobserv-
able (“hidden”) system state sequence is modeled by Markov chain, and hidden states
can be indirectly observed by observation states through some probabilistic distribution.
HMM was first proposed by Baum and Petrie in 1966 [27]. HMM and its variants have
been widely used in different application areas [28].

A typical HMM model [29] can be defined by

A={m A B} , D)

where 7 is the initial probability distribution matrix, A is the state transition probability
matrix and B is the emission probability matrix or observation probability distribution
matrix. 7r, A and B are row stochastic matrices.

In this paper, a long pipeline is divided into several sections and the leakage occurs
in a different section that is defined as a different state of the hidden Markov model. The
collected stress waves are used to extract the damage indices which serve as observation
data. A HMM with three states and three observation states is shown in Figure 1.

Figure 1. A hidden Markov model with three states and three observation states.

2.2. DNN-DBN Pre-Training

DNN is a feed-forward, conventional artificial neural network with a multi-layer of
hidden units, regularly initialized by using the DBN pre-training algorithm. The estimates
of the posterior probabilities computed by the neural network are divided by the prior
state probabilities, resulting in scaled likelihoods, which are used as emission probabilities
in the HMM. When it is trained on a dataset without supervision, a DBN can learn the
probabilistic reconstruction of its inputs. The layers then act as feature detectors. After this
learning step, a DBN can be further trained with supervision to perform classification [30].
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For each hidden unit, the sigmoid function is typically used to map total input from
current layer, as shown in Equation (2) [31],

y; = logistic(x;) 1
14e 77 )

Xj = b] + Zylwl] ,
i

where j is the hidden unit index from range of 0 to N, N is a finite positive integer, x; is
the current layer state, y; represents the current layer output, b; is the bias of current unit,
i is an index over units in the layer below, and w; ; is the weight between two successive
hidden units. For multiclass classification, the softmax function is applied to convert the
DNN output into a class probability. The cost function is defined as cross-entropy between
the target probabilities and the output probabilities from softmax function, as shown in
Equation (3):

N
CZ—Zd]‘IOgP]‘ ’ (3)
j=0

where C denotes the cost function, d; represents the target probabilities and P; is the
probabilities of outputs. Thus, the target probabilities of the HMM states are the learned
information provided to train the DNN. One of the benefits of using a DNN is that it can
efficiently computes derivatives before updating the weights in proportion to the gradient
by dividend large datasets into random minibatches. This stochastic gradient descent
method can be further improved by using a momentum coefficient [21].

DBN provides a new way to train deep generative models by using layer-wise pre-
training of RBMs. In this way, the pre-training process will provide proper initial weights
for the DBN. A DBN that consists of visible layers and hidden layers is shown in Figure 2.

Hidden S
layers Q o

Visible
layers

ye

Figure 2. DBN structure.

Two successive hidden layers in DBN form an RBM. The DBN is composed by stacked
modules of RBMs. Low-dimensional features are extracted from input data by pre-training
of the DBN without losing much significant information. Each RBM in the DBN is a
bipartite graph where there is no connection between each hidden unit on the same layer.
The joint probability of an RBM is defined as

1 tp T
Ph,U(RBM) _ Zev Wh+v'b+a' h , (4)
X

where 1 defined as hidden vectors for the Bernoulli-Bernoulli RBM [32] applied to binary v
with a second bias vector b, bias vector a, weight matrices W and normalization term Z, ,,.

1
Py, (Gaussian — Bernoulli RBM) = Z—e”fWhJ’(v_b)t(v_bH”Th , ©)
h,v
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where Gaussian—-Bernoulli RBM (GRBM) [32] is applied to continuous v. In both cases, the
conditional probability P, ,(, v) has the same form as that in the DNN [20]. The RBM pa-
rameters can be efficiently trained in an unsupervised fashion by maximizing the likelihood
over training samples with the approximate contrastive divergence algorithm [21].

2.3. Integrating DNN with HMM

The emission probability for the HMM is represented as P(x|a), while the output of
DBN-DNN is P(a|x). The following formula calculates the transformation.

P(x,a)  P(a|x)P(x)

P(x|a) = Pla) = P(a) p (6)

where classes x correspond to HMM states, with observation vectors a, and P(a) count
from training data.

2.4. Architecture of DNN-HMM

The DNN is built based on the DBN structure. The training process of the DBN is
shown in Figure 3.

Pre-train Fine-tune
A /'A\
Output Output
TWJ T W,T +¢

DBN
WZT WZT +&
W' T W;T+e
RBM
T W; +¢
RBM . W,
| replicate |
A

T W | W, +¢
| GREM replicate - |
T L«
Input
Input

Figure 3. DBN Training Process.

Typically, the training process contains two phases: greedy pre-training and fine
tuning. First, pre-training is applied to obtain the proper initial weights (e.g., Wy, W, and
W3) of the DBN. In the pre-training phase, the input, i.e., damage indices extracted from
PZT sensor, is modeled and trained by a GRBM. After training the RBM using the training
set, the inferred states of the hidden units can be used as data for training another RBM
that learns to model the significant dependencies between the hidden units of the first
RBM. This can be repeated as many times as desired to produce many layers of non-linear
feature detectors that represent progressively more complex statistical structures in the PZT
sensor signals. The complex statistical structure also represents the complex distributions
of the pipeline leakage signals. Stacking RBMs by replacing the connections of lower
level RBMs top-down (W3 to W3T , Wh to WzT and Wj to WlT ), an unsupervised training
procedure DBN is made, as shown in the Figure 3. In this way, the DBN is able to learn the
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complex distribution of the pipeline leakage signals. Then, fine-tuning is used to optimized
the initial weights with more pipeline leakage signals. Therefore, the initial weights are
updated with small errors (€) to get more accurate representation of the distribution.

After the fine-tuning process of the DBN, the optimized proper weights (W;, Wj and
WJ}) can be used to construct the DBN-DNN by adding a softmax output layer, as shown
in Figure 4. This softmax output layer contains one unit for each possible state of the
HMM. In this way, the posterior probability output from DBN-DNN for each state can be
converted into the emission probability as the input parameter of the HMM. The initial
state distribution 7, transition probability matrix A and emission probability matrix B of
the HMM are updated by training with iterations of expectation and maximization steps to
obtain the trained model.

DBN-DNN HMM

Initialization

softmax {T[ A B}

Expectation

Maximization

Fine-tuned
DBN

Figure 4. DBN-DNN-HMM architecture.

3. Pipeline Leakage Detection

In this section, we evaluate the proposed method by comparing it with GMM-HMM
method. In the following subsections, we provide the experimental settings, damage
indices extraction, DBN-DNN training result and evaluation metrics. The accuracy com-
parisons of hybrid HMM and GMM-HMM methods for three states and five states are
presented.

3.1. Setup of Experiment

The purpose of experiment is to detect pipeline leakage utilizing PZT transducers.
The negative pressure wave is generated by leakage in the pipeline and propagated along
the pipeline from the leakage point to both ends. The experimental pipeline was built at
the University of Houston, as shown in Figure 5.
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Figure 5. Settlement of the pipeline and sensors.

The experimental pipeline consists of a series of Plain-End PVC pipe sections con-
nected together to form a pipeline with a total length of 55.78 m. Six PZT transducers (P;
to Pg, size is 15 mm x 10 mm) are directly mounted on the pipeline by using epoxy to
detect negative pressure wave signal. A NI PXI—5105 digitizer is used as a data acquisition
system. The digitizer is triggered by the voltage signal of PZT No. 1 with the trigger level at
—0.02 V and all the signals from six PZT sensors are recorded simultaneously at a sampling
rate of 100 KS/s. The experiment was presented in a published paper using the latency of
signal to locate leakage [4]. In [4], the PZT sensors were used to detect the arrival time of
NPW, and then the arrival time was used to calculate the exact location of leakage. We use
the same experimental setting and data to validate the proposed DNN-HMM model which
is for detecting leakage section and sequential changes of damage states. The hybrid model
is implemented based on the hmmlearn [33] and deep-belief-network Python package [34],
ran on a desktop with Windows 10 64-bit and Intel core i7-8700 CPU. The seqHMM R
package is used for Gaussian mixture model component number K estimation.

Different leakage locations are chosen as different states in the HMM. Two damage
indices, i.e., one time domain damage index and one frequency domain index, as we used
in [14], are extracted from the original signals. The damage indices are adopted to indicate
the signal variations and serve as observations of the HMM. The first damage index (DI;)
is a time-domain damage index, defined as:

I \/ io(s1(t) = 51) (s2() — 2)
Yi_o(s1(t) = 51)2 Kizg(s2(t) — 52)2

where s1(t) is the baseline waveform and s,(t) is the comparison waveform at time t. 5;
and 5, are the average values of s1 () and s, (t).

The second one is a frequency-domain damage index DI, the amplitude of peak
frequency, defined as:

, @)

DI, = X(K , 8
2= max (IX(K))) ®)
where X(K) = V! X(n)e=27/L i = \/=1. K is frequency corresponding to the selected
frequency spectrum window and L is length of signal. The leakage signal collected by the
first sensor P; serves as the original data for damage indices extraction.

3.2. Setup of DBN-DNN

The DBN-DNN model replaces the GMM, offering the posterior probabilities to the
HMM as the input emission probability. Ten layers of the RBM and 200 layers of the DNN
are applied in the training process. The learning rate of RBM is 0.05, and the DNN learning
rate is set to 0.1. The maximum number of iterations of DNN is 200, with dropout rate of
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0.2. The rectified linear unit (ReLu) activation function is applied in the training process
of DBN-DNN. ReLu is a non-linear activation function that is used in multi-layer neural
networks or deep neural networks.

3.3. Performance of DBN-DNN

After 100 epochs, the cross-entropy of the DBN-DNN is obtained by using Equation (3),
which approaches 0.08. The output probabilities are very close to the target probabilities.
The performance of DBN-DNN is shown in Figure 6.

Performance of DBN-DNN

Ll
, N M o

Cross -entropy loss
© o o o
N H (o)} [oe]

o

1
5
9
13
17
21
25
29
33

Figure 6. Performance of DBN-DNN.

3.4. Performance Evaluation

Normally, F; score measurement is applied for binary classification, which is calculated
from precision and recall [35]:

2x TP

Fiscore = 55 T FPTEN

)

where TP is the number of true positive, FP represents the number of the false-positive
and FN is the number of false negative.

F; score has been used to measure the multi-class classification also [36]. The F; score
can be interpreted as a weighted harmonic mean of precision and recall, where an F; score
reaches its best value at 1 and the worst score at 0. There are two types of F; score, micro F;
score and macro F; score. Micro F; score is calculated by measuring the F; score with the
aggregated contribution of all classes. Macro F; is calculated by averaging the precision
and recall of all instances and dominated by the performance of common categories [37].
Thus, micro F; score is adopted in the performance measurement in this study. Micro Fy
score is defined in the following equation:

(P+P+...4 Py 1+Py) x(Ri+Ry+...+Ry—1+ Rp)
(P+P+...4 Py 1+Py)+(Ri+Ry+...+ Ry 1+ Rp)

Micro F; score = 2 X (10)
where P; represents precision and R; represents recall, i = 1,...,m, and m is the class
number of classifications.

3.5. Leakage Detection with Three States

In our previews work [14], three different leakage locations were chosen as three
states for the GMM-HMM method. To compare the performance of DNN-HMM with
GMM-HMM, the same state setting and initial parameters were applied in the two models.
The leakage signals were collected by sensor P;. As shown in Figure 7, leakage at Section 1
(from P; to Ly in Figure 5) of the pipeline as State 1, leakage at Section 2 (from L to Ly) of
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HMM detected state

W
1

N

the pipeline as State 2, leakage at Section 3 (from L, to L3) of the pipeline as State 3 are
chosen as states in ergodic HMM model, which allowed transitions from any state to any

other state.

Section 1 Section 2 Section 3

| | |
State 1 e —————————————————
State 2. (o

State 3 ‘ J

(J Leakage
Figure 7. Schematic diagram of three pipeline states.

100 groups, with 200,000 samples per group, of leakage signals were collected. In this
study, 70 groups are used for training and the rest are used for testing. To reduce the com-
putational volume, data for this experiment are cropped from the original data by 90,000
data points to each state. Two damage indices are obtained by using Equations (7) and (8)
with 45 data points for each state in HMM.

The micro F; score is calculated to measure the performance. The micro F; score
of GMM-HMM is 0.94 and the micro F; score of DNN-HMM approaches 0.95. Several
tests are made to compare the performance of DNN-HMM and GMM-HMM, where the
performance of DNN-HMM is little better than GMM-HMM in almost every trial. One of
the experiment results is shown in Figure 8.

=@ DNN-HMM F, score: 0.95
Original state sequence

-

~®— GMM-HMM F, score: 0.94
~# =~ Original state sequence

HMM detected state

L X

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

Observation index

0 10 20 30 40 50 60 70 80 90 100 110120 130 140
Observation index

Figure 8. Comparison between GMM-HMM and DNN-HMM with three states.

3.6. Leakage Detection with Five States

In this experiment, five leakages at different section of pipeline are chosen as the five
states in ergodic HMM model (Figure 9). Leakage signals are collected by sensor P;. As
shown in Figure 7, leakage at Section 1 (from P; to L; in Figure 5) of the pipeline as State 1,
leakage at Section 2 (from L; to L) of the pipeline as State 2, leakage at Section 3 (from L,



Appl. Sci. 2021, 11, 3138

10 0f 13

to L3 ) of the pipeline as State 3, leakage at Section 4 (from L3 to L4) of the pipeline as State
4 and leakage at Section 5 (from L4 to Ls) of the pipeline as State 5 are considered.

Section1

\

Section2
I

Section3
|

|

Section4

Section5

)

SR e

A ) ) ] |
State 2 —rh

|

)

|

State 3

State 4

State 5

0 Leakage

Figure 9. Schematic diagram of 5 states pipeline statues.

For each location, the leakage experiment is repeated for 20 times. Each experiment
generated 100 data points which contain the damage indices (DI; and D1Iy). In total, 600
data points are extracted for the hybrid model, as shown in Figure 10. Among all these
extracted damage indices, 80% of the data points are used for training, while the rest are
used for testing the performance of hybrid model.

Statel State3 Stated State5
4_
2 el
Pl I hm il |r|'r'|l|
% ‘l!l iy
_2] =2
0 100 0 50 100 50 100

L

\l{ll

aiTl T

Figure 10. Damage Indices.

The testing performance between detected state sequence and actual state sequence
of DNN-HMM is calculated by micro F; score, which approaches 0.96, while the micro F;
score of GMM-HMM is about 0.69, as shown in Figure 11. Compared with the performance
of GMM-HMM and DNN-HMM model initialize with three states, the increase of states
reduces the accuracy of GMM-HMM model. However, in both experiments, DNN-HMM
performed better than GMM-HMM.
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HMM detected state

~®— DNN-HMM F, score: 0.96 ~®— GMM-HMM F, score: 0.69
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References
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Observation index Observation index

Figure 11. Comparison between GMM-HMM ant DNN-HMM with five states.

4. Conclusions

In this paper, a DNN-HMM hybrid model was proposed to detect pipeline leakage
location. DNN computes the emission probabilities for the HMM instead of Gaussian
mixture model. This hybrid model showed the feasibility of converting leakage state
posteriors to the emission probabilities by training a DNN which uses the damage indices
as the training set. DNN is more efficient for modeling leakage features. The DNN is a pre-
trained model built by stacking top-down RBM that computes the emission probabilities for
the HMM. Two comparative tests based on different numbers of states using GMM-HMM
and DNN-HMM were studied. The results demonstrate that the DNN-HMM can learn
better models of data and achieve better performance compared to GMM-HMM. The micro
F; score approaches 0.94 for three states, and it approaches 0.96 for five states when the
hybrid HMM was applied.

In this paper, two damage indices, i.e., one time domain damage index and one
frequency domain index, were used to extract features from the negative pressure waves
collected by PZT transducers. In future work, other damage indices or even without using
damage indices for pipeline leakage detection will be explored.
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