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Abstract
Graphs model real-world circumstances in many applications where they may constantly change to
capture the dynamic behavior of the phenomena. Topological persistence which provides a set of
birth and death pairs for the topological features is one instrument for analyzing such changing graph
data. However, standard persistent homology defined over a growing space cannot always capture
such a dynamic process unless shrinking with deletions is also allowed. Hence, zigzag persistence
which incorporates both insertions and deletions of simplices is more appropriate in such a setting.
Unlike standard persistence which admits nearly linear-time algorithms for graphs, such results for
the zigzag version improving the general O(mω) time complexity are not known, where ω < 2.37286
is the matrix multiplication exponent. In this paper, we propose algorithms for zigzag persistence on
graphs which run in near-linear time. Specifically, given a filtration with m additions and deletions
on a graph with n vertices and edges, the algorithm for 0-dimension runs in O(m log2 n + m log m)
time and the algorithm for 1-dimension runs in O(m log4 n) time. The algorithm for 0-dimension
draws upon another algorithm designed originally for pairing critical points of Morse functions on
2-manifolds. The algorithm for 1-dimension pairs a negative edge with the earliest positive edge so
that a 1-cycle containing both edges resides in all intermediate graphs. Both algorithms achieve the
claimed time complexity via dynamic graph data structures proposed by Holm et al. In the end,
using Alexander duality, we extend the algorithm for 0-dimension to compute the (p−1)-dimensional
zigzag persistence for Rp-embedded complexes in O(m log2 n + m log m + n log n) time.
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1 Introduction

Graphs appear in many applications as abstraction of real-world phenomena, where vertices
represent certain objects and edges represent their relations. Rather than being stationary,
graph data obtained in applications usually change with respect to some parameter such
as time. A summary of these changes in a quantifiable manner can help gain insight into
the data. Persistent homology [3, 10] is a suitable tool for this goal because it quantifies
the life span of topological features as the graph changes. One drawback of using standard
non-zigzag persistence [10] is that it only allows addition of vertices and edges during
the change, whereas deletion may also happen in practice. For example, many complex
systems such as social networks, food webs, or disease spreading are modeled by the so-called
“dynamic networks” [13, 14, 19], where vertices and edges can appear and disappear at
different time. A variant of the standard persistence called zigzag persistence [3] is thus a
more natural tool in such scenarios because simplices can be both added and deleted. Given
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(a) (b) (c) (d)

Figure 1 A sequence of graphs with four prominent clusters each colored differently. Black edges
connect different clusters and forward (resp. backward) arrows indicate additions (resp. deletions)
of vertices and edges. From (a) to (b), two clusters split; from (b) to (c), two clusters merge; from
(c) to (d), one cluster disappears.

a sequence of graphs possibly with additions and deletions (formally called a zigzag filtration),
zigzag persistence produces a set of intervals termed as zigzag barcode in which each interval
registers the birth and death time of a homological feature. Figure 1 gives an example of a
graph sequence in which clusters may split (birth of 0-dimensional features) or vanish/merge
(death of 0-dimensional features). Moreover, addition of edges within the clusters creates
1-dimensional cycles and deletion of edges makes some cycles disappear. These births and
deaths are captured by zigzag persistence.

Algorithms for both zigzag and non-zigzag persistence have a general-case time complexity
of O(mω) [4, 10, 15, 16], where m is the length of the input filtration and ω < 2.37286 is
the matrix multiplication exponent [2]. For the special case of graph filtrations, it is well
known that non-zigzag persistence can be computed in O(mα(m)) time, where α(m) is the
inverse Ackermann’s function that is almost constant for all practical purposes [5]. However,
analogous faster algorithms for zigzag persistence on graphs are not known. In this paper,
we present algorithms for zigzag persistence on graphs with near-linear time complexity.
In particular, given a zigzag filtration of length m for a graph with n vertices and edges,
our algorithm for 0-dimension runs in O(m log2 n + m logm) time, and our algorithm for
1-dimension runs in O(m log4 n) time. Observe that the algorithm for 0-dimension works for
arbitrary complexes by restricting to the 1-skeletons.

The difficulty in designing faster zigzag persistence algorithms for the special case of
graphs lies in the deletion of vertices and edges. For example, besides merging into bigger ones,
connected components can also split into smaller ones because of edge deletion. Therefore,
one cannot simply kill the younger component during merging as in standard persistence [10],
but rather has to pair the merge and departure events with the split and entrance events (see
Sections 3 for details). Similarly, in dimension one, deletion of edges may kill 1-cycles so that
one has to properly pair the creation and destruction of 1-cycles, instead of simply treating
all 1-dimensional intervals as infinite ones.

Our solutions are as follows: in dimension zero, we find that the O(n logn) algorithm
by Agarwal et al. [1] originally designed for pairing critical points of Morse functions on
2-manifolds can be utilized in our scenario. We formally prove the correctness of applying
the algorithm and use a dynamic connectivity data structure [12] to achieve the claimed
complexity. In dimension one, we observe that a positive and a negative edge can be paired by
finding the earliest 1-cycle containing both edges which resides in all intermediate graphs. We
further reduce the pairing to finding the max edge-weight of a path in a minimum spanning
forest. Utilizing a data structure for dynamic minimum spanning forest [12], we achieve the
claimed time complexity. Section 4 details this algorithm.
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Using Alexander duality, we also extend the algorithm for 0-dimension to compute (p−1)-
dimensional zigzag for Rp-embedded complexes. The connection between these two cases for
non-zigzag persistence is well known [9, 18], and the challenge comes in adopting this duality
to the zigzag setting while maintaining an efficient time budget. With the help of a dual
filtration and an observation about faster void boundary reconstruction for (p− 1)-connected
complexes [8], we achieve a time complexity of O(m log2 n+m logm+ n logn).

All omitted proofs in this version appear in the full version [7].

2 Preliminaries

A zigzag module (or module for short) is a sequence of vector spaces

M : V0
ψ0←−→ V1

ψ1←−→ · · · ψm−1←−−−→ Vm

in which each ψi is either a forward linear map ψi : Vi → Vi+1 or a backward linear map
ψi : Vi ← Vi+1. We assume vector spaces are over field Z2 in this paper. A module S of the
form

S : W0
ϕ0←−→W1

ϕ1←−→ · · · ϕm−1←−−−→Wm

is called a submodule of M if each Wi is a subspace of Vi and each ϕi is the restriction of ψi.
For an interval [b, d] ⊆ [0,m], S is called an interval submodule of M over [b, d] if Wi is one-
dimensional for i ∈ [b, d] and is trivial for i ̸∈ [b, d], and ϕi is an isomorphism for i ∈ [b, d− 1].
It is well known [3] that M admits an interval decomposition M =

⊕
α∈A I [bα,dα] which is

a direct sum of interval submodules of M. The (multi-)set of intervals {[bα, dα] |α ∈ A}
is called the zigzag barcode (or barcode for short) of M and is denoted as Pers(M). Each
interval in a zigzag barcode is called a persistence interval.

In this paper, we mainly focus on a special type of zigzag modules:

▶ Definition 1 (Elementary zigzag module). A zigzag module is called elementary if it starts
with the trivial vector space and all linear maps in the module are of the three forms: (i) an
isomorphism; (ii) an injection with rank 1 cokernel; (iii) a surjection with rank 1 kernel.

A zigzag filtration (or filtration for short) is a sequence of simplicial complexes

F : K0
σ0←−→ K1

σ1←−→ · · · σm−1←−−−→ Km

in which each Ki
σi←−→ Ki+1 is either a forward inclusion Ki ↪→ Ki+1 with a single simplex

σi added, or a backward inclusion Ki ←↩ Ki+1 with a single σi deleted. When the σi’s are
not explicitly used, we drop them and simply denote F as F : K0 ↔ K1 ↔ · · · ↔ Km.
For computational purposes, we sometimes assume that a filtration starts with the empty
complex, i.e., K0 = ∅ in F . Throughout the paper, we also assume that each Ki in F is a
subcomplex of a fixed complex K; such a K, when not given, can be constructed by taking
the union of every Ki in F . In this case, we call F a filtration of K.

Applying the p-th homology with Z2 coefficients on F , we derive the p-th zigzag module
of F

Hp(F) : Hp(K0)
φp

0←−→ Hp(K1)
φp

1←−→ · · ·
φp

m−1←−−−→ Hp(Km)

in which each φpi is the linear map induced by the inclusion. In this paper, whenever F is
used to denote a filtration, we use φpi to denote a linear map in the module Hp(F). Note
that Hp(F) is an elementary module if F starts with an empty complex. Specifically, we call
Pers(Hp(F)) the p-th zigzag barcode of F .

SoCG 2021
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(a) A zigzag filtration of graphs with 0-th barcode {[2, 2], [4, 4], [6, 8], [8, 9], [7, 10], [1, 10]}.

1 2 3 4 5 6 7 8 9Level: 10

(b) The barcode graph for the filtration shown in Figure 2a.

T2 1 2 T3 1 2 3

⇒

1 2 3 T5 1 5 T6 1 5 6T1
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⇒

1

T10
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1 107

⇒

1 107
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2 3 4 2 3 46 8 6 8

52 3 4 6 52 3 4 698 98

(c) Barcode forests constructed in Algorithm 1 for the barcode graph in Figure 2b. For brevity, some
forests are skipped. The horizontally arranged labels indicate the levels.

Figure 2 Examples of a zigzag filtration, a barcode graph, and barcode forests.

3 Zero-dimensional zigzag persistence

We present our algorithm for 0-th zigzag persistence1 in this section. The input is assumed
to be on graphs but note that our algorithm can be applied to any complex by restricting to
its 1-skeleton. We first define the barcode graph of a zigzag filtration which is a construct
that our algorithm implicitly works on. In a barcode graph, nodes correspond to connected
components of graphs in the filtration and edges encode the mapping between the components:

▶ Definition 2 (Barcode graph). For a graph G and a zigzag filtration F : G0 ↔ G1 ↔ · · · ↔
Gm of G, the barcode graph GB(F) of F is a graph whose vertices (preferably called nodes)
are associated with a level and whose edges connect nodes only at adjacent levels. The graph
GB(F) is constructively described as follows:

For each Gi in F and each connected component of Gi, there is a node in GB(F) at
level i corresponding to this component; this node is also called a level-i node.
For each inclusion Gi ↔ Gi+1 in F , if it is forward, then there is an edge connecting
a level-i node vi to a level-(i+ 1) node vi+1 if and only if the component of vi maps to
the component of vi+1 by the inclusion. Similarly, if the inclusion is backward, then vi
connects to vi+1 by an edge iff the component of vi+1 maps to the component of vi.

For two nodes at different levels in GB(F), the node at the higher (resp. lower) level is said
to be higher (resp. lower) than the other.

1 For brevity, henceforth we call p-dimensional zigzag persistence as p-th zigzag persistence.
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▶ Remark 3. Note that some works [6, 14] also have used similar notions of barcode graphs.

Figure 2a and 2b give an example of a zigzag filtration and its barcode graph. Note
that a barcode graph is of size O(mn), where m is the length of F and n is the number of
vertices and edges of G. Although we present our algorithm (Algorithm 1) by first building
the barcode graph, the implementation does not do so explicitly, allowing us to achieve the
claimed time complexity; see Section 3.1 for the implementation details. Introducing barcode
graphs helps us justify the algorithm, and more importantly, points to the fact that the
algorithm can be applied whenever such a barcode graph can be built.

Algorithm 1 Algorithm for 0-th zigzag persistence.

Given a graph G and a zigzag filtration F : ∅ = G0 ↔ G1 ↔ · · · ↔ Gm of G, we first build
the barcode graph GB(F), and then apply the pairing algorithm described in [1] on GB(F)
to compute Pers(H0(F)). For a better understanding, we rephrase this algorithm which
originally works on Reeb graphs:
The algorithm iterates for i = 0, . . . ,m− 1 and maintains a barcode forest Ti, whose leaves
have a one-to-one correspondence to level-i nodes of GB(F). Like the barcode graph, each
tree node in a barcode forest is associated with a level and each tree edge connects nodes at
adjacent levels. For each tree in a barcode forest, the lowest node is the root. Initially, T0 is
empty; then, the algorithm builds Ti+1 from Ti in the i-th iteration. Intervals for Pers(H0(F))
are produced while updating the barcode forest. (Figure 2c illustrates such updates.)
Specifically, the i-th iteration proceeds as follows: first, Ti+1 is formed by copying the
level-(i+ 1) nodes of GB(F) and their connections to the level-i nodes, into Ti; the copying
is possible because leaves of Ti and level-i nodes of GB(F) have a one-to-one correspondence;
see transitions from T5 to T6 and from T9 to T10 in Figure 2c. We further change Ti+1 under
the following events:
Entrance: One level-(i + 1) node in Ti+1, said to be entering, does not connect to any

level-i node.
Split: One level-i node in Ti+1, said to be splitting, connects to two different level-(i+ 1)

nodes. For the two events so far, no changes need to be made on Ti+1.
Departure: One level-i node u in Ti+1, said to be departing, does not connect to any

level-(i + 1) node. If u has splitting ancestors (i.e., ancestors which are also splitting
nodes), add an interval [j+1, i] to Pers(H0(F)), where j is the level of the highest splitting
ancestor v of u; otherwise, add an interval [j, i] to Pers(H0(F)), where j is the level of
the root v of u. We then delete the path from v to u in Ti+1.

Merge: Two different level-i nodes u1, u2 in Ti+1 connect to the same level-(i + 1) node.
Tentatively, Ti+1 may now contain a loop and is not a tree. If u1, u2 are in different
trees in Ti, add an interval [j, i] to Pers(H0(F)), where j is the level of the higher root of
u1, u2 in Ti; otherwise, add an interval [j + 1, i] to Pers(H0(F)), where j is the level of
the highest common ancestor of u1, u2 in Ti. We then glue the two paths from u1 and u2
to their level-j ancestors in Ti+1, after which Ti+1 is guaranteed to be a tree.

No-change: If none of the above events happen, no changes are made on Ti+1.

At the end, for each root in Tm at a level j, add an interval [j,m] to Pers(H0(F)), and for
each splitting node in Tm at a level j, add an interval [j + 1,m] to Pers(H0(F)).

▶ Remark 4. The justification of Algorithm 1 is given in Section 3.2.

SoCG 2021
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1 2 3T3

⇒

1 2 4T4 3

Figure 3 For the example in Figure 2, to form T4, our implementation only adds a level-4 entering
node, whereas the leaf in T3 is not touched. Since the level of a leaf always equals the index of the
barcode forest, the leaf at level 3 in T3 automatically becomes a leaf at level 4 in T4.

Figure 2c gives examples of barcode forests constructed by Algorithm 1 for the barcode
graph shown in Figure 2b, where T1 and T2 introduce entering nodes, T6 introduces a splitting
node, and T10 introduces a departing node. In T10, the departure event happens and the
dotted path is deleted, producing an interval [8, 9]. In T3 and T9, the merge event happens
and the dotted paths are glued together, producing intervals [2, 2] and [6, 8]. Note that the
glued level-i nodes are in different trees in T3 and are in the same tree in T9.

3.1 Implementation
Inserting (resp. deleting) a vertex in F simply corresponds to the entrance (resp. departure)
event, whereas inserting (resp. deleting) an edge corresponds to the merge (resp. split)
event only when connected components in the graph merge (resp. split). To keep track
of the connectivity of vertices for each Gi, we use a dynamic connectivity data structure
by Holm et al. [12], which we denote as D. The data structure D dynamically updates the
spanning forest of Gi when edges are inserted or deleted, and the connected component of
a vertex of Gi can be identified by the tree in the spanning forest containing the vertex.
The total time for querying and updating D is O(m log2 n) [12], where m is the length of F
and n is the number of vertices and edges of G. As mentioned, we do not explicitly build
a barcode graph, but instead maintain a key-value map from connected components of Gi
(i.e., identifiers of trees in D’s spanning forest) to leaves of Ti. We update Ti to form Ti+1
according to the changes of the connected components from Gi to Gi+1. We also only record
the level of a non-leaf node in a barcode forest Ti because the level of a leaf always equals i.
Note that at iteration i, a leaf in Ti may uniquely connect to a single leaf in Ti+1. In this
case, we simply let the leaf in Ti automatically become a leaf in Ti+1; see Figure 3. The size
of a barcode forest is then O(m). As in [1], using the mergeable trees data structure [11], the
traversal and updates of the barcode forest can be done in O(m logm) time. Therefore, the
time complexity of Algorithm 1 is O(m log2 n+m logm). See the full version of the paper [7]
for more details on the implementation of Algorithm 1.

3.2 Justification
In this subsection, we justify the correctness of Algorithm 1. For each entering node u in
a Ti of Algorithm 1, there must be a single node in GB(F) at the level of u with the same
property. So we also have entering nodes in GB(F). Splitting and departing nodes in GB(F)
can be similarly defined.

We first prepare some standard notions and facts in zigzag persistence (Definition 5 and 7,
Proposition 9) that help with our proofs. Some notions also appear in previous works in
different forms; see, e.g., [15].

▶ Definition 5 (Representatives). Let M : V0
ψ0←−→ · · · ψm−1←−−−→ Vm be an elementary zigzag

module and [s, t] ⊆ [1,m] be an interval. An indexed set {αi ∈ Vi | i ∈ [s, t]} is called a set of
partial representatives for [s, t] if for each i ∈ [s, t− 1], αi 7→ αi+1 or αi ←[ αi+1 by ψi; it
is called a set of representatives for [s, t] if the following additional conditions are satisfied:
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1. If ψs−1 : Vs−1 → Vs is forward with non-trivial cokernel, then αs is not in img(ψs−1); if
ψs−1 : Vs−1 ← Vs is backward with non-trivial kernel, then αs is the non-zero element in
ker(ψs−1).

2. If t < m and ψt : Vt ← Vt+1 is backward with non-trivial cokernel, then αt is not in
img(ψt); if t < m and ψt : Vt → Vt+1 is forward with non-trivial kernel, then αt is the
non-zero element in ker(ψt).

Specifically, when M := Hp(F) for a zigzag filtration F , we use terms p-representatives
and partial p-representatives to emphasize the dimension p.

▶ Remark 6. Let F be the filtration given in Figure 2a, and let α8, α9 be the sum of the
component containing vertex 1 and the component containing vertex 2 in G8 and G9. Then,
{α8, α9} is a set of 0-representatives for the interval [8, 9] ∈ Pers(H0(F)).

▶ Definition 7 (Positive/negative indices). Let M : V0
ψ0←−→ · · · ψm−1←−−−→ Vm be an elementary

zigzag module. The set of positive indices of M, denoted P(M), and the set of negative
indices of M, denoted N(M), are constructed as follows: for each forward ψi : Vi → Vi+1,
if ψi is an injection with non-trivial cokernel, add i+ 1 to P(M); if ψi is a surjection with
non-trivial kernel, add i to N(M). Furthermore, for each backward ψi : Vi ← Vi+1, if ψi is
an injection with non-trivial cokernel, add i to N(M); if ψi is a surjection with non-trivial
kernel, add i+ 1 to P(M). Finally, add rank Vm copies of m to N(M).

▶ Remark 8. For each ψi : Vi ↔ Vi+1 in Definition 7, if i + 1 ∈ P(M), then i ̸∈ N(M);
similarly, if i ∈ N(M), then i + 1 ̸∈ P(M). Furthermore, if ψi is an isomorphism, then
i ̸∈ N(M) and i+ 1 ̸∈ P(M).

Note that N(M) in Definition 7 is in fact a multi-set; calling it a set should not cause
any confusion in this paper though. Also note that |P(M)| = |N(M)|, and every index in
P(M) (resp. N(M)) is the start (resp. end) of an interval in Pers(M). This explains why
we add rank Vm copies of m to N(M) because there are always rank Vm number of intervals
ending with m in Pers(M); see the example in Figure 2a where rank H0(G10) = 2.

▶ Proposition 9. Let M be an elementary zigzag module and π : P(M) → N(M) be a
bijection. If every b ∈ P(M) satisfies that b ≤ π(b) and the interval [b, π(b)] has a set of
representatives, then Pers(M) = {[b, π(b)] | b ∈ P(M)}.

Now we present several propositions leading to our conclusion (Theorem 14). Specifically,
Proposition 10 states that a certain path in GB(F) induces a set of partial 0-representatives.
Proposition 11 lists some invariants of Algorithm 1. Proposition 10 and 11 support the proof
of Proposition 13, which together with Proposition 9 implies Theorem 14.

From now on, G and F always denote the input to Algorithm 1. Since each node in a
barcode graph represents a connected component, we also interpret nodes in a barcode graph
as 0-th homology classes throughout the paper. Moreover, a path in a barcode graph from a
node v to a node u is said to be within level j and i if for each node on the path, its level ℓ
satisfies j ≤ ℓ ≤ i; we denote such a path as (v ⇝ u)[j,i].

▶ Proposition 10. Let v be a level-j node and u be a level-i node in GB(F) such that j < i

and there is a path (v ⇝ u)[j,i] in GB(F). Then, there is a set of partial 0-representatives
{αk ∈ H0(Gk) | k ∈ [j, i]} for the interval [j, i] with αj = v and αi = u.

Proof. We can assume that (v ⇝ u)[j,i] is a simple path because if it were not we could always
find one. For each k ∈ [j + 1, i − 1], let w1, . . . , wr be all the level-k nodes on (v ⇝ u)[j,i]
whose adjacent nodes on (v ⇝ u)[j,i] are at different levels. Then, let αk =

∑r
ℓ=1 wℓ. Also, let

SoCG 2021
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2 3 4 5 6 7 8 9 10 11 12 13 141Level:

F :
a b c bc d bc ab cd ac ac ab cd bc ad

4 5 6 71T7 9 10 11 121 T1313

v1

u1

v2

u2

ṽ2

u2

ṽ1

u1

Figure 4 Illustration of invariants of Proposition 11. The top part contains a barcode graph with
its filtration given (a, b, c, and d are vertices of the complex). The bottom contains two barcode
forests.

αj = v and αi = u. It can be verified that {αk | k ∈ [j, i]} is a set of partial 0-representatives
for [j, i]. See Figure 4 for an example of a simple path (ṽ2 ⇝ u2)[10,13] (the dashed one) in a
barcode graph, where the solid nodes contribute to the induced partial 0-representatives and
the hollow nodes are excluded. ◀

For an i with 0 ≤ i ≤ m, we define the prefix F i of F as the filtration F i : G0 ↔ · · · ↔ Gi
and observe that GB(F i) is the subgraph of GB(F) induced by nodes at levels less than or
equal to i. We call level-i nodes of GB(F i) as leaves and do not distinguish leaves in Ti and
GB(F i) because they bijectively map to each other. It should be clear from the context
though which graph or forest a particular leaf is in.

▶ Proposition 11. For each i = 0, . . . ,m, Algorithm 1 maintains the following invariants:
1. There is a bijection η from trees in Ti to connected components in GB(F i) containing

leaves such that a leaf u is in a tree Υ of Ti if and only if u is in η(Υ).
2. For each leaf u in Ti and each ancestor of u at a level j, there is a path (ṽ ⇝ u)[j,i] in

GB(F) where ṽ is a level-j node.
3. For each leaf u in Ti and each splitting ancestor of u at a level j, let ṽ be the unique

level-j splitting node in GB(F). Then, there is a path (ṽ ⇝ u)[j,i] in GB(F).
▶ Remark 12. See Figure 4 for examples of invariant 2 and 3. In the figure, v1 is a level-1
non-splitting ancestor of u1 in T7 and ṽ1 is a level-1 node in the barcode graph; v2 is a
level-10 splitting ancestor of u2 in T13 and ṽ2 is the unique level-10 splitting node in the
barcode graph. The paths (ṽ1 ⇝ u1)[1,7] and (ṽ2 ⇝ u2)[10,13] are marked with dashes.

▶ Proposition 13. Each interval produced by Algorithm 1 admits a set of 0-representatives.

Proof. Suppose that an interval is produced by the merge event at iteration i. We have the
following situations:

If the nodes u1, u2 in this event (see Algorithm 1) are in the same tree in Ti, let v be the
highest common ancestor of u1, u2 and note that v is a splitting node at level j. Also
note that u1, u2 are actually leaves in Ti and hence can also be considered as level-i
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nodes in GB(F). Let ṽ be the unique level-j splitting node in GB(F). By invariant 3 of
Proposition 11 along with Proposition 10, there are two sets of partial 0-representatives
{αk | k ∈ [j, i]}, {βk | k ∈ [j, i]} for [j, i] with αj = ṽ, αi = u1, βj = ṽ, and βi = u2. We
claim that {αk+βk | k ∈ [j+1, i]} is a set of 0-representatives for the interval [j+1, i]. To
prove this, we first note the following obvious facts: (i) {αk + βk | k ∈ [j + 1, i]} is a set of
partial 0-representatives; (ii) αj+1 +βj+1 ∈ ker(φ0

j ); (iii) αi+βi is the non-zero element in
ker(φ0

i ). So we only need to show that αj+1 +βj+1 ̸= 0. Let v1, v2 be the two level-(j+ 1)
nodes in GB(F) connecting to ṽ. Then, αj+1 equals v1 or v2 and the same for βj+1.
To see this, we first show that αj+1 can only contain v1, v2. For contradiction, suppose
instead that αj+1 contains a level-(j + 1) node x with x ̸= v1, x ̸= v2. Let (ṽ ⇝ u1)[j,i]
be the simple path that induces {αk | k ∈ [j, i]} as in Proposition 10 and its proof. Then,
x is on the path (ṽ ⇝ u1)[j,i] and the two adjacent nodes of x on (ṽ ⇝ u1)[j,i] are at
level j and j + 2, in which we let y be the one at level j. Note that y ̸= ṽ because x is
not equal to v1 or v2. Since (ṽ ⇝ u1)[j,i] is within level j and i, y must be adjacent to
another level-(j+ 1) node distinct from x on (ṽ ⇝ u1)[j,i]. Now we have that y is a level-j
splitting node with y ̸= ṽ, contradicting the fact that GB(F) has only one level-j splitting
node. The fact that αj+1 contains v1 or v2 but not both can be similarly verified. To
see that αj+1 + βj+1 ̸= 0, suppose instead that αj+1 + βj+1 = 0, i.e., αj+1 = βj+1, and
without loss of generality they both equal v1. Note that we can consider Ti as derived by
contracting nodes of GB(F i) at the same level2. The fact that αj+1 = βj+1 = v1 implies
that u1, u2 are descendants of the same child of v in Ti, contradicting the fact that v is
the highest common ancestor of u1, u2. So we have that αj+1 + βj+1 ̸= 0.
If u1, u2 are in different trees in Ti, then without loss of generality let u1 be the one
whose root v1 is at the higher level (i.e., level j). As the root of u1, the node v1 must be
an entering node, and the connected component of GB(F i) containing u1 must have a
single level-j node ṽ1. Then, by invariant 2 of Proposition 11 along with Proposition 10,
there are two sets of partial 0-representatives {αk | k ∈ [j, i]}, {βk | k ∈ [j, i]} for [j, i] with
αj = ṽ1, αi = u1, βj = ṽ2, and βi = u2, where ṽ2 is a level-j node. We claim that
{αk + βk | k ∈ [j, i]} is a set of 0-representatives for the interval [j, i] and the verification
is similar to the previous case where u1 and u2 are in the same tree.

For intervals produced by the departure events and at the end of the algorithm, the
existence of 0-representatives can be similarly argued. ◀

▶ Theorem 14. Algorithm 1 computes the 0-th zigzag barcode for a given zigzag filtration.

Proof. First, we have the following facts: every level-j entering node in GB(F) introduces
a j ∈ P(H0(F)) and uniquely corresponds to a level-j root in Ti for some i; every level-j
splitting node in GB(F) introduces a j + 1 ∈ P(H0(F)) and uniquely corresponds to a level-j
splitting node in Ti for some i. Whenever an interval [j, i] is produced in Algorithm 1,
i ∈ N(H0(F)) and the entering or splitting node in Ti introducing j as a positive index
either becomes a regular node (i.e., connecting to a single node on both adjacent levels) or
is deleted in Ti+1. This means that j is never the start of another interval produced. At
the end of Algorithm 1, the number of intervals produced which end with m also matches
the rank of H0(Gm). Therefore, intervals produced by the algorithm induce a bijection
π : P(H0(F))→ N(H0(F)). By Proposition 9 and 13, our conclusion follows. ◀

2 We should further note that this contraction is not done on the entire GB(F i) but rather on connected
components of GB(F i) containing leaves.
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4 One-dimensional zigzag persistence

In this section, we present an efficient algorithm for 1-st zigzag persistence on graphs. We
assume that the input is a graph G with a zigzag filtration F : ∅ = G0

σ0←−→ G1
σ1←−→

· · · σm−1←−−−→ Gm of G. We first describe the algorithm without giving the full implementation
details. The key to the algorithm is a pairing principle for the positive and negative indices.
Then, in Section 4.1, we make several observations which reduce the index pairing to
finding the max edge-weight of a path in a minimum spanning forest, leading to an efficient
implementation.

We notice that the following are true for every inclusion Gi
σi←−→ Gi+1 of F (recall that

φ1
i denotes the corresponding linear map in the induced module H1(F)):

If σi is an edge being added and vertices of σi are connected in Gi, then φ1
i is an injection

with non-trivial cokernel, which provides i+ 1 ∈ P(H1(F)).
If σi is an edge being deleted and vertices of σi are connected in Gi+1, then φ1

i is an
injection with non-trivial cokernel, which provides i ∈ N(H1(F)).
In all the other cases, φ1

i is an isomorphism and i ̸∈ N(H1(F)), i+ 1 ̸∈ P(H1(F)).

As can be seen from Section 3, computing Pers(H1(F)) boils down to finding a pairing of
indices of P(H1(F)) and N(H1(F)). Our algorithm adopts this structure, where Ui denotes
the set of unpaired positive indices at the beginning of each iteration i:

Algorithm 2 Algorithm for 1-st zigzag persistence on graphs.

U0 := ∅
for i := 0, . . . ,m− 1:

if Gi
σi−−→ Gi+1 provides i+ 1 ∈ P(H1(F)):

Ui+1 := Ui ∪ {i+ 1}
else if Gi

σi←−− Gi+1 provides i ∈ N(H1(F)):
pair i with a j∗ ∈ Ui based on the Pairing Principle below
output an interval [j∗, i] for Pers(H1(F))
Ui+1 := Ui \ {j∗}

else:
Ui+1 := Ui

for each j ∈ Um:
output an interval [j,m] for Pers(H1(F))

Note that in Algorithm 2, whenever a positive or negative index is produced, σi must be
an edge. One key piece missing from the algorithm is how we choose a positive index to pair
with a negative index:

▶ Pairing Principle for Algorithm 2. In each iteration i where Gi
σi←−− Gi+1 provides

i ∈ N(H1(F)), let Ji consist of every j ∈ Ui such that there exists a 1-cycle z containing both
σj−1 and σi with z ⊆ Gk for every k ∈ [j, i]. Then, Ji ̸= ∅ and Algorithm 2 pairs i with the
smallest index j∗ in Ji.
▶ Remark 15. See Proposition 17 for a proof of Ji ̸= ∅ claimed above.
▶ Remark 16. Algorithms for non-zigzag persistence [10, 20] always pair a negative index with
the largest (i.e., youngest) positive index satisfying a certain condition, while Algorithm 2
pairs with the smallest one. This is due to the difference of zigzag and non-zigzag persistence
and our particular condition that 1-cycles can never become boundaries in graphs. See [4, 15]
for the pairing when assuming general zigzag filtrations.
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Figure 5 A zigzag filtration with 1-st barcode {[4, 6], [2, 8], [6, 9], [8, 9]}. For brevity, the addition
of vertices and some edges are skipped.

Figure 5 gives an example of the pairing of the indices and their corresponding edges. In
the figure, when edge d is deleted from G6, there are three unpaired positive edges a, b, and
c, in which b and c admit 1-cycles as required by the Pairing Principle. As the earlier edge, b
is paired with d and an interval [4, 6] is produced. The red cycle in G6 indicates the 1-cycle
containing b and d which exists in all the intermediate graphs. Similar situations happen
when e is paired with a in G8, producing the interval [2, 8].

For the correctness of Algorithm 2, we first provide Proposition 17 which justifies the
Pairing Principle and is a major step leading toward our conclusion (Theorem 18):

▶ Proposition 17. At the beginning of each iteration i in Algorithm 2, for every j ∈ Ui,
there exists a 1-cycle zij containing σj−1 with zij ⊆ Gk for every k ∈ [j, i]. Furthermore, the
set {zij | j ∈ Ui} forms a basis of Z1(Gi). If the iteration i produces a negative index i, then
the above statements imply that there is at least one zij containing σi. This zij satisfies the
condition that zij ⊆ Gk for every k ∈ [j, i], σj−1 ∈ zij , and σi ∈ zij , which implies that Ji ̸= ∅
where Ji is as defined in the Pairing Principle.

▶ Theorem 18. Algorithm 2 computes the 1-st zigzag barcode for a given zigzag filtration on
graphs.

Proof. The claim follows directly from Proposition 9. For each interval [j∗, i] produced from
the pairing in Algorithm 2, by the Pairing Principle, there exists a 1-cycle z containing both
σj∗−1 and σi with z ⊆ Gk for every k ∈ [j∗, i]. The cycle z induces a set of 1-representatives
for [j∗, i]. For each interval produced at the end, Proposition 17 implies that such an interval
admits 1-representatives. ◀

4.1 Efficient implementation
For every i and every j ≤ i, define Γij as the graph derived from Gj by deleting every edge
σk s.t. j ≤ k < i and Gk

σk←−− Gk+1 is backward. For convenience, we also assume that Γij
contains all the vertices of G. We can simplify the Pairing Principle as suggested by the
following proposition:

▶ Proposition 19. In each iteration i of Algorithm 2 where Gi
σi←−− Gi+1 provides i ∈

N(H1(F)), the set Ji in the Pairing Principle can be alternatively defined as consisting of
every j ∈ Ui s.t. σi ∈ Γij and the vertices of σi are connected in Γi+1

j (σi ̸∈ Γi+1
j by definition).

We now turn graphs in F into weighted ones in the following way: initially, G0 = ∅;
then, whenever an edge σi is added from Gi to Gi+1, the weight w(σi) is set to i. For a
path in a weighted graph, let the max edge-weight of the path be the maximum weight of its
edges. Then, as can be seen from the full version [7] of the paper, the pairing boils down to
computing the max edge-weight of the path connecting u, v in the minimum spanning forest
(MSF) of Gi+1. For this, we utilize the dynamic-MSF data structure proposed by Holm et
al. [12]. Assuming that n is the number of vertices and edges of G, the dynamic-MSF data
structure supports the following operations:
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Return the identifier of a vertex’s connected component in O(logn) time, which can be
used to determine whether two vertices are connected.
Return the max edge-weight of the path connecting any two vertices in the MSF in
O(logn) time.
Insert or delete an edge from the current graph (maintained by the data structure) and
possibly update the MSF in O(log4 n) amortized time.

We now present the full details of Algorithm 2:

Algorithm Algorithm 2: details.

Maintain a dynamic-MSF data structure F, which consists of all vertices of G and no edges
initially. Also, set U0 = ∅. Then, for each i = 0, . . . ,m − 1, if σi is a vertex, do nothing;
otherwise, do the following:
Case Gi

σi−−→ Gi+1: Check whether vertices of σi are connected in Gi by querying F, and
then add σi to F. If vertices of σi are connected in Gi, then set Ui+1 = Ui ∪ {i + 1};
otherwise, set Ui+1 = Ui.

Case Gi
σi←−− Gi+1: Delete σi from F. If the vertices u, v of σi are found to be not connected

in Gi+1 by querying F, then set Ui+1 = Ui; otherwise, do the following:
Find the max edge-weight w∗ of the path connecting u, v in the MSF of Gi+1 by
querying F.
Find the smallest index j∗ of Ui greater than max{w∗, w(σi)}. (Note that we can store
Ui as a red-black tree [5], so that finding j∗ takes O(logn) time.)
Output an interval [j∗, i] and set Ui+1 = Ui \ {j∗}.

At the end, for each j ∈ Um, output an interval [j,m].

Now we can see that Algorithm 2 has time complexity O(m log4 n), where each iteration
is dominated by the update of F.

5 Codimension-one zigzag persistence of embedded complexes

In this section, we present an efficient algorithm for computing the (p− 1)-th barcode given
a zigzag filtration of an Rp-embedded complex, by extending our algorithm for 0-dimension
with the help of Alexander duality [17].

Throughout this section, p ≥ 2, K is a simplicial complex embedded in Rp, and F : ∅ =
K0 ↔ · · · ↔ Km is a zigzag filtration of K. We call connected components of Rp \ |K| as
voids of K or K-voids, to emphasize that only voids of K are considered in this section. The
dual graph G of K has the vertices corresponding to the voids as well as the p-simplices
of K, and has the edges corresponding to the (p − 1)-simplices of K. The dual filtration
E : G = G0 ↔ G1 ↔ · · · ↔ Gm of F consists of subgraphs Gi of G such that: (i) all vertices
of G dual to a K-void are in Gi; (ii) a vertex of G dual to a p-simplex is in Gi iff the dual
p-simplex is not in Ki; (iii) an edge of G is in Gi iff its dual (p− 1)-simplex is not in Ki.

One could verify that each Gi is a well-defined subgraph of G. We note the following:
(i) inclusion directions in E are reversed; (ii) E is not exactly a zigzag filtration (because
an arrow may introduce no changes) but can be easily made into one. Figure 6 gives an
example in R2, in which we observe the following: whenever a (p− 1)-cycle (i.e., 1-cycle) is
formed in the primal filtration, a connected component in the dual filtration splits; whenever
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K/G

K0 = ∅/G0 K1/G1 K2/G2 K3/G3

K4/G4 K5/G5 K6/G6 K7/G7

Figure 6 A zigzag filtration of an R2-embedded complex K and its dual filtration, where the
dual graphs are colored red. For brevity, changes of vertices in the primal filtration are ignored.

a (p− 1)-cycle is killed in the primal filtration, a connected component in the dual filtration
vanishes. Intuitively, Gi encodes the connectivity of Rp \ |Ki|, and so by Alexander duality,
we have the following proposition:

▶ Proposition 20. Pers(Hp−1(F)) = Pers(H̃0(E)).

Proposition 21 indicates a way to compute Pers(H̃0(E)):

▶ Proposition 21. Pers(H̃0(E)) = Pers(H0(E)) \ {[0,m]}.

The above two propositions suggest a naive algorithm for computing Pers(Hp−1(F)) using
Algorithm 1. However, building the dual graph G requires reconstructing the void boundaries
of K, which is done by a “walking” algorithm obtaining a set of (p− 1)-cycles and then by a
nesting test of these (p− 1)-cycles [8, Section 4.1]. The running time of this process is Ω(n2)
where n is the size of K. To achieve the claimed complexity, we first define the following [8]:

▶ Definition 22. In a simplicial complex X, two q-simplices σ, σ′ are q-connected if there
is a sequence σ0, . . . , σℓ of q-simplices of X such that σ0 = σ, σℓ = σ′, and every σi, σi+1
share a (q − 1)-face. A maximal set of q-connected q-simplices of X is called a q-connected
component of X, and X is q-connected if it has only one q-connected component.

Based on the fact that void boundaries can be reconstructed without the nesting test for
(p−1)-connected complexes in Rp [8], we restrict F to several (p−1)-connected subcomplexes
of K and then take the union of the (p− 1)-th barcodes of these restricted filtrations:

Algorithm 3 Algorithm for (p − 1)-th zigzag persistence on Rp-embedded complexes.

1. Compute the (p− 1)-connected components D1, . . . , Dr of K.
2. For each ℓ = 1, . . . , r, let

Cℓ = cls(Dℓ) ∪ {τ ∈ K | τ is a p-simplex whose (p− 1)-faces are in Dℓ}

and let X ℓ be a filtration of Cℓ defined as

X ℓ : K0 ∩ Cℓ ↔ K1 ∩ Cℓ ↔ · · · ↔ Km ∩ Cℓ

Then, compute Pers(Hp−1(X ℓ)) for each ℓ.
3. Return

⋃r
ℓ=1 Pers(Hp−1(X ℓ)) as the (p− 1)-th barcode of F .
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In Algorithm 3, cls(Dℓ) denotes the closure of Dℓ, i.e., the complex consisting of all faces
of simplices in Dℓ. For each ℓ, let nℓ be the number of simplices in Cℓ; then, the dual graph
of Cℓ can be constructed in O(nℓ lognℓ) time because Cℓ is (p − 1)-connected [8]. Using
Algorithm 1 to compute Pers(Hp−1(X ℓ)) as suggested by the duality, the running time of
Algorithm 3 is O(m log2 n+m logm+ n logn), where m is the length of F and n is the size
of K.

The correctness of Algorithm 3 can be seen from the following proposition:

▶ Proposition 23. The modules Hp−1(F) and
⊕r

ℓ=1 Hp−1(X ℓ) are isomorphic which implies
that Pers(Hp−1(F)) =

⋃r
ℓ=1 Pers(Hp−1(X ℓ)).
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