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5. Discussion 

The tomographic reconstruction for the verification design shows 
very well defined annular flow. High lubricant concentration regions are 
close to channel periphery. However, the reconstruction for the two- 
channel straight design is not as well defined. This is because, for the 
later the total flow rate was divided into two channels and thus fewer 
droplets were in each channel to reflect light. If the flow rate increases, 
proper lubricant reconstruction is expected; however, the excessive flow 
rate may also change the flow regime and results obtained will be of no 
practical importance. Nevertheless, when the channel are shifted from 
the axis of rotation, the lubricant distribution remains annular because, 
the velocity in the axial direction is high, providing higher momentum 
along the axial direction as compared to the momentum imparted by the 
centrifugal forces in the radial direction due to drill rotation. If the 
rotational speed of the drill is increased or if the channels are moved 
away from the axis of rotation, the centrifugal force effect may become 
noticeable on lubricant distribution. For the case of the helical channel, 
the lubricant distribution does not remain annular anymore, though the 
radial distance of the channels and the drill rotational speed are iden
tical to those of the straight channel drill. Therefore, it is evidenced that 
the helical path does have a significant effect on lubricant distribution. 
The helical channel generates secondary vortices inside the channel 
which disrupts the annular lubricant distribution [35]. 

For the evaluation of the number of projection angles, unlike the 
simulation result of the Sheep-Logan phantom, 180 projections provided 
a better reconstructed image than that of the 360 projections. There can 
be two possible explanations for the issue, (i) the flow not being steady 
state or (ii) the dynamic motion of the drill while capturing an image. It 
was verified that the flow was steady state since the flow rate remained 
constant throughout the experiment. Therefore the dynamic state of the 
drill has adverse effect on the image quality. Because of the longer 
exposure time and angularly wide spaced projections (discrete) for 180 
projections. During the actual image acquisition, the drill rotates at a 
constant speed whereas the phantom image is stationary at all time. 
When 2160 fps is used, each projection is 1◦ apart while it is 2◦ apart for 
1080 fps. The larger angle between the projections improves the 
discreteness in the projections. For 360 projections, by the time the 
image acquisition at angle x◦ ends the drill is already close to the posi
tion for image acquisition at angle x◦+1◦. While, for 180 projections, 
there is some time between the end of image acquisition for angle x◦ and 
start of angle x◦+2◦ Therefore, although more projections are theoreti
cally better, it may have a negative effect if the object is in a dynamic 
condition when performing sequential imaging. 

The proposed methods still has some limitations which need to be 
dealt to improve the accuracy of the method. Currently, the maximum 
size of the control volume is limited because, for a larger control volume, 
the assumption of homogeneous irradiance does not hold. Further cali
bration and tests are required to consider the attenuation in the irradi
ance as the size of the control volume increases. Also, the method can 
only differentiate high droplet concentration regions since the signal 
from low contrast regions is extremely low. Further, the method utilizes 
sequential imaging and thus needs to employ long exposure times. This 
limits the capacity to capture the individual droplets and to reconstruct a 
detailed droplet distribution. If multiple cameras are used surrounding 
the control volume, instantaneous imaging can be performed and 
detailed lubricant distribution containing individual droplets can be 
obtained. 

6. Conclusion 

The proposed optical tomography technique provides reasonable 
results to visualize the mist flow distribution. The method is economical 
and practical as it only requires a non-coherent optical light source, a 
high-speed camera of 1000–2000 fps, and it uses an open-source algo
rithm for tomographic image reconstruction. The image acquisition 

takes about 0.15 s and the solution algorithm takes about 0.1 s to 
generate the tomographic image. The process provides means to 
experimentally measure the flow distribution inside the channel, which 
can be used as the initial flow condition when simulating oil coverage on 
the cutting edge. Then, the data obtained from the tomographic recon
struction about the flow distribution helps to analyze the effect of 
different channel shapes, which bridges the gap between the drill per
formance and channel geometry. 

Learning from the experimental work, several restrictions must be 
considered while setting up the measurement. First, since no attenuation 
in the irradiant light is assumed, the size of the control volume should be 
as small as possible. Second, the lighting condition should be as ho
mogenous as possible. Third, the axis of rotation needs to be aligned 
with the center of the image for the reconstruction algorithm to work. 
Lastly, the exposure time should be long enough to see a nearly steady 
flow instead of individual droplets. Good quality of captured images is 
the key to a successful reconstruction result. 
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