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Advanced stage glioma is the most aggressive form of malignant brain tumors with a short
survival time. Real-time pathology assisted, or image guided surgical procedures that
eliminate tumors promise to improve the clinical outcome and prolong the lives of patients.
Our work is focused on the development of a rapid and sensitive assay for intraoperative
diagnostics of glioma and identification of optical markers essential for diferentiation
between tumors and healthy brain tissues. We utilized fluorescence lifetime imaging (FLIM)
of endogenous fluorophores related to metabolism of the glioma from freshly excised
brains tissues. Macroscopic time-resolved fluorescence images of three intracranial
animal glioma models and surgical samples of patients’ glioblastoma together with the
white matter have been collected. Several established and new algorithms were applied to
identify the imaging markers of the tumors. We found that fluorescence lifetime
parameters characteristic of the glioma provided background for differentiation between
the tumors and intact brain tissues. All three rat tumor models demonstrated substantial
differences between the malignant and normal tissue. Similarly, tumors from patients
demonstrated statistically significant differences from the peritumoral white matter without
infilttration. While the data and the analysis presented in this paper are preliminary and
further investigation with a larger number of samples is required, the proposed approach
based on the macroscopic FLIM has a high potential for diagnostics of glioma and
evaluation of the surgical margins of gliomas.

Keywords: fluorescence lifetime imaging, FLIM, rat glioma model, glioblastoma, autofluorescence,
image processing
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INTRODUCTION

Glioblastoma (Grade IV) is the most common and most
aggressive form of malignant brain tumors with an overall
survival of 14-15 months after complete surgical resection and
adjuvant radiochemotherapy (1). Standard therapy for high-
grade gliomas includes maximal safe surgical resection,
followed by radiotherapy and chemotherapy. The largest
possible surgical removal is recommended, while preserving
neurological function. Since the extent of removal of
pathological tissue defines, to a large degree, a prognosis of the
disease, an accurate identification of the tumor margin during
resection is crucially important (2).

During surgery, tumors are routinely identified based on the
neurosurgeon’s experience, visual observation with white-light
microscopy, and neuronavigation using intraoperative ultrasound-
based data and/or preoperative MRI scan. Intraoperative
histopathological analysis to estimate tumor infiltration is
uncommon, in part, because it is laborious and time-consuming,
and because it requires multiple samplings for conclusive diagnosis.
However, the tumor margins cannot be properly defined with
conventional imaging, especially with respect to the brain shift
that inevitably occurs. Intraoperative fluorescence guidance with 5-
aminolevulinic acid (5-ALA) that induces protoporphyrin IX
fluorescence or exogenous contrast agents (e.g. sodium fluorescein
or indocyanine green) has proven to be a useful technique to
improve the resection, but the challenges associated with non-
specific distribution of the fluorophore, timing and the subjective
assessment of fluorescence still remain (3). In addition, the use of 5-
ALA in most cases does not allow to detect low grade gliomas,
although it seems to be possible based on the fluorescence lifetime
information (4). To avoid non-specific distribution of the
fluorophores, fluorescent reporters targeting epidermal growth
factor (EGF) receptor or other tumor specific molecules have
been reported (5, 6). However, the question about the apparent
toxicity of exogenous contrast agents upon systemic administration
was left open. Stain-free techniques that do not require sample
staining is a preferable way for tumor identification.

In recent years, there is an increasing interest in using
endogenous fluorescence for intraoperative assessment in glioma
surgery (7). Several studies indicate that autofluorescence in the
blue range, derived mainly from reduced nicotinamide adenine
dinucleotide (phosphate) NAD(P)H (ex/em 330-380 nm/420-480
nm), has a great potential to differentiate between tumorous and
normal brain tissues (8-12). NAD+/NADH is a principal redox
couple in the reactions of cellular respiration, such as glycolysis,
the tricarboxylic acid cycle (TCA) and oxidative phosphorylation.
NADP+/NADPH participates in anabolic reactions such as
biosynthesis of fatty acids and nucleotides and in detoxifying
processes. Metabolic alterations that accompany tumor
progression can result in the change of the parameters of NAD
(P)H fluorescence, including emission intensity, spectrum profile
and the lifetime, which has been widely documented for gliomas
(13-15). Among the fluorescence-based techniques, fluorescence
lifetime imaging (FLIM) has the advantage of being a largely
independent from the fluorophore concentration in combination
with high molecular specificity. In the case of NAD(P)H, FLIM is

able to resolve these molecules in their free unbound (~0.3-0.5 ns)
and enzyme-bound (~2-4.5 ns) states, associated primarily with
cytosolic and mitochondrial processes, correspondingly. While a
significant progress has been recently achieved in the use of one-
photon FLIM instrument in neurosurgery (16) in general, the
possibilities of FLIM of NAD(P)H in glioma diagnostics on the
whole tumor scale have been poorly explored so far.

Recently, we developed a system for fluorescence lifetime
imaging on a macro scale (macro-FLIM) with high sensitivity to
a relatively weak tissue autofluorescence (17). The system is
based on scanning of the beam over a large field of view (~18
mm) and confocal detection of the fluorescence signal.
Recording of the fluorescence lifetime is done by time-
correlated single photon counting (TCSPC) technique (18).
Combination of the confocal detection with the fluorescence
lifetime imaging using TCSPC enables recording of relatively
high (15 pum) spatial and temporal resolution image within a
reasonably short recording time. A large field of view in the
macro-FLIM opens the opportunity to visualize the distribution
of endogenous fluorescence from the entire tumor in animal or
from the patients’ tissues samples in a relatively short period of
time of (ca. 2 min/scan). This high speed imaging makes the
method attractive for intraoperative applications such as stain-
tree pathology or image guided margin detection.

The objective of the present work was to investigate whether
glioma and healthy brain tissue from the animal models and
humans present different signatures in terms of the
autofluorescence lifetime in the spectral band of NAD(P)H. In
this study, the FLIM images were recorded from freshly excised
whole rat brains with different intracranial glioma models. In the
patient populations, surgical samples were collected from
glioblastoma and the white matter. Fluorescence data were
analyzed by two approaches: 1) nonlinear curve-fitting of
fluorescent decays and 2) unsupervised visualization
techniques based on Principal Component Analysis (PCA) and
Linear Unmixing (LU). All samples were subjected to
histopathological evaluation by an unbiased expert to verify the
results of the imaging.

MATERIALS AND METHODS

Intracranial Rat Glioma Models

The study was performed on Wistar rat glioma models - glioma
C6 (n=5), glioblastoma 101.8 (n=3) and anaplastic astrocytoma
10-17-2 (n=6) (all females, body weight 240 + 15 g). Healthy rats
without tumors (n=3, females) were served as control. Cé rat
glioma cells were cultured in DMEM containing 10% FBS in CO,
incubator (5% CO,, 37°C, humidified atmosphere). Cells were
trypsinized (0.25% trypsin) for 3 min, washed and re-suspended
in DMEM to the concentration 5x10° cells/mL. 1x10° cells in 10
KL PBS were used for injection into the rat brain. Anaplastic
astrocytoma 10-17-2 and glioblastoma 101.8 were obtained by
inoculation of homogenized tumor tissue from donor rats (~10°
tumor cells in 10 pL PBS) into the brain (19). For cells
implantation, animals were anesthetized with zoletil (12.5 mg/
kg) and xylazine (1 mg/kg) and immobilized on a stereotaxic
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unit. The indicated amounts of cells were injected via the hole
drilled in the scull 2 mm lateral and 2 mm posterior to the
bregma into the right hemisphere of the brain at ~4 mm depth.

Animals were euthanized using an overdose of zoletil (Virbac
SA, France) and rometar (Spofa, Czech Republic) on 15-20 day
after tumor inoculation. The brains were gently removed and
divided in two tissue blocks in sagittal plane using a scalpel. One
of the blocks was analyzed by FLIM immediately and then fixed
in 10% buffered formalin for histological examination.

All animal procedures were approved by the Ethical Committee
of the Privolzhsky Research Medical University (PRMU).

Patient’s Samples

Human brain specimens were obtained from the University
Clinic at PRMU from 5 patients during the tumor resection.
An informed written consent was obtained from all patients
prior to the enrollment. The samples of the glioblastoma (WHO
grade IV) (n=5) and the peritumoral white matter (n=6) were
investigated with FLIM and standard histology. Three out of six
samples of the white matter had a high degree of tumor cell
infiltration and were categorized as “with infiltration.” Other
samples with no or a few isolated discretely located tumor cells
were categorized as “without infiltration.”

The tissue storage was performed according to a previously
developed protocol to preserve the fluorescence lifetime of NAD
(P)H (20). Immediately after the resection, a tissue sample of 0.6-
0.8 mm? was wrapped in gauze soaked in 10% solution of bovine
serum albumin (BSA), placed in a sterile Petri dish and delivered
to laboratory on ice. FLIM was performed within 1.5 hours after
the resection. Clinicopathological characteristics of patients are
given in Table 1.

FLIM on the Macroscale

A confocal macro-FLIM system, described earlier in our work
(17), was utilized to scan centimeter-sized objects of animal and
human tissue. Fluorophores are excited by picosecond diode
lasers that form an excitation spot in the image plane of about 15
pm. Freshly excised samples are scanned by placing them
directly in the image plane of a confocal scan head. The image
plane of the scan lens is brought in coincidence with the sample
surface. As the galvo-mirrors change the beam angle the laser
focus scans across the sample. The fluorescence signal produced
by the sample is collimated by the scan lens, descanned by the
galvo-mirrors, and separated from the excitation light by the
dichroic beamsplitter. It is further separated into two spectral
channels and focused into the pinholes. Light passing the
pinholes is sent to HPM-100-40 hybrid detectors
(Becker&Hickl GmbH, Germany). The photon pulses from the

detectors are processed by two SPC-150 TCSPC FLIM modules
(Becker & Hickl GmbH, Germany). The maximum diameter of
the image area in the primary image plane of the scanner is
about 18 mm.

The tissue autofluorescence was excited by a picosecond
diode laser (BDL-375-SMN, Becker&Hickl) at the wavelength
of 375 nm with the power incident on a sample of 18 uyW. The
wavelength of excitation was selected based on the absorption of
NAD(P)H at this wavelength. The signal was registered in the
spectral range determined by a bandpass filter 460/50 nm
(Chroma, USA). Collection time was 120 s, which allowed to
collect from 6300 to 9700 photons per decay curve.

FLIM Data Processing

SPCImage software (Becker & Hickl GmbH, Germany) was used
to process the FLIM data. A nonlinear least-square fit was used to
derive the decay parameters from the decay data in the pixels.
The fluorescence decay curves were fitted with a bi-exponential
decay model providing a short and a long lifetime components
(ty and 7T, respectively), and the relative amplitudes of the
lifetime components (al and a2, where a; + a; = 100%). From
these values the amplitude-weighted mean fluorescence lifetime
(Tm = a1 T1 + a3 T,) and the ratio of the amplitudes, a,/a, were
derived. The quality of the fit was evaluated by the y, value,
For all data presented here %, was within the appropriate range
of 0.8 - 1.2.

In each image of the rat brain, tumor areas and areas of cortex
and white matter without tumor cells were selected as ROIs
(Figure S1). Histograms of T,, and, a,/a, were calculated over the
pixels of the ROIs. The maxima of the histograms were used to
assess the tissue state in within the individual ROIs, see Figures
1, 2 and Table 2. Values derived from the maxima of the
histograms have a much higher accuracy than data from single
pixels. We were therefore ably to run the fits with all parameters,
Ty, Ty 2y, 2y, freely floating. This avoids biasing of the results by
ignoring possible variations in the component lifetimes (21). For
samples from human patients the same procedures were applied
to the data from the entire sample.

Image Processing

FLIM collected datasets were analyzed using IDCube software
(HSpeQ LLC, USA) that process 3D spectral data (22). FLIM
raw data were first converted to the IDCube format and
processed using a three- band method to generate a pseudo
RGB image (23). The generated image is a composite of the
three selected bands (time channels, i.e.) with the corresponding
bandwidths, where the color intensity values are combined to
form an RGB triplet. In this approach, we visualize the FLIM

TABLE 1 | Clinicopathological characteristics of patients.

Age Sex Grade IDH-status Localization Samples
Patient 1 32 F Grade IV NOS left temporal recurrent WM with infiltration, tumor, tumor
Patient 2 39 M Grade IDH-mutant left parietal recurrent tumor, tumeor, tumor
Patient 3 64 M Grade IV IDH-wildtype left parietal recurrent WM with infiltration, WM with infiltration
Patient 4 80 M Grade IV NOS left fronto-pariet-occipital recurrent WM without infiltration
Patient 5 49 M Grade IV IDH-wildtype right fronto-temporal newly diagnosed WM without infiltration, WM without infitration
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data with three colors where the Red, Green and Blue
components were created by summing up the intensities
values from three selected time ranges as shown in Figure S2,
Supplementary Information. The data were then analyzed
using Principal Component Analysis (PCA) that uses
covariance matrices to compute association between data
points. The most prominent association that accounts for
most of the data variability is considered the first principal
component, the second most variability is considered the second
principal component, and so forth. The PCA was performed
across all images and band selection was performed by selecting
first two components that shows more than 80% of cumulative
fraction of variance among 1024 components. In the PCA image
three components were used assigned to Red, Green and Blue
channels correspondingly. In that case, Cyan, Yellow and

Magenta colors have been the result of mixing of Red, Green
and Blue components.

Linear Unmixing (LU) was applied to classify the image and
identify the regions of the tumors. This technique is used to
determine the relative contribution from each fluorophore for
every pixel of the image. The dataset was first processed by the N-
FINDR method to estimate the 3 endmembers spectra, then
least square method was used to generate the abundance
maps based on the endmembers algorithm (24) to generate
three endmembers. To estimate the optimal number of the
endmembers, we calculated the residuals for the 2, 3 and 4
endmembers using nonnegative linear least-squares function
available from MATLAB and implemented in IDCube. The
residuals were calculated from the entire image and shown in
Figure S3, Supplementary Information. As expected, we found

glioma Ci glioblastoma 101.8

images in the row.

B T s |

FIGURE 1 | Histopathology of glioma models glioma C8, glioblastoma 101.8 and anaplastic astrocytoma 10-17-2 and normal rat brain. H&E-staining. (A) Initial
magnification X7. (B) Initial magnification X40. Enlarged regions are indicated by the yellow squares on the lower-magnification panel. Bars are applicable to all

astrocytoma 10-17-2 normal brain

TABLE 2 | Autofluorescence lifetimes in patients' glioblastoma and the peritumoral white matter.

Parameters Ty NS Ty, NS T, NS aqg % az % 8485
Tumor Mean (SEM) 3.65(0.17) 1.62* 7.81*(0.27) 66.51" (1.46) 33.49" 2.02* (0.15)
(0.05) (1.46)
Median 3.59 1.62 7.56 65.59 34.42 1.91
Percenties 25t 341 1.57 7.41 64.11 32.52 1.79
75" 376 1.66 7.96 67.48 35.89 2.08
Peritumoral WM with infiltration Mean (SEM) 4.06 1.71 8.35 63.31 36.689 1.73
(0.55) (0.11) (1.18) (0.21) (0.21) (0.02)
Median 435 1.71 9.08 63.25 36.75 1.72
Percerties 25t 367 1.62 7.58 63.12 36.53 1.74
75" 459 1.79 9.49 63.47 36.89 1.74
Peritumoral WM without infiltration Mean (SEM) 3.46 1.22 5.79 57.25 4275 1.34
{0.35) (0.05) (0.51) (0.89) (0.89) (0.05)
Median 329 1.22 6.11 57.51 42.49 1.35
Percentiles 25t 3.13 1.18 5.45 56.56 41.93 1.31
75" 371 1.26 6.28 58.07 43.45 1.39

*p < 0.05 from the peritumoral white matter without infitration. Kruskal-Walls test. n=3-5 samples per group. WT, white matter.
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FIGURE 2 | Macro-FLIM of glioma models and normal rat brain. (A) Representative autofluorescence time-resolved images of glioblastoma C8, glioblastoma 101.8,
anaplastic astrocytoma 10-17-2 and rat brain without tumor. Pseudo RGB image is built from three time channels where the red color reflects fast emitting species,
green medium, and blue long lived components; PCA images in the pseudo RGB images: red, green and blue colors correspond to a first, second, and third
principal component; LU images reflect three selected classes: grey matter, white matter, and the background. The tumors are marked with a white line. Scale bar:
10 mm, applicable to all images. (B) Quantification of ,,, and a,/a, ratio in (1) glioblastoma C6 (2), glioblastoma 101.8 (3), anaplastic astrocytoma 10-17-2 and
nomal brain. Scatter dot plot displays the measurements for individual animals (dots) and the median, minimum and maximum (horizontal lines). 1, is the mean
fluorescence lifetime. a;/a; is the ratio of relative contributions of short and long components.

the residual values were decreasing with the included number of
endmembers, although the difference between the 3 and 4
endmembers seems to be marginal. We selected 3-endmember
approach where the spectra resemble the decays representing the
background, tumor and non-tumor tissues. The spectral
characteristics of the endmembers are shown in Figure S4.
The three endmembers resembled the long and short decays as
well as the background. The two endmembers corresponding to
the long and short decays were grouped together to form a
pseudo RGB image. For the LU image we have used these two
endmembers to visualize the image as pseudo RGB (Endmember
#1 as Red, Endmember #2 as Blue, and as Green).

Histopathology

Formalin-fixed brain samples were embedded in paraffin in
accordance to a standard protocol and sectioned parallel to the
optical plane. 7-pum thick paraffin sections were stained with
hematoxylin and eosin and examined under microscopy with
Axio Zoom.V16 (Zeiss, Germany) at x7 magnification and Leica
DM2500 microscope (Leica, Japan) at x40 magnification.

Statistics

The mean values, standard error of the mean (SEM), median,
25™ and 75™ percentiles were calculated for each quantitative

parameter. To estimate the statistical significance of the
differences between groups, the Kruskal-Wallis test was used.
P < 0.05 indicated statistically significant difference.

RESULTS

Histopathological Characterization of Rat
Brain Tumors
Histopathological analysis of the rat brains ex vive showed
location of tumors inside the deep brain structures with the
invasion into the white matter tracts and in the cortex (Figure 1).

At the cellular level, glioma C6 displayed typical
characteristics of glioblastoma multiforme, such as high
cellularity, regions of invasion into the brain parenchyma and
the presence of necrotic areas. The tumors were composed of
atypical cells with hyperchromic polymorphic nuclei. Numerous
pathologic mitoses among proliferating cells were observed.
Tumors were highly vascularized and presented a large
number of newly formed microvessels. The clusters of
proliferative cells were found preferentially along the vessels in
the marginal zone of tumor.

Glioblastoma 101.8 at the advanced stage had a
heterogeneous structure, large clusters of tumor cells alternated
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with necrotic areas and numerous small hemorrhages. Massive
necrosis was observed in a central part of the tumor. Tumor
margins were poorly defined, severe infiltration of the
surrounding brain tissue with tumor cells was observed. The
blood vessels were distributed heterogeneously with high
variability of their diameters and irregular shapes. The tumor
had high cellularity, high mitotic activity with a large number of
pathological mitoses. Tumor cells had a high nuclear cytoplasmic
ratio. The nuclei were pleomorphic, small or medium in size,
with atypical arrangement of heterochromatin.

Anaplastic astrocytoma 10-17-2 composed of densely packed
cells with hyperchromic polymorphic nuclei. A large amount of
mitotic cells was detected, pathologic mitoses were rare. Necrosis
was present in a moderate amount. The presence of peritumoral
edema was revealed.

Macro-FLIM of Rat Glioma Models

Time-resolved measurements of endogenous fluorescence from
the tumorous and normal rat brain tissues showed that the
fluorescence decays for all tissues were best fit to a double-
exponential function with a short component t; ranged from
0.78 to 0.94 ns and a long component 7 ranged from 3.32 to 5.03
ns. One must mention that the measured fluorescence lifetimes
were higher than those previously reported for NAD(P)H in cells
and tissues: 0.3-0.5 ns for 7; (free NAD(P)H), and 2.0-3.2 ns for
7> (protein-bound NAD(P)H) (25-27), which indicates that any
other fluorophores, likely, contribute to autofluorescence of the
brain tissue.

In a search for differences between gliomas and normal brain
tissue, we compared the parameters of fluorescence lifetime
measurements (T,,, 71, T2 41, A2, A;/as) of the three rat glioma
models with the cortex and the white matter, both tumor distant
and intact control (Table S1).

Fluorescence lifetime values, such as 7, in the C6 glioma
region did not statistically differ from the tumor-distant cortex
(1.46 ns vs 1.39 ns, p=1.0) and the tumor-distant white matter
(1.46 ns vs 1.53 ns, p=0.176). However, these values were
substantially lower than the corresponding values from the
white matter of the healthy brain (7,, =1.46 ns vs 1.82 ns, p =
0.031; 7 = 3.39 ns vs 4.54 ns, p = 0.026). Lifetime parameters 7,
and 7 in tumor-distant white matter were shorter compared to
the white matter in healthy brain (7,,=1.53 ns vs 1.82 ns, p=0.037
and 7, = 3.55 vs 4.54 ns, p = 0.037, respectively) (Figure 2 B1).

For glioblastoma 101.8 we identified decreased t,, and 1,
compared to tumor-distant white matter (7,,, = 1.96 ns vs 2.23 ns,
p=0.003; 7, _ 4.61 ns vs 5.03 ns, p=0.042). In addition, all
fluorescence lifetime parameters (7,, T1, T» 41, 42 a@i/a,) in the
tumor demonstrated differences from intact cortex (p < 0.043).
Again, tumor-distant white matter and cortex differed from
intact brain, showing longer lifetimes (7, 7;, 7:) (Figure 2 B2).

Anaplastic astrocytoma 10-17-2 displayed a reduced mean
fluorescence lifetime in comparison with the intact white matter
(T =1.51 ns vs 1.82 ns, p=0.004). Similar changes of tm were
shown for the tumor-distant white matter compared with the
intact control (1.61 ns vs 1.82 ns, p=0.014) (Figure 2 B3).
Analysis of the amplitudes of the short (al) and long (a2)
lifetime components and their ratio (a,/a;) revealed an

increase of a2 in the tumor and the tumor-distant cortex
compared to the intact control cortex (~25 vs 20), resulting in
a decreased a,/a> ratio (~3 vs 3.76).

Therefore, all three tumor models showed a difference
between the tumor and the healthy brain tissue in, at least, one
fluorescence lifetime parameter. The difference between the
tumor and the tumor-distant brain tissues were detected only
for glioblastoma 101.8. However, it was found that tumor-distant
tissues also showed modified fluorescence lifetimes compared
with healthy brain, indicating strong influence of the tumor on
the surrounding area. These alterations in tumor-distant tissues
could be associated with both diffuse infiltration of glioma cells in
the brain and possible mechanical pressure of the tumor on the
surrounding tissues, which subsequently results in the
modification of cellular metabolism.

Non-Fitting Approaches for FLIM Data
From Rat Data

While fitting approach to the FLIM data results in a quantitative
estimation of the decay parameters (fluorescence lifetimes and
their relative amplitudes), it requires a priori knowledge about
the number of fluorophores and an assumption that each
fluorescent component presents a single decay. Although these
methods are related to the actual physical characteristics of the
fluorophores and considered to be gold standard, they require
sufficient photon budget to accurately resolve the number and
distribution of decay species from the data. This can be achieved
with long acquisition times, which is not always appropriate for
in vivo imaging and for effective translation of FLIM technique
for clinical use. Non-fitting approaches offer another way to
analyze FLIM data. These approaches rely on the datacube
processing methods commonly used in hyperspectral imaging.
FLIM generates a three dimensional dataset where in the
addition to the two spatial coordinates, each pixel present the
decay information forming a 3'* dimension. It is similar to
hyperspectral imaging where in addition to the spatial
coordinate, each pixel present a spectrum. Thus, the methods
developed for hyperspectral imaging can be applied to FLIM
data. Specifically, we applied commonly used principal
component analysis (PCA) and Linear Unmixing techniques
for differentiation of the tumor from the tumor-distant white
matter and cortex, and from the healthy brain without tumor.
While both methods provide a good contrast to visualize
astrocytoma in rats compare to the nearby tissues (Figure 2),
in the Linear Unmixing the tumor appears in the same group as
the corpus callosum. However, the methods were not sufficient to
identify glioblastoma in rats.

Macro-FLIM of Patient’s Glioblastoma

FLIM analysis of fresh samples of glioblastoma (WHO grade I'V)
and the peritumoral white matter taken from patients after
surgical resection showed fluorescence lifetimes of 7; ~1.6 ns
and 7; ~7.8 ns (Table 2), which were even longer than the values
in the rat brain. The fluorescence lifetimes of the short (7;) and
long (7,) components were similar in the tumors and the white
matter infiltrated by tumor cells, while in the noninfiltrated white
matter both 7; and 7, were shorter (7; ~1.2 ns and 7, ~5.7 ns). A
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comparison of the relative contributions a; and a; between
tumors and normal tissue showed a statistically significant
higher a; value (65.59% vs. 57.25%, p = 0.0413) and a,/a; ratio
in the tumors in comparison with the white matter without
infiltration (2.02 vs 1.34, p = 0.0413) with a high heterogeneity
between glioblastoma samples (Figure 3). We should note that
the infiltrated white matter did not differ in a,/a ratio from the
tumor samples.

The difference between the tumor and the peritumoral white
matter can be also illustrated by Linear Unmixing of the samples
(Figure 4). For that, corresponding FLIM datasets were open in
the same window and three ROIs were selected as classes. One
class corresponded to the tumor, another to the white matter,
and third to the background. The endmembers spectra were
automatically estimated using the 3-endmember approach over
the entire image. The estimated spectra were used to classify the
image and identify the tissue and the background. In the Linear
Unmixing results, each class represented a specific color (red,
green and blue). Strong visual difference between the tumor and
the white matter indicates a significant distinction between two
tissues, supporting the conclusions drawn from the fluorescence
decay analysis.

DISCUSSION

There are several endogenous fluorophores that are involved in
metabolic activity of tissues. The most important in the brain
are NAD(P)H and flavins. Other fluorophores like tryptophan,
tyrosine, various porphyrins, collagen and lipopigments are
also present in brain tissue contributing to the autofluorescence
(28, 29).

The attempts to evaluate whether the fluorescence lifetime of
endogenous fluorophores, can be used to distinguish between
healthy brain and brain tumors have been made in several
previous studies (10, 28-32). A few studies demonstrate
elongation of the NAD(P)H mean lifetime in brain tumor
compared with the healthy tissue, which has been explained by
the larger contribution of the bound form of the coenzyme to
the fluorescence. For example, this was shown by Leppert et al.
on G-112 human glioblastoma xenografts in mice, and by
Kantelhardt et al. on U87 human glioma xenografts and
human brain tumors using two-photon FLIM microscopy (12,
31). Interestingly, in the latter study the mean lifetimes decreased
in the order glioblastoma> anaplastic glioma> low-grade
astrocytoma>tumor-adjacent brain. Sun et al. and Marcu et al.
detected higher values of the mean fluorescence lifetime in
human glioblastoma multiforme ex vivo samples and
intraoperationally in patients (33, 34). This is consistent with
our observations of a longer mean lifetime in glioblastoma 101.8
compared with unaffected cortex. At the same time, several
studies showed no statistically significant differences in the
NAD(P)H fluorescence lifetime between glioma and the
healthy brain tissue. These results were reported by Zanello
et al. for freshly extracted human sample of gliomas using
multimodal microscopic set-up (35) and by Haidar et al. on

rats glioma RG2 ex vivo using a fiber-optical fluorescence probe
(36). In our study, patients’ glioma samples did not differ from
the peritumoral white matter in terms of the mean lifetime, while
the a;/a, differed between the tumor and non-infiltrated
white matter.

In the above mentioned and our studies, the mean
fluorescence lifetime detected in NAD(P)H spectral range was
significantly longer in brain tissues, including tumors, compared
to cells and tissues of other localizations (20, 25, 35, 37). While
for the latter ones, the mean fluorescence lifetimes were around
0.8-1.0 ns with the short and long lifetime components of around
0.3-0.5 ns, and 2.0-3.0 ns, respectively, for the former ones we
measured the mean fluorescence lifetimes around 1.4-1.6 ns
(animals, Table §1) and 3.4-4.5 ns (patient samples, Table 2).

The origin of the long fluorescence lifetimes of the signal
where typically NAD(P)H autofluorescence is detected, is not
clear so far. The phosphorylated form of NADH that has a rather
long fluorescence lifetime (~4.4 ns) could contribute to the
longer fluorescence lifetimes, since autofluorescence from
NADH and NADPH are spectrally almost identical. However,
such long lifetimes as 5.7-9.0 ns cannot be explained only with
the contribution of NADPH. In addition, in brain tissue NADPH
is widely believed to contribute minimally to the fluorescence
signal, (38-40).

Collagens have along fluorescence lifetime of around 5 ns and
can in principle contribute to the autofluorescence signal in the
range from 435 nm to 485 nm (41). However, their content in the
brain is low (42).

The long fluorescence lifetimes observed in the NAD(P)H
spectral window might stem from the fact that NAD(P)H itself,
when it is bound to certain proteins may have the fluorescence
lifetimes around 6-7 ns (43, 44).

Another factor that can lead to the anomalously long
fluorescence lifetime in the brain is the presence of myelin.
Myelin consists of 30% proteins and 70% lipids (45). Tyrosine
and tryptophan are major aminoacids that constitute myelin
sheath but their excitation bands are around 280 nm, which is far
away from the excitation wavelength for NAD(P)H. Therefore,
only lipids with the excitation wavelengths around 340-400 nm
and detection in the spectral range of 400-500 nm may be
responsible for the long fluorescence lifetime. Indeed,
cholesterol, one of the major components of lipids, is known
to have long fluorescence lifetimes on the order of 9 ns (46, 47).
Moreover, time-resolved measurements of fluorescence from
phospholipids, another major component of lipids, showed
fluorescence lifetimes in the range from 7.0 to 12.0 ns,
depending on the microenvironment (48). Regarding the
possible contribution of myelin to the autofluorescence signal
in the NAD(P)H spectral window elongation of the fluorescence
lifetime for the patients’ samples compared with rats’ samples
maybe explained by the higher content of myelin in the human
brain. Indeed, while myelin in rats has a thickness of around 100-
200 nm, human myelin typically reach 300 - 400 nm thickness
(49). With the overall same total length of the myelin fibers in the
rat and human brain, the volume of myelin in the human brain is
almost twice higher than in the rat. More studies are needed to
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understand the nature of the long fluorescence lifetime in the
brain, and this task can be better addressed with a standard
FLIM microscope.

When comparing the fluorescence lifetime parameters of the
tumor-distant brain in tumor-bearing animals with intact
(healthy) brain tissues, we noticed that the former resemble
more gliomas than the intact control. These data indicate that the
tumor aftects the biochemical state of surrounding tissue. For
the rat models, it is no surprise that healthy brain tissues in the
tumor-bearing animals are affected because the size of the tumor
is large, so both the infiltration of the tumor cells in the brain and
the mechanical pressure of the tumor on the surrounding tissues
are inevitable (4, 50, 51).

FIGURE 3 | Macro-FLIM of patients’ glioblastoma and the peritumoral white matter with and without infiltration by tumor cells. (A) Representative autofluorescence
time-rasolved images. Scale bar: 3 mm. (B) Histopathology of samples shown in (A). H&E-staining. Scale bar: 100 pm. (C) Quantification of &, and a+/a. ratio in
tumors and the peritumoral white matter. Scatter dot plot displays the measurements for individual samples (dots) and the median, minimum and maxdmum
(horizontal lines). The values for the images in (A) are marked in red. g, is the mean fluorescence lifetime. a,/a, is the ratio of relative contributions of short and long

The FLIM data obtained from the patients’ excised tissue
(Table 2) showed similarity of the fluorescence decay parameters
between glioblastoma and the white matter infiltrated by tumor
cells. It is important that the tumor differed from the non-
infiltrated white matter, which testifies to a potential of the
method to differentiate between the tumor and the normal
tissue in clinical settings. More insights into the influence of
glioblastoma on peritumoral areas and correlation of
fluorescence lifetimes with the degree of infiltration of adjacent
tissue by tumor cells could be obtained with the use of samples
extracted at the different distances from the tumor and by
comparison with the brain samples from the non-
tumorous patients.
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Such controversial data across species point to the complexity
of the malignant brain tumor behavior and/or lack of the reliable
computational techniques to process FLIM data that restrict the
use of FLIM technology in clinical oncology. Moreover, while the
autofluorescence signals investigated in the previous works
mentioned above (13, 30, 31, 33-35) were attributed only to
NAD(P)H, there were no clear evidence that other fluorescent
endogenous molecules did not make a contribution to the
registered signal. In addition, direct comparison of the data
obtained by different authors is challenging because of difterent
experimental settings. Some groups consider control healthy
tissue from the same brain but located outside of the tumor,
while others consider controls as a tissue from a different brain
that did not contain tumor. Standardization of the FLIM
methods is required to have this tool accepted for clinical
applications. The differences in the fluorescence decay
parameters between the tumor and normal tissues require deep
investigations with more samples and the use of molecular and
biochemical techniques.

To conclude, the obtained results of this pilot study with the
use of macro-FLIM and endogenous fluorescence in the blue
spectral range demonstrate that high-grade brain tumors have
fluorescence lifetime signatures different from normal brain
tissue and these differences can be visualized at the macroscale
using 375 nm laser excitation. Taking into account a large
number of fluorophores present in the brain tissue, the
interrogation of the differences between tumor and normal
tissue can be performed using alternative excitation and
detection spectral ranges. This will be a future direction of our
work. Both fitting and non-fitting methods of data analysis lead
to the same conclusions about the status of the brain tissue. Non-
fitting minimally supervised methods may be more relevant for
clinical applications due the significant increase in the
computational speed and thus possibility to use them for real
time processing of the data. Ideally, the described non-fitting

FIGURE 4 | Image processing of 3D datasets from FLIM imaging of a peritumoral white matter with infitration (TDWM), tumor and a white matter without tumor
infiltration. (A) Three band pseudo RGB of the excised samples. (B) The image was processed Linear Unmixing with no supendsion. Linear Unmixing of the datasets
demonstrate a significant visual diference between the infiltrated white mater and the white matter. Scale bar: 3 mm.

tumor

minimally supervised methods and other computational
approaches should be used in clinical setting by the surgery or
pathology teams without any prior knowledge of the tissue.
However, the proposed computational methods need to be
further validated with a larger number of tissues to identify a
set of reliable features (markers) that reflect complex patterns of
the tumors. One of the limitations of our study is that the ROIs
were defined based on the gross observation prior the analysis.
Future work will be focused on the tumor delineation using
machine learning algorithms where the predictor model is based
on the fluorescence lifetime imaging data combined with
histological analysis. Overall, our preliminary results indicate
that the new approach could find use in the clinic as a sensitive
and accurate method for identifying the edges of tumors
during surgery.
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