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Abstract
A combinatorial framework for dynamical systems provides an avenue for connecting classical
dynamics with data-oriented, algorithmic methods. Combinatorial vector fields introduced by
Forman [6, 7] and their recent generalization to multivector fields [15] have provided a starting point
for building such a connection. In this work, we strengthen this relationship by placing the Conley
index in the persistent homology setting. Conley indices are homological features associated with
so-called isolated invariant sets, so a change in the Conley index is a response to perturbation in an
underlying multivector field. We show how one can use zigzag persistence to summarize changes to
the Conley index, and we develop techniques to capture such changes in the presence of noise. We
conclude by developing an algorithm to “track” features in a changing multivector field.
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1 Introduction

At the end of the 19th century, scientists became aware that the very fruitful theory of
differential equations cannot provide a description of the asymptotic behavior of solutions in
situations when no analytic formulas for solutions are available. This observation affected
Poincaré’s study on the stability of our celestial system [17] and prompted him to use the
methods of dynamical systems theory. The fundamental observation of the theory is that
solutions limit in invariant sets. Examples of invariant sets include stationary solutions,
periodic orbits, connecting orbits, and many more complicated sets such as chaotic invariant
sets discovered in the second half of the 20th century [11]. Today, the Conley index [4, 12] is
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37:2 Persistence of the Conley Index

among the most fundamental topological descriptors that are used for analyzing invariant sets.
The Conley index is defined for isolated invariant sets which are maximal invariant sets in
some neighborhood. It characterizes whether isolated invariant sets are attracting, repelling
or saddle-like. It is used to detect stationary points, periodic solutions and connections
between them. Moreover, it provides methods to detect and characterize different chaotic
invariant sets. In particular, it was used to prove that the system discovered by Lorenz
[11] actually contains a chaotic invariant set [14]. The technique of multivalued maps used
in this proof may be adapted to dynamical systems known only from finite samples [13].
Unfortunately, unlike the case when an analytic description of the dynamical system is
available, the approach proposed in [13] lacks a validation method. This restricts possible
applications in today’s data-driven world. In order to use topological persistence as a
validation tool, we need an analog of dynamical systems for discrete data. In the case of a
dynamical system with continuous time, the idea comes from the fundamental work of R.
Forman on discrete Morse theory [7] and combinatorial vector fields [6]. This notion of a
combinatorial vector field was recently generalized to that of a combinatorial multivector
field [15]. Since then, the Conley index has been constructed in the setting of combinatorial
multivector fields [10, 15]. The aim of this research is to incorporate the ideas of topological
persistence into the study of the Conley index.

Figure 1 Three multivector fields. In each field, there is a periodic attractor in blue. Such an
attractor is an example of an invariant set. The reader will notice that all flows which enter the
periodic attractor can ultimately be traced back to simplices marked with circles. These simplices
are individually invariant sets, and they correspond to the notion of fixed points. In each multivector
field, the gold triangle corresponds to the notion of a repelling fixed point, while the triangles
and edges with magenta circles are spurious. Notice that in the third multivector field there is a
spurious periodic attractor. However, despite spurious invariant sets, in all three multivector fields
the predominant feature is a repelling triangle, from which most emanating flow terminates in the
periodic attractor. We aim to develop a quantitative summary of this behavior.

Given a simplicial complex K, Forman defined a combinatorial vector field V as a partition
of K into three sets L t U t C where a bijective map µ : L → U pairs a p-simplex σ ∈ L
with a (p+ 1)-simplex τ = µ(σ). This pair can be thought of as a vector originating in σ and
terminating in τ . Using these vectors, Forman defined a notion of flow for discrete vector
fields called a V -path. These paths correspond to the classical notion of integral lines in
smooth vector fields. Multivector fields proposed in [15] generalize this concept by allowing
a vector to have multiple simplices (dubbed multivectors) and more complicated dynamics.

An extension to the idea of the V -path from Forman’s theory is called a solution for a
multivector field V . A solution in V is a possibly infinite sequence of simplices {σi} such that
σi+1 is either a face of σi or in the same multivector as σi. Solutions may be doubly infinite
(or bi-infinite), right infinite, left infinite, or finite. Solutions that are not doubly infinite are
partial. Bi-infinite solutions correspond to invariant sets in the combinatorial setting.
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In Figure 1, one can see a sequence of multivector fields, each of which contains multiple
isolated invariant sets. In principle, one would like to choose an isolated invariant set from
each of the multivector fields and obtain a description of how the Conley index of these sets
changes. Obtaining such a description is highly nontrivial, and it is the main contribution of
this paper. Given a sequence of isolated invariant sets, we use the theory of zigzag persistence
[3] to extract such a description. In [5], the authors studied the persistence of the Morse
decomposition of multivector fields, but this is the first time that the Conley index has been
placed in a persistence framework. We also provide schemes to automatically select isolated
invariant sets and to limit the effects of noise on the persistence of the Conley index.

2 Preliminaries

Throughout this paper, we will assume that the reader has a basic understanding of both
point set and algebraic topology. In particular, we assume that the reader is well-versed in
homology. For more information on these topics, we encourage the reader to consult [9, 16].

2.1 Multivectors and Combinatorial Dynamics

In this subsection, we briefly recall the fundamentals of multivector fields as established in
[5, 10, 15]. Let K be a finite simplicial complex with face relation ≤, that is, σ ≤ σ′ if and
only if σ is a face of σ′. Equivalently, σ ≤ σ′ if V (σ) ⊆ V (σ′), where V (σ) denotes the vertex
set of σ. For a simplex σ ∈ K, we let cl(σ) := {τ ∈ K | τ ≤ σ} and for a set A ⊆ K, we let
cl(A) := {τ ≤ σ |σ ∈ A}. We say that A ⊆ K is closed if cl(A) = A. The reader familiar
with the Alexandrov topology [1, Section 1.1] will immediately notice that this notation and
terminology is aligned with the topology induced on K by the relation ≤.

I Definition 1 (Multivector, Multivector Field). A subset A ⊆ K is called a multivector if
for all σ, σ′ ∈ A, τ ∈ K satisfying σ ≤ τ ≤ σ′, we have that τ ∈ A. A multivector field over
K is a partition of K into multivectors.

Every multivector is said to be either regular or critical. To define critical multivectors,
we define the mouth of a set as m(A) := cl(A)\A. The multivector V is critical if the relative
homology Hp(cl(V ),m(V )) 6= 0 in some dimension p. Otherwise, V is regular. Simplices in
critical multivectors are marked with circles in Figures 1, 2, and 3. Throughout this paper,
all references to homology are references to simplicial homology. Note that Hp (cl(V ),m(V ))
is thus well defined because m(S) ⊆ cl(S) ⊆ K. Intuitively, a multivector V is regular if
cl(V ) can be collapsed onto m(V ). In Figure 2, the red triangle with its two edges is a
critical multivector V because H1(cl(V ),m(V )) is nontrivial. Similarly, the gold colored
triangles (denoted τ) and the green edge (denoted σ) are critical because H2(cl(τ), ∂τ) and
H1(cl(σ), ∂σ) are nontrivial, where we use ∂σ to denote the boundary of a simplex σ.

A multivector field over K induces a notion of dynamics. For σ ∈ K, we denote the
multivector containing σ as [σ]. If the multivector field V is not clear from context, we will
use the notation [σ]V . We now use a multivector field V on K to define a multivalued map
FV : K ( K. In particular, we let FV(σ) := cl(σ) ∪ [σ]. Such a multivalued map induces
a notion of flow on K. In the interest of brevity, for a, b ∈ Z, we set Z[a,b] = [a, b] ∩ Z and
define Z(a,b], Z[a,b), Z(a,b) as expected. A path from σ to σ′ is a map ρ : Z[a,b] → K, where
ρ(a) = σ, ρ(b) = σ′, and for all i ∈ Z(a,b], we have that ρ(i) ∈ FV(ρ(i − 1)). Similarly, a
solution to a multivector field over K is a map ρ : Z→ K where ρ(i) ∈ FV(ρ(i− 1)).
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I Definition 2 (Essential Solution). A solution ρ : Z → K is an essential solution of
multivector field V on K if for each i ∈ Z where [ρ(i)] is regular, there exists an i−, i+ ∈ Z
where i− < i < i+ and [ρ(i−)] 6= [ρ(i)] 6= [ρ(i+)].

For a set A ⊆ K, let eSol(A) denote the set of essential solutions ρ such that ρ(Z) ⊆ A.
If the relevant multivector field is not clear from context, we use the notation eSolV(A). We
define the invariant part of A as Inv(A) = {σ ∈ A | ∃ρ ∈ eSol(A), ρ(0) = σ}. We say that
A is invariant or an invariant set if Inv(A) = A. If the multivector field is not clear from
context, we use the notation InvV(A).

Solutions and invariant sets are defined in accordance to their counterparts in the classical
setting. For more information on the classical counterparts of these concepts, see [2]. As in
the classical setting, we have a notion of isolation for combinatorial invariant sets.

I Definition 3 (Isolated Invariant Set, Isolating Neighborhood). An invariant set A ⊆ N ,
N closed, is isolated by N if all paths ρ : Z[a,b] → N for which ρ(a), ρ(b) ∈ A satisfy
ρ(Z[a,b]) ⊆ A. The closed set N is said to be an isolating neighborhood for S.

Figure 2 A multivector field with several invariant sets, isolated by the entire rectangle, N . Note
that for each colored triangle σ, since [σ] is critical, there is an essential solution ρ : Z → N where
ρ(i) = σ for all i. Likewise for the green edge. Since the periodic attractor is composed of regular
vectors, there is no such essential solution for any given simplex in the periodic attractor. However,
by following the arrows in the periodic attractor we still get an essential solution.

2.2 Conley Indices
The Conley index of an isolated invariant set is a topological invariant used to characterize
features of dynamical systems [4, 12]. In both the classical and the combinatorial settings,
the Conley index is determined by index pairs.

I Definition 4. Let S be an isolated invariant set. The pair of closed sets (P,E) subject to
E ⊆ P ⊆ K is an index pair for S if all of the following hold:
1. FV(E) ∩ P ⊆ E
2. FV(P \ E) ⊆ P
3. S = Inv(P \ E)
In addition, an index pair is said to be a saturated index pair if S = P \ E. In Figure 3,
the gold, critical triangle σ is an isolated invariant set. The reader can easily verify that
(cl(σ), cl(σ) \ {σ}) is an index pair for σ. In fact, this technique is a canonical way of picking
an index pair for an isolated invariant set. This is formalized in the following proposition.

I Proposition 5 ([10, Proposition 4.3]). Let S be an isolated invariant set. The pair
(cl(S),m(S)) is a saturated index pair for S.
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However, there are several other natural ways to find index pairs. Figure 3 shows another
index pair for the same gold triangle σ. By letting P := cl(σ) ∪ SP and E := m(σ) ∪ SE ,
where SP and SE are the set of simplices reachable from paths originating in cl(S), m(S)
respectively, we obtain a much larger index pair. In Figure 3, P is the set of all colored
simplices, while E is the set of all colored simplices which are not gold.

In principle, it is important that the Conley index be independent of the choice of index
pair. Fortunately, it is also known that the relative homology given by an index pair for an
isolated invariant set S is independent of the choice of index pair.

I Theorem 6 ([10, Theorem 4.15]). Let (P1, E1) and (P2, E2) be index pairs for the isolated
invariant set S. Then Hp(P1, E1) ∼= Hp(P2, E2) for all p.

The Conley Index of an isolated invariant set S in dimension p is then given by the relative
homology group Hp(P,E) for any index pair of S denoted (P,E).

Figure 3 Two index pairs for the gold triangle, denoted σ. The first is given by (cl(σ),m(σ))
where m(σ) is in green and cl(σ) \ m(σ) is exactly the gold triangle. The second index pair is
(pf(cl(σ)), pf(m(σ))), where pf(m(σ)) consists of those simplices which are colored pink, green, and
blue, while pf(cl(σ)) consists of all colored simplices. Note that the second index pair is also an
index pair in N , where N is taken to be the entire rectangle.

3 Conley Index Persistence

We move to establishing the foundations for persistence of the Conley Index. Given a
sequence of multivector fields V1,V2, . . . ,Vn on a simplicial complex K, one may want to
quantify the changing behavior of the vector fields. One such approach is to compute a
sequence of isolated invariant sets S1, S2, . . . , Sn under each multivector field, and then to
compute an index pair for each isolated invariant set. By Proposition 5, a canonical way to
do this is to take the closure and mouth of each isolated invariant set to obtain a sequence
of index pairs (cl(S1),m(S1)), (cl(S2),m(S2)), . . . , (cl(Sn),m(Sn)). A first idea is to take the
element-wise intersection of consecutive index pairs, which results in the zigzag filtration:

(cl(S1),m(S1)) ⊇ (cl(S1) ∩ cl(S2),m(S1) ∩m(S2)) ⊆ (cl(S2),m(S2)) · · · (cl(Sn),m(Sn))

Taking the relative homology groups of the pairs in the zigzag sequence, we obtain a zigzag
persistence module. We can extract a barcode corresponding to a decomposition of this
module:

Hp(cl(S1),m(S1)) Hp(cl(S1) ∩ cl(S2),m(S1) ∩m(S2)) Hp(cl(S2),m(S2)) · · · Hp(cl(Sn),m(Sn)).

However, the chance that this approach works in practice is low. In general, two isolated
invariant sets S1, S2 need not overlap, and hence their corresponding index pairs need not
intersect. For example, if one were to take the blue periodic solutions in the multivector
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37:6 Persistence of the Conley Index

fields in Figure 1 to be S1, S2, S3, by using Proposition 5 one gets the index pairs (S1, ∅),
(S2, ∅), and (S3, ∅) (since cl(Si) = Si). Note that in such a case, the intermediate pairs are
(S1 ∩ S2, ∅) and (S2 ∩ S3, ∅). But S1 ∩ S2 and S2 ∩ S3 intersect only at vertices, so none of
the 1-cycles persist beyond their multivector field. This is problematic in computing the
persistence, because intuitively there should be an H1 generator that persists through all
three multivector fields. To increase the likelihood that two index pairs intersect, we consider
a special type of index pair called an index pair in N .

I Definition 7. Let S be an invariant set isolated by N under V. The pair of closed sets
(P,E) satisfying E ⊆ P ⊆ N is an index pair for S in N if all of the following conditions
are met:
1. FV(P ) ∩N ⊆ P
2. FV(E) ∩N ⊆ E
3. FV(P \ E) ⊆ N , and
4. S = Inv(P \ E).
As is expected, such index pairs in N are index pairs.

I Theorem 8. Let (P,E) be an index pair in N for S. The pair (P,E) is an index pair for
S in the sense of Definition 4.

Proof. Note that by condition three of Definition 7, if σ ∈ P \E, then FV(σ) ⊆ N . Condition
one of Definition 7 implies that FV(σ)∩N = FV(σ) ⊆ P , which is condition two of Definition
4. Likewise, by condition two of Definition 7, if σ ∈ E, then FV(σ) ∩ N ⊆ E. Note that
P ⊆ N , so it follows that FV(σ) ∩ P ⊆ FV(σ) ∩N ⊆ E, which is condition one of Definition
4. Finally, condition four of Definition 7 directly implies condition three of Definition 4. J

An additional advantage to considering index pairs in N is that the intersection of index
pairs in N is an index pair in N . In general, (cl(S1) ∩ cl(S2),m(S1) ∩m(S2)) is not an index
pair. However, for index pairs in N , we get the next two results which involve the notion of
a new multivector field obtained by intersection. Given two multivector fields V1, V2, we
define V1∩V2 := {V1 ∩ V2 | V1 ∈ V1, V2 ∈ V2}.

I Theorem 9. Let (P1, E1), (P2, E2) be index pairs in N for S1, S2 under V1,V2. The set
Inv((P1 ∩ P2) \ (E1 ∩ E2)) is isolated by N under V1∩V2.

Proof. To contradict, we assume that there exists a path ρ : Z[a,b] → N under V1∩V2
where ρ(a), ρ(b) ∈ Inv((P1 ∩P2) \ (E1 ∩E2)) and there exists some i ∈ (a, b)∩Z where ρ(i) 6∈
Inv((P1 ∩ P2) \ (E1 ∩E2)). Note that by the the definition of an index pair, FV(P ) ∩N ⊆ P .
Hence, it follows by an easy induction argument that since FV1∩V2

(σ) ⊆ FV1(σ), FV2(σ), we
have that ρ(Z[a,b]) ⊆ P1, P2. This directly implies that ρ(Z[a,b]) ⊆ P1 ∩ P2. In addition, it
is easy to see that ρ can be extended to an essential solution in P1 ∩ P2, which we denote
ρ′ : Z→ N , by some simple surgery on essential solutions. This is because there must be
essential solutions ρ1, ρ2 : Z→ (P1 ∩ P2) \ (E1 ∩ E2) where ρ1(a) = ρ(a) and ρ2(b) = ρ(b),
as ρ(a) and ρ(b) are both in essential solutions. Hence, ρ′(x) = ρ1(x) if x ≤ a, ρ′(x) = ρ(x)
if a ≤ x ≤ b, and ρ′(x) = ρ2(x) if b ≤ x. Since ρ′ is an essential solution, we have that
ρ(Z[a,b]) ⊆ Inv(P1 ∩ P2), but also that ρ(Z[a,b]) 6⊆ Inv((P1 ∩ P2) \ (E1 ∩ E2)). Therefore,
we must have that ρ(i) ∈ E1 ∩ E2. But by the same reasoning as before, it follows that
ρ(Z[i,b]) ⊆ E1 ∩ E2. Hence, b 6∈ (P1 ∩ P2) \ (E1 ∩ E2), a contradiction. J

I Theorem 10. Let (P1, E1) and (P2, E2) be index pairs in N under V1,V2. The tuple
(P1 ∩ P2, E1 ∩ E2) is an index pair for Inv((P1 ∩ P2) \ (E1 ∩ E2)) in N under V1∩V2.
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Proof. We proceed by using the conditions in Definition 7 to show that (P1 ∩ P2, E1 ∩ E2)
is an index pair in N . Note that FV1∩V2(P1 ∩ P2) ∩ N ⊆ FV1(P1) ∩ FV2(P2) ∩ N , which
is immediate by the definition of F and considering V1∩V2. Note that since (P1, E1) and
(P2, E2) are index pairs in N , we know from Definition 7 that FV1(P1) ∩ N ⊆ P1 and
FV2(P2)∩N ⊆ P2. Therefore FV1∩V2

(P1∩P2)∩N ⊆ P1∩P2. This implies the first condition
in Definition 7. This argument also implies the second condition by replacing P with E.

Now, we aim to show that (P1 ∩ P2, E1 ∩ E2) satisfies condition three in Definition
7. Consider σ ∈ (P1 ∩ P2) \ (E1 ∩ E2). Without loss of generality, we assume σ 6∈ E1.
Therefore, σ ∈ P1 \E1, so FV1(σ) ⊆ N by the definition of an index pair in N . Hence, since
FV1∩V2

(σ) ⊆ FV1(σ), condition three is satisfied.
Finally, note that Inv((P1∩P2)\ (E1∩E2)) is obviously equal to Inv((P1∩P2)\ (E1∩E2)),

so condition four holds as well. J

Hence, if (Pi, Ei) are index pairs in N , these theorems gives a meaningful notion of persistence
of Conley index through the decomposition of the following zigzag persistence module:

Hp(P1, E1) Hp(P1 ∩ P2, E1 ∩ E2) Hp(P2, E2) · · · Hp(Pn, En). (1)

Because of the previous two theorems, when one decomposes the above zigzag module, one is
actually capturing a changing Conley index. This contrasts the case where one only considers
index pairs of the form (cl(Si),m(Si)), because (cl(Si) ∩ cl(Si+1),m(Si) ∩m(Si+1)) need not
be an index pair for any invariant set.

As has been established, the pair (cl(S),m(S)) is an index pair, but it need not be an
index pair in N . We introduce a canonical approach to transform (cl(S),m(S)) to an index
pair in N by using the push forward.

I Definition 11. The push forward pf(S) of a set S in N , N closed, is the set of all simplices
in S together with those σ ∈ N such that there exists a path ρ : Z[a,b] → N where ρ(a) ∈ S
and ρ(b) = σ.

If N is not clear from context, we use the notation pfN (S). The next series of results
imply that an index pair in N can be obtained by taking the push forward of (cl(S),m(S)).

I Proposition 12. If S ⊆ K is an isolated invariant set with isolating neighborhood N under
V, then pf(m(S)) ∩ cl(S) = m(S).

I Proposition 13. If S ⊆ K is an isolated invariant set with isolating neighborhood N under
V, then pf(m(S)) ∪ cl(S) = pf(cl(S)).

I Proposition 14. If S ⊆ K is an isolated invariant set with isolating neighborhood N , then
pf(cl(S)) \ pf(m(S)) = cl(S) \m(S) = S.

Proofs for Propositions 12, 13, and 14 are included in the full version. Crucially, from these
propositions we get the following.

I Theorem 15. If S is an isolated invariant set then (pf(cl(S)), pf(m(S))) is an index pair
in N for S.

Proof. First, we note that since the index pair (cl(S),m(S)) is saturated, it follows that S =
Inv(cl(S)\m(S)) = cl(S)\m(S). But since by Proposition 14 cl(S)\m(S) = pf(cl(S))\pf(m(S)),
it follows that S = pf(cl(S)) \ pf(m(S)) = Inv(pf(cl(S)) \ pf(m(S))), which satisfies condition
four of being an index pair in N .
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37:8 Persistence of the Conley Index

We show that FV(pf(cl(S))) ∩ N ⊆ pf(cl(S)). Let x ∈ pf(cl(S)), and assume that
y ∈ FV(x)∩N . There must be a path ρ : Z[a,b] → N where ρ(a) ∈ cl(S) and ρ(b) = x, by the
definition of the push forward. Thus, we can construct an analogous path ρ′ : Z[a,b+1] → N

where ρ′(i) = ρ(i) for i ∈ Z[a,b] and ρ′(b+1) = y. Hence, y ∈ pf(cl(S)) by definition. Identical
reasoning can be used to show that FV(pf(m(S))) ∩N ⊆ pf(m(S)), so (pf(cl(S)), pf(m(S)))
also meets the first two conditions required to be an index pair.

Finally, we show that FV(pf(cl(S)) \ pf(m(S))) ⊆ N . By Proposition 14, this is equivalent
to showing that FV(cl(S) \m(S)) ⊆ N . Since (cl(S),m(S)) is an index pair for S, it follows
that FV(cl(S) \m(S)) ⊆ cl(S). Note that since N ⊇ S is closed, it follows that cl(S) ⊆ N .
Hence, FV(pf(cl(S)) \ pf(m(S))) ⊆ N , and all conditions for an index pair in N are met. J

An example of an index pair induced by the push forward can be seen in Figure 3. Hence,
instead of considering a zigzag filtration given by a sequence of index pairs (cl(S1),m(S1)),
(cl(S2),m(S2)), . . . , (cl(Sn),m(Sn)), a canonical choice is to instead consider the zigzag filtra-
tion given by the the sequence of index pairs (pf(cl(S1)), pf(m(S1))), (pf(cl(S2)), pf(m(S2))),
. . . , (pf(cl(Sn)), pf(m(Sn))).

Choosing Si is highly application specific, so in our implementation we choose Si :=
InvVi

(N). This decision together with the previous theorems gives Algorithm 1 for computing
the persistence of the Conley Index. Index pairs and barcodes computed by Algorithm 1 can
be seen in Figure 4.

Algorithm 1 Scheme for computing the persistence of the Conley Index, fixed N .

Input: Sequence of multivector fields V1,V2, . . . ,Vn, closed set N ⊆ K.
Output: Barcodes corresponding to persistence of Conley Index
i← 1
while i <= n do

Si ← InvVi
(N)

(Pi, Ei)← (pf (cl (Si)) , pf (m (Si)))
i← i+ 1

end
return zigzagPers ((P1, E1) ⊇ (P1 ∩ P2, E1 ∩ E2) ⊆ (P2, E2) ⊇ . . . ⊆ (Pn, En))

3.1 Noise-Resilient Index Pairs
The strategy given for producing index pairs in N produces saturated index pairs. Equival-
ently, the cardinality of P \ E is minimized. This is problematic in the presence of noise,
where if V2 is a slight perturbation of V1 we frequently have that InvV1(N) 6= InvV2(N). This
gives a perturbation in our generated index pairs and in particular a perturbation in P \ E.
As the Conley Index is obtained by taking relative homology, taking the intersection of
index pairs (P1, E2) and (P2, E2) where Pi \ Ei = InvVi(N) can result in a “breaking” of
bars in the barcode. An example can be seen in Figure 5, where because of noise, the two
P \ E do not overlap, and hence a 2-dimensional homology class which intuitively should
persist throughout the interval does not. In Figure 5, the Conley indices of the invariant sets
consisting of the singleton critical triangles in V1 and V2 (the left and right multivector fields)
have rank 1 in dimension 2 because the homology group H2 of P (which is the entire complex
in both cases) relative to E (which is all pink simplices) has rank 1. However, the generators
for H2(P1, E1) and H2(P2, E2) are both in the intersection field V1∩V2. Hence, rather than
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Figure 4 Examples of index pairs computed by using the push forward on multivector fields
induced by a differential equation. A sequence of multivector fields was generated from a λ-
parametrized differential equation undergoing supercritical Hopf bifurcation [8, Section 11.2]. The
consecutive images (from left to right) present a selection from this sequence: the case when λ < 0
and there is only an attracting fixed point inside N ; the case when λ > 0 is small and N contains a
repelling fixed point, a small attracting periodic trajectory and all connecting trajectories; the case
when λ > 0 is large and the periodic trajectory is no longer contained in N . In all three images, we
depict N in green, E in red, and P \ E in blue. Note that in the leftmost image, the only invariant
set is a triangle which represents an attracting fixed point. For this invariant set in this N , the only
relative homology group which is nontrivial is H0(P,E), which has a single homology generator.
In the middle image, the invariant sets represent a repelling fixed point, a periodic attractor, and
heteroclinic orbits which connect the repelling fixed point with the periodic attractor. Note that
the relative homology has not changed from the leftmost case, so the only nontrivial homology
group is H0(P,E). In the rightmost image, the periodic attractor is no longer entirely contained
within N , so the only invariant set corresponds to a repelling fixed point. Here, the only nontrivial
homology group is H2(P,E), which has one generator, so the Conley index has changed. Algorithm
1 captures this change. The persistence barcode output by Algorithm 1 is below index pairs, where
a H0 generator (red bar) lasts until the periodic trajectory leaves N , at which point it is replaced by
an H2 generator (blue bar).

one generator persisting through all three multivector fields, we get two bars that overlap
at the intersection field. The difficulty is rooted in the fact that the sets W1 = P1 \ E1,
W2 = P2 \ E2, and W12 = (P1 ∩ P2) \ (E1 ∩ E2) do not have a common intersection.

To address this problem, we propose an algorithm to expand the size of P \ E. It is
important to note that a balance is needed to ensure a large E as well as a large P \E. If E1
and E2 are too small, then it is easy to see that E1 and E2 may not intersect as expected
even though consecutive vector fields are very similar. The following proposition is very
useful for computing a balanced index pair.

I Proposition 16. Let (P,E) be an index pair for S in N under V. If V ⊆ E is a regular
multivector where E′ := E \ V is closed, then (P,E′) is an index pair for S in N .

We include the proof for Proposition 16 in the full version. Figure 6 illustrates how
enlarging P \ E by removing regular vectors as Proposition 16 suggests can help mitigate
the effects of noise on computing Conley index persistence. Contrast this example with the
example in Figure 5. Denoting Wi = Pi \ Ei for i = 1, 2 and W12 = (P1 ∩ P2) \ (E1 ∩ E2) in
both figures, we see that W1 ∩W12 ∩W2 is empty in Figure 5 while in Figure 6 it consists
of three critical simplices each marked with a circle. Hence, in Figure 6 a single generator
persists throughout the interval, unlike in Figure 5.
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Figure 5 Infeasibilty of the index pair (pf(cl(S)), pf(m(S))): The sets E = pf(m(S)) are colored
pink in all three images, while the invariant sets which equal P \ E are golden in all three images.
(left) V1 : P1 \E1 consists of a single golden triangle; (right) V2: P2 \E2 consists of the single golden
triangle; (middle) (P1 ∩ P2) \ (E1 ∩E2) consists of two golden triangles (excluding the edge between
them) in the intersection field V1∩V2. The barcode for index pairs is depicted by two blue bars, each
of which represents a 2-dimensional homology generator. Ideally, these would be a single bar.

Figure 6 Enlarging P \ E which is gold in all three pictures while E is colored pink. (left) V1;
(right) V2; (middle) V1∩V2. Note that there is one bar in the barcode, in contrast with Figure 5.

3.2 Computing a Noise-Resilient Index Pair

We give a method for computing a noise-resilient index pair by using techniques demonstrated
in the previous subsection. Note that by Theorem 15, we have that (pf(cl(S)), pf(m(S))) is
an index pair for invariant set S in N . Hence, we adopt the strategy of taking P = pf(cl(S))
and E = pf(m(S)), and we aim to find some collection R ⊆ E so that (P,E \ R) remains
an index pair in N . Finding an appropriate R is a difficult balancing act: one wants to
find an R so that P \ (E \ R) is sufficiently large, so as to capture perturbations in the
isolated invariant set as described in the previous section, but not so large that E is small
and perturbations in E are not captured. If R is chosen to be as large as possible, then a
small shift in E may results in (E \R) ∩ (E′ \R′) having a different topology than E or E′
leading to a “breaking” of barcodes analogous to the case described in the previous section.

Before we give an algorithm for outputting such an R, we first define a δ-collar.

I Definition 17. We define the δ-collar of an invariant set S ⊆ K recursively:
1. The 0-collar of S is cl(S).
2. For δ > 0, the δ-collar of S is the set of simplices σ in the (δ − 1)-collar of S together

with those simplices τ where τ is a face of some σ with a face τ ′ in the (δ− 1)-collar of S.
For an isolated invariant set S, we will let Cδ(S) denote the δ-collar of S. Together with
Proposition 16, δ-collars give a natural algorithm for finding an R to enlarge P \ E.

In particular, we use Algorithm 2 for this purpose.
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Algorithm 2 findR(S, P,E,V, δ).

Input: Isolated invariant set S with respect to V contained in some closed set N ,
Index pair (P,E) in N with respect to V, δ ∈ Z

Output: List of simplices R such that (P,E \R) is an index pair for S in N .
R← new ; set()
vecSet← {[σ] ∈ V | [σ] ⊆ E ∩ Cδ(S) ∧ [σ] ∩ ∂(E) 6= ∅ ∧ [σ] ∩ ∂(P ) = ∅}
vec← new ; queue()
appendAll(vec, vecSet)
while size(vec) > 0 do

[σ]← pop(vec)
if isClosed((E \R) \ [σ]) and [σ] ⊆ E \R and isRegular ([σ]) then

R← R ∪ [σ]
mouthV ecs← {[τ ] | τ ∈ m ([σ]) ∧ [τ ] ⊆ Cδ(S)}
appendAll(vec,mouthV ecs)

end
end
return R

Figure 7 Index pairs on two slightly perturbed multivector fields (left, right) and their intersection
(middle). As before, the isolating neighborhood N is in green, E is in red, and P \ E is in blue.
Note that we have the same difficulty as in Figure 5, where there are two homology generators in
the intersection multivector field, so we get a broken bar code.

I Theorem 18. Let R be the output of Algorithm 2 applied to index pair (P,E) in N for
isolated invariant set S. The pair (P,E \R) is an index pair for S in N .

The proof for Theorem 18 can be found in the full version. Hence, Algorithm 2 provides
a means by which the user may enlarge P \ E. As this algorithm is parameterized, a
robust choice of δ may be application specific. We also include some demonstrations on the
effectiveness of using this technique. A real instance of the difficulty can be seen in Figure 7,
while the application of Algorithm 2 with δ = 5 to solve the problem is found in Figure 8.

4 Tracking Invariant Sets

In the previous section, we established the persistence of the Conley index of invariant sets
in consecutive multivector fields which are isolated by a single isolating neighborhood. In
this section, we develop an algorithm to “track” an invariant set over a sequence of isolating
neighborhoods. A classic example is a hurricane, where if one were to sample wind velocity
at times t0, t1, . . . , tn, there may be no fixed N which captures the eye of the hurricane at all
ti without also capturing additional, undesired invariant sets at some tj .
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Figure 8 The same index pairs as in Figure 7 with the same color scheme, but after applying
Algorithm 2 to reduce the size of E. This forces a 2-dimensional homology generator to persist
across both multivector fields (left, right) and their intersection (middle).

4.1 Changing the Isolating Neighborhood

Thus far, we have defined a notion of persistence of the Conley Index for some fixed isolating
neighborhood N and simplicial complex K. This setting is very inflexible – one may want to
incorporate domain knowledge to change N so as to capture changing features of a sequence
of sampled dynamics. We now extend the results in Section 3 to a setting where N need
not be fixed. Throughout this section, we consider multivector fields V1,V2, . . . ,Vn with
corresponding isolated invariant sets S1, S2, . . . , Sn. In addition, we assume that there exist
isolating neighborhoods N1, N2, . . . , Nn−1 where Ni isolates both Si and Si+1. We will also
require that if 1 < i < n, the invariant set Si is isolated by Ni ∪Ni+1. Note that for each i
where 1 < i < n, there exist two index pairs for Si: one index pair (P (i−1)

i , E
(i−1)
i ) in Ni−1

and another index pair (P (i)
i , E

(i)
i ) in Ni. In the case of i = 1, there is only one index pair

(P (1)
1 , E

(1)
1 ) for Si. Likewise, in the case of i = n, there is a single index pair (P (n−1)

n , E
(n−1)
n ).

By applying the techniques of Section 3, we obtain a sequence of persistence modules:

Hp

(
P

(1)
1 , E

(1)
1

)
Hp

(
P

(1)
1 ∩ P (1)

2 , E
(1)
1 ∩ E(1)

2

)
Hp

(
P

(1)
2 , E

(1)
2

)

Hp

(
P

(2)
2 , E

(2)
2

)
Hp

(
P

(2)
2 ∩ P (2)

3 , E
(2)
2 ∩ E(2)

3

)
Hp

(
P

(2)
3 , E

(2)
3

)

Hp

(
P

(3)
3 , E

(3)
3

)
Hp

(
P

(3)
3 ∩ P (3)

4 , E
(3)
3 ∩ E(3)

4

)
Hp

(
P

(3)
4 , E

(3)
4

)

...

Hp

(
P

(n−1)
n−1 , E

(n−1)
n−1

)
Hp

(
P

(n−1)
n−1 ∩ P (n−1)

n , E
(n−1)
n−1 ∩ E(n−1)

n

)
Hp

(
P

(n−1)
n , E

(n−1)
n

)
.

(2)

In the remainder of this subsection, we develop the theory necessary to combine these modules
into a single module. Without any loss of generality, we will combine the first modules into
a single module, which will imply a method to combine all of the modules into one.
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First, we note that by Theorem 6, we have that Hp(P (1)
2 , E

(1)
2 ) ∼= Hp(P (2)

2 , E
(2)
2 ). To

combine the persistence modules

Hp(P (1)
1 , E

(1)
1 ) Hp(P (1)

1 ∩ P (1)
2 , E

(1)
1 ∩ E(1)

2 ) Hp(P (1)
2 , E

(1)
2 )

Hp(P (2)
2 , E

(2)
2 ) Hp(P (2)

2 ∩ P (2)
3 , E

(2)
2 ∩ E(2)

3 ) Hp(P (2)
3 , E

(2)
3 ).

(3)

into a single module, it is either necessary to explicitly find a simplicial map which induces an
isomorphism φ : Hp(P (1)

2 , E
(1)
2 )→ Hp(P (2)

2 , E
(2)
2 ), or to construct some other index pair for

S2 denoted (P,E) such that P (1)
2 , P

(2)
2 ⊂ P and E(1)

2 , E
(2)
2 ⊂ E. This would allow substituting

both occurrences of (P (1)
2 , E

(1)
2 ) or (P (2)

2 , E
(2)
2 ) for (P,E), and allow the combining of all the

modules in Equation 2 into a single module. Since constructing the isomorphism given by
Theorem 6 is fairly complicated, we opt for the second approach. First, we define a special
type of index pair that is sufficient for our approach.

I Definition 19 (Strong Index Pair). Let (P,E) be an index pair for S under V. The index
pair (P,E) is a strong index pair for S if for each τ ∈ E, there exists a σ ∈ S such that
there is a path ρ : Z[a,b] → P where ρ(a) = σ and ρ(b) = τ .

Intuitively, a strong index pair (P,E) for S is an index pair for S where each simplex τ ∈ E is
reachable from a path originating in S. Strong index pairs have the following useful property.

I Theorem 20. Let S denote an invariant set isolated by N , N ′, and N ∪ N ′ under
V. If (P,E) and (P ′, E′) are strong index pairs for S in N , N ′ under V, then the pair
(pfN∪N ′ (P ∪ P ′) , pfN∪N ′ (E ∪ E′)) is a strong index pair for S in N ∪N ′ under V.

The proof for Theorem 20 can be found in the full version. Crucially, this theorem gives
a persistence module

Hp(P (1)
2 , E

(1)
2 ) Hp

(
pf

(
P

(1)
2 ∪ P (2)

2

)
, pf

(
E

(1)
2 ∪ E(2)

2

))
Hp(P (2)

2 , E
(2)
2 ) (4)

where the arrows are given by the inclusion. Note that since these are all index pairs for the
same S, it follows that we have Hp

(
P

(1)
2 , E

(1)
2

)
∼= Hp

(
pf

(
P

(1)
2 ∪ P (2)

2

)
, pf

(
E

(1)
2 ∪ E(2)

2

))
∼=

Hp

(
P

(2)
2 , E

(2)
2

)
. Hence, we will substitute Hp

(
pf

(
P

(1)
2 ∪ P (2)

2

)
, pf

(
E

(1)
2 ∪ E(2)

2

))
into the

persistence module. By using the modules in Equation 2, we get a new sequnece of persistence
modules

Hp

(
P

(1)
1 , E

(1)
1

)
Hp

(
P

(1)
1 ∩ P (1)

2 , E
(1)
1 ∩ E(1)

2

)
Hp

(
pf

(
P

(1)
2 ∪ P (2)

2

)
, pf

(
E

(1)
2 ∪ E(2)

2

))

Hp

(
pf

(
P

(1)
2 ∪ P (2)

2

)
, pf

(
E

(1)
2 ∪ E(2)

2

))
Hp

(
P

(2)
2 ∩ P (2)

3 , E
(2)
2 ∩ E(2)

3

)
Hp

(
pf

(
P

(2)
3 ∪ P (3)

3

)
, pf

(
E

(2)
3 ∪ E(3)

3

))

Hp

(
pf

(
P

(2)
3 ∪ P (3)

3

)
, pf

(
E

(2)
3 ∪ E(3)

3

))
Hp

(
P

(3)
3 ∩ P (3)

4 , E
(3)
3 ∩ E(3)

4

)
Hp

(
pf

(
P

(3)
4 ∪ P (4)

4

)
, pf

(
E

(3)
4 ∪ E(4)

4

))

...

Hp

(
pf

(
P

(n−2)
n−1 ∪ P (n−1)

n−1

)
, pf

(
E

(n−2)
n−1 ∪ E(n−1)

n−1

))
Hp

(
P

(n−1)
n−1 ∩ P (n−1)

n , E
(n−1)
n−1 ∩ E(n−1)

n

)
Hp

(
P

(n−1)
n , E

(n−1)
n

)
.

(5)

which can immediately be combined into a single persistence module.
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This approach is not without it’s disadvantages, however. Namely, if (P,E) and (P ′, E′)
are index pairs for S in N and N ′, it requires that (P,E) and (P ′, E′) are strong index pairs
and that S is isolated by N ∪N ′. Fortunately, the push forward approach to computing an
index pair in N gives a strong index pair.

I Theorem 21. Let S be an isolated invariant set where N is an isolating neighborhood for
S. The pair (pf (cl (S)) , pf (m (S))) is a strong index pair in N for S.

Proof. We note that by Theorem 20, the pair (pf (cl (S)) , pf (m (S))) is an index pair for S
in N . Hence, it is sufficient to show that the index pair is strong. Note that by definition,
for all σ ∈ m(S), there exists a τ ∈ S such that σ is a face of τ . Hence, σ ∈ FV(τ). Note
that pf(m(S)) is precisely the set of simplices σ′ for which there exists a path originating
in m(S) and terminating at σ′, so it is immediate that there is a path originating in S and
terminating at σ. Hence, the pair (pf (cl (S)) , pf (m (S))) is a strong index pair. J

Our enlarging scheme given in Algorithm 2 does not affect the strongness of an index pair.

I Theorem 22. Let R be the output of applying Algorithm 2 to the strong index pair (P,E)
in N for S with some parameter δ. The pair (P,E \R) is a strong index pair for S in N .

Proof. Theorem 18 gives that (P,E \R) is an index pair for S in N , so it is sufficient to
show that such an index pair is strong. Note that P does not change, but the strongness
of index pairs only requires paths to be in P . Since all paths in (P,E) are also paths in
(P,E \R), it follows that (P,E \R) is a strong index pair in N . J

These theorems give us a canonical scheme for choosing invariant sets from a sequence of
multivector fields and then computing the barcode of persistence module given in Equation (5).
We give our exact scheme in Algorithm 3.

The astute reader will notice an important detail about Algorithm 3. Namely, the find
function is parameterized by a nonnegative integer δ, and the function has not yet been
defined. In particular, said function must output a closed Ni ⊇ Si such that Si is isolated
by Ni−1 ∪Ni. An obvious choice is to let Ni := Ni−1, but such an approach does not allow
one to capture essential solutions that “move” outisde of Ni−1 = Ni as the multivector fields
change. We give a nontrivial find function in the next subsection that can be used to capture
such changes in an essential solution.

4.2 Finding Isolating Neighborhoods
Given an invariant set S isolated by N with respect to V , we now propose a method to find
a closed, nontrivial N ′ ⊆ K such that N ∪N ′ isolates S. Our method relies heavily on the
concept of δ-collar introduced in Section 3. In fact, we will let N ′ = Cδ(S) \ R such that
N ∪N ′ isolates S. Hence, it is sufficient to devise an algorithm to find Cδ(S) \R. Before we
give and prove the correctness of the algorithm, we briefly introduce the notion of the push
backward of some set S in N , denoted pbN (S). We let pbN (S) = {x ∈ N | ∃ ρ : Z[a,b] →
N, ρ(a) = x, ρ(b) ∈ S}. Essentially, the push backward of S in N is the set of simplices
σ ∈ N for which there exists a path in N from σ to S.

We now prove that N ∪ (Cδ(S)) \R isolates S. Note that since S ⊆ Cδ(S) \R, this also
implies that Cδ(S) \R isolates S.

I Theorem 23. Let S denote an invariant set isolated by N ⊆ K under V. If Cδ(S) \R is
the output of Algorithm 4 on inputs S,N,V, δ, then the closed set N ∪ (Cδ(S) \R) isolates S.
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Algorithm 3 Scheme for computing the persistence of the Conley Index, variable N .

Input: Sequence of multivector fields V1,V2, . . . ,Vn, closed set N0 ⊂ K, δ ∈ Z.
Output: Barcodes corresponding to persistence of Conley Index
i← 1
while i <= n do

Si ← InvVi(Ni−1)(
P ′i,1, E

′
i,1

)
←

(
pfNi−1 (cl (Si)) , pfNi−1 (m (Si))

)
Ri,1 ← findR(Si, P ′i,1, E′i,1,V, δ)(
P

(1)
i , E

(1)
i

)
←

(
P ′i,1, E

′
i,1 \Ri,1

)
Ni ← find(Si, Ni−1,V, δ)(
P ′i,2, E

′
i,2

)
←

(
pfNi

(cl (Si)) , pfNi
(m (Si))

)
Ri,2 ← findR(Si, P ′i,2, E′i,2,V, δ)(
P

(2)
i , E

(2)
i

)
←

(
P ′i,2, E

′
i,2 \Ri,2

)
if i = 1 then

(Pi, Ei)←
(
P

(2)
i , E

(2)
i

)
else if i = n then

(Pi, Ei)←
(
P

(1)
i , E

(1)
i

)
else

(Pi, Ei)←
(

pfNi−1∪Ni

(
P

(1)
i ∪ P (2)

i

)
, pfNi−1∪Ni

(
E

(1)
i ∪ E

(2)
i

))
end
i← i+ 1

end
return zzPers

(
(P1, E1) ⊇

(
P

(2)
1 ∩ P (1)

2 , E
(2)
1 ∩ E(1)

2

)
⊆ (P2, E2) ⊇ . . . ⊆ (Pn, En)

)

Proof. For a contradiction, assume that there exists a path ρ : Z[a,b] → N ∪ (Cδ(S) \R) so
that ρ(a), ρ(b) ∈ S where there is an i satisfying a < i < b with ρ(i) 6∈ S. Note that since N
isolates S, if N ∪ Cδ(S) \R does not isolate S, then there must exist a first k ∈ Z[a,b] such
that ρ(k) ∈ Cδ(S) \N and FV(ρ(k)) ∩ pbN (S) 6= ∅. If this were not the case, then N would
not isolate S. Without loss of generality, we assume that for all a < j < k, we have that
ρ(j) 6∈ S. Note that for all j ∈ Z[a+1,k−1], when ρ(j) is removed from the stack V , if ρ(j + 1)
has not been visited, then ρ(j + 1) is added to the stack. Hence, this implies that if any ρ(j)
is visited, then ρ(k) will be added to R. If this were not the case, there would exist some
ρ(j) such that when ρ(j) was removed from the stack, ρ(j + 1) was not visited and was not
added to the stack. This implies that FV(ρ(j)) ∩ pbN (S) 6= ∅, which contradicts ρ(k) being
the first such simplex in the path.

Hence, since ρ(a + 1) is added to the stack, it follows that ρ(k) is added to R, which
implies that ρ

(
Z[a,b]

)
6⊂ N ∪ (Cδ(S) \R). Note too that N ∪Cδ(S) \R must be closed, as if

there is a σ ∈ N such that ρ(k) ≤ σ, then ρ(k) ∈ N because N is closed, a contradiction.
But when ρ(k) is removed from Cδ(S), any of its cofaces which are in Cδ(S) are also removed.
Hence, N is closed, Cδ(S) \R is closed, so their union must be closed. J

Hence, we use Algorithm 4 as the find function in our scheme given in Algorithm 3. We
give an example of our implementation of Algorithm 3 using the find function in Figure 9.
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Algorithm 4 find(S,N,V, δ).

Input: Invariant set S isolated by N under V, δ ∈ Z
Output: Closed set N ′ ⊇ S such that N ∪N ′ isolates S under V
V ← new ; stack()
R← new ; set()
pb← pbN (S)
foreach σ ∈ Cδ(S) ∪N do

setUnvisited(σ)
end
foreach σ ∈ S do

adj ← cl(σ) ∪ [v]V
foreach τ ∈ adj do

if τ 6∈ S and τ ∈ Cδ(S) ∪N then
push(V, τ)

end
end

end
while size(V ) > 0 do

v ← pop(V )
if !hasBeenVisited(v) then

setVisited(v)
if (cl (v) ∪ [v]V) ∩ pb 6= ∅ then

add(R, v)
cf ← cofaces(v)
addAll(R, cf)

else
foreach σ ∈ (cl (v) ∪ [σ]V) ∩ (Cδ(S) ∪N) do

push(V, σ)
end

end
end

end
return Cδ(S) \R

Figure 9 Three different index pairs generated from our scheme in Algorithm 3. The isolating
neighborhood is in green, E is in red, and P \ E is in blue. Note how the isolating neighborhood
changes by defining a collar around the invariant sets (which are exactly equal to P \ E). Between
the left and middle multivector fields, the periodic attractor partially leaves K, so the maximal
invariant set in N is reduced to just a triangle. Hence, the size of N drastically shrinks between the
middle and right multivector fields.
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5 Conclusion

In this paper, we focused on computing the persistence of Conley indices of isolated invariant
sets. Our preliminary experiments show that the algorithm can effectively compute this
persistence in the presence of noise. It will be interesting to derive a stability theory for this
persistence. Toward that direction, we have included a promising result on the stability of
isolated invariant sets in the full version. In designing the tracking algorithm, we have made
certain choices about the isolated neighborhoods and the invariant sets. Are there better
choices? Which ones work better in practice? A thorough investigation with data sets in
practice is perhaps necessary to settle this issue.
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