Inorganic Chemistry

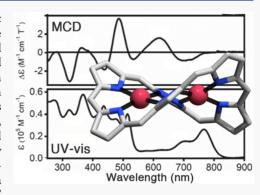
pubs.acs.org/IC Article

1 Siamese-Twin Porphyrin Goes Platinum: Group 10 Monometallic, 2 Homobimetallic, and Heterobimetallic Complexes

3 Sarina J. Dorazio, Anastasia Vogel, Sebastian Dechert, Dustin E. Nevonen, Victor N. Nemykin,*

4 Christian Brückner,* and Franc Meyer*

Cite This: https://dx.doi.org/10.1021/acs.inorgchem.0c00714


ACCESS

Metrics & More

Article Recommendations

Supporting Information

5 ABSTRACT: A series of Pt^{II}-based monometallic (H₂PtL), homobimetallic 6 (Pt₂L), and heterobimetallic (NiPtL and PdPtL) group 10 complexes of the 7 previously established expanded twin porphyrin (H₄L) were prepared. Structural 8 characterization of the bimetallic PtII series (Pt2L, NiPtL, and PdPtL) revealed 9 their similar general structures, with slight differences correlated to the ion size. An 10 improvement of the metal-ion insertion process also allowed efficient preparation 11 of the known Pd₂L complex, and the novel heterobimetallic NiPdL complex was 12 also structurally characterized. UV-vis spectroscopy, NMR spectroscopy, 13 magnetic circular dichroism (MCD), and (spectro)electrochemistry were used 14 to characterize the complexes; the electronic properties followed largely 15 established lines for metal complexes of the twin porphyrin, except that the Pt^{II}-16 based systems exhibited more complex UV-vis spectral signatures. MCD spectra 17 accompanied by density functional theory (DFT)/time-dependent DFT

18 computations rationalize the origins of the optical features of the twin porphyrin-due to the presence of nonplanar, nonaromatic 19 macrocyclic π systems that are more localized on half of the molecule and significant pyrazole(π) \rightarrow pyrrole(π *) intramolecular 20 charge-transfer character. This study adds to our fundamental understanding of the formation, structure, and electronic structure of 21 bimetallic complexes of this class of expanded metalloporphyrins containing nonpyrrolic moieties.

INTRODUCTION

23 Expanded porphyrins are porphyrin-inspired oligopyrrolic 24 macrocycles of at least 17 internal ring atoms. 1-6 Such an 25 expansion may introduce, inter alia, conformational flexibility 26 into the macrocycle, enlarge its metal binding cavity, or 27 increase the number of donor atoms for the complexation of 28 one or more metal ions. Most expanded porphyrins rely on 29 increasing the number of pyrrolic building blocks linked either $_{30}$ directly via $\alpha-\alpha$ linkages or through one C atom, such as the 31 classic sapphyrin, ^{7,8} hexaphyrin H₂1, ⁹⁻¹³ octaphyrin H₄2, ¹⁴⁻¹⁶ 32 or even larger architectures (Figure 1).5,6 Nonpyrrolic 33 heterocycles (e.g., thiophene, furan, pyridine, or pyra-34 zole)^{8,17-23} or conjugated spacers such as phenylene²⁴ or 35 ferrocene²⁵ may be incorporated into the macrocycle, 36 illustrating the broad diversity of molecules classified as 37 expanded porphyrins.

An abundance of main-group, d-block, and f-block metal 39 ions coordinate to expanded porphyrins, 26,27 mirroring the 40 versatility of porphyrinic ligands while providing further insight 41 into aromaticity, morphology, and electronic communica-42 tion. 5,28-31 Changes in the macrocycle topology upon metal-43 ion complexation are reflected in the frequently much altered 44 electronic properties of the macrocycle, as measured by UV-45 vis and NMR spectroscopy or electrochemistry.^{5,28-31}

We previously introduced Siamese-twin porphyrin H₄L as a 46 nonaromatic, nonplanar expanded porphyrin incorporating 47 two pyrazole moieties that bridge two porphyrin-like N_4 48 binding pockets^{19,32} that are suitable for the coordination of 49 one or two metal ions. $^{19,32-34}$ The periphery of H_4L is 50 decorated with phenyl and ethyl groups, enforcing a helimeric 51 twist that is rigidified and modulated upon metal-ion 52 complexation. The structure of H₄L is reminiscent of 53 hexaphyrin H₂1 due to the arrangement of six heterocycles 54 with aryl groups at each meso position 12,35,36 but more closely 55 resembles octaphyrin H_42^1 in its mode of all-nitrogen 56 coordination to metal ions (M₂2 and M₂L). ³⁷⁻³⁹ Metalation 57 of both octaphyrin 2 and twin porphyrin H₄L is facilitated by 58 the steric constraints imposed by the peripheral substituents 59 that force all coordinating N atoms toward the center of the 60 cavity. 19,32

Variation of the meso-aryl groups in twin porphyrin H₄L 62 only negligibly altered the optical absorbance and redox 63

Received: March 9, 2020

Ar
$$A_{1}$$
 A_{2} A_{3} A_{4} A_{4} A_{5} A

Figure 1. Representative expanded porphyrins and their metal complexes: a hexaphyrin H_21 and its metal complexes H_2M1 , an octaphyrin H_42 and its metal complexes M_22 , and the Siamese-twin porphyrin H_4L and its metal complexes M_2L .

64 properties, reflecting the orthogonality of the aryl π system and 65 the macrocycle mean plane.³³ Efforts to oxidize the macrocycle

66 to achieve a fully aromatic system resulted instead in fused and

folded "origami" structures. ⁴⁰ The use of different metal ions produced more spectral and electrochemical changes than aryl substitution, ^{33,41,42} leading to studies of monometallic and 70 bimetallic complexes of twin porphyrin H_4L (i.e., H_2NiL , 71 H_2PdL , Ni_2L , Cu_2L , and NiCuL complexes), $^{19,32-34,41,42}$ 72 establishing the twin porphyrin macrocycle as a noninnocent 73 ligand capable of undergoing ligand-centered oxidations. 41,42 74 The remarkable stability of monometallic H2PdL toward 75 oxidation and reduction allowed for electrochemical, spec-76 troelectrochemical, and electron paramagnetic resonance 77 (EPR) studies of the oxidized/reduced species as well as 78 investigations into its acid-base properties, providing further 79 insight into the conjugated, yet electronically distinct, halves of 80 the macrocycle.³ Platinum(II) and palladium(II) porphyrinoids have found 82 utility as optical oxygen sensors related to technical and 83 biological applications, 43–48 as photosensitizers for isomeri-84 zation processes 49 and photodynamic therapy, 50,51 as photo-85 catalysts for CH activation,⁵² and as luminophores with high 86 quantum yield [sometimes also emitting in the near-IR $(NIR)^{53-55}$ In this contribution, we expand the investigation 88 of the twin porphyrin metal complexes to PtII-based 89 monometallic and bimetallic complexes of the group 10 metals 90 (H2PtL, Pt2L, NiPtL, and PdPtL), as well as the new

91 heterobimetallic complex NiPdL. Thus, in combination with

92 the H₂NiL, ⁴² H₂PdL, ³⁴ Ni₂L, ⁴² and Pd₂L³⁴ complexes

prepared previously, the entire series of monometallic and 93 bimetallic complexes of the group 10 metals with all possible 94 combinations of Ni^{II}, Pd^{II}, and Pt^{II} are now available to further 95 probe structure—function relationships of the twin porphyrins, 96 particularly their optical and redox properties as a function of 97 the chelated metal ions. The diamagnetic nature of the square- 98 planar geometry of these low-spin d⁸ metal ions allows their 99 solution-state structures to be probed using NMR spectrosco- 100 py. The series of complexes prepared also proved suitable for 101 magnetic circular dichroism (MCD) spectral analysis com- 102 bined with time-dependent density functional theory 103 (TDDFT) computations to illuminate in greater detail the 104 origins of their optical spectra.

106

■ RESULTS AND DISCUSSION

Synthesis of the Complexes. The twin porphyrin ligand 107 H_4L , synthesized according to established routes, 19,32,40 was 108 mono- and bis-metalated with $M = Ni^{II}/Pd^{II}$ using their acetate 109 salts (Scheme 1). Use of the higher-boiling solvent 1,2- 110 s1 dichloroethane ($C_2H_4Cl_2$ -1,2) proved advantageous and 111 allowed us to readily prepare the known complexes Ni_2L^{42} 112 and Pd_2L^{34} more rapidly or in better yields (for experimental 113 details, see the Experimental Section and Supporting 114 Information). This solvent also allowed us to introduce Pt^{II} 115 into the macrocycle to prepare the novel monometallic species 116 H_2PtL and its corresponding homobimetallic analogue Pt_2L 117 using $PtI_2/NaOAc$. Complexation of Pt^{II} was noticeably slower 118 (8 h) than that of Ni^{II} (2 h)⁴² and Pd^{II} (1 h).³⁴ A combination 119 of metal salt solubility and intrinsic kinetic factors of the metal 120 ions rationalize these differences.

The progress of metal ion insertion was monitored with 122 thin-layer chromatography (TLC), which indicated that the 123 monometallic species formed before the bimetallic species, as 124 expected. To promote monometalation, the known complexes 125 H_2NiL and H_2PdL were prepared at ambient temperature, 126 while the preparation of H_2PtL required reflux conditions. The 127 latter reaction was carefully monitored with TLC to minimize 128 the formation of Pt_2L . After isolation of the platinum 129 complexes H_2PtL and Pt_2L in good yields using silica gel 130 chromatography, analytical and spectroscopic data confirmed 131 their expected compositions and connectivities (for details, see 132 the Experimental Section and Supporting Information).

The novel heterobimetallic species NiPtL, NiPdL, and 134 PdPtL were prepared from the isolated monometallic species 135 (Scheme 1), whereby two alternative routes are available: 136 insertion of the heavier metal preceding that of the lighter 137 metal, or vice versa. In general, we find that insertion of the 138 heavier, kinetically more inert metal species, followed by the 139 lighter metal species, is more advantageous in terms of yields 140 and reaction times than the alternate route. This likely reflects 141 that insertion of the first metal rigidifies the macrocycle, 142 thereby restricting insertion of a second metal ion, which is less 143 deleterious when the second metal ion for insertion is more 144 labile. Use of C₂H₄Cl₂-1,2 alone or C₂H₄Cl₂-1,2 with either 145 ethanol (EtOH) or acetonitrile (MeCN) further facilitated 146 insertion by providing good solubility of the twin porphyrin 147 and metal salts while also allowing reflux at higher temperature 148 than either dichloromethane (CH₂Cl₂) or chloroform 149 (CHCl₃) with methanol (MeOH). The heterobimetallic 150 complexes formed could be isolated with silica gel chromato- 151 graphy in good yields and showed all of the expected analytical 152 and spectroscopic properties (for details, see the Experimental 153 Section and Supporting Information).

Scheme 1. Synthetic Routes to the Group 10 Twin Porphyrin Complexes

(i) Ni₂L: Ni(OAc)₂, C₂H₄Cl₂-1,2/EtOH, Δ, 2 h. Pd₂L: Pd(OAc)₂, C₂H₄Cl₂-1,2, Δ, 1 h. Pt₂L: PtI₂/NaOAc, C₂H₄Cl₂-1,2/MeCN, Δ, 8 h. (ii) H₂NiL: Ni(OAc)₂, CH₂Cl₂/MeOH, rt, 15 min; H₂PdL: Pd(OAc)₂, CH₂Cl₂, rt, 5 h; H₂PtL: PtI₂/NaOAc, C₂H₄Cl₂-1,2/MeCN, Δ, 4 h. (iii) NiPdL: H₂NiL, Pd(OAc)₂, C₂H₄Cl₂-1,2, Δ, 1 h or H₂PdL, Ni(OAc)₂, C₂H₄Cl₂-1,2/EtOH, Δ, 10 min; NiPtL: H₂NiL, PtI₂/NaOAc, C₂H₄Cl₂-1,2/MeCN, Δ, 21 h or H₂PtL, Ni(OAc)₂, C₂H₄Cl₂-1,2/EtOH, Δ, 10 min. PdPtL: H₂PdL, PtI₂/NaOAc, C₂H₄Cl₂-1,2/MeCN, Δ, 6 h or H₂PtL, Pd(OAc)₂, C₂H₄Cl₂-1,2, Δ, 10 min.

Solid-State Conformations. All compounds for which 156 solid-state structures could be determined (NiPdL, NiPtL, 157 PdPtL, and Pt₂L) show the characteristic twisted conforma-158 tion intrinsic to the free base H₄L (in its diprotonated form), ⁴⁰ 159 as well as all other protonated or metalated twin porphyrin 160 species structurally characterized to date (Figure 2A). 19,32,34,41 161 All compounds are essentially isostructural (Figure 2B). The 162 small differences in their conformations largely reflect the size 163 of the square-planar-coordinated d^8 ions $[Ni^{II} (0.63 \text{ Å}) < Pt^{II}]$ $_{164} (0.74 \text{ Å}) < Pd^{II} (0.78 \text{ Å})].^{56}$ Thus, the average M-N bond 165 lengths for the homobimetallic complexes are shortest for Ni^{II} 166 (Ni-N_{avg} 1.91 Å), longer for Pt^{II} (Pt-N_{avg} 2.01 Å), and $_{167}$ longest for Pd^{II} (Pd-N $_{avg}$ 2.03 Å) (Table 1). The nearly ideal 168 square-planar geometry can be quantified using the structural 169 index parameter τ_4 (where a value of 0 represents perfect 170 square plane and a value of 1 a tetrahedral coordination ₁₇₁ sphere); τ_4 values for the homobimetallic complexes Ni₂L, τ_4 172 Pt₂L, and Pd₂L are 0.19 for Ni^{II}, 0.17 for Pt^{II}, and 0.13 for Pd^{II}, 173 respectively, with Pd^{II} possessing a coordination sphere that is 174 least distorted from square planar. In regular porphyrins, Ni^{II} 175 often leads to ruffled macrocycle conformations that reduce 176 the Ni-N bond lengths to better accommodate the small metal ion (with Ni–N distances typically \sim 1.93 Å), $^{58-60}$ while 178 not substantially distorting the {N₄} coordination sphere. 179 Adjustment of the degree of the twist modality inherent to the 180 twin porphyrin framework allows for a slight shortening of the Ni–N bond lengths (or, more generally, a narrowing of the 181 N–N distance between opposite N-donor pairs) but at the 182 expense of the degree of deviation from a perfectly square- 183 planar coordination sphere. The slightly more twisted 184 conformation of the nickel complex Ni_2L compared to that 185 of the two heavier homobimetallic congeners Pd_2L and Pt_2L 186 (as well as quite similar heterobimetallic PdPtL) is also 187 expressed in the metric parameters that define the macrocycle 188 helimeric twist, 32 i.e., the torsion angles along the long axis 189 ($\tau_{long'}$ between 93 and 106 °) and along the short pyrazole axis 190 (τ_{short} between 70 and 76 °).

An exact metric analysis of the heterobimetallic complexes is 192 hampered by disorder of both metals over both positions, 193 resulting in only average bond lengths for the crystallo- 194 graphically determined structures in the solid state. Further- 195 more, depending on the mode of preparation, we also observed 196 noninteger occupancy of the metal ion positions that deviated 197 from the expected 1:1 metal ion distribution, based on mass 198 spectrometry analyses (estimated $Ni_{1.22}Pd_{0.78}L$, $Ni_{1.15}Pt_{0.85}L$, 199 and $Pd_{1.17}Pt_{0.83}L$). Nonetheless, the alternating C–C bond 200 lengths indicative of the nonaromatic π -system inherent to the 201 twin porphyrin macrocycle can be distinguished (Figure 2C). 202

NMR Spectroscopic Characterization. The low-spin, 203 square-planar d⁸ metal ions Ni^{II}, Pd^{II}, and Pt^{II} are all 204 diamagnetic, making the series of complexes prepared ideal 205 for study by ¹H, ¹³C, and ¹⁹⁵Pt NMR spectroscopy. Unlike the 206

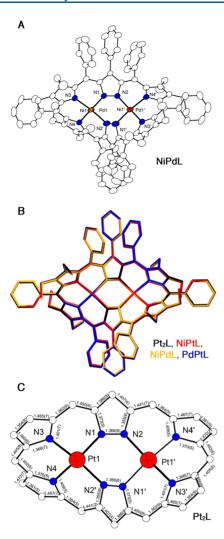


Figure 2. (A) Plot of the molecular structure of NiPdL. (B) Overlay of the molecular structures of Pt_2L (black), NiPtL (red), NiPdL (orange), and PdPtL (blue). H atoms are omitted. (C) Macrocycle framework bond lengths (Å) observed for Pt_2L . For details on the X-ray diffraction studies and bond-length analyses of NiPtL, NiPdL, and PdPtL, see the Supporting Information.

207 conformationally flexible and dynamic (on the NMR time scale 208 at ambient temperature) free-base ligand H_4L , 32 well-resolved 209 NMR spectra of the bimetallic complexes Pd_2L , Pt_2L , NiPtL, 210 PdPtL, and NiPdL (and diprotonated H_4PtL^{2+}) could be 211 obtained at 298 K, indicative of significant rigidification upon 212 metal complexation (and protonation; Figure 3). The limited

solubility of Pt₂L complicated the collection of ¹³C NMR ²¹³ spectra for this species (for details, see the Supporting ²¹⁴ Information).

The helimerically twisted homobimetallic species (Ni₂L, 216 Pd_2L , and Pt_2L) are D_2 -symmetric, with C_2 -symmetric rotation 217 through both the long axis (i.e., viewed down the mes positions 218 of the dipyrromethene locations of the molecule) as well as a 219 second C₂-symmetric rotation through the shorter pyrazole 220 axis (noncrystallographic symmetries). Interpretation of the 221 NMR data of the metal complexes indicates that the helimeric 222 twist observed in the solid state is also preserved in solution; 223 this results in the manifestation of NMR signals from only one- 224 quarter of the molecule with clearly distinct nonequivalent 225 phenyl and ethyl groups. The monometallic species H₂PtL and 226 the heterobimetallic species NiPtL and PdPtL (and NiPdL; 227 see the Supporting Information) lost their symmetry along the 228 short axis, with a corresponding doubling of the NMR signals. 229 Protonation of H₂PtL with trifluoroacetic acid (TFA; at 268 230 K) resolves the very broad NH signal of the neutral species, 231 but its ¹³C, 2D, and ¹⁹⁵Pt NMR spectra suggest the presence of ²³² protonated species, likely a mixture of the mono- and 233 diprotonated species (H₃PtL⁺ and H₄PtL²⁺), as was also 234 observed for H, NiL. 34,42

The Pt^{II}-containing complexes do not exhibit any hyperfine 236 ¹⁹⁵Pt-¹H or ¹⁹⁵Pt-¹³C couplings, likely due to the Pt^{II} 237 coordination sphere comprised solely of four quadrupolar 238 (14N) N atoms that contribute to the expression of relatively 239 broad signals (see the Supporting Information) because the 240 ¹⁹⁵Pt nucleus is very sensitive to changes in its coordination ₂₄₁ environment. The typical range of chemical shifts for PtII 242 coordinated to four N-donor ligands is between -2795 and 243 -2145 ppm,⁶¹ whereas the range of some aromatic Pt^{II} 244 metalloporphyrins was shown to lie between +1235 and 245 +1315 ppm; 62 the large diatropic ring current induced by the 246 aromatic π system of porphyrins causes this large shift of the 247 signal. Chemical shifts of the bimetallic Pt^{II}-containing twin 248 porphyrin complexes NiPtL, PdPtL, and Pt2L fall within the 249 range of typical N_4 donors (-2519 to -2372 ppm), 250 highlighting the lack of a macrocyclic ring current. Variation 251 of the observed 195Pt NMR signals is a result of nuanced 252 distortions of the Pt^{II} coordination sphere and the non- 253 equivalent electronic environments (varying distances of M-Pt 254 separation and different M atoms in the NiPtL, PdPtL, and 255 Pt₂L complexes; cf. Table 1).

UV-Vis Spectra. As is characteristic for the nonaromatic 257 macrocyclic twin porphyrins and their metal com- 258 plexes, ^{19,32-34,40-42} the UV-vis spectra of the group 10 twin 259 porphyrin complexes more closely resemble those of linear 260

Table 1. Selected Bond Lengths and Angles of Bimetallic Group 10 Complexes and Structural Index Parameters for the Metal Ions

	$M-N_{avg}$ (Å)	$ au_4^{\ a}$	d_{long} (Å)	τ_{tong}^{b} (deg)	d_{short} (Å)	$ au_{ m short}^{c} ({ m deg})$	M-M (Å)	ref
Ni_2L	1.91	0.19	10.48	106	6.92	76	3.81	42
Pd_2L	2.03	0.13	10.68	93	7.09	71	3.93	34
Pt_2L	2.01	0.17	10.67	95	7.09	70	3.92	this work
NiPdL	1.95	0.16	10.64	99	6.94	74	3.85	this work
NiPtL	1.95	0.17	10.57	99	6.97	73	3.88	this work
PdPtL	2.01	0.15	10.68	94	7.09	70	3.92	this work

^aThe heterobimetallic τ_4 values are an average for both metal ions. ^bTorsion angle measured from the dipyrromethene α-pyrrole/α-pyrrole to opposite the dipyrromethene α-pyrrole/α-pyrrole. ^cTorsion angle measured from the pyrazole 3 and 5 positions to the opposite pyrazole 3 and 5 positions.

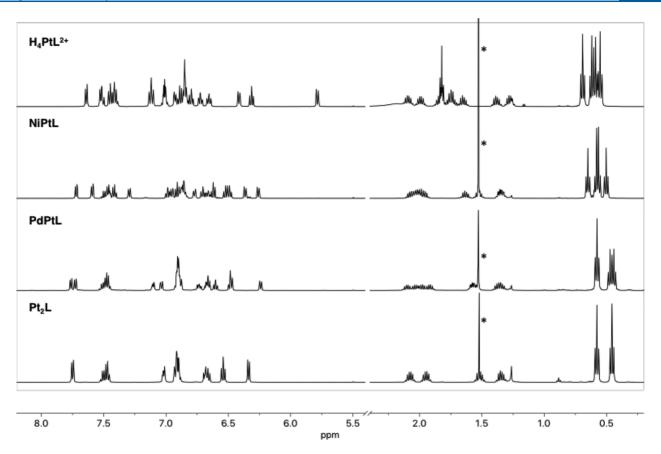


Figure 3. (A) Stacked ¹H NMR spectra (500 MHz, CD₂Cl₂, 298 K): H₂PtL + 2 equiv of TFA (H₃PtL⁺ and H₄PtL²⁺), NiPtL, PdPtL, and Pt₂L. The downfield NH signals for H₂PtL + 2 equiv of TFA are not shown (see the Supporting Information). Asterisks indicate H₂O.

 $_{262} \times 10^4$ and 8×10^4 M⁻¹ cm⁻¹. The absence of any significant 263 extension of the UV-vis absorbance into the NIR, as is 264 frequently observed in aromatic expanded porphyrins, 63 also 265 reflects the lack of continuous macrocycle π conjugation of the 266 group 10 metal complexes of the twin porphyrin (Figure 4). The UV-vis spectrum of the free base ligand H₄L exhibits 268 two intense bands at 390 and 638 nm with a shoulder on the $_{269}$ longest-wavelength band (λ_{max}). Upon complexation with one 270 metal ion, three primary bands arise with some additional minor features present. The monometallic species H₂PtL 272 absorbs well into the NIR, with the λ_{max} band tailing past 1000 273 nm. The spectrum of the homobimetallic complex Pd₂L possesses three intense and sharpened bands, similar to those 275 observed for the corresponding Ni₂L complex. The UV-vis 276 spectrum of Pt₂L is much different and most striking in its 277 complexity in the range between 250 and 550 nm. $_{278}$ Furthermore, its Q-like band region with $\lambda_{\rm max}$ at 768 nm has the longest wavelength of all of the bimetallic twin porphyrin complexes thus prepared. The heterobimetallic complexes exhibit UV-vis absorbances that are intermediate between the 282 parent homobimetallic species. The Pt-based complexes NiPtL 283 and PdPtL, for example, reflect the complexities seen in the

261 tetrapyrroles, with molar extinction coefficients (ε) between 6

Monometallic H_2PtL can be reversibly protonated with TFA to obtain the monoprotonated H_3PtL^+ and diprotonated H_4PtL^{2+} species. The three main absorbance bands ultimately become hypsochromically shifted, with each band blue-shifting 289 26–52 nm from the initial neutral to final diprotonated species

spectrum of Pt₂L, albeit much less pronounced.

(see the Supporting Information), reminiscent of the H_2PdL 290 titration series.³⁴

Electrochemistry. All bimetallic complexes were studied 292 using cyclic voltammetry (CV), exhibiting one electrochemi- 293 cally quasi-reversible reduction ($E_{1/2}^{\text{red}} = -1.901$ to -1.79 V vs 294 $Fc^{+/0}$ and two quasi-reversible oxidations ($E_{1/2}^{ox1} = -0.119$ to 295 -0.032 V and $E_{1/2}^{\text{ox2}} = +0.374 \text{ to } +0.447 \text{ V}$ vs Fc^{+/0}; Figure 5 and 296 fs Table 2). Pt₂L is most easily oxidized to [Pt₂L]⁺, followed by 297 t2 oxidation of Ni_2L to $[Ni_2L]^+$, and last of Pd_2L to $[Pd_2L]^+$ ($E_{1/2}^{ox1}$ 298 $= -0.104, -0.05, \text{ and } -0.032 \text{ V vs } \text{Fc}^{+/0}, \text{ respectively}$). 299 Likewise, the first oxidation potential in the heterobimetallic 300 series follows the sequence $[NiPtL]^+ < [NiPdL]^+ < [PdPtL]^+$ 301 $(E_{1/2}^{\text{ox1}} = -0.119, -0.073, \text{ and } -0.063 \text{ V vs Fc}^{+/0}, \text{ respectively}).$ 302 Past studies of Ni₂L, NiCuL, Cu₂L, and H₂PdL indicated that 303 the chemically reversible and electrochemically quasi-reversible 304 oxidative processes were ligand-centered. 34,41,42 Consistent 305 with trends observed in the past, the redox potentials observed 306 here change little with the type of group 10 d⁸ metal ion, 307 suggesting that ligand-centered redox events are also involved. 308 The cyclic voltammogram of the monometallic H_2PtL complex 309 shows only one quasi-reversible reduction ($E_{1/2}^{\text{red}} = -1.482 \text{ V vs }_{310}$ Fc^{+/0}) and one quasi-reversible oxidation ($E_{1/2}^{\text{ox}} = -0.231 \text{ V vs }_{311}$ Fc^{+/0}), as was also observed for its Pd^{II} analogue H_2PdL ($E_{1/2}^{red}$ 312 = -1.59 V and $E_{1/2}^{ox}$ = -0.32 V vs Fc^{+/0}).³⁴ We infer from this 313 that the single-electron-oxidized species of H2PtL is also a 314 ligand-centered π -cation radical confined to the metalated side 315 of the macrocycle, while the π -anion radical is located on the 316 nonmetalated side.³⁴ As reported previously, the H₂NiL ₃₁₇ complex did not display any reversible redox events. 42

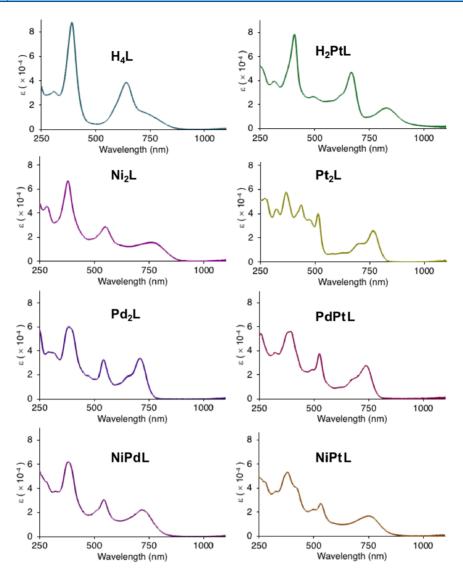
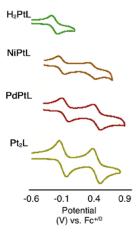



Figure 4. UV-vis spectra (CH₂Cl₂) of the compounds indicated.

Figure 5. Cyclic voltammograms (CH_2Cl_2 , 0.1 M NBu_4PF_6 , at 100 mV s⁻¹) of the compounds indicated. See the Supporting Information for the scans toward negative potentials.

The comproportionation constants (K_c) calculated based on $\Delta E_{1/2}^{\rm ox}$ ($\Delta E_{1/2}^{\rm ox} = E_{1/2}^{\rm ox2} - E_{1/2}^{\rm ox1}$) are 10^7 for Ni₂L and Pd₂L and higher, 10^9 , for Pt₂L. The heterobimetallic complexes fall

Table 2. Selected Redox Parameters (Potentials vs Fc^{+/0})

	$E_{1/2}^{\mathrm{red}}$ (V)	$E_{1/2}^{\text{ox}1}$ (V)	$E_{1/2}^{\text{ox}2}$ (V)	ox ₁ -red (V)	ox_2 - ox_1 (V)
Ni ₂ L ^a	-1.79	-0.05	+0.41	1.74	0.46
Pd_2L	-1.825	-0.032	+0.439	1.793	0.471
Pt_2L	-1.898	-0.104	+0.438	1.794	0.542
NiPdL	-1.864	-0.073	+0.383	1.791	0.456
NiPtL	-1.901	-0.119	+0.374	1.782	0.493
PdPtL	-1.866	-0.063	+0.447	1.803	0.510
H_2PtL	-1.482	-0.231		1.251	
H_2PdL^b	-1.59	-0.32		1.27	
^a Reference	42. ^b Refer	ence 34.			

between their respective homobimetallic complexes and are 322 10^7 for NiPdL and 10^8 for NiPtL and PdPtL. These numbers 323 provide some insight into the thermodynamic stability of the 324 singly oxidized Pt^{II}-containing complexes relative to complexes 325 of the lighter group 10 metal ions, which is likely correlated to 326 charge delocalization effects. 64 327

Spectroelectrochemistry. Spectroelectrochemical studies 328 confirm the chemical reversibility of the species upon oxidation 329 and rereduction by comparing the initial and final UV-vis- 330 NIR spectra. In addition, the UV-vis-NIR absorbance spectra 331

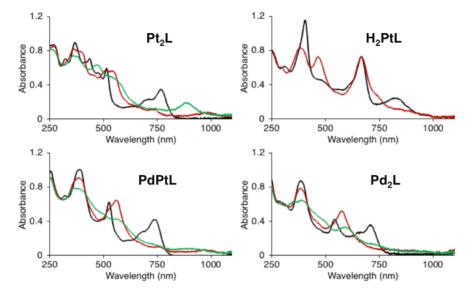


Figure 6. Spectroelectrochemical traces (CH₂Cl₂, 0.1 M NBu₄PF₆) of the compounds indicated. Black traces correspond to the neutral species, red traces to the singly oxidized species, and green traces to the doubly oxidized species.

 $_{332}$ of once- and twice-oxidized species can also be determined. $_{333}$ Features such as increased absorbance in the NIR region are $_{334}$ indicative of the formation of ligand-centered cation radical $_{335}$ species, as was also shown before for $_{12}NiL$ (Figure 6). 42

MCD. The MCD spectra and corresponding UV-vis spectra of the compounds investigated are shown in Figure 7 338 (cf. also to Figure 4). The MCD spectrum of the H_4L free-base 339 ligand consists of rather weak Faraday B terms, with the most 340 intense negative signal in the visible region centered at 686 nm, 341 which does not correlate to any of the major absorption peaks 342 in the UV-vis spectrum. In the higher energy region, the 343 MCD spectrum revealed three negative signals at 533, 421, and 344 365 nm and two positive Faraday MCD B terms observed at 345 459 and 327 nm, which again do not correlate with the energy 346 of the intense absorption band observed at 390 nm in the UV-347 vis spectrum of H_4L .

For monometallic H₂ML complexes, the relatively strong 348 349 bands at 683 nm (H₂NiL), 662 nm (H₂PdL), and 664 nm 350 (H₂PtL) in the visible region are complemented by a 351 fingerprint NIR band between 797 and 829 nm unique to 352 the monometallic twin porphyrin complexes. Unlike in the case 353 of H₄L, no spectral absorption gap was observed between the 354 UV and visible portions of their optical spectra. The MCD 355 spectra of the monometallic derivatives are dominated by a 356 negative signal centered between 481 and 566 nm for H₂NiL and a broad band around 550 nm observed for both H₂PdL 357 and H₂PtL. The NIR fingerprint bands of the monometallic 358 twin porphyrins are associated with weak and positive Faraday 360 B terms: one for H_2NiL and two each for H_2PdL and H_2PtL . Similar to the metal-free twin porphyrin, the two most intense absorption bands in the UV-vis spectra of the monometallic derivatives do not show much MCD intensity. The NIR band observed in the absorption spectra for the monometallic derivatives disappears in the case of both homobimetallic and 366 heterobimetallic complexes. Indeed, in the case of the 367 bimetallic compounds, the low-energy spectral envelope is 368 dominated by a prominent band observed between 709 and 369 767 nm; the bimetallic complexes possess a fingerprint band 370 located between 514 and 548 nm. In all bimetallic complexes, 371 the low-energy visible or NIR MCD signals have negative

intensities and do not correlate with the most intense bands 372 observed in the UV-vis spectra of these compounds. 373

Thus, in all cases, the most intense absorption bands in the 374 UV-vis spectra of the metal-free, monometallic, and bimetallic 375 twin porphyrins do not possess much MCD intensity. This is 376 in strong contrast to the intense MCD signals that are 377 observed for the Q and Soret bands of metal-free and 378 transition-metal metalloporphyrins and many of their ana- 379 logues. 65-69 As was pointed out earlier for the homobimetallic 380 Cu^{II} twin porphyrin complex, 41 the low intensity of the MCD 381 signals is associated with pure macrocycle-centered $\pi-\pi^*$ 382 excitations and likely reflects their twisted, nonplanar geo- 383 metries and poor overlap between atomic π orbitals, resulting 384 in a lack of any strong and delocalized macrocyclic ring 385 current. Thus, their low-intensity MCD transitions indicate 386 that the twin porphyrin π system behaves more like an open- 387 chain tetrapyrrole and not like an aromatic macrocyclic 388 porphyrinic compound. Indeed, the highly nonplanar structure 389 of the twin porphyrins incorporating two nearly independent π 390 systems is one of their defining characteristics. 32,34,42 Low- 391 intensity MCD spectra were also observed for other macro- 392 cyclic porphyrinoids with compromised or localized π -aromatic 393 systems.7

DFT and TDDFT. To better correlate the spectroscopic 395 properties observed for the metal-free, monometallic, and 396 bimetallic twin porphyrin complexes, the electronic structures 397 of selected compounds were evaluated using DFT and 398 TDDFT calculations. The resulting molecular orbital (MO) 399 energy diagram is shown in Figure 8.

For all compounds, the highest occupied molecular orbital $_{401}$ (HOMO) and HOMO $_{-1}$ orbitals as well as the lowest $_{402}$ unoccupied molecular orbital (LUMO) and LUMO $_{+1}$ orbitals $_{403}$ are energetically well separated from the remaining filled or $_{404}$ empty orbitals, respectively. The HOMO to HOMO $_{-1}$ as well $_{405}$ as LUMO to LUMO $_{+1}$ energy gaps decrease in the order of $_{406}$ $_{H_2NiL} > _{H_2PdL} > _{H_4L}$, while similar gaps for the bimetallic $_{407}$ $_{Ni_2L}$, $_{Pd_2L}$, and $_{NiPdL}$ complexes were predicted to be close $_{408}$ to each other.

While the HOMO orbitals of the free base as well as the 410 homobimetallic and heterobimetallic complexes are evenly 411

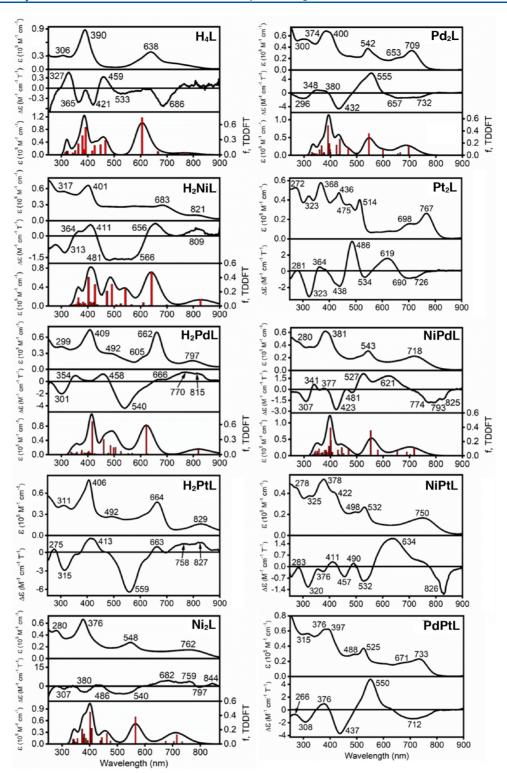


Figure 7. UV—vis (top), MCD (middle), and TDDFT-predicted (bottom) spectra of target compounds (all in CH_2Cl_2). Only the UV—vis (top) and MCD (bottom) spectra of the Pt^{II} complexes are shown.

412 distributed over the macrocycle, they are mostly centered on 413 the metalated halves of the molecule in the monometallic 414 species (Figure 9 and the Supporting Information). The 415 LUMO orbitals in H₂NiL and H₂PdL are localized on the 416 metal-free part of the macrocycle. The LUMO+1 and LUMO 417 +2 orbitals of H₂NiL are close in energy, with the former 418 localized over the metal-free part and the latter over the metal-

containing part of the macrocycle. In comparison, the LUMO $_{419}$ +1 and LUMO+2 orbitals of $\mathbf{H_2PdL}$ are better separated and $_{420}$ feature an inverse localization.

A MO composition analysis further refines this picture $_{422}$ (Figure 10), revealing that the contribution of the pyrazole $_{423\,f10}$ fragments to the frontier orbitals of all compounds does not $_{424}$ exceed 25%, while the contributions from the pyrrolic $_{425}$

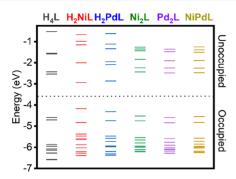


Figure 8. DFT-predicted frontier orbital energy diagram for the compounds indicated.

426 fragments to the HOMO-1 to LUMO+1 MOs play a 427 dominant role. In the case of the monometallic and bimetallic 428 compounds, the contribution from the transition-metal orbitals 429 to the frontier MOs does not exceed 10%.

The nature of the excited states in all Ni- and Pd-containing compounds was probed by TDDFT calculations (Figure 7). In all cases, reasonable agreement between theory and experiment Assaus observed. Specifically in the case of the metal-free twin 434 porphyrin H₄L, the energy of the experimentally observed 435 features between 700 and 800 nm in the UV—vis spectrum 436 correlates well with the energy of the first excited state, 437 predicted at 769 nm and characterized as a pure HOMO → 438 LUMO single-electron transition that is predominantly 439 centered at pyrrolic fragments of the twin porphyrin core. 440 The TDDFT calculations suggest that the relatively intense 441 MCD signal observed at 686 nm represents the third excited

state predicted at 666 nm, which is dominated by the 442 HOMO−1 → LUMO+1 single-electron excitation. TDDFT 443 calculations also predict that the most intense transition, 444 experimentally observed at 638 nm (predicted at 605 nm), is 445 dominated by a nearly equal contribution from the HOMO-1 446 → LUMO and HOMO → LUMO+1 single-electron 447 excitations (fourth excited state). The predicted higher energy 448 of the 4th excited state compared to that of the 3rd excited 449 state, is rationalized by the configuration interaction between 450 the energetically similar HOMO/HOMO-1 and LUMO/ 451 LUMO+1 orbitals. The most intense transition in the higher- 452 energy region observed at 390 nm is associated with nearly 453 equal HOMO-3 → LUMO+1 and HOMO-6 → LUMO 454 single-electron excitations (excited state 14). The latter single- 455 electron excitation has a distinct pyrazole(π) \rightarrow pyrrole(π *) 456 charge-transfer character.

In the case of the monometallic H_2NiL and H_2PdL 458 complexes, TDDFT calculations correctly predicted a hyp- 459 sochromic shift of the lowest energy NIR band when shifting 460 from the lighter to the heavier metal ion, as well as a 461 hypsochromic shift of the most prominent visible band 462 (observed at 683 nm in H_2NiL and 662 nm in H_2PdL) and 463 a bathochromic shift of the most prominent band observed at 464 \sim 400 nm. The first NIR band, observed at \sim 800 nm, is 465 predominantly associated with the HOMO-1 \rightarrow LUMO 466 single-electron excitation, while the intense band in the visible 467 region observed between 660 and 680 nm for these 468 compounds is predicted to be dominated by the HOMO \rightarrow 469 LUMO+2 (H_2NiL) or HOMO \rightarrow LUMO+1 (H_2PdL) single- 470 electron excitations. Similar to the metal-free twin porphyrin 471

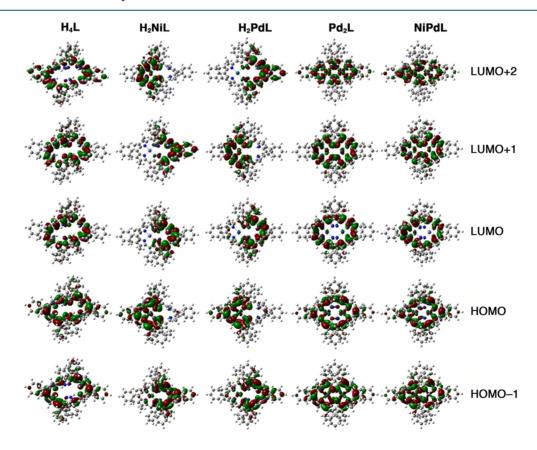


Figure 9. DFT-predicted frontier orbitals for the compounds indicated. See the Supporting Information for the frontier orbitals of the full set of compounds investigated.

ı

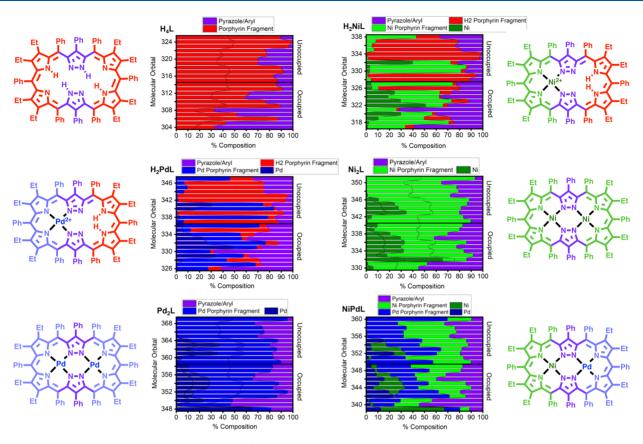


Figure 10. DFT-predicted frontier orbital compositions for the compounds indicated.

472 H_4L , the intense transition observed at ~400 nm was predicted 473 to have a substantial pyrazole(π) \rightarrow pyrrole(π^*) intra-474 molecular charge-transfer character. Importantly, the TDDFT 475 calculations correctly predicted an energy gap at ~480 nm, 476 which was experimentally observed in the UV—vis spectrum of 477 H_4L but is filled with numerous excited states in the H_2NiL 478 and H_2PdL complexes.

Three distinct absorption envelopes were predicted for the 479 480 bimetallic Ni₂L, Pd₂L, and NiPdL twin porphyrin complexes 481 without any spectral gap between the UV and visible parts in 482 the spectra of these compounds, in full agreement with 483 experimental observations. In all cases, the intense NIR 484 absorption is dominated by the HOMO → LUMO singleelectron excitation centered at the pyrrolic π and π^* orbitals. 486 The most intense absorption band in the visible region of the absorption spectrum for these compounds observed around 545 nm correlates well with the TDDFT-predicted excited 489 state at 550 nm, which is dominated by the HOMO-1 \rightarrow 490 LUMO+1 single-electron excitations centered at the pyrrolic π 491 and π^* orbitals. Parallel to the free-base and monometallic 492 cases, the most intense absorption band in the higher-energy 493 region (~400 nm) correlates well with an excited state 494 dominated by a single-electron transition with significant 495 pyrazole(π) \rightarrow pyrrole(π *) intramolecular charge-transfer 496 character.

Overall, it appears that the TDDFT calculations correctly predict the broad spectral nature of the monometallic and bimetallic twin porphyrin complexes and accurately predict general trends observed in the UV-vis spectra of these compounds to within ~ 0.1 eV error, which is typical for modern TDDFT methods. A large number of TDDFT so transitions in all target compounds correlate well with the

complex MCD spectra of these systems, indicative of a large 504 number of excited states observed in the UV-vis-to-NIR 505 spectral envelope.

507

CONCLUSIONS

A comprehensive series of group 10 complexes of the twin 508 porphyrin H₄L, including the first Pt^{II}-containing complexes 509 H₂PtL and Pt₂L as well as the novel heterobimetallic 510 complexes NiPdL, NiPtL, and PdPtL, were prepared and 511 analyzed. Structurally, the bimetallic complexes do not differ 512 considerably from each other or from related twin porphyrin 513 complexes reported previously. 19,32–34 The diamagnetic nature 514 of the complexes hosting low-spin d⁸ group 10 metal ions 515 allowed a comparison of their well-resolved NMR spectra. The 516 quasi-reversible oxidative and reductive processes observed for 517 the bimetallic species show only subtle variations for the 518 different metal ions, supporting the mostly ligand-centered 519 nature of these redox events. In contrast, their optical spectra 520 are distinctly different from each other, indicative of a mixing 521 of the d orbitals of the metal ions with the π system of the 522 ligand. The low MCD intensity of the group 10 metal 523 complexes of twin porphyrin H₄L stands in contrast to the 524 generally intense MCD signals for the Q and Soret bands of 525 transition-metal metalloporphyrins, but the finding is in line 526 with the absence of a strong macrocyclic ring current. This 527 confirms previous notions that the highly twisted twin 528 porphyrin does not possess macrocyclic aromatic character 529 but features two nearly independent conjugated π systems that 530 are separated by the central pyrazolate units. 19,32-34

(TD)DFT calculations allowed further analysis of the rich 532 UV—vis to NIR spectral features of the monometallic and 533

534 bimetallic twin porphyrin complexes. The frontier MOs 535 involved in the lowest energy transitions are predominantly 536 located at the pyrrolic fragments of the twin porphyrin core, 537 with only minor contributions of the pyrazole units (<25%) 538 and group 10 metal ions (<10%). While frontier orbitals 539 extend over the entire macrocycle for the homobimetallic and 540 heterobimetallic complexes, monometalation results in the 541 HOMO being confined to the metalated half and the LUMO 542 being confined to the free-base half. The panchromatic 543 absorbance of the twin porphyrin complexes, in conjunction 544 with their electrochemical and spectroelectrochemical signa-545 tures, suggests that these systems may find utility in 546 optoelectronic or electrochromic applications.

547 EXPERIMENTAL SECTION

Materials. Solvents were of reagent-grade or better and were used s49 as received, except CH_2Cl_2 for electrochemistry and spectroelecs50 trochemistry, which was passed over activated silica gel and degassed s51 under Ar. Chromatography: silica gel for column chromatography 552 (technical grade, 60 Å, 70–230 mesh, 63–200 μ m, Aldrich); 553 aluminum-backed silica gel TLC plates (60 F_{254} , Merck Millipore), 554 neutral and basic alumina 90 for column chromatography (Machery-555 Nagel), and neutral aluminum oxide TLC plates (0.2 mm, thickness, 556 with 254 nm indicator, Fluka) were used.

557 H_4L , 19,32,40 H_2NiL , 42 H_2PdL , 34 and $Ni_2L^{32,42}$ were prepared 558 according to literature procedures with slight modifications, as 559 detailed in the Supporting Information. All reactions were shielded 560 from light by covering the reaction flask with aluminum foil.

Instruments. NMR spectra (¹H, ¹³C, ¹95Pt, and 2D) were seer recorded in CD₂Cl₂ on a Bruker Avance 500 MHz spectrometer at 298 K. Acid titrations were conducted at 268 K on a Bruker Avance 400 MHz spectrometer. High-resolution mass spectrometry was fee performed by the Central Analytics Laboratory at the Georg-August-See Universität Göttingen using a ThermoFisher LTQ Orbitrap XL mass spectrometer. UV—vis spectra were collected using an Agilent Cary 60 to 100 MV—vis spectrophotometer at ambient temperature.

CV. Voltammograms were obtained from 10^{-3} M twin porphyrin complexes in 0.1 M tetrabutylammonium hexafluorophosphate (NBu₄PF₆) in an anhydrous CH₂Cl₂ solution using a PerkinElmer 22 263A potentiostat with a glassy carbon working electrode, a Pt wire counter electrode, and a Ag wire reference electrode, with decamethylferrocene [(Cp*)₂Fe] as the internal standard (see 375 additional details for conversion in the Supporting Information).

Spectroelectrochemistry. Measurements were performed in 577 CH₂Cl₂/0.1 M NBu₄PF₆ under ambient conditions using a Metrohm 578 Autolab PGSTAT101 potentiostat coupled with an Avantes AvaLight 579 DH-S-BAL light source and an Avantes StarLine AvaSpec-2048 fiber-580 optic spectrometer equipped with *Nova* and *AvaSoft* software 581 following a chronoamperometry protocol (spectra recorded between 582 250 and 1100 nm). A Pt mesh working electrode, a Pt wire counter 583 electrode, and a freshly prepared Ag/AgNO₃ (10 mM AgNO₃/100 584 mM NBu₄PF₆/MeCN) reference electrode were used.

X-ray Diffractometry. Crystals suitable for X-ray diffractometry see were grown under ambient conditions. Solvent layering of CH_2Cl_2 with MeOH produced X-ray-quality crystals of Pt_2L , vapor diffusion of MeOH into CHCl₃ (EtOH-stabilized; passed over K_2CO_3 before see use) resulted in NiPdL and NiPtL crystals, and vapor diffusion of MeOH into $CH_2Cl_2/CHCl_3$ produced PdPtL crystals. For expersion imental details, see the Supporting Information.

592 **UV–Vis/MCD Spectroscopy.** All UV–vis spectra were collected 593 on a Jasco V-770 spectrophotometer (CH₂Cl₂), and MCD spectra 594 were measured (CH₂Cl₂) with a Jasco J-1500 CD spectrometer using 595 a Jasco MCD-581 electromagnet operated at 1.0 T. The MCD spectra 596 were recorded in mdeg = $[\theta]$ and converted to molar ellipticity as $\Delta \varepsilon$ 597 = θ /(32980*Blc*), where *B* is the magnetic field, *l* is the path length 598 (cm), and *c* is the concentration (M). The MCD spectra were 599 measured at 10 °C in parallel and antiparallel orientations with 600 respect to the magnetic field.

DFT and TDDFT Methods. All calculations were performed using 601 the *Gaussian 09* software package⁷⁵ on UNIX OS. The geometries of 602 all twin porphyrins were optimized using the hybrid B3LYP exchange-603 correlation functional⁷⁶ and full-electron DGDZVP basis set⁷⁷ in the 604 gas phase. Frequency calculations were run to ensure that a global 605 energetic minimum on the potential energy surface was obtained. The 606 optimized geometries were used for single-point and TDDFT 607 calculations. The 60 lowest-energy excited states were considered 608 for TDDFT calculations. Only Ni and Pd complexes were modeled 609 using DFT and TDDFT methods because of the lack of a DGDZVP 610 basis set for the Pt ion.

Homobimetallic Pd^{II} Complex, Pd₂L. The free base H₄L (17.9 612 mg, 13.75 μ mol) was dissolved in C₂H₄Cl₂-1,2 (4 mL). Palladium(II) 613 acetate [Pd(OAc)2; 8.9 mg, 39.7 µmol, 2.8 equiv] dissolved in 614 C₂H₄Cl₂-1,2 (2 mL) was added, and the solution was brought to 615 reflux for 1 h or until the teal starting material was consumed and 616 formation of the nonpolar purple Pd₂L was observed (using TLC, 617 silica-1:2 hexane/EtOAc). The solvent was removed by rotary 618 evaporation, and the residue was purified using column chromatog- 619 raphy. Collection of the nonpolar purple fraction, solvent removal by 620 rotary evaporation, and then recrystallization from THF layered with 621 MeOH for a few days at 0 °C yielded dark-purple microcrystalline 622 material (13.2 mg, 63%). $R_f = 0.90$ (silica-2:1 hexane/EtOAc). ¹H 623 NMR (500 MHz, CD_2Cl_2 , 298 K): δ 7.73 (dt, J = 6.6 Hz, 4H, Ph^A), 624 7.50 (dt, J = 6.7 Hz, 2H, Ph^A), 7.47 (m, 4H, Ph^A), 7.01 (m, 4H, Ph^B), 625 6.99 (m, 4H, Ph^{B}), 6.90 (m, 8H, Ph^{B}), 6.72 (m, 4H, Ph^{B}), 6.66 (tt, J=6267.4 Hz, 2H, Ph^{C}), 6.54 (t, J = 7.5 Hz, 4H, Ph^{C}), 6.38 (d, J = 6.9 Hz, 627 4H, Ph^C), 2.06 (sextet, J = 7.3 Hz, 4H, 4 CH₂), 1.95 (sextet, J = 7.3 Hz, 628 4H, ${}^{b}CH_{2}$), 1.63 (sextet, J = 7.3 Hz, 4H, ${}^{b}CH_{2}$), 1.36 (sextet, J = 7.4 629 Hz, 4H, $^{\rm a}$ CH₂), 0.58 (t, J=7.4 Hz, 12H, $^{\rm a}$ CH₃), 0.46 (t, J=7.3 Hz, 630 12H, $^{\rm b}$ CH₃). $^{\rm 13}$ C NMR (125 MHz, CD₂Cl₂, 298 K): δ 157.2 (α -pyrr- 631 a), 152.5 (3/5-Pz), 147.7 (β -pyrr-b), 147.2 (α -pyrr-b), 145.6 (β -pyrr-632 a), 139.6 (ipso-Ph^A), 137.4 (ipso-Ph^B), 134.5 (Ph^A), 134.1 (ipso-Ph^C), 633 133.8 (Ph^B), 132.6 (Ph^C), 132.0 (Ph^B), 128.5 (Ph^A), 128.2 (Ph^A), 634 127.7 (Ph^B), 127.6 (Ph^B), 127.0 (Ph^B), 126.9 (Ph^C), 125.3 (Ph^C), 635 124.8 (meso-Ph^C), 123.7 (meso-Ph^B), 110.3 (meso-Ph^A), 19.6 (^bCH₂), 636 19.3 (aCH₂), 16.2 (aCH₃), 15.7 (bCH₃). For details of the H and 13C 637 NMR assignments, see the Supporting Information. UV-vis 638 $[CH_2Cl_2; \lambda_{max}]$ nm $(\varepsilon, M^{-1} \text{ cm}^{-1})$: 709 (34000), 654 (19200, 639) shoulder), 542 (32800), 472 (19700), 383 (60500), 314 (38700), 640 300 (39100). HR-MS (ESI+, CH₂Cl₂/CH₃CN): *m/z* 1510.4603 641 (calcd m/z 1510.4610 for $C_{92}H_{80}N_8Pd_2^+$).

Homobimetallic Pt II Complex, Pt₂L. The free base H₄L (34.7 643 mg, 26.7 μ mol) was dissolved in C₂H₄Cl₂-1,2 (12 mL), and then 644 CH₃CN (8 mL) was added while the solution was warmed. PtI₂ (64.8 645 mg, 144 μ mol, 5.4 equiv) and NaOAc·3H₂O (21.8 mg, 160 μ mol, 6.0 646 equiv) were added to the warm solution and brought to reflux for 8 h 647 or until teal H₄L was consumed and nonpolar yellow-green Pt₂L 648 formed (monitored by TLC). The volume of the reaction mixture was 649 reduced and submitted to column chromatography (silica-hexane/ 650 CH₂Cl₂). Solvent removal from the nonpolar olive-green fraction and 651 recrystallization of the residue from THF layered with MeOH at 0 °C 652 resulted in crystalline Pt₂L (12.0 mg, 27%). $R_f = 0.88$ (silica-2:1 653 hexane/EtOAc). ¹H NMR (500 MHz, CD₂Cl₂, 298 K): δ 7.75 (dt, J 654 = 6.2 Hz, 4H, Ph^A), 7.51–7.47 (m, 6H, Ph^A), 7.01 (m, 4H, Ph^B), 6.91 655 $(m, 12H, Ph^B), 6.68 (m, 6H, Ph^B/Ph^C), 6.54 (t, J = 7.7 Hz, 4H, Ph^C), 656$ 6.34 (d, J = 6.8 Hz, 4H, Ph^C), 2.08 (sextet, J = 7.4 Hz, 4H, ${}^{a}CH_{2}$), 657 1.94 (sextet, J = 7.3 Hz, 4H, ${}^{b}CH_{2}$), 1.53 (sextet, J = 7.4 Hz, 4H, 658 $^{b}CH_{2}$), 1.35 (sextet, J = 7.3 Hz, 4H, $^{a}CH_{2}$), 0.58 (t, J = 7.3 Hz, 12H, 659 a CH₃), 0.46 (t, J = 7.3 Hz, 12H, b CH₃). 13 C NMR (125 MHz, 660 $CD_{2}Cl_{2}\text{, 298 K)}\text{: }\delta\text{ 152.7 (C}_{q}\text{), 148.7 (C}_{q}\text{), 146.6 (C}_{q}\text{), 145.4 (C}_{q}\text{), }661$ $144.1 \ (C_q), \ 139.3 \ (C_q), \ 137.0 \ (C_q), \ 134.8 \ (Ph^A), \ 134.1 \ (C_q), \ 133.9 \ \ 662 \ (Ph^B), \ 133.4 \ (Ph^C), \ 132.1 \ (Ph^B), \ 128.6 \ (Ph^A), \ 128.1 \ (Ph^A), \ 127.6 \ \ 663$ (Ph^B) , 127.4 (Ph^B) , 127.0 $(2 \times intensity Ph^C)$, 125.4 (Ph^C) , 122.4 664 (C_q) , 108.6 (C_q) , 19.8 $({}^bCH_2)$, 19.4 $({}^aCH_2)$, 16.4 $({}^aCH_3)$, 15.7 665 $({}^bCH_3)$. For details of the 1H and ${}^{13}C$ NMR assignments, see the 666 Supporting Information; broad peaks in the HMBC spectrum limit 667 assignments of quaternary C atoms. ¹⁹⁵Pt NMR (107 MHz, CD₂Cl₂, 668 298 K): δ –2437. UV–vis [CH₂Cl₂; λ_{max} nm (ϵ , M⁻¹ cm⁻¹)]: 768 669 (26200), 709 (15500), 515 (39900), 476 (35300), 437 (47000), 417 670

671 (39900), 368 (57400), 323 (43800), 272 (52500). HR-MS (ESI⁺, 672 $\rm CH_2Cl_2/CH_3CN)$: m/z 1687.5795 (calcd m/z 1687.5817 for 673 $\rm C_{92}H_{80}N_8Pt_2^+$).

Monometallic Pt^{II} Complex, H₂PtL. The reaction conditions 675 described for Pt₂L were optimized to afford H₂PtL as the main 676 product using H_4L (74.0 mg, 56.8 μ mol), PtI_2 (83.3 mg, 186 μ mol, 677 3.3 equiv), and NaOAc·3H₂O (19.1 mg, 140 μmol, 2.5 equiv) in a 678 mixed solvent system (24 mL of C₂H₄Cl₂-1,2 and 16 mL of CH₃CN) 679 to improve the solubility and then brought to reflux for 4 h. The 680 solvent was removed under vacuum, followed by purification using 681 column chromatography, and then solvent removal and recrystalliza-682 tion to afford crystalline H_2PtL (18.2 mg, 21%). $R_f = 0.62$ (silica-2:1 683 hexane/EtOAc). Typically <5% crystalline Pt_2L was also obtained. 684 UV—vis $[CH_2Cl_2; \lambda, nm (\varepsilon, M^{-1} cm^{-1})]$: 825 (17000), 667 (46700), 685 617 (27800), 494 (26500), 406 (78500), 315 (39200). ¹H NMR 686 (500 MHz, CD₂Cl₂, 298 K): δ 7.47-7.65 (m, 2H), 7.42-7.39 (m, 687 4H), 6.99-6.92 (m, 12H), 6.75 (m, 3H), 6.64-6.61 (m, 6H), 6.55-688 6.50 (m, 5H), 6.32 (br s, 2H), 5.77 (br s, 2H), 3.68 (t, 3H), 2.11-689 2.04 (m, 4H), 1.90-1.80 (overlapping m, 10H), 1.36-1.28 (m, 4H), 690 0.74 (t, J = 7.5 Hz, 6H), 0.64 (t, J = 7.5 Hz, 6H), 0.68–0.58 (m, 691 12H). ¹³C NMR (125 MHz, CD₂Cl₂, 298 K): δ 155.9, 148.8, 142.5, 692 137.5, 133.7, 131.5, 130.7, 128.7, 128.6, 128.5, 127.9, 127.5, 127.2, 693 127.0, 126.3, 126.6, 126.1, 124.5, 68.2, 26.0 (CH₂), 19.1 (CH₂), 18.8 694 (CH₂), 18.6 (CH₂), 16.2 (CH₃), 15.3 (CH₃), 15.1 (CH₃). HR-MS 695 (ESI+, CH₂Cl₂/CH₃CN): m/z 1494.6358 (calcd m/z 1494.6329 for 696 $C_{92}H_{82}N_8Pt^+$).

Monoprotonated Monometallic Pt^{II} Complex, H₃PtL⁺. The monometallic complex H₂PtL was protonated with 1 equiv of TFA and was not isolated. The addition of 1,8-diazabicyclo[5.4.0]undec-7-700 ene (DBU) indicated reversibility of protonation/deprotonation. UV-vis [CH₂Cl₂/1% TFA; λ , nm (ε , M^{-I} cm⁻¹)]: 786 (19000), 646 (24600), 565 (19300), 469 (23700), 396 (75600), 304 (34400), 257 (43400). For UV-vis titration spectra and low-temperature ¹H NMR 704 titration spectra, see the Supporting Information.

Diprotonated Monometallic Pt Complex, H₄PtL²⁺. The 706 monometallic complex H₂PtL was protonated with 2 equiv of TFA 707 in situ in order to obtain ¹H and ¹³C NMR spectra; it was not 708 isolated. The addition of DBU indicated reversibility of protonation/ 709 deprotonation. UV-vis $[CH_2Cl_2/1\% TFA; \lambda, nm (\varepsilon, M^{-1} cm^{-1})]$: 710 773 (23200), 634 (47200), 457 (21000), 380 (81100), 304 (33600), 711 257 (43500). ¹H NMR (500 MHz, $CD_2Cl_2/1\%$ TFA, 298 K): δ 16.59 712 (br s, 2H, pz-NH), 12.83 (sharp s, 2H, pyrr-NH), 7.64 (d, J = 6.8 Hz, 713 2H, Ph), 7.52 (m, 3H, Ph), 7.45 (m, 2H, Ph), 7.41 (m, 3H, Ph), 7.12 714 (t, J = 8.4 Hz, 4H, Ph), 7.01 (m, 4H, Ph), 6.93 (m, 2H, Ph), 6.89 (dt, 715 I = 7.3 Hz, 2H, Ph), 6.85 (m, 6H, Ph), 6.80 (m, 2H, Ph), 6.73 (m, 716 2H, Ph), 6.66 (m, 2H, Ph), 6.42 (d, *J* = 7.5 Hz, 2H, Ph), 6.31 (t, *J* = 717 7.5 Hz, 2H, Ph), 5.79 (d, *J* = 7.8 Hz, 2H, Ph), 2.10 (sextet, *J* = 7.3 Hz, 718 2H, CH₂), 2.00 (sextet, J = 7.4 Hz, 2H, CH₂), 1.85 (sextet, J = 7.6 Hz, 719 2H, CH₂), 1.75 (sextet, J = 7.3 Hz, 4H, CH₂), 1.66 (sextet, J = 7.4 Hz, 720 2H, CH₂), 1.39 (sextet, J = 7.4 Hz, 2H, CH₂), 1.28 (sextet, J = 7.3 Hz, 721 2H, CH₂), 0.69 (t, J = 7.4 Hz, 6H, CH₃), 0.62 (t, J = 7.5 Hz, 6H, 722 CH₃), 0.59 (t, J = 7.5 Hz, 6H, CH₃), 0.55 (t, J = 7.5 Hz, 6H, CH₃). 13 C NMR (125 MHz, CD₂Cl₂/1% TFA, 298 K): δ 160.6 (C₀), 160.3 724 (C_q), 160.2 (C_q-pyrr), 154.2 (C_q-pyrr), 149.6 (C_q-pyrr), 147.8 (C_q-pyrr), 146.3 (C_q-pyrr), 145.3 (C_q), 145.1 (C_q-pyrr), 144.9 (C_q), 144.5 (C_q-pyrr), 142.2 (C_q), 138.7 (C_q), 138.0 (C_q), 137.1 (C_q), 135.4 727 (C₀), 134.8 (Ph), 134.3 (Ph), 134.1 (Ph), 132.31 (Ph), 132.26 (Ph), 728 132.13 (Ph), 132.08 (Ph), 132.03 (Ph), 130.5 (Ph), 129.1 (Ph), 729 128.9 (Ph), 128.7 (Ph), 128.6 (Ph), 128.4 (Ph), 128.1 (Ph), 127.9 730 (Ph), 127.3 (Ph), 127.2 (Ph), 127.1 (Ph), 127.0 (Ph), 126.8 (Ph), 731 125.9 (Ph), 122.9 (C_q), 121.3 (C_q), 118.4 (C_q), 116.1 (C_q), 111.4 732 (C_q) , 106.1 (C_q) , 20.0 (CH_2) , 19.3 (CH_2) , 19.1 (CH_2) , 18.8 (CH_2) , 733 16.2 (CH₃), 15.7 (CH₃), 14.52 (CH₃), 14.47 (CH₃). ¹⁹⁵Pt NMR 734 (107 MHz, $CD_2Cl_2/1\%$ TFA, 298 K): δ –2203. For UV–vis and low-735 temperature ¹H NMR titration spectra, see the Supporting 736 Information.

737 **Heterobimetallic Ni**^{II}/**Pd**^{II} **Complex, NiPdL.** To a solution of 738 **H**₂NiL (23.6 mg, 17.4 μ mol) in 10 mL of C₂H₄Cl₂-1,2 was added 739 Pd(OAc)₂ (9.1 mg, 40.5 μ mol, 2.3 equiv), and the solution was 740 brought to reflux for 1 h. The solution changed from dark green-blue

to purple. The solvent was removed under reduced pressure and the 741 residue purified by column chromatography. After solvent removal 742 again from the main fraction, the product was recrystallized from 743 CH₂Cl₂ layered with MeOH at 0 °C to provide crystalline NiPdL 744 (13.5 mg, 53% yield). Alternatively, beginning with a solution of 745 H_2PdL (11.6 mg, 8.3 μ mol) in $C_2H_4Cl_2$ -1,2 (4 mL) was added 746 Ni(OAc), $4H_2O$ (4.4 mg, 17.7 μ mol) and EtOH (2 mL). The 747 solution was refluxed, and the reaction was complete within 10 min. 748 Purification via column chromatography and recrystallization from 749 THF layered with MeOH at 0 °C gave crystalline NiPdL (8.9 mg, 750 73% yield). $R_f = 0.84$ (silica-2:1 hexane/EtOAc). ¹H NMR (500 751 MHz, CD_2Cl_2): δ 7.75 (d, J = 6.7 Hz, 2H, Ph), 7.65 (d, J = 7.0 Hz, 752 2H, Ph), 7.52–7.48 (m, 6H, Ph), 7.22 (d, J = 7.6 Hz, 2H, Ph), 7.02 753 (m, 4H, Ph), 6.95-6.90 (m, 10H, Ph), 6.74 (m, 4H, Ph), 6.66 (t, J = 754)7.4 Hz, 2H, Ph), 6.61 (t, I = 7.5 Hz, 2H, Ph), 6.49 (q, I = 8.1 Hz, 4H, 755 Ph), 6.28 (d, J = 7.7 Hz, 2H, Ph), 2.06 (overlapping sextets, J = 7.0 756 Hz, 8H, CH₂), 1.77 (sextet, J = 7.5 Hz, 2H, CH₂), 1.64 (sextet, J = 7.3 757 Hz, 2H, CH₂), 1.40 (overlapping sextets, J = 7.3 Hz, 4H, CH₂), 0.69 758 (t, J = 7.5 Hz, 6H, CH₃), 0.62 (overlapping t, J = 7.3 Hz, 12H, CH₃), 759 0.53 (t, J = 7.4 Hz, 6H, CH₃). ¹³C NMR (125 MHz, CD₂Cl₂): δ 157.9 760 (C_q) , 156.7 (C_q) , 156.2 (C_q) , 152.5 (C_q) , 149.1 (C_q) , 147.3 (C_q) , 761 $146.7 (C_q), 146.4 (C_q), 145.6 (C_q), 145.4 (C_q), 139.1 (C_q), 138.7 762$ (C_q), 137.1 (C_q), 136.0 (C_q), 134.0 (Ph), 133.5 (Ph), 133.4 (Ph), 763 133.3 (Ph), 133.2 (Ph), 132.0 (Ph), 131.9 (Ph), 131.6 (Ph), 131.4 764 (Ph), 128.0 (Ph), 127.9 (Ph), 127.7 (Ph), 127.7 (Ph), 127.2 (Ph), 765 127.1 (Ph), 126.6 (Ph), 126.5 (Ph), 126.4 (Ph), 126.3 (Ph), 124.9 766 (Ph), 123.9 (C_q), 118.8 (C_q), 109.9 (C_q), 108.7 (C_q), 19.3 (CH_2), 767 19.2 (CH₂), 18.9 (CH₂), 18.7 (CH₂), 15.8 (CH₃), 15.7 (CH₃), 15.3 768 (CH₃), 15.1 (CH₃). UV-vis [CH₂Cl₂; λ , nm (ε , M⁻¹ cm⁻¹)]: 718 769 (22400), 543 (30700), 512 (22100), 381 (62300), 323 (37800), 278 770 (46000). HR-MS (ESI+, CH2Cl2/CH3CN): m/z 1462.4887 (calcd 771 m/z 1462.4905 for $C_{92}H_{80}N_8NiPd^+$). 772 Heterobimetallic Ni^{II}/Pt^{II} Complex, NiPtL. To a solution of 773

 H_2NiL (51.3 mg, 37.8 μ mol) in 20 mL of $C_2H_4Cl_2-1,2$ (20 mL) was 774 added PtI_2 (57.3 mg, 128 μ mol), NaOAc·3H₂O (14.1 mg, 104 μ mol), 775 and 8 mL of MeCN. The reaction was brought to reflux for 21 h. 776 Column chromatography and collection of the nonpolar pinkish- 777 brown fraction, followed by recrystallization, afforded NiPtL (19.4 778 mg, 33% yield). Alternatively, starting with H₂PtL (16.3 mg, 10.9 779 umol) dissolved in C₂H₄Cl₂-1,2 (6 mL), Ni(OAc)₂·4H₂O (7.3 mg, 780 29.3 μ mol) and EtOH (2 mL) were added, and the resulting solution 781 was heated to reflux for 10 min. Purification via column 782 chromatography, evaporation to dryness, and recrystallization gave 783 **NiPtL** (11.9 mg, 70%). $R_f = 0.84$ (silica-2:1 hexane/EtOAc). ¹H 784 NMR (500 MHz, CD₂Cl₂, 298 K): δ 7.72 (d, J = 6.7 Hz, 2H, Ph), 785 7.60 (d, J = 6.3 Hz, 2H, Ph), 7.54–7.42 (m, 6H, Ph), 7.30 (d, J = 6.9 786 Hz, 2H, Ph), 6.99-6.86 (m, 12H, Ph), 6.77 (d, J = 6.8 Hz, 2H, Ph), 787 6.70-6.66 (m, 4H, Ph), 6.62 (d, J = 7.5 Hz, 2H, Ph), 6.51 (dt, J = 7.8 788 and 7.2 Hz, 4H, Ph), 6.37 (d, J = 7.2 Hz, 2H, Ph), 6.26 (d, J = 7.0 Hz, 789 2H, Ph), 2.07-1.99 (4 overlapping sextets, 8H, CH₂), 1.64 (sextet, J 790 = 7.2 Hz, 2H, CH₂), 1.53 (sextet obscured by H₂O signal, I = 6.9 Hz, 791 2H, CH₂), 1.35 (2 overlapping sextets, J = 7.3 Hz, 4H, CH₂), 0.65 (t, 792 J = 7.4 Hz, 6H, CH₃), 0.58 (t, J = 7.7 Hz, 6H, CH₃), 0.56 (t, J = 7.9 793Hz, 6H, CH₃), 0.50 (t, J = 7.4 Hz, 6H, CH₃). ¹³C NMR (125 MHz, 794 CD_2Cl_2 , 298 K): δ 158.8 (C_q), 153.9 (C_q), 152.7 (C_q), 151.7 (C_q), 795 149.5 (C_q), 147.1 (C_q), 146.2 (C_q), 145.6 (C_q), 144.6 (C_q), 139.3 796 (C_q) , 139.1 (C_q) , 136.9 (C_q) , 136.7 (C_q) , 134.7 (C_q) , 134.1 (Ph), 797 133.9 (Ph), 133.8 (Ph), 133.3 (Ph), 133.0 (Ph), 132.7 (Ph), 132.5 798 (Ph), 131.4 (Ph), 128.5 (Ph), 128.4 (Ph), 128.1 (Ph), 128.0 (Ph), 799 127.7 (Ph), 127.6 (Ph), 127.5 (Ph), 127.4 (Ph), 127.1 (Ph), 126.9 800 (Ph), 126.84 (Ph), 126.83 (Ph), 125.3 (Ph), 123.3 (C_q), 119.4 (C_q), 801 109.1 (C_a), 108.9 (C_a), 19.9 (CH₂), 19.7 (CH₂), 19.4 (CH₂), 19.2 802 (CH₂), 16.5 (CH₃), 16.2 (CH₃), 15.7 (CH₃), 15.6 (CH₃). ¹⁹⁵Pt NMR 803 (107 MHz, CD_2Cl_2 , 298 K): δ –2519. UV–vis $[CH_2Cl_2; \lambda, nm (\varepsilon, 804)]$ M^{-1} cm⁻¹)]: 754 (16900), 532 (27100), 499 (22300), 418 (40800), 805 379 (53400), 326 (37500), 274 (45400). HR-MS (ESI+, CH₂Cl₂/ 806 CH₃CN): m/z 1550.5511 (calcd m/z 1550.5513 for C₉₂H₈₀N₈NiPt⁺). 807

Heterobimetallic Pdll/Ptll Complex, PdPtL. Monometalated 808 H_2 PdL (25.7 mg, 18.3 μ mol) could be combined with PtI₂ (32.9 mg, 809 73.3 μ mol) and NaOAc·3H₂O (7.2 mg, 52.9 μ mol) in C₂H₄Cl₂-1,2 810

811 (18 mL)/MeCN (6 mL). The contents were refluxed for 6 h. 812 Purification was performed using column chromatography to collect 813 the nonpolar pinkish-brown fraction. Recrystallization gave PdPtL 814 (12.9 mg, 44%), and H₂PdL could be recovered (<15%). 815 Alternatively, H_2PtL (12.5 mg, 8.36 μ mol) was combined with 816 Pd(OAc)₂ (3.9 mg, 17.4 µmol) in C₂H₄Cl₂-1,2 (8 mL) and refluxed 817 for less than 10 min, and then the solvent was removed by rotary 818 evaporation and purified via column chromatography to elute the 819 nonpolar mauve/pinkish-brown fraction. Recrystallization from THF 820 layered with MeOH provided PdPtL (10.2 mg, 76%). $R_f = 0.85$ 821 (silica-2:1 hexane/EtOAc). ¹H NMR (500 MHz, CD₂Cl₂, 298 K): δ 822 7.77 (d, *J* = 6.7 Hz, 2H, Ph), 7.73 (d, *J* = 6.6 Hz, 2H, Ph), 7.52–7.48 823 (m, 6H, Ph), 7.12-7.09 (m, 2H, Ph), 7.04 (d, J = 7.6 Hz, 2H, Ph), 824 6.94–6.87 (m, 12H, Ph), 6.76–6.71 (m, 2H, Ph), 6.70–6.64 (m, 4H, 825 Ph), 6.60 (t, *J* = 7.5 Hz, 2H, Ph), 6.48 (t, *J* = 7.6 Hz, 4H, Ph), 6.24 (d, 826 J = 7.6 Hz, 2H, Ph), 2.09–1.91 (4 overlapping sextets, 8H, CH₂), 1.57 827 (2 overlapping sextets, 4H, CH₂), 1.37 (sextet, J = 7.4 Hz, 4H, CH₂), 828 0.58 (t, J = 7.3 Hz, 12H, CH₃), 0.47–0.44 (2 overlapping t, J = 7.5829 Hz, 12H, CH₃. ¹³C NMR (125 MHz, CD₂Cl₂, 298 K): δ 157.4 (C_q), 830 153.0 (C_q), 152.4 (C_q), 148.1 (C_q), 147.7 (C_q), 147.4 (C_q), 146.6 831 (C_q), 145.7 (C_q), 145.3 (C_q), 144.1 (C_q), 139.5 (C_q), 139.4 (C_q), 832 137.7 (C_q), 136.8 (C_q), 134.8 (Ph), 134.5 (Ph), 134.2 (Ph), 133.5 833 (Ph), 133.0 (Ph), 132.9 (Ph), 132.4 (Ph), 131.6 (Ph), 128.6 (Ph), 834 128.5 (Ph), 128.2 (Ph), 128.1 (Ph), 127.7 (Ph), 127.54 (Ph), 127.45 835 (Ph), 127.03 (Ph), 126.97 (Ph), 126.9 (Ph), 126.4 (Ph), 125.3 (Ph), 836 123.7 (C_q), 122.5 (C_q), 110.2 (C_q), 109.0 (C_q), 19.9 (CH_2), 19.6 837 (CH₂), 19.4 (CH₂), 19.3 (CH₂), 16.5 (CH₃), 16.1 (CH₃), 15.7 838 (CH₃), 15.6 (CH₃). 195 Pt NMR (107 MHz, CD₂Cl₂, 298 K): δ -2372. UV-vis [$\widetilde{CH_2Cl_2}$; λ , nm (ε , M^{-1} cm⁻¹)]: 738 (27400), 676 840 (16300), 620 (9500), 526 (37200), 500 (23900), 393 (55900), 321 841 (38300), 258 (54200). HR-MS (ESI⁺, CH₂Cl₂/CH₃CN): m/z 842 1598.5205 (calcd m/z 1598.5213 for $C_{92}H_{80}N_8PdPt^+$).

843 ASSOCIATED CONTENT

844 S Supporting Information

845 The Supporting Information is available free of charge at 846 https://pubs.acs.org/doi/10.1021/acs.inorgchem.0c00714.

Synthetic procedures, analytical and spectroscopic data, and reproduction of the key spectra of all compounds studied, including their HR-MS, 1D and 2D ¹H, ¹³C, and ¹⁹⁵Pt NMR spectra; experimental details for the MCD spectra and DFT/TDDFT calculations; experimental details for the crystal structure determinations of Pt₂L, NiPdL, NiPtL, and PdPtL (PDF)

854 Accession Codes

855 CCDC 1987503—1987506 contain the supplementary crys-856 tallographic data for this paper. These data can be obtained 857 free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by 858 emailing data_request@ccdc.cam.ac.uk, or by contacting The 859 Cambridge Crystallographic Data Centre, 12 Union Road, 860 Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

861 AUTHOR INFORMATION

862 Corresponding Authors

Victor N. Nemykin – Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada;

orcid.org/0000-0003-4345-0848; Email: victor.nemykin@umanitoba.ca

Christian Brückner — Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States;
orcid.org/0000-0002-1560-7345; Email: c.bruckner@

870 uconn.edu

865

866

867

868

869

871

Franc Meyer – Institute for Inorganic Chemistry, University of Göttingen, D-37077 Göttingen, Germany; oorcid.org/0000-

goettingen.de	87
Authors	87.
Sarina J. Dorazio – Institute for Inorganic Chemistry, University	87
of Göttingen, D-37077 Göttingen, Germany; Department of	87
Chemistry, University of Connecticut, Storrs, Connecticut	87
06269-3060, United States	87
Anastasia Vogel – Institute for Inorganic Chemistry, University	88
of Göttingen, D-37077 Göttingen, Germany	88
Sebastian Dechert - Institute for Inorganic Chemistry,	88
University of Göttingen, D-37077 Göttingen, Germany;	88
orcid.org/0000-0002-2864-2449	88
Dustin F. Nevonen – Denartment of Chemistry University of	00

0002-8613-7862; Email: franc.meyer@chemie.uni-

873

886

887

889

906

907

912

Manitoba, Winnipeg, Manitoba R3T 2N2, Canada Complete contact information is available at: https://pubs.acs.org/10.1021/acs.inorgchem.0c00714

Author Contributions

The manuscript was written through contributions of all 890 authors. S.J.D. and A.V. performed all syntheses, and S.J.D. 891 performed all electrochemical investigations. S.D. performed 892 the X-ray diffractometry studies. D.E.N. and V.N.N. recorded 893 the MCD spectra and conducted all DFT and TDDFT 894 calculations. C.B. and F.M. conceived the study. All authors 895 have given approval to the final version of the manuscript.

Funding

This work was supported by the Alexander von Humboldt 898 Stiftung (postdoctoral fellowship to S.J.D.), the Studienstiftung 899 des deutschen Volkes (Ph.D. fellowship to A.V.), NSERC, CFI, 900 WestGrid, and Minnesota Supercomputing Institute (all to 901 V.N.N.), U.S. National Science Foundation under Grants 902 CHE-1465133 and CHE-1800361 (to C.B.), and the 903 University of Göttingen (to F.M.).

Notes 905

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

We thank Jörg Teichgräber, Ralf Schöne, and Michael John (all 908 of University of Göttingen) for technical assistance and 909 Massimiliano Delferro (Argonne National Laboratory) for 910 helpful discussions.

REFERENCES

(1) Sessler, J. L.; Weghorn, S. Expanded, Contracted & Isomeric 913 Porphyrins; Pergamon Press: New York, 1997. 914

(2) Saito, S.; Osuka, A. Expanded porphyrins: Intriguing structures, 915 electronic properties, and reactivities. *Angew. Chem., Int. Ed.* **2011**, 50 916 (19), 4342–4373.

- (3) Roznyatovskiy, V. V.; Lee, C.-H.; Sessler, J. L. \(\pi\)-Extended 918 isomeric and expanded porphyrins. Chem. Soc. Rev. 2013, 42 (5), 919 1921–1933.
- (4) Szyszko, B.; Latos-Grażyński, L. Core chemistry and skeletal 921 rearrangements of porphyrinoids and metalloporphyrinoids. *Chem.* 922 *Soc. Rev.* **2015**, *44* (11), 3588–3616.
- (5) Tanaka, T.; Osuka, A. Chemistry of *meso*-aryl-substituted 924 expanded porphyrins: Aromaticity and molecular twist. *Chem. Rev.* 925 **2017**, 117 (4), 2584–2640.
- (6) Szyszko, B.; Białek, M. J.; Pacholska-Dudziak, E.; Latos- 927 Grażyński, L. Flexible porphyrinoids. *Chem. Rev.* **2017**, *117* (4), 928 2839–2909.
- (7) Bauer, V. J.; Clive, D. L. J.; Dolphin, D.; Paine, J. B., III; Harris, 930 F. L.; King, M. M.; Loder, J.; Wang, S. W. C.; Woodward, R. B. 931

- 932 Sapphyrins: Novel aromatic pentapyrrolic macrocycles. *J. Am. Chem.* 933 *Soc.* **1983**, *105* (21), 6429–6436.
- 934 (8) Chatterjee, T.; Srinivasan, A.; Ravikanth, M.; Chandrashekar, T. 935 K. Smaragdyrins and sapphyrins analogues. *Chem. Rev.* **2017**, *117* (4), 936 3329–3376.
- 937 (9) Neves, M. G. P. M. S.; Martins, R. M.; Tome, A. C.; Silvestre, A. 938 J. D.; Silva, A. M. S.; Felix, V.; Cavaleiro, J. A. S.; Drew, M. G. B. *meso*-939 Substituted expanded porphyrins: New and stable hexaphyrins. *Chem.* 940 *Commun.* 1999, 385–386.
- 941 (10) Sessler, J. L.; Seidel, D.; Bucher, C.; Lynch, V. [26] Hexaphyrin-942 (1.1.1.1.0.0): An all-aza isomer of rubyrin with an inverted pyrrole 943 subunit. *Chem. Commun.* **2000**, 1473—1474.
- 944 (11) Sessler, J. L.; Seidel, D.; Vivian, A. E.; Lynch, V.; Scott, B. L.; 945 Keogh, D. W. Hexaphyrin(1.0.1.0.0.0): An expanded porphyrin ligand 946 for the actinide cations uranyl $(\mathrm{UO_2}^{2+})$ and neptunyl (NpO^{2+}) . 947 Angew. Chem., Int. Ed. **2001**, 40 (3), 591–594.
- 948 (12) Suzuki, M.; Osuka, A. Improved synthesis of *meso*-aryl-949 substituted [26]hexaphyrins. *Org. Lett.* **2003**, *5* (21), 3943–3946.
- 950 (13) Mori, S.; Shimizu, S.; Taniguchi, R.; Osuka, A. Group 10 metal 951 complexes of *meso*-aryl-substituted [26]hexaphyrins with a metal-952 carbon bond. *Inorg. Chem.* **2005**, *44* (12), 4127–4129.
- 953 (14) Sessler, J. L.; Seidel, D.; Lynch, V. Synthesis of [28]-954 heptaphyrin(1.0.0.1.0.0.0) and [32]octaphyrin(1.0.0.0.1.0.0.0) via a 955 directed oxidative ring closure: The first expanded porphyrins 956 containing a quaterpyrrole subunit. J. Am. Chem. Soc. 1999, 121 957 (48), 11257–11258.
- 958 (15) Geier, G. R., III; Grindrod, S. C. meso-Substituted [34]-959 octaphyrin(1.1.1.0.1.1.1.0) and corrole formation in reactions of a 960 dipyrromethanedicarbinol with 2,2'-bipyrrole. J. Org. Chem. 2004, 69 961 (19), 6404–6412.
- 962 (16) Kido, H.; Shin, J.-Y.; Shinokubo, H. Selective synthesis of a 963 [32]octaphyrin(1.0.1.0.1.0.1.0) bis(palladium) complex by a metal-964 templated strategy. *Angew. Chem., Int. Ed.* **2013**, 52 (51), 13727–965 13730.
- 966 (17) Misra, R.; Chandrashekar, T. K. Structural diversity in 967 expanded porphyrins. Acc. Chem. Res. **2008**, 41 (2), 265–279.
- 968 (18) Stępień, M.; Szyszko, B.; Latos-Grażyński, L. Three-level 969 topology switching in a molecular Möbius band. J. Am. Chem. Soc. 970 2010, 132 (9), 3140-3152.
- 971 (19) Frensch, L. K.; Proepper, K.; John, M.; Demeshko, S.; 972 Brückner, C.; Meyer, F. Siamese-twin porphyrin: A pyrazole-based 973 expanded porphyrin providing a bimetallic cavity. *Angew. Chem., Int.* 974 *Ed.* **2011**, *50* (6), 1420–1424.
- 975 (20) Ho, I. T.; Zhang, Z.; Ishida, M.; Lynch, V. M.; Cha, W.-Y.; 976 Sung, Y. M.; Kim, D.; Sessler, J. L. A hybrid macrocycle with a 977 pyridine subunit displays aromatic character upon uranyl cation 978 complexation. *J. Am. Chem. Soc.* **2014**, *136* (11), 4281–4286.
- 979 (21) Oh, J.; Mori, H.; Sung, Y. M.; Kim, W.; Osuka, A.; Kim, D. 980 Switchable π -electronic network of bis(α -oligothienyl)-substituted 981 hexaphyrins between helical versus rectangular circuit. *Chem. Sci.* 982 **2016**, 7 (3), 2239–2245.
- 983 (22) Abebayehu, A.; Dutta, R.; Lee, C.-H. Synthesis, characterization 984 and properties of expanded pyriporphyrins: A new family of 985 alkylidenyl porphyrin homologues bearing *meso*-exocyclic double 986 bonds. *Chem. Eur. J.* **2016**, 22 (39), 13850–13856.
- 987 (23) Cha, W.-Y.; Kim, T.; Ghosh, A.; Zhang, Z.; Ke, X.-S.; Ali, R.; 988 Lynch, V. M.; Jung, J.; Kim, W.; Lee, S.; Fukuzumi, S.; Park, J. S.; 989 Sessler, J. L.; Chandrashekar, T. K.; Kim, D. Bicyclic Baird-type 990 aromaticity. *Nat. Chem.* **2017**, *9*, 1243.
- 991 (24) Setsune, J.-i.; Toda, M.; Yoshida, T.; Imamura, K.; Watanabe, 992 K. The synthesis and dynamic structures of multinuclear complexes of 993 large porphyrinoids expanded by phenylene and thienylene spacers. 994 *Chem. Eur. J.* **2015**, *21* (36), 12715–12727.
- 995 (25) Chatterjee, T.; Theophall, G. G.; Silva, K. I.; Lakshmi, K. V.; 996 Ravikanth, M. Synthesis and quantum mechanical studies of a highly 997 stable ferrocene-incorporated expanded porphyrin. *Inorg. Chem.* **2016**, 998 55 (14), 6873–6881.
- 999 (26) Sessler, J. L.; Vivian, A. E.; Seidel, D.; Burrell, A. K.; Hoehner, 1000 M.; Mody, T. D.; Gebauer, A.; Weghorn, S. J.; Lynch, V. Actinide

- expanded porphyrin complexes. *Coord. Chem. Rev.* **2001**, 216–217, 1001 411–434.
- (27) Brewster, J. T.; Mangel, D. N.; Gaunt, A. J.; Saunders, D. P.; 1003 Zafar, H.; Lynch, V. M.; Boreen, M. A.; Garner, M. E.; Goodwin, C. 1004 A. P.; Settineri, N. S.; Arnold, J.; Sessler, J. L. In-plane thorium(IV), 1005 uranium(IV), and neptunium(IV) expanded porphyrin complexes. J. 1006 Am. Chem. Soc. 2019, 141 (44), 17867–17874.
- (28) Gisselbrecht, J. P.; Gross, M.; Vogel, E.; Scholz, P.; Bröring, M.; 1008 Sessler, J. L. Redox properties of hemiporphycene and isoporphycene. 1009 Comparison with those of porphyrin and other porphyrin isomers, 1010 porphycene and corrphycene. *J. Electroanal. Chem.* **2001**, 507 (1–2), 1011 244–249.
- (29) Bley-Escrich, J.; Gisselbrecht, J.-P.; Michels, M.; Zander, L.; 1013 Vogel, E.; Gross, M. Electrochemical and spectroelectrochemical 1014 investigations of mono- and binuclear cobalt(II) complexes of "figure- 1015 eight" octapyrrolic macrocycles. *Eur. J. Inorg. Chem.* **2004**, *3*, 492– 1016 499.
- (30) Tanaka, Y.; Saito, S.; Mori, S.; Aratani, N.; Shinokubo, H.; 1018 Shibata, N.; Higuchi, Y.; Yoon, Z. S.; Kim, K. S.; Noh, S. B.; Park, J. 1019 K.; Kim, D.; Osuka, A. Metalation of expanded porphyrins: A 1020 chemical trigger used to produce molecular twisting and Möbius 1021 aromaticity. *Angew. Chem., Int. Ed.* 2008, 47 (4), 681–684.
- (31) Anguera, G.; Cha, W.-Y.; Moore, M. D.; Lee, J.; Guo, S.; Lynch, 1023 V. M.; Kim, D.; Sessler, J. L. Hexadecaphyrin-1024 (1.0.0.0.1.1.0.1.1.0.0.0.1.1.0.1): A dual site ligand that supports 1025 thermal conformational changes. J. Am. Chem. Soc. 2018, 140 (11), 1026 4028-4034.
- (32) Blusch, L. K.; Hemberger, Y.; Pröpper, K.; Dittrich, B.; 1028 Witterauf, F.; John, M.; Bringmann, G.; Brückner, C.; Meyer, F. 1029 Siamese-twin porphyrin: A pyrazole-based expanded porphyrin of 1030 persistent helical conformation. *Chem. Eur. J.* **2013**, *19* (19), 5868–1031 5880.
- (33) Mitevski, O.; Dechert, S.; Brückner, C.; Meyer, F. Siamese-twin 1033 porphyrins: Variation of two *meso*-aryl groups. *Eur. J. Inorg. Chem.* 1034 **2016**, 4814–4819.
- (34) Vogel, A.; Dechert, S.; Brückner, C.; Meyer, F. Reaching across 1036 the divide: How monometalation of one binding pocket affects the 1037 empty binding pocket in a Siamese-twin porphyrin palladium 1038 complex. *Inorg. Chem.* **2017**, 56 (4), 2221–2232.
- (35) Ahn, T. K.; Kwon, J. H.; Kim, D. Y.; Cho, D. W.; Jeong, D. H.; 1040 Kim, S. K.; Suzuki, M.; Shimizu, S.; Osuka, A.; Kim, D. Comparative 1041 photophysics of [26]- and [28]hexaphyrins(1.1.1.1.1.1): Large two- 1042 photon absorption cross section of aromatic [26]- 1043 hexaphyrins(1.1.1.1.1). J. Am. Chem. Soc. 2005, 127 (37), 12856- 1044 12861.
- (36) Yoon, Z. S.; Osuka, A.; Kim, D. Möbius aromaticity and 1046 antiaromaticity in expanded porphyrins. *Nat. Chem.* **2009**, *1* (2), 1047 113–122.
- (37) Latos-Grażyński. Bimetallic figure-eight octaphyrins split into 1049 four-pyrrolic macrocycles. *Angew. Chem., Int. Ed.* **2004**, 43 (39), 1050 5124–5128.
- (38) Tanaka, Y.; Hoshino, W.; Shimizu, S.; Youfu, K.; Aratani, N.; 1052 Maruyama, N.; Fujita, S.; Osuka, A. Thermal splitting of bis-Cu(II) 1053 octaphyrin(1.1.1.1.1.1.1) into two Cu(II) porphyrins. *J. Am. Chem.* 1054 *Soc.* **2004**, 126 (10), 3046–3047.
- (39) Shimizu, S.; Tanaka, Y.; Youfu, K.; Osuka, A. Dicopper and 1056 disilver complexes of octaphyrin(1.1.1.1.1.1.1): Reversible hydro-1057 lytic cleavage of the pyrrolic ring to a keto-imine. *Angew. Chem., Int.* 1058 *Ed.* 2005, 44 (24), 3726–3729.
- (40) Vogel, A.; Dechert, S.; John, M.; Brückner, C.; Meyer, F. 1060 Siamese-twin porphyrin origami: Oxidative fusing and folding. *Chem.* 1061 *Eur. J.* **2016**, 22 (7), 2307–2316.
- (41) Blusch, L. K.; Craigo, K. E.; Martin-Diaconescu, V.; 1063 McQuarters, A. B.; Bill, E.; Dechert, S.; DeBeer, S.; Lehnert, N.; 1064 Meyer, F. Hidden non-innocence in an expanded porphyrin: 1065 Electronic structure of the Siamese-twin porphyrin's dicopper 1066 complex in different oxidation states. *J. Am. Chem. Soc.* **2013**, 135 1067 (37), 13892–13899.

- 1069 (42) Blusch, L. K.; Mitevski, O.; Martin-Diaconescu, V.; Propper, K.; 1070 DeBeer, S.; Dechert, S.; Meyer, F. Selective synthesis and redox 1071 sequence of a heterobimetallic nickel/copper complex of the 1072 noninnocent Siamese-twin porphyrin. *Inorg. Chem.* **2014**, 53 (15), 1073 7876–7885.
- 1074 (43) Lee, W. W. S.; Wong, K. Y.; Li, X. M.; Leung, Y. B.; Chan, C. 1075 S.; Chan, K. S. Halogenated platinum porphyrins as sensing materials 1076 for luminescence-based oxygen sensors. *J. Mater. Chem.* 1993, 3 (10), 1077 1031–1035.
- 1078 (44) Papkovsky, D. B.; Ponomarev, G. V.; Wolfbeis, O. S. Longwave 1079 luminescent porphyrin probes. *Spectrochim. Acta, Part A* **1996**, 52A 1080 (12), 1629–1638.
- 1081 (45) Grenoble, S.; Gouterman, M.; Khalil, G.; Callis, J.; Dalton, L. 1082 Pressure-sensitive paint (PSP): Concentration quenching of platinum 1083 and magnesium porphyrin dyes in polymeric films. *J. Lumin.* **2005**, 1084 113 (1–2), 33–44.
- 1085 (46) Amao, Y.; Okura, I. Optical oxygen sensor devices using 1086 metalloporphyrins. *J. Porphyrins Phthalocyanines* **2009**, 13 (11), 1087 1111–1122.
- 1088 (47) Spencer, J. A.; Ferraro, F.; Roussakis, E.; Klein, A.; Wu, J.; 1089 Runnels, J. M.; Zaher, W.; Mortensen, L. J.; Alt, C.; Turcotte, R.; 1090 Yusuf, R.; Cote, D.; Vinogradov, S. A.; Scadden, D. T.; Lin, C. P. 1091 Direct measurement of local oxygen concentration in the bone 1092 marrow of live animals. *Nature* 2014, 508 (7495), 269–273.
- 1093 (48) Pandey, G.; Chaudhari, R.; Joshi, B.; Choudhary, S.; Kaur, J.; 1094 Joshi, A. Fluorescent biocompatible platinum-porphyrin—doped 1095 polymeric hybrid particles for oxygen and glucose biosensing. *Sci.* 1096 *Rep.* **2019**, *9* (1), 5029–5039.
- 1097 (49) Mercer-Smith, J. A.; Whitten, D. G. Photosensitization of 1098 stilbene isomerization by palladium and platinum porphyrins, an 1099 intermolecular quantum chain process. *J. Am. Chem. Soc.* **1978**, *100* 1100 (9), 2620–2625.
- 1101 (50) Vakrat-Haglili, Y.; Weiner, L.; Brumfeld, V.; Brandis, A.; 1102 Salomon, Y.; McLlroy, B.; Wilson, B. C.; Pawlak, A.; Rozanowska, M.; 1103 Sarna, T.; Scherz, A. The microenvironment effect on the generation 1104 of reactive oxygen species by Pd-bacteriopheophorbide. *J. Am. Chem.* 1105 Soc. 2005, 127 (17), 6487–6497.
- 1106 (51) Huang, Y.-Y.; Balasubramanian, T.; Yang, E.; Luo, D.; Diers, J. 1107 R.; Bocian, D. F.; Lindsey, J. S.; Holten, D.; Hamblin, M. R. Stable 1108 synthetic bacteriochlorins for photodynamic therapy: Role of dicyano 1109 peripheral groups, central metal substitution (2H, Zn, Pd), and 1110 Cremophor EL delivery. *ChemMedChem* **2012**, 7 (12), 2155–2167.
- 1111 (52) To, W.-P.; Liu, Y.; Lau, T.-C.; Che, C.-M. A robust 1112 palladium(II)—porphyrin complex as catalyst for visible light induced 1113 oxidative C-H functionalization. *Chem. Eur. J.* **2013**, *19* (18), 5654—1114 5664.
- 1115 (53) Lau, K. S. F.; Zhao, S.; Ryppa, C.; Jockusch, S.; Turro, N. J.; 1116 Zeller, M.; Gouterman, M.; Khalil, G. E.; Brückner, C. Synthesis, 1117 structure, and optical properties of the platinum(II) complexes of 1118 indaphyrin and thiaindaphyrin. *Inorg. Chem.* **2009**, 48 (9), 4067–1119 4074.
- 1120 (54) Sommer, J. R.; Shelton, A. H.; Parthasarathy, A.; Ghiviriga, I.; 1121 Reynolds, J. R.; Schanze, K. S. Photophysical properties of near-1122 infrared phosphorescent π-extended platinum porphyrins. *Chem.* 1123 *Mater.* **2011**, 23 (24), 5296–5304.
- 1124 (55) Akhigbe, J.; Luciano, M.; Atoyebi, A. O.; Jockusch, S.; 1125 Brückner, C. Quinoline-annulated porphyrin platinum complexes as 1126 NIR emitters. *J. Porphyrins Phthalocyanines* **2020**, 24 (1–3), 386–393. 1127 (56) Shannon, R. D. Revised effective ionic radii and systematic 1128 studies of interatomic distances in halides and chalcogenides. *Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr.* **1976**, 1130 *A*32 (5), 751–767.
- 1131 (57) Yang, L.; Powell, D. R.; Houser, R. P. Structural variation in 1132 copper(I) complexes with pyridylmethylamide ligands: Structural 1133 analysis with a new four-coordinate geometry index, τ_4 . Dalton Trans. 1134 **2007**, *9*, 955–964.
- 1135 (58) Jentzen, W.; Simpson, M. C.; Hobbs, J. D.; Song, X.; Ema, T.; 1136 Nelson, N. Y.; Medforth, C. J.; Smith, K. M.; Veyrat, M.; Mazzanti, 1137 M.; Ramasseul, R.; Marchon, J. C.; Takeuchi, T.; Goddard, W. A.;

- Shelnutt, J. A. Ruffling in a series of nickel(II) *meso*-tetrasubstituted 1138 porphyrins as a model for the conserved ruffling of the heme of 1139 cytochromes c. *J. Am. Chem. Soc.* **1995**, 117 (45), 11085–11097. 1140 (59) Jentzen, W.; Turowska-Tyrk, I.; Scheidt, W. R.; Shelnutt, J. A. 1141
- Planar solid-state and solution structure of (porphyrinato)nickel(II) 1142 as determined by X-ray diffraction and resonance Raman spectros- 1143 copy. *Inorg. Chem.* **1996**, *35*, 3559–3567.
- (60) Brückner, C.; Hyland, M. A.; Sternberg, E. D.; MacAlpine, J.; 1145 Rettig, S. J.; Patrick, B. O.; Dolphin, D. Preparation of [meso-1146 tetraphenylchlorophinato]nickel(II) by stepwise deformylation of 1147 [meso-tetraphenyl-2,3-diformylsecochlorinato]nickel(II): Conforma-1148 tional consequences of breaking the structural integrity of nickel 1149 porphyrins. Inorg. Chim. Acta 2005, 358 (10), 2943–2953.
- (61) Priqueler, J. R. L.; Butler, I. S.; Rochon, F. D. An overview of 1151 ¹⁹⁵Pt nuclear magnetic resonance spectroscopy. *Appl. Spectrosc. Rev.* 1152 **2006**, 41 (3), 185–226.
- (62) Milgrom, L. R.; Zuurbier, R. J.; Gascoyne, J. M.; Thompsett, 1154 D.; Moore, B. C. Platinum porphyrins. IV. Platinum-195 NMR 1155 spectra of some platinum complexes of *meso* and β -substituted 1156 porphyrins. *Polyhedron* **1992**, *11* (14), 1779–1781.
- (63) Lim, J. M.; Yoon, Z. S.; Shin, J.-Y.; Kim, K. S.; Yoon, M.-C.; 1158 Kim, D. The photophysical properties of expanded porphyrins: 1159 Relationships between aromaticity, molecular geometry and non-1160 linear optical properties. *Chem. Commun.* **2008**, *3*, 261–273.
- (64) Arumugam, K.; Shaw, M. C.; Chandrasekaran, P.; Villagrán, D.; 1162 Gray, T. G.; Mague, J. T.; Donahue, J. P. Synthesis, structures, and 1163 properties of 1,2,4,5-benzenetetrathiolate linked group 10 metal 1164 complexes. *Inorg. Chem.* **2009**, 48 (22), 10591–10607.
- (65) Mack, J.; Stillman, M. J., Electronic structures of metal 1166 phthalocyanine and porphyrin complexes from analysis of the UV- 1167 visible absorption and magnetic circular dichroism spectra and 1168 molecular orbital calculations. In *The Porphyrin Handbook*; Kadish, K. 1169 M., Smith, K. M., Guilard, R., Eds.; Academic Press: San Diego, CA, 1170 2003; Vol. 16, pp 43–116.
- (66) Stillman, M.; Mack, J.; Kobayashi, N. Theoretical aspects of the 1172 spectroscopy of porphyrins and phthalocyanines. *J. Porphyrins* 1173 *Phthalocyanines* **2002**, 6 (4), 296–300.
- (67) Rhoda, H. M.; Crandall, L. A.; Geier, G. R.; Ziegler, C. J.; 1175 Nemykin, V. N. Combined MCD/DFT/TDDFT study of the 1176 electronic structure of axially pyridine coordinated metallocorroles. 1177 *Inorg. Chem.* **2015**, *54* (10), 4652–4662.
- (68) Rhoda, H. M.; Akhigbe, J.; Ogikubo, J.; Sabin, J. R.; Ziegler, C. 1179 J.; Brückner, C.; Nemykin, V. N. Magnetic circular dichroism 1180 spectroscopy of *meso*-tetraphenylporphyrin-derived hydroporphyrins 1181 and pyrrole-modified porphyrins. *J. Phys. Chem. A* **2016**, *120* (29), 1182 5805–5815.
- (69) Mack, J. Expanded, contracted, and isomeric porphyrins: 1184 Theoretical aspects. *Chem. Rev.* **2017**, *117* (4), 3444–3478.
- (70) Kobayashi, N.; Inagaki, S.; Nemykin, V. N.; Nonomura, T. A 1186 novel hemiporphyrazine comprising three isoindolediimine and three 1187 thiadiazole units. *Angew. Chem., Int. Ed.* **2001**, *40* (14), 2710–2712. 1188
- (71) Nemykin, V. N.; Hadt, R. G.; Belosludov, R. V.; Mizuseki, H.; 1189 Kawazoe, Y. Influence of molecular geometry, exchange-correlation 1190 functional, and solvent effects in the modeling of vertical excitation 1191 energies in phthalocyanines using time-dependent density functional 1192 theory (TDDFT) and polarized continuum model TDDFT methods: 1193 Can modern computational chemistry methods explain experimental 1194 controversies? *J. Phys. Chem. A* 2007, 111 (50), 12901–12913.
- (72) Belosludov, R. V.; Nevonen, D.; Rhoda, H. M.; Sabin, J. R.; 1196 Nemykin, V. N. Simultaneous prediction of the energies of Q_x and Q_y 1197 bands and intramolecular charge-transfer transitions in benzoannu- 1198 lated and non-peripherally substituted metal-free phthalocyanines and 1199 their analogues: No standard TDDFT silver bullet yet. *J. Phys. Chem.* 1200 A **2019**, 123 (1), 132–152.
- (73) Martynov, A. G.; Mack, J.; May, A. K.; Nyokong, T.; 1202 Gorbunova, Y. G.; Tsivadze, A. Y. Methodological survey of simplified 1203 TD-DFT methods for fast and accurate interpretation of UV-vis- 1204 NIR spectra of phthalocyanines. ACS Omega 2019, 4 (4), 7265- 1205 7284.

- 1207 (74) Galinato, M. G. I.; Spolitak, T.; Ballou, D. P.; Lehnert, N. 1208 Elucidating the role of the proximal cysteine hydrogen-bonding 1209 network in ferric cytochrome P450cam and corresponding mutants 1210 using magnetic circular dichroism spectroscopy. *Biochemistry* **2011**, *50* 1211 (6), 1053–1069.
- 1212 (75) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
- 1213 Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci,
- 1214 B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.
- 1215 P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.;
- 1216 Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; 1217 Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.;
- 1218 Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.;
- 1219 Heyd, J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Kobayashi,
- 1220 R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.;
- 1221 Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene,
- 1222 M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.;
- 1223 Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.;
- 1224 Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.;
- 1225 Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.;
- 1226 Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.;
- 1227 Cioslowski, J.; Fox, D. J. Gaussian 09; Gaussian, Inc.: Wallingford, CT, 1228 2009.
- 1229 (76) Becke, A. D. Density-functional thermochemistry. III. The role 1230 of exact exchange. *J. Chem. Phys.* **1993**, 98 (7), 5648–5652.
- 1231 (77) Godbout, N.; Salahub, D. R.; Andzelm, J.; Wimmer, E.
- 1232 Optimization of Gaussian-type basis sets for local spin density
- 1233 functional calculations. Part I. Boron through neon, optimization
- 1234 technique and validation. *Can. J. Chem.* **1992**, 70 (2), 560–571.