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Abstract 

Thousands of species will be sequenced in the next few years; however, understanding how their 

genomes work without an unlimited budget requires both molecular and novel evolutionary 

approaches. We developed a sensitive sequence alignment pipeline to identify conserved non-

coding sequences (CNSs) in the Andropogoneae tribe (multiple crop species descended from a 

common ancestor ~18 million years ago). The Andropogoneae share similar physiology while 

being tremendously genomically diverse, harboring a broad range of ploidy levels, structural 

variation, and transposons. These contribute to the potential of Andropogoneae as a powerful 

system for studying CNSs and are factors we leverage to understand the function of maize CNSs. 

We found that 86% of CNSs were comprised of annotated features, including introns, UTRs, 

putative cis-regulatory elements, chromatin loop anchors, non-coding RNA genes, and several 

transposable element superfamilies. CNSs were enriched in active regions of DNA replication in 

the early S phase of the mitotic cell cycle and showed different DNA methylation ratios 

compared to the genome-wide background. More than half of putative cis-regulatory sequences 

(identified via other methods) overlapped with CNSs detected in this study. Variants in CNSs 

were associated with gene expression levels, and CNS absence contributed to loss of gene 

expression. Furthermore, the evolution of CNSs was associated with the functional 

diversification of duplicated genes in the context of maize subgenomes. Our results provide a 

quantitative understanding of the molecular processes governing the evolution of CNSs in maize. 

 

 

Introduction 
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The genomes of a million eukaryote species will likely be sequenced within the next decade 

(Lewin et al. 2018), but understanding how these genomes work without ENCODE-scale 

projects and data (The ENCODE Project Consortium 2012)  for each species will require that we 

also use evolutionary approaches to identify key functional regions. In general, non-coding 

sequences occupy a larger portion of the genome than coding regions. Most genome-wide 

association hits have been reported to be located in the non-coding regions in, for example, 

maize and humans, and are enriched in putative gene expression regulatory sequences (Wallace 

et al. 2014; Nishizaki and Boyle 2017; F. Zhang and Lupski 2015; Giral, Landmesser, and 

Kratzer 2018). Comparison of non-coding sequences across species can identify regions under 

purifying selection to reveal functional constraint (Finucane et al. 2015; Xiang et al. 2019; 

Haudry et al. 2013; Polychronopoulos et al. 2017; Guo and Moose 2003; Vandepoele, Casneuf, 

and Van de Peer 2006). However, detection of conserved non-coding sequences (CNSs) in plants 

is an ongoing challenge (Van de Velde et al. 2016), receiving extensive recent attention in a 

broad range of species (J. Xie et al. 2018; Inada et al. 2003; Algama et al. 2017; 

Polychronopoulos et al. 2017; Freeling and Subramaniam 2009). A genome-wide comparison of 

features of putative functional elements (Lu et al. 2019; Ricci et al. 2019; Rodgers-Melnick et al. 

2016; Oka et al. 2017; W. Zhang et al. 2012; Z. Li et al. 2019; M. Wang et al. 2017; Tu et al. 

2020) with CNSs could provide new insight into understudied non-coding fractions of the 

genome. 

 

Genomes of the grass tribe Andropogoneae provide a valuable and powerful system for the study 

of conserved sequences. Species of the Andropogoneae tribe have diverged in a relatively short 

time frame, sharing a common ancestor ~16-20 million years ago (Vicentini et al. 2008). 
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Andropogoneae species include maize, sorghum, sugarcane, and silvergrass, some of the most 

productive grain, sugar, and biofuel crops worldwide (Brosse et al. 2012; Manners 2011). 

Andropogoneae species share the NADP-ME C4 photosynthesis system (Sage and Zhu 2011; 

Black, Chen, and Brown 1969) and similar development patterns, while their genomes are highly 

diverse with frequent polyploidization (Estep et al. 2014) and extremely active transposable 

elements (TEs) (Ramachandran et al. 2020). Nevertheless, despite rapid sequence turnover 

elsewhere in Andropogoneae genomes, functional sequences are expected to be under purifying 

selection, making the tribe an ideal system in which to identify and understand the role of CNS. 

 

Results 

An atlas of CNSs in the Andropogoneae tribe 

Inspired by recent studies of regulatory architecture (Ricci et al. 2019; Tu et al. 2020; 

Parvathaneni et al. 2020; Oka et al. 2017; Lu et al. 2019), we used coding genes as anchors and 

developed a sensitive sequence alignment pipeline to identify CNSs in Andropogoneae genomes 

which have undergone genome-wide duplications, numerous rearrangements, and gene loss (J. C. 

Schnable, Springer, and Freeling 2011) (Fig. 1). Andropogoneae genomes (see below) were 

aligned to the maize B73 v4 assembly (Jiao et al. 2017), which was used as a reference. First, we 

lifted over maize protein coding genes to each query genome (Fig. 1, step 1) by mapping coding 

sequences (CDSs) using minimap2 (H. Li 2018). Gene copy number often varied between the 

maize genome and the query genome, so all minimap2 mapping hits with a similarity larger than 

60% were used as anchors, where similarity is the number of identical base-pairs to the CDS 

length in maize. All CDSs and high-frequency k-mers were then removed from the genomes (Fig. 

1, step 2). Next, introns, sequences of 100 kbp upstream of the translation start codon and 
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sequences of 100 kbp downstream of the translation stop codon were extracted to perform 

pairwise alignment. The selection of a 100 kbp range was based on previous observations that 

almost all open chromatin regions and transcription factor binding sites (TFBSs) are located 

within 100 kbp of the nearest gene (Rodgers-Melnick et al. 2016; Tu et al. 2020; Ricci et al. 

2019). Pairwise alignment was conducted following the widely used seed-and-extend process 

(Altschul et al. 1990; H. Li and Homer 2010). Briefly, the query sequences were cut into 

fragments with overlapping sliding windows using a window size of 38 bp and a step size of 8 bp. 

The Smith-Waterman algorithm (T. F. Smith and Waterman 1981) was employed to align the 

fragment in each window against the reference sequence, and any alignments with an alignment 

score ≥ 40 were used as seeds (Fig. 1, step 3). Every seed was then extended, and extension was 

terminated using the X-drop approach (Z. Zhang, Berman, and Miller 1998) (Fig. 1, step 4). 

Alignments with a dynamic programming score ≥ 54 were defined as CNSs. This score threshold 

corresponds to a p-value < 0.1 assuming that a pair of sequences with a length of 100 kbp were 

aligned (Karlin and Altschul 1990) (Fig. 1, step 5). Finally, the removed CDS and k-mer 

sequences were put back into aligned CNSs (Fig. 1, step 6) and the SAM-format alignments 

were generated (H. Li et al. 2009) (Fig. 1, step 7). 

 

Three publicly available genomes, sorghum (Sorghum bicolor) (McCormick et al. 2018), maiden 

silvergrass (Miscanthus sinensis) (J. Zhang et al. 2018), and wild sugarcane (Saccharum 

spontaneum) (Mitros et al. 2020) were used as queries (see Supplemental Table S1 for more 

information regarding all the genomes used in this study). In addition, the genomes of two 

heterozygous Andropogoneae species, Hyparrhenia diplandra and Chrysopogon serrulatus, 

were assembled to supplement the above mentioned three genomes (Fig. 2A). Benchmarking 
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Universal Single-Copy Orthologs (BUSCO) completeness scores (Simão et al. 2015) of 0.94 

demonstrated that these two newly assembled genomes had high completeness and low 

sequencing error rates. The median distance between genes and contig edges were 35 kbp and 77 

kbp in the genomes of H. diplandra and C. serrulatus, respectively, indicating the contiguity of 

these two assemblies was suitable for the detection of CNSs within 10 kbp of  >85% of coding 

genes (Supplemental Fig S1). 

 

Total CNS length identified using each query genome was positively correlated with the query 

genome size (Supplemental Fig S2). The sorghum genome is the only monoploid assembly in 

our dataset that has not experienced a genome-wide duplication event after its divergence from 

the common ancestor of Andropogoneae (J. Schnable and Lyons 2015). Aligning the genome 

sequence of sorghum against that of maize generated the smallest CNS space (67.07 Mbp, by 

counting matched base-pairs in the maize genome). The largest CNS space was observed by 

aligning genome sequences between wild sugarcane and maize (86.97 Mbp). The sizes of CNSs 

ranged from 27 bp to 15 kbp (Supplemental Fig S3). The total length of CNSs present in maize 

and at least one other species was 106.52 Mbp, accounting for ~5% of the maize genome. 

Hereafter, those CNSs were designated as pan-And-CNSs (pan-Andropogoneae CNSs). A total 

of 42.27 Mbp CNSs were present in all species and were termed as core-And-CNSs (core-

Andropogoneae CNSs). However, more species are needed to better describe pan- and core-And-

CNSs (Fig. 2B). 

 

Pan-And-CNSs were enriched with putative cis-regulatory elements (Supplemental Fig S4) and 

overlap with 52-78% of sequences with putative cis-regulatory features (TFBSs, open chromatin 

 Cold Spring Harbor Laboratory Press on June 15, 2021 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


 
  
 

7 

regions, acetylation of histone 3 lysine 9 (H3K9ac) ChIP-seq peaks, micrococcal nuclease 

hypersensitive regions (MNase HS) or DNase I hypersensitive sites (DHSs) ) identified in 

different plant tissues (Supplemental Table S2). We also confirmed that a few known regions 

were correctly classified as CNS: the third intron of Knotted1 (Greene, Walko, and Hake 1994; 

Lai et al. 2017) (Supplemental Fig S5), Vgt1 (Salvi et al. 2007) (Supplemental Fig S6), and tb1 

(Clark et al. 2006; Studer et al. 2011) (Supplemental Fig S7) suggesting the identification of 

functional non-coding sequences using our approach. 

 

A large proportion of CNSs overlap with putative regulatory elements 

A large proportion (86.8%) of genes have pan-And-CNS detected within 2 kbp upstream. When 

compared with genes without pan-And-CNS detected within 2 kbp upstream, genes with CNS 

have higher expression levels and less tissue expression specificity (Kadota et al. 2006; Yanai et 

al. 2005) across 23 maize B73 tissues (Walley et al. 2016) (Supplemental Fig S8). 51% of the 

pan-And-CNSs overlap with the untranslated region (UTR) or intron of coding genes 

(Supplemental Fig S9) (herein genic CNS, otherwise intergenic CNS); this proportion is 

comparable to that of Arabidopsis thaliana (Haudry et al. 2013). Since introns and UTRs have a 

wide range of conserved functional roles (e.g., promote gene expression, guide splicing, produce 

non-coding RNA) (Chorev and Carmel 2012; Akua, Berezin, and Shaul 2010; Rigau et al. 2019; 

Greene, Walko, and Hake 1994; Ritchie and Flicek 2014), we did not classify genic CNSs 

further by potential function. The overlap between intergenic pan-And-CNS and low DNA 

methylation loci (Xu et al. 2020) was higher than the genome-wide random expectation 

(Supplemental Fig S10). 56% of intergenic pan-And-CNS records overlap with open chromatin 

regions, TFBSs, or H3K9ac ChIP-seq peaks (Fig. 3A), a 6.5- to 19.5-fold enrichment relative to 

 Cold Spring Harbor Laboratory Press on June 15, 2021 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


 
  
 

8 

random expectation (Fig. 3B). Compared to a previously released list of conserved elements in 

the maize intergenic region (Tian et al. 2020), we generated a larger dataset and our intergenic 

CNSs have greater overlap with open chromatin regions, TFBSs, and H3K9ac ChIP-seq peaks 

(Supplemental Fig S11). 

 

To further uncover the function of intergenic pan-And-CNSs, we analyzed colocalization of 

intergenic pan-And-CNSs with chromatin loop anchors, TEs, and non-coding RNA (ncRNA) 

genes. We started with chromatin loop anchors because they were inferred to be conserved and 

their dynamics are associated with transcription activity (P. Dong et al. 2020; Q. Dong et al. 

2018; Liu et al. 2017; Szabo, Bantignies, and Cavalli 2019; M. Wang et al. 2018; Harmston et al. 

2017; Polychronopoulos et al. 2017; Delaneau et al. 2019; P. Dong et al. 2017). Chromatin loop 

anchors identified by Hi-C and HiChIP (Ricci et al. 2019; Peng et al. 2019) overlapped with 47% 

of intergenic pan-And-CNS records, with an enrichment of 6.6-fold compared to the genome-

wide background (Fig. 3B). In addition to open chromatin regions, TFBSs, and H3K9ac ChIP-

seq peaks, chromatin loop anchors overlapped with an additional 12% intergenic pan-And-CNS 

records (Supplemental Fig S12). Regulatory elements derived from TEs have been described by 

several independent studies (Dupeyron et al. 2019; A. M. Smith et al. 2008; X. Xie, Kamal, and 

Lander 2006), and cases of TEs acting as regulatory sequence have been reported (Makarevitch 

et al. 2015; Noshay et al. 2020; Studer et al. 2011; Hainan Zhao et al. 2018; Dupeyron et al. 2019; 

A. M. Smith et al. 2008; X. Xie, Kamal, and Lander 2006). Enrichment of CNSs overlapping 

TEs was not observed (Fig. 3B), but when looking at particular TE superfamilies (Stitzer et al. 

2019), 1.08- to 1.78-fold enrichments of intergenic pan-And-CNSs were observed in 4 of the 13 

TE superfamilies (RIL, RST, DHH, and DTM) (Supplemental Fig S13). However, these 4 TE 
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superfamilies only accounted for another 2.09% of intergenic pan-And-CNSs. Finally, 

enrichment of CNSs in ncRNA genes (Han et al. 2019) was also observed (Fig. 3B), which 

accounted for only 1.04% of the total intergenic pan-And-CNSs. 

 

CNSs have diverse functions 

Due to the tissue-specific activity of some cis-regulators, a full dataset of putative cis-regulatory 

sequences has not been generated until the present study. It is essential to know if CNSs that do 

not overlap with features of cis-regulatory elements might have alternative functions. We 

therefore classified intergenic CNSs into the following groups: (1) CNSs overlapping with open 

chromatin, TFBS, or H3K9ac ChIP-seq peaks (cis CNS); (2) CNSs overlapping with chromatin 

loop anchors not part of the group cis (non-cis loop CNS); and (3) remaining CNS not included 

in (1) and (2) (rest CNS). We then investigated the DNA methylation ratio, guanine-cytosine 

(GC) content and DNA replication activity in the early S phase of the mitotic cell cycle in each 

CNS group. Different DNA methylation ratios, GC content, and DNA replication activity in the 

early S phase were obtained for these CNS groups, indicating these CNSs may have a diversity 

of functions. 

 

In terms of DNA methylation, the cis pan-And-CNSs showed a low DNA methylation ratio, 

which supports the previous observation that putative cis-regulatory sequences correspond to a 

low DNA methylation ratio in plants (Ricci et al. 2019; Rodgers-Melnick et al. 2016; Oka et al. 

2017; W. Zhang et al. 2012; Suzuki and Bird 2008; Zilberman et al. 2007; X. Zhang et al. 2006). 

The non-cis loop pan-And-CNSs exhibited a medium DNA methylation ratio (Fig. 4A) and 

could be divided into two distinct subgroups according to DNA methylation ratios (Supplemental 
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Fig S14). This might be due to different functions of CNSs between these two subgroups; 

alternatively, some may actually be cis CNSs with tissue specificity but were incorrectly 

classified into the non-cis loop pan-And-CNS group. DNA methylation is associated with GC 

content (Mugal et al. 2015) and GC content is associated with chromatin accessibility 

(Hammelman et al. 2020; Parker, Margulies, and Tullius 2008; Schwartz et al. 2019). Compared 

to the genome-wide background, the cis pan-And-CNSs showed a higher GC content, while non-

cis loop pan-And-CNSs exhibited a lower GC content. This is again suggestive of diverse 

functions across cis pan-And-CNSs and non-cis loop pan-And-CNSs. The GC content of the rest 

of the pan-And-CNSs was similar to that of the genome-wide background (Fig. 4B). Active 

regions of DNA replication in the early S phase (Wear et al. 2017) were associated with both cis 

pan-And-CNSs and non-cis loop pan-And-CNSs. The activity of the rest pan-And-CNSs was 

higher than that of the genome-wide background but lower than that of cis pan-And-CNSs and 

non-cis loop pan-And-CNSs (Fig. 4C, Supplemental Fig S15). 

 

Overall, 14% of pan-And-CNS records did not fall in any putative features (i.e., open chromatin 

regions, TFBSs, introns, UTRs, non-coding RNA genes, chromatin loop anchors, H3K9ac ChIP-

seq peaks, and TEs) (Fig. 4D, Supplemental Fig S16). These CNSs were shorter and had lower 

alignment scores (Supplemental Fig S17) than the 86% that could be assigned to a feature and 

may be enriched for false positives. These unannotated pan-And-CNSs might also be tissue-

specific regulators. A more comprehensive investigation of functional non-coding features in 

different tissues may provide a better understanding of CNS functions. 

 

Variants in CNSs impact gene expression 
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We further investigated the CNS function by testing if genotypic variants within the identified 

CNS affected maize gene expression. Using the expression quantitative trait loci (eQTLs) 

identified by Kremling et al. (Kremling et al. 2018), the intergenic pan-And-CNSs were enriched 

4.02-fold among the “lead” eQTLs compared to the genome-wide background. We selected the 

lead eQTL as the one with the strongest association (lowest p-value) with the expression of its 

target gene. The pan-And-CNS regions harbored a larger proportion of maize HapMap3 variants 

(Bukowski et al. 2018) with low minor allele frequency (MAF) when compared to intergenic 

regions (Fig. 5A). This result suggests that variants in the CNS regions are under stronger 

purifying selection compared to those in the intergenic regions, likely because variants in CNSs 

could negatively impact functional elements. 

 

We identified CNS presence/absence variants (PAVs) using the maize HapMap3 second-

generation sequencing reads (Bukowski et al. 2018) and CNSs identified using the sorghum 

genome as the query. Most CNS PAVs were rare (MAF < 0.1), especially genic CNSs and cis 

CNSs (Fig. 5B). Previous studies suggested that non-coding rare variants contribute to the 

dysregulation of nearby downstream genes and are negatively associated with organism fitness 

(Flint-Garcia et al. 2005; Kremling et al. 2018). By analyzing the CNS absence within the 2 kbp 

upstream region of a gene and its expression, we observed loss of CNSs was associated with loss 

of gene expression (Fig. 5C). However, further upstream, the association between loss of CNSs 

and loss of gene expression was much weaker (Supplemental Fig S18); beyond 2 kbp, the 

regulatory activity of CNSs on downstream genes likely diminishes. To further test the impact of 

CNS PAVs on gene expression, we used gene expression profiles of seven tissues from a modern 

inbred population (Kremling et al. 2018) along with the CNS PAVs with MAF ≥ 0.1 to perform 
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an expression genome-wide association study (Supplemental Fig S19). The result showed that 

more than half of significant CNS PAVs were located within 2.5 Mbp of associated genes (Fig. 

5D, Supplemental Fig S20). 

 

Finally, we investigated the evolution of CNSs in maize during domestication and subsequent 

local adaptation. We identified regions likely selected during domestication using genome-wide 

selective sweeps using RaiSD (Alachiotis and Pavlidis 2018) in a panel of 31 maize landraces (L. 

Wang et al. 2017), and regions important for local adaptation in maize using PCAdapt (Luu, 

Bazin, and Blum 2017). The overlap between these regions and pan-And-CNS was substantially 

less than would be expected by chance, suggesting recent selection in maize has mainly favored 

variants that do not modify these constrained functional regions (Supplemental Fig S21). 

 

CNS variation is associated with functional diversity between maize subgenomes 

To further study the effect of CNS variation on gene expression, we took advantage of the 

genome-wide duplication event that occurred in maize after divergence from sorghum 

(Swigonová et al. 2004), to investigate CNS variation between the two maize subgenomes. 

Syntenic homologous genes between genomes of maize and sorghum were identified using the 

quota-alignment implementation (Tang et al. 2011) with parameters that keep every two maize 

genes corresponding to one sorghum gene (--quota, see methods). First, for each orthogroup 

(including two maize genes and one sorghum gene), the total CNS length within the 2 kbp 

upstream region of a gene was recorded if this CNS site was present within the 2 kbp region of 

the sorghum homologous gene and at least one maize homologous gene copy (Supplemental Fig 

S22). Second, the proportion of shared CNS sites was calculated as the number of CNS sites 
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present in both maize gene copies to that of the total CNS length. Third, the expression similarity 

between two maize gene copies was calculated using Pearson’s correlation of their expression 

levels across 23 tissues of maize B73 (Walley et al. 2016). Then, a correlation analysis of the 

proportion of shared CNS sites and expression similarity was conducted. The proportion of CNS 

sites shared between the two paralogous genes was positively correlated with the expression 

similarity between them (r2=0.10, p-value< 2.2×10-16, Pearson’s correlation, Fig. 6A, 

Supplemental Fig S23). Moreover, maize paralogs with negatively correlated expression patterns 

shared a significantly smaller proportion of CNS sites than positively correlated paralogs (Fig. 

6B) (p-value<2×10-16, Wilcoxon rank-sum test). Here we defined the gene copy with a longer 

CNS (within 2 kbp upstream region) as the major copy and the gene with a shorter CNS as the 

minor copy. In the context of maize subgenomes, for each pair of maize syntenic paralogous 

genes with negative expression correlation, in addition to spatiotemporal expression patterns, we 

also observed a higher nonsynonymous to synonymous mutations ratio for the minor CNS 

approximation gene (Supplemental Fig S24), which may indicate neofunctionalization or 

pseudogenization. The size difference between the major and minor CNSs was smaller in 

positively correlated paralog pairs than in negatively correlated paralog pairs (Fig. 6C) (p-

value=5×10-10, Wilcoxon rank-sum test). 

 

In addition, for those negatively correlated paralog pairs, we examined the correlation between 

the expression of maize genes and their sorghum homologs in the shoot tissues. The normalized 

shoot RNA-seq data of B73 (maize) (Kremling et al. 2018) and sorghum (NCBI BioProject 

PRJNA503076) were retrieved from (Washburn et al. 2019). We observed a higher correlation 

between the expression levels of maize major copies and the homologous sorghum genes than 
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between maize minor copies and the homologous sorghum genes in the shoot (Fig. 6D). Overall, 

these results suggest that CNS variation is associated with expression and functional diversity 

between duplicated genes. 

 

Discussion 

Despite the challenges of working on genomes with vast numbers of transposons and frequent 

duplications, a novel sensitive alignment approach shows that non-coding regions under 

purifying selection can be identified by comparing genomes of related species. In our CNS 

identification pipeline, the aim of using coding genes as anchors is to narrow down the sequence 

alignment scope and reduce false positives. There are some scenarios where our pipeline will fail 

to identify the target gene. The nearest gene of a regulatory element is not necessarily its target, 

and the distance between a regulatory element and its target genes might be longer than 100 kbp. 

In addition, the proximity of a functional non-coding sequence and its target gene may be 

impacted by large insertions or chromosomal rearrangements. Previous studies suggested that the 

total number of predicted TFBSs is much smaller than that of transcription factor (TF) 

recognition sites. TFs often work cooperatively and the sequence contexts of TF recognition sites 

or combinatorial recognition of cis-elements are key for TF binding specificity (Tu et al. 2020; 

Gerstein et al. 2012; O’Malley et al. 2016; Dror et al. 2015; Levo et al. 2015; Avsec et al. 2021). 

CNS records identified in this study are much longer than a single TF recognition site, 

suggesting the possibility of recognition of ordered combinations of non-overlapping TFBS 

(Viturawong et al. 2013; Shen et al. 2020). CNSs identified using our approach were highly 

enriched in TFBSs, open chromatin regions, H3K9ac ChIP-seq peaks, chromatin loop anchors, 

and eQTLs. 
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Using the genome sequences of six Andropogoneae species, we were able to identify a set of 

core-And-CNSs and pan-And-CNSs. Core-And-CNSs and pan-And-CNSs showed similar 

enrichment in potential regulatory sequences, suggesting that not all functional non-coding 

elements are conserved across all the species. The presence/absence of those elements may be 

related to species-specific traits (Khalturin et al. 2008; Won et al. 2019). As expected based on 

the role of core-And-CNS in more essential functions (Cvijović, Good, and Desai 2018) and the 

likelihood of mutations in these regions carrying a higher deleterious burden (Kistler et al. 2018), 

we observed a larger number of variants with low MAF in core-And-CNS regions than in pan-

And-CNS regions in a maize population (Fig. 5A), indicating stronger purifying selection. 

 

The overlap between CNSs and features of putative cis-regulatory sequences has been reported 

previously (Lai et al. 2017; Haudry et al. 2013; Warnefors et al. 2016; Viturawong et al. 2013; 

Ricci et al. 2019; Oka et al. 2017; Lu et al. 2019), although not all cis-regulatory sequences are 

evolutionarily conserved (Ross, Fong, and Cavener 1994; Wittkopp, Vaccaro, and Carroll 2002; 

McLean et al. 2011). We observed enrichment of lead eQTLs in CNS regions and association 

between CNS absence and gene expression (Fig. 5C-D). In terms of the regulation of CNSs on 

target genes, we were able to show that upstream 2 kbp CNS absence was strongly correlated 

with loss of expression, both in the context of natural variation segregating within a maize 

population and between duplicated genes in the maize subgenomes. Our results indicate that a 

longer conserved region proximal to a maize gene correlates with higher expression and 

similarity of its orthologous gene in sorghum (Fig. 6D), suggesting pseudogenization or 

neofunctionalization of the gene copy with a shorter CNS. In summary, our study shows that a 
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meta-analysis using CNSs, and gene expression levels combined with open chromatin regions, 

TFBSs, chromatin loop anchors, and low DNA methylation loci can provide a more 

comprehensive view of the molecular mechanisms underlying the regulation of gene expression. 

 

Analysis of the identified CNSs extended our knowledge of CNS function. Around half of the 

identified intergenic CNSs overlapped with different groups of putative cis-regulatory features 

(e.g., open chromatin regions, TFBSs, and H3K9ac ChIP-seq peaks). Chromatin looping is 

important for gene regulation (Kadauke and Blobel 2009) and subtle changes in chromatin loop 

anchors are associated with differential gene regulation and expression (Diehl, Ouyang, and 

Boyle 2020; Greenwald et al. 2019). GC content and DNA methylation ratio might influence 

DNA stiffness/flexibility and has been reported to be correlated with DNA supercoiling and 

recombination (Jabbari et al. 2019; Rodgers-Melnick et al. 2015; Naughton et al. 2013). In this 

study, we also observed distinguishable GC content and DNA methylation ratios between cis 

CNS with non-cis loop CNSs, suggesting diverse functions between these two types of CNSs. 

ncRNAs can interact with DNAs, RNAs, and proteins, and have been implicated in the 

regulation of gene transcription and translation, as well as in response to stresses and stimuli 

(Statello et al. 2021; Han et al. 2019; Chen and Aravin 2015; Yoon, Abdelmohsen, and Gorospe 

2013; Yao, Wang, and Chen 2019). The enrichment of CNSs in ncRNA genes indicates 

sequence conservation of transcribed but untranslated DNA sequences. The enrichment of CNS 

in active regions of DNA replication in the early S phase suggests that regions of DNA 

replication initialization might be evolutionarily conserved. CNS knockout lines should be 

generated to gain a comprehensive understanding of their function (Gasperini, Tome, and 

Shendure 2020). Taking advantage of the observation of GC content and DNA methylation 
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pattern across different groups of CNS, a model to classify CNSs into different functional groups 

might be useful to provide a guide for the verification of CNS functions via molecular 

approaches. 

 

Methods: 

Plant materials collection: 

Hyparrhenia diplandra was collected in Kenya by Rémy Pasquet (Pasquet 1126) and 

Chrysopogon serrulatus was obtained from the USDA Germplasm Repository Information 

Network (PI 219580; seed originally from Pakistan). Both plants were grown in the greenhouse 

at the Donald Danforth Plant Science Center. Vouchers of flowering specimens were deposited 

at the herbarium of the Missouri Botanical Garden; full specimen data are available through 

www.tropicos.org. 

 

DNA preparation and sequencing: 

Total DNA was extracted from young leaf tissues. Long-read sequencing was conducted on a 

Nanopore MinION platform at the Institute of Biotechnology, Cornell University. DNA with a 

size of 20-80 kbp was selected following the Blue Pippin protocol, and the selected DNA were 

cleaned using AMPure XP beads. DNA repair and end-prep were performed with NEB enzyme 

kits. After adapter ligation, MinKNOW software was used for quality control of the MinION 

sequencing library. Sequencing was performed following the manufacturer’s instructions. 

 

A total of 1.0 μg of DNA per sample was used as input material to generate second-generation 

sequencing reads. Sequencing libraries were conducted using the NEBNext® DNA LibraryPrep 
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Kit following the manufacturer's recommendations, and barcodes were added to each sample. 

Genomic DNA was randomly fragmented to a size of 350 bp. Then DNA fragments were end 

polished, A-tailed, and ligated with the NEBNext adapter for Illumina sequencing, and further 

PCR enriched by P5 and indexed P7 oligos. PCR products were purified (AMPure XP system) 

and the resulting libraries were analyzed for size distribution by an Agilent 2100 Bioanalyzer and 

quantified using real-time PCR. The qualified libraries were fed into Illumina NovaSeq 

sequencers after pooling according to their effective concentration and expected data volume. 

 

Genome assembly: 

We used the NanoPlot (De Coster et al. 2018) and porechop package (Wick n.d.) to respectively 

check and filter the MinION raw reads. The MinION clean reads were then assembled using Flye 

v1.4.2 (Kolmogorov et al. 2019) with the genome size estimated via flow cytometry 

(Supplemental Fig S1F) as reference. The MinION clean reads were mapped to the assembly 

using minimap2 (H. Li 2018) with a setting of “-x map-ont”, and racon v1.3.1 (Vaser et al. 2017) 

was used to polish the assembly with default parameters. Assembly polishing using MinION 

reads was repeated three times. The MEM module of BWA v 0.7.17 (H. Li and Durbin 2009) 

was used to map Illumina reads to the MinION polished assembly with parameters “-k11 -r10”. 

The “markdup” command implemented in SAMtools v1.09 (H. Li et al. 2009) was used to 

remove duplicated Illumina reads. Pilon v1.23 (Walker et al. 2014) with parameter “--diploid --

fix bases'' was used for error correction (Supplemental Fig S1A). Assembly correction using 

Illumina reads was repeated three times. 

 

Genome assembly evaluation: 
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To evaluate the contiguities of our new assemblies, we identified 5,592 Benchmarking 

Andropogoneae Single-Copy Orthologs (BASCO) genes shared by four Andropogoneae 

genomes, maize (Zea mays), sorghum (Sorghum bicolor), maiden silvergrass (Miscanthus 

sinensis), and wild sugarcane (Saccharum spontaneum), as well as an outgroup species, foxtail 

millet (Setaria italica). The URLs to access these genomes are listed in Supplemental Table S1. 

The following procedures were conducted to identify the BASCO genes: 

1) Syntenic genes: CDSs of the B73 genome (v4.34) were first aligned against the sequences of 

sorghum, wild sugarcane, maiden silvergrass, and foxtail millet using BLASTN (Altschul et al. 

1990) with parameters “-outfmt 6 -strand plus -task blastn -evalue 5 -word_size 7 -

max_target_seqs 1000”. Next, the quota-alignment pipeline (Tang et al. 2011) was used to detect 

syntenic genes using parameters “--tandem_Nmax=5 --cscore=0.2 --no_strip_names --

filter_repeats” for blast_to_raw.py. The parameters of quota_align.py were set as “--merge --

Dm=20 --min_size=3”. In addition, for specific species the “--quota” parameter was set as “2:2” 

for maiden silvergrass, “1:2” for foxtail millet, “1:2” for sorghum, and “4:2” for wild sugarcane 

according to their different genome assembly ploidy or genome-wide duplication levels. Overall, 

25,155 maize genes were found in at least one syntenic region. 

2) Orthogroups: OrthoFinder (Emms and Kelly 2019) with parameter “-S blast -M msa” was 

used to find orthogroups. Only those orthogroups with 1-2 maize genes, 1 sorghum gene, 1-2 

maiden silvergrass genes, 1-4 wild sugarcane genes, and 1 foxtail millet gene were kept. The 

CDS of each transcript in the selected orthogroups was mapped to the corresponding genome 

sequence using minimap2 with parameters “-ax splice -a -uf -C1 --cs”. Any transcripts with a 

higher than expected number of hits were removed. 
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3) Intersect syntenic genes and orthogroups: Orthogroups with at least one syntenic maize gene 

were kept, otherwise dropped. 

4) Double check gene copy numbers: Similar to step 2, CDSs of the genes that passed the 

previous filter were mapped to the five genomes using minimap2 and filtered by the number of 

hits within each genome. Orthogroups that passed this last check were defined as BASCO. 

CDSs of BASCO genes were mapped to the H. diplandra and C. serrulatus assemblies using 

minimap2 with parameters “-ax splice -a -uf -C 1 -k 12 -P -t 12 --cs”. To evaluate the contiguity 

of the assemblies, we defined the minimum extent of flanking for mapped genes (Supplemental 

Fig S1C) as: 

● n1 = start position of mapped CDS 

● n2 = contig length – end position of mapped CDSs 

● minimum extent of flanking regions = minimum (n1, n2) 

 

BUSCO v3.1.0 with parameters “-m geno -sp maize -f -r -l” and the liliopsida_odb10 database 

were used to evaluate the completeness of the assemblies. 

 

Parameter optimization for identification of CNS: 

The pipeline started by finding anchor points using minimap2 (H. Li 2018) with parameters “-x 

splice -a -uf -C 1 -k 12 -P --cs”. Keeping in mind the high diversity of the Andropogoneae non-

coding regions, for the following alignment steps we used a match score “2”, mis-match “-3”, 

gap opening penalty “-4”, and gap extension penalty “-2”. For step 3 (Fig. 1), we kept alignments 

with a minimum Smith-Waterman score of 40 as seeds, thus the minimum seed length was 20 bp 

(minimum seed score/match score). A sliding window size of 38 bp was selected to ensure there 
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was only one seed in each window. To reduce the computational time and minimize the number 

of missing seeds, the sliding step size was set as 8. 

 

To identify high-frequency k-mers, we counted the frequency of 20-mers (minimum seed length) 

using KAT v2.4.2 (Mapleson et al. 2017). For each genome, the secondary derivative of the k-

mer frequency density distribution was calculated and the point with minimum distance to zero 

was identified. The k-mer frequency at that point was used as a threshold to define and remove 

high-frequency k-mers. 

 

To find the alignment score that corresponds to a p-value < 0.1, we randomly extracted 10,000 

fragments with a length of 1,000 bp from the unmasked reference genome and query genomes 

separately. A total of 10,000 maximum Smith-Waterman scores were calculated by aligning 

those fragments, and results were fit into a non-linear least square regression. The final k 

(0.006662) and λ (0.382291) values were determined by using maize as the reference against 

sequences extracted from the other five species randomly. Based on those k and λ values, 

alignments with a Smith-Waterman score of 54 or higher were kept. 

 

Overlap and enrichment analysis: 

The output SAM files were reformatted into BAM files using SAMtools, and the “depth” 

command of SAMtools was used to check how many unique base-pairs were classified as 

conserved. We counted how many unique CNS base-pairs overlapped with open chromatin 

regions (Ricci et al. 2019; Tu et al. 2020). Then, enrichment values were calculated as: 
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The overlap and enrichment values for TFBSs (Tu et al. 2020), H3K9ac ChIP-seq peaks (Oka et 

al. 2017), chromatin loop anchors (Ricci et al. 2019; Peng et al. 2019), TEs (Stitzer et al. 2019), 

ncRNA (Han et al. 2019; Jiao et al. 2017) genes, genome-wide DNA methylation (Ricci et al. 

2019), DNA replication profiles (Wear et al. 2017), and lead eQTLs (Kremling et al. 2018) were 

calculated in the same way. 

 

The above mentioned features were obtained from the original publications without further 

processing. For the datasets using the B73 v3 genome assembly coordinates, CrossMap v0.2.8 

(Hao Zhao et al. 2014) and the chain file released from Ensembl (Howe et al. 2020) were used to 

uplift to the maize B73 v4 genome assembly coordinates. 

 

CNS and other features were considered overlapping if they shared ≥ 1 bp. 

 

Comparison of gene expression for genes with and without CNS in 2 kbp upstream:  

A total of 28,950 gene IDs from the expression matrix from 23 maize tissues (Walley et al. 2016) 

were uniquely lifted from the maize B73 v3 to the v4 genome annotation using the table released 

by MaizeGDB (gene_model_xref_v4.txt, 

https://www.maizegdb.org/search/gene/download_gene_xrefs.php?relative=v4) (Lawrence et al. 

2004). Among those genes, 25,127 have upstream CNSs detected within a 2 kbp range. The 

tissue specificity of gene expression was measured using τ (Yanai et al. 2005) and entropy 

(Kadota et al. 2006). 

 

CNS PAVs in a maize population: 

 Cold Spring Harbor Laboratory Press on June 15, 2021 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


 
  
 

23 

For each accession in the maize Goodman panel (Flint-Garcia et al. 2005), paired-end Illumina 

reads (NCBI BioProject PRJNA389800) (Bukowski et al. 2018) were mapped to the maize B73 

v4 reference genome using BWA-MEM v0.7.13 (H. Li and Durbin 2009) with default 

parameters. To save computational time, we used GATK v3.8 (McKenna et al. 2010) to classify 

each base-pair as “callable” or “noncallable”. For the “noncallable” base-pairs, coverage was 

checked using the “samtools mpileup” command. Some CNS regions were shorter than the reads 

and only a single end of the paired-end reads fell into the conserved region. Therefore, we also 

mapped the reads to the CNS fragments using BWA-MEM with parameters “-a -c 200000 -S -P” 

and calculated the coverage of the CNS fragments using “samtools mpileup”. A base-pair of a 

CNS fragment was classified as “present” if it was “callable”, if it had coverage from reads 

mapping to the genome-wide, or if it had coverage from reads mapping to the CNS fragment; 

otherwise, it was classified as “absent”. Maize accessions with low sequencing coverage (≤ 14 

Gbp of reads) were excluded from the analysis, as there was not enough information to 

accurately conduct calling (Supplemental Fig S25). 

 

Association analysis using CNS PAVs as independent variables: 

To define CNS PAVs variables, the number of present base pair/CNS length was calculated for 

each CNS in each maize accession. If the ratio was ≥ 0.8, it was encoded as 1; if the ratio was ≤ 

0.2, it was encoded as 0; otherwise unknown. To associate CNS PAVs with gene expression, we 

used CNS PAVs with a minor allele count ≥ 15 and a known allele count ≥ 35. The list of maize 

accessions analyzed is available as Supplemental Table S3. 

 

Twenty-five PEER factors and three principal components for population structure generated by 

Kremling et al. (Kremling et al. 2018) were used as co-variants and association analysis was 
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conducted using a fixed linear model. Association p-values were calculated using an F-test, with 

a significance threshold 1×10-6. The association test was performed using a custom Python script 

(https://github.com/baoxingsong/dCNS/blob/master/scripts/CnsBasedGwasFixedModelV2.py). 

 

We further investigated the significant associations between CNS PAVs and gene expression 

level. To further check the possible functional/loss-of-function states of alleles, especially those 

with a presence ratio <0.8 and >0.2: 

1) For each significantly association, we grouped those accessions with CNS PAV encoded 

as 1 as group ‘presence‘, and grouped those accessions with CNS PAV encoded as 0 as 

group ‘absence‘. For the significant associated gene, we calculated the median expression 

level of group ‘presence‘ accessions and group ‘absence‘ accessions separately. 

2)  For each of those accessions with the CNS presence ratio <0.8 and >0.2; if its expression 

level is closer to the group ‘presence’ median value, we classified it into group ‘presence’. 

If its expression is closer with group ‘absence’ median value, we classified it into group 

‘absence’. 

3) We then compared the CNS reads mapping coverage ratio of group ‘absence’ accessions 

with group ‘presence’ accessions. 

 

Detection of selective sweeps: 

We mapped the raw reads from resequenced landraces (L. Wang et al. 2017) to the maize B73 v4 

reference genome using BWA-MEM (H. Li and Durbin 2009) with default parameters, and 

conducted SNP calling using the GATK v3.8 (McKenna et al. 2010) germline SNP calling best 

practices. Specifically, first HaplotypeCaller was used to call variants per sample and create 

GVCF files. Following this, we used GenomicsDBImport to consolidate GVCF files and joint-

called genotypes from these with GenotypeGVFs. SelectVariants was used to output SNPs, as 

the sweep detection software currently cannot handle indels. We conducted genome-wide scans 

for selective sweep patterns using RaiSD v 2.5 (Alachiotis and Pavlidis 2018) with default 
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parameters, correcting for the number of base-pairs with usable sequence data using mop 

(https://github.com/RILAB/mop) with default parameters 

 

In order to screen for adaptive loci as a complement to our domestication loci screen, we used 

the program PCAdapt (Luu, Bazin, and Blum 2017). We used the program on its default settings, 

but removed inversion Inv4m and known inversions on Chromosome 1 and 3, as well as a region 

of low recombination at the end of Chromosome 10 that is likely the abnormal 10 region 

(Mroczek et al. 2006). We removed these regions as low recombination regions interfere with the 

way that PCAdapt defines the background relatedness for comparisons. 

 

CNS similarity between maize two subgenomes: 

Syntenic genes between maize and sorghum, introduced above, were used here. To calculate the 

proportion of CNS sites shared in the 2 kbp upstream of the duplicated genes, we calculated the 

total length of the sorghum CNSs and the number of matched base-pairs shared between each 

maize gene copy and sorghum gene. Then, we checked the proportion of those shared base-pairs 

that overlapped (Supplemental Fig S22). 

 

Data access:  

All the CNS files in SAM format and BEDformat have been submitted to figshare 

(https://figshare.com/) under URL https://figshare.com/articles/dataset/CNS/14129006 and as 

Supplemental Data. 

The CNS identification program source code has been submitted to GitHub (https://github.com/) 

under URL https://github.com/baoxingsong/dCNS and as Supplemental Code. 
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All the sequence reads and de novo assembled genomes generated in this study have been 

submitted to the NCBI BioProject database (https://www.ncbi.nlm.nih.gov/bioproject/) under 

accession number PRJNA543119. 
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Figure legends: 

Fig. 1. Procedures to identify CNSs in Andropogoneae. The maize B73 v4 genome was used 

as reference (red lines), while the other five genomes were individually used as a query (green 

lines). First, full-length CDS of each maize protein coding gene was mapped to the query 

genome (CDSs belonging to the same gene are linked with ‘>’ in the cartoon) (1); then we 

deleted CDSs (orange lines) and high frequency k-mers (blue lines) (2). Next, upstream, intron, 

and downstream sequences were pairwise aligned using a dynamic programming algorithm (3-4). 

Candidate fragments below a p-value threshold (0.1) were defined as CNSs (5-7). 

 

Fig. 2. Pan-Andropogoneae CNSs. (A) Phylogenetic relationships of Andropogoneae species 

used in this study. Andropogoneae species are in the green shaded portion of the phylogeny. (B) 

Simulation of the total length of pan-And-CNSs and core-And-CNSs by iterative random 

sampling of taxa. Red and blue lines indicate the pan- and core-And-CNS curves fit using points 

from all combinations. 
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Fig. 3. CNSs are primarily putative regulatory sequences. (A) Proportions of intergenic pan-

And-CNSs overlapping with features of putative cis-regulatory sequence. (B) Enrichment of 

intergenic pan-And-CNSs in open chromatin regions, TFBSs (transcription factor binding sites), 

H3K9ac (acetylation of histone 3 lysine 9) ChIP-seq peaks, chromatin loop anchors, TEs 

(transposable elements), and non-coding RNA (ncRNA) genes. 

 

Fig. 4. Patterns of DNA methylation and GC content in CNSs suggest diverse functions. (A) 

Different DNA methylation ratios among pan-And-CNS groups. Red dots correspond to CG 

DNA methylation, green dots are CHG DNA methylation, and blue dots represent CHH DNA 

methylation (where ‘H’ indicates A, C, or T). “other genome regions” on the horizontal axis 

represents DNA methylation sites located in the intergenic regions that were not defined as CNSs, 

and “protein coding genes” denotes DNA methylation sites located within CDSs, introns, or 

UTR regions of coding genes. (B) Different groups of pan-And-CNSs (indicated in orange, 

brown, and green) have distinct GC content when compared with CDSs (blue) or the genome-

wide (red). (C) Overlap of CDS regions, cis, non-cis loop, and rest pan-And-CNSs with active 

regions of DNA replication in the early S phase of the mitotic cell cycle. Sequences that did not 

overlap with coding genes or CNSs were used as background (intergenic). (D) The proportion of 

pan-And-CNSs overlapping with annotated features. Each CNS can overlap with multiple 

features. Unknown CNSs are those CNSs that do not overlap with any used features. 

 

Fig. 5. Variants in CNS regions impact gene expression. (A) MAF distribution of HapMap3 

variants in CNS regions, genome-wide CDS regions and genome-wide intergenic regions. (B) 

MAF distribution of CNS PAVs in genic, cis, non-cis loop, and rest CNS groups. (C) 
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Comparison of the proportion of maintained CNSs in the 2 kbp upstream regions of the top 1,500 

expressed genes in root tissues in each maize accession. Dotted lines indicate the 99% one-tailed 

confidence interval calculated by shuffling the gene expression ranks and CNS maintained 

proportions 1,000 times. Red dots are beyond the 99% one-tailed intervals. Similar patterns were 

observed across different tissues (Supplemental Fig S18). (D) Histogram of the distance between 

CNS PAVs and associated genes for root expression data when a PAV and its associated genes 

are on the same chromosome. The vertical dotted line indicates a distance of 2.5 Mbp. 

 

Fig. 6. CNS variation was associated with expression diversity between paralogous genes in 

maize. (A) Correlation of CNS similarity and expression similarity of paralogous gene pairs. 

Red dots indicate negatively correlated genes; blue dots indicate positively correlated genes 

across tissues. (B) The shared proportion of CNS sites for negatively (red) and positively (blue) 

correlated paralogous gene pairs. (C) The diversity of CNS maintained by the maize major copy 

and minor copy for negatively (blue) and positively (red) correlated gene pairs. (D) Correlation 

of expression levels of the maize major copy genes with their sorghum homologous genes (red) 

and minor copy genes with their sorghum homologous genes (green) in shoots for genes with 

negatively correlated expression patterns across maize tissues in Fig. A. 
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