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Abstract

As a result of millions of years of transposon activity, multiple rounds of ancient
polyploidization, and large populations that preserve diversity, maize has an extremely
structurally diverse genome, evidenced by high-quality genome assemblies that capture
substantial levels of both tropical and temperate diversity. We generated a pangenome
representation (the Practical Haplotype Graph, PHG) of these assemblies in a database,
representing the pangenome haplotype diversity and providing an initial estimate of structural
diversity. We leveraged the pangenome to accurately impute haplotypes and genotypes of
taxa using various kinds of sequence data, ranging from WGS to extremely-low coverage
GBS. We imputed the genotypes of the recombinant inbred lines of the NAM population with
over 99% mean accuracy, while unrelated germplasm attained a mean imputation accuracy of
92 or 95% when using GBS or WGS data, respectively. Most of the imputation errors occur in
haplotypes within European or tropical germplasm, which have yet to be represented in the
maize PHG database. Also, the PHG stores the imputation data in a 30,000-fold more space-
efficient manner than a standard genotype file, which is a key improvement when dealing with
large scale data.

Introduction

The functional diversity of maize (Zea mays ssp. mays L.) makes it one of the most important crops,
enabling its adaptation across the world (Hake & Ross-Ibarra, 2015). Maize is also genomically
diverse, having gone through two rounds of whole-genome duplication, one ~70M years ago when
grasses diverged (Paterson et al., 2004), and a second one ~11M years ago, an allotetraploidization
event that was followed by diploidization (Gaut & Doebley, 1997). In addition to whole-genome
duplication events, tremendous activity by transposable elements has further contributed to its
genome diversity (Oliver et al., 2013). Previous studies have found considerable variability in the
presence and absence of transcribed genes due to transposon activity (Fu & Dooner, 2002)(Lai et al.,
2005). More recent analyses have leveraged whole-genome assemblies, allowing a detailed view of
the extent of the intraspecific changes between maize varieties. These have identified signals of gene
reordering, copy number, and other structural variations (Sun et al., 2018), with some cases
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accounting for 1.6Gb (equivalent to ~50% of the genome of B73) of variable transposable element
sequences (Anderson et al., 2019).

Because maize is both a powerful system for genetics and evolutionary research, along with being a
major crop worldwide, accounting for over 38% of the world’s cereal production (FAO, 2018), it has
been genotypically characterized through different approaches that suited each community's needs
and the technology available at the time. However, there is a tremendous need to leverage
knowledge across these disciplines to facilitate breeding and understand the molecular and
evolutionary basis of diversity. This paper leverages the recently assembled NAM founders and
various types of sequencing data from thousands of maize lines to call high-density SNP genotypes at
a unified set of sites.

The maize Nested Association Mapping (NAM) population was created as a resource for capturing a
large proportion of broad maize diversity in a single population. It represents a highly studied set of
~5,000 recombinant inbred lines, generated from the single seed descent of an F1 crossing between
25 diverse maize inbreds and into a common parent, B73 (McMullen et al., 2009), allowing for the
dissection of the genetic components underlying the control of maize phenotypes. The NAM
population mapping resource (Buckler et al., 2009) has been utilized to identify quantitative trait loci for
various complex traits (Gage et al., 2020). A recent NSF funded project (NAM Genomes Project,
2020) has produced extremely high-quality chromosome level assemblies of the NAM founders by
combining long-read sequencing and optical mapping technologies. This is the first time the maize
community has had a large set of equal quality assemblies. Here we aim to leverage these
assemblies through a pangenome graph to impute the NAM population’s genotypes and other diverse
germplasm.

Genotyping technologies vary in cost, accuracy, and number of sites and samples that can be
genotyped in a single experiment (Romay, 2018). Specifically, the public maize community has used
three major platforms: 1) Genotyping by Sequencing (GBS) has been used on tens of thousands of
samples (Gouesnard et al., 2017; Rodgers-Melnick et al., 2015; Romay et al., 2013; Romero Navarro
et al., 2017; Wu et al., 2016), but is challenged by short-read mapping issues and single-reference
biases; 2) whole-genome sequencing (WGS) has been used in thousands of samples (Bukowski et al.,
2018; Wang et al., 2020), with high variability in coverage and a similar reference mapping bias; and
3) SNP arrays, used to genotype thousands of samples over 55K and 600K sites (Unterseer et al.,
2014; Xu et al., 2017), which by design have a predefined set of variant positions which are targeted to
be genotyped. Additionally, new amplicon approaches (e.g., rhAmpSeq (Zou et al., 2020)) continue to
be developed to increase the number of samples genotyped in a single experiment. All these distinct
approaches represent a hurdle that needs to be addressed whenever there’s an interest in analyzing
across genotyping experiments. Whole-genome imputation with a pangenome allows each of these
technologies’ strengths and weaknesses to be complemented.

Imputation is the process of predicting genotypes that cannot be directly determined in a sample
undergoing genotyping. In human studies, imputation approaches tend to leverage large reference
panels (Browning et al., 2018; Das et al., 2016), composed of thousands to tens of thousands of
samples with haplotypes identified through extremely dense SNP sets (Bycroft et al., 2018; McCarthy
et al., 2016; Telenti et al., 2016). In the case of samples not represented by a reference panel, or
when expecting some degree of relationship between the individuals in the sample, other imputation
approaches attempt to identify identity-by-descent (IBD) segments from individuals that happen to
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have genotypes with higher marker density than the rest in the sample. The presence and
identification of IBD segments allow un-genotyped SNPs’ imputation in lower density individuals by
identifying their underlying haplotype. However, the human genome is an order of magnitude less
diverse than plants like maize, and genotyping platforms for plants generally produce much less dense
genotype marker sets. BEAGLE (Browning & Browning, 2013) is a leading tool in humans for within-
sample imputation; it is also commonly used in crops, as it performs reasonably well in diverse and
heterozygous populations with stable marker sets or high coverage (Chan et al., 2016; Pook et al.,
2019). Other imputation approaches aim to leverage the peculiarities of populations within breeding
programs; examples are FILLIN (Swarts et al., 2014), which utilizes breeding bottlenecks to capture
libraries of haplotypes, and Alphalmpute (Hickey et al., 2012), which leverages the complex pedigrees
of the samples under study to impute them.

To better capture the diversity of the plant genomes, some approaches represent this diversity as a
collection of haplotypes in a graph, such as VG (Garrison et al., 2018). However, at present, VG
cannot deal with the level of diversity in species such as maize. Another haplotype graph approach
that can address this is the Practical Haplotype Graph (PHG) (Bradbury et al. in prep). In sorghum, a
plant species more diverse than humans, the PHG was used to leverage haplotypes derived from
parental samples, sequenced at high coverage, to impute progeny sequenced at very-low coverage
(Jensen et al., 2020). Imputation in maize is challenging because of the high levels of divergence and
repetitiveness result in poor read mapping. Also, its structural variation makes any single reference
genome a poor model for the entire species. However, maize has an extensive collection of inbred
varieties, where phasing of alleles becomes unnecessary. Through domestication, maize has gone
through various selection bottlenecks, generating a modest subset of highly diverse haplotypes, as
most of its diversity evolved in the hundreds of thousands of years before domestication. Here, by
generating a database of haplotypes from the NAM founders, we try the first implementation of the
PHG to impute samples within the structurally diverse maize species.

This paper asks whether the PHG, implemented as a database of haplotypes and an imputation
platform, can address the issues of read mapping, haplotype library completeness, and suitability for
genomic and breeding applications. The PHG pangenome representation and alignment processing
should help deal with read mapping issues, which we tested with GBS and WGS data. Haplotype
libraries are very useful in imputing across breeding programs (e.g., FILLIN), and here we test if the
haplotype diversity from the NAM founders can be leveraged through the PHG for genotyping across
the NAM RILs and a diverse population. Finally, we compare the PHG imputed genotype calls with
known genotype benchmarks for each population to assess its utility in general breeding or genomic
analysis.

Results

Representation of the pangenome in the PHG

A Practical Haplotype Graph database was constructed from 27 diverse inbred lines: the 26 parents of
the Nested Association Mapping panel (McMullen et al., 2009; NAM Genomes Project, 2020) and
B104 (reference TBA). The database consists of 71,354 reference ranges: regions from physical
intervals of the B73 AGPv5 genome sequence. The edges for each reference range are defined by the
starting and ending points of the gene annotations for the B73 assembly, resulting in alternating genic
and intergenic reference ranges. These reference ranges allow for the identification of the haplotypes
in the pangenome through the sequence aligned to them from each of the 26 other assembilies. In
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some cases, reference range breakpoints (i.e., edges of genes) could not be aligned from the non-B73
to the B73 assembly, likely due to presence-absence variation.

On average, non-B73 assemblies had sequences aligned to ~87% of the B73 reference ranges
(Fig.1). 80% and 69% of intergenic and genic ranges were present in all taxa (Fig.2). When comparing
each NAM founder’s background, it is apparent that tropical and sweet types have more missing
haplotypes relative to the selected B73 reference. However, the sequence contained in the database
does represent an average of 99% of each assembly (Fig.3), indicating that almost the complete
sequence of them is represented in the stored haplotypes. Additionally, the genome coverage is not
affected by the background. The assembly for Oh7B is a relative outlier due to a translocation of
sequence between Chr9 and Chr10 (Albert et al., 2010). Our pipeline, which aligns pairs of equivalent
chromosomes, misses those haplotypes. However, this translocation is not present in the Oh7B
lineage used in breeding programs nor the creation of the NAM RILs. The next version of the PHG
database will address this translocation to represent the NAM version of Oh7B.

Comparing each assembly to B73, we identified a median of 1M genic SNPs and 8M intergenic SNPs,
for a combined total of 43.1M SNPs over all the assemblies in the database (Fig.4). B73 genic and
intergenic divergence agrees with known pedigree backgrounds.
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Fig.1. Percent of defined reference ranges with identified haplotypes in the assemblies stored in the
database. B73 is at 100 as it is the assembly defining the haplotype regions.
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Fig.2. Reference range haplotype missingness. For genic (a) and intergenic (b) regions. A large
portion of the reference ranges is found across all taxa, with a small portion of them being private to a
subset. Bars at 0, not shown, represent 69% and 80% of genic and intergenic ranges being found
across all taxa, respectively.
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Fig.3. Percent of total assembly sequence contained in the PHG database for each assembly. Note
that regardless of haplotypes not being identified for several reference ranges, the final length of the
sequence contained is not severely impacted, as “novel” sequences potentially found surrounding the
missing haplotypes are included in the adjacent reference range.
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Fig.4. Number of SNPs identified on the haplotypes for each assembly’s reference ranges, over genic
(a) or intergenic (b) regions. Known genetically close varieties to B73 show the least number of SNPs,
while more distant ones have higher numbers.

Genotyping and imputation of related lines using GBS

As an initial test for the maize PHG, we mapped GBS reads from 4705 accessions of the NAM RIL
population. The GBS reads are generated with earlier lllumina/Solexa sequencers having ~70bp in
length with extremely low coverage (more modern technologies would produce longer and more
reads). These were mapped to the pangenome to impute haplotypes and generate SNP calls. To
evaluate the imputation accuracy against existing results, we compared the imputed SNPs to 1,106
legacy SNPs (McMullen et al., 2009) and observed an average error rate of 0.8% (Fig.5a and 5b). The
families with the larger error rates have known residual heterozygosity, CML52 at 1.4%, Tzi8 at 1.7%,
and CML228 at 1.8%. The error rate by position appears evenly distributed throughout the
chromosomes (Fig.Sup.1), except for three positions in chromosomes 4, 7, and 8, where all families
have higher than average error rates for a subset of the taxa.
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Fig.5a. Evaluation of imputed sites for each NAM RIL over 1107 uplifted legacy SNPs used as a
benchmark. Evaluations are grouped by family for simplified viewing. Bars are sorted by percentage of
errors. No calls are the product of residual heterozygosity, low density and missing data in benchmark

SNPs, or small unresolved breakpoints between the GBS reads.
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Fig.5b. Per family accession error. Colored by family background. Y-axis is log10 scaled. The
presence of a few outliers in individual families does not increase the average family error rate. The
background does not affect imputation accuracy.
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Fig.Sup.1. Sum of percent errors by chromosomal position. Some positions stack up a large proportion
of the individually small errors across families (e.g., chromosomes 4, 7, and 8). Not shown here, some
positions concentrate a majority of the errors of individual families (e.g., chromosome 6 for CML228,
chromosome 10 for CML52)

Imputation of unrelated lines using GBS and WGS
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To assess the PHG’s ability to impute samples indirectly related to the included haplotypes, we tested
it on the Goodman Association Panel population, which includes diverse global breeding lines (Flint-
Garcia et al., 2005). After mapping both GBS reads and WGS reads for a subset of them, we imputed
haplotype paths and called SNPs as with the NAM RILs. The uplifted 600K Axiom SNP array was
used as a benchmark; however, this benchmark is biased toward temperate and European diversity
(Unterseer et al., 2014).

We first compared the SNPs imputed by the PHG from GBS reads. We were able to identify an
average error rate of 3.4% (Fig.6). For taxa represented in the PHG, we saw an average of 0.7% error
rate, while for taxa not found in the database, the average error rate was 8.3%. F7 and EP1 had the
highest error, at 10% and 12%, respectively. This was not unexpected, as they represent taxa with a
European background that is not well represented in the current pangenome (NAM parents plus
B104). We saw negligible differences in the accuracies between genic and intergenic regions, having
overall average error rates of 3.4% and 3.5%, respectively (data not shown).

To assess the effect of having higher sequencing coverage and depth, we evaluated SNPs imputed by
the PHG from WGS reads. We observed a decrease in the proportion of errors to an average of 2.2%
(Fig.7), with average error rates of 0.7% and 5.3% for taxa represented or missing from the database,
respectively. The average genic and intergenic error rates were 1.9% and 2.5%, respectively. The
largest effect, albeit still small compared to when using GBS reads, was on the number of imputed
sites; the average percentage of missing sites decreased from 4.5% to 2.2%.

100.0%

90.0%

Percent

SR R R A P A WP~  NK. AR N S "N 9 O A N A T T S S~ S ST NN
F RN AN L. U O AN, SE ) I\ R - A A QL R R o3 A Do A R
< D7 4 QY a0t @ S L S L - R AV Vs ] AT >R v T Q L ] U LA GNAY
3 W o v R T & 0 o8 B R ) \s‘\'\ﬁ * N &8
taxa
evaluation Error NoCall Correct

Fig.6. Evaluation of imputation of the Goodman Association Panel population using GBS data.
Evaluated against the uplifted 600k Axiom SNP array. Blue and orange show the proportion of correct
and erroneous calls, respectively. In yellow are the proportion of SNPs where the benchmark SNP
was heterozygous and masked, or where the PHG does not impute that site. Bars are sorted by
decreasing error-rate.
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Fig.7. Evaluation of imputation for a subset of the Goodman Association Panel population through
WGS data. Evaluated against the uplifted 600k Axiom SNP array. Blue and orange show the
proportion of correct and erroneous calls, respectively. In yellow are the proportion of SNPs where the
benchmark SNP was heterozygous and masked, or where the PHG had not imputed that site. Bars
are sorted by decreasing error-rate.

Assessing causes that influence error rates

To identify the causes driving the errors, we analyzed four potential causes: missing haplotypes,
recombination rate, minor allele frequency, and haplotype read counts.

Missing haplotypes
We compared the clustering of the errors across the genome to identify whether errors are due to
missing haplotypes or rare alleles (Fig.8). When compared with a set of SNPs with randomized
positions, we observed that errors are clustered in longer runs than expected at random. This effect is
stronger when imputing taxa not represented in the database. This indicates that the current
pangenome is missing haplotypes over a small set of reference ranges, which produce most of the
errors. The inclusion of rare alleles not present in the database (~44,000 sites) has no effect (data not

shown). The main source of error in the current pipeline is from the absence of important haplotypes,
not rare alleles.
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Fig.8. Runs of erroneously imputed sites. Imputing taxa present in the PHG haplotype database
permits for longer runs of correctly imputed SNPs, with taxa not present in the PHG database having
longer stretches of incorrectly imputed SNPs. Randomized allele positions are sampled randomly from
30% of the sites for each taxon and chromosome. Taxa were grouped by whether they were
represented in the pangenome database (blue) or not (red).

Recombination rate
Another potential source of errors arises when samples have recombination within a reference range,
resulting in two or more haplotypes. This is likely due to different rates depending on location in the
genome, given that that recombination in maize occurs in a frequency that can vary within nearly two
orders of magnitude along chromosomes (Rodgers-Melnick et al., 2015). Higher recombination rates
should decrease the PHG’s ability to represent haplotypes accurately. However, higher recombination
rates occur near genic areas. Because gene boundaries were used as haplotype breakpoints, the
effect of recombination rate on errors could be minimal. We tested if the recombination rate was
correlated with the error rate in 100 equally sized bins of the recombination rate (Fig.9). Error rates for
taxa not represented in the PHG database appear correlated with an increased recombination rate. As
expected, taxa within the PHG database do not show the same pattern. The inclusion of rare alleles in
the analysis did not change the effect. While minor allele frequency (MAF) correlates with error rate
(Fig.Sup.2a), MAF is only weakly associated with recombination rates (Fig.Sup.2b). This shows that
the errors are also partially driven by novel haplotypes derived from recombination. Increasing the
haplotype sampling or decreasing the reference range lengths in high recombination areas could
alleviate this problem.
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Fig.9. Binned analysis of per-site error rate by recombination rate. Averaged over 100 bins of equal
size after the data was sorted by recombination rate. Taxa were grouped by whether they were
represented in the pangenome database (green) or not (orange).
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Fig.Sup.2. Binned analysis of the per-site error rate. Effect of MAF over error rates. Averaged over 100
bins of equal size after the data was sorted by minor allele frequency (a) or recombination rate (b).
Taxa were grouped by whether they were represented in the pangenome database (green) or not

(orange).

Haplotype read counts
A large number of duplicated regions in the maize genome complicates accurate read mapping. The
PHG pipeline addresses this by keeping read mappings only when they map within a single reference
range. The identification of a specific haplotype within a reference range should increase with
haplotype coverage. To assess the sensitivity of the PHG to read mapping coverage, we tested the
effect of the number of reads mapped to the error rates on the imputed haplotypes over 100 bins of

11
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increasing mean number of mappings (Fig.10). Error rates for taxa not in the PHG database decrease
slightly with an increasing mean number of reads. As expected, this effect is smaller for taxa in the
database. In both cases, the effect was higher in genic ranges.

10.00%

Mean Percent Error
Log10

1.00%

1 10 100
Mean Haplotype Reads
Log10

RRType == Genic = = Intergenic InDB InDB NotInDE

Fig.10. Per-haplotype error rate by mean haplotype read count. Binned haplotype error rates were
calculated over 100 equally-sized bins of an increasing number of reads mapped. The analysis is
shown separately by genic or intergenic reference range type and taxa grouped by whether they were
represented in the pangenome database (green) or not (orange).

With the sequence context for over 40 million SNPs, this maize PHG database occupies a modest
83GB of disk space, being effectively only slightly larger than the genomes it represents. For
comparison, a VCF file for the same taxa number, without haplotype data or mapping information,
requires over 1TB of space. By leveraging the diverse NAM founders and their high-quality assemblies
through the PHG, we have shown its utility in imputing related and unrelated samples. While the
current database cannot perform as accurately on accessions with unrepresented haplotypes, we
expect the future addition of a relatively small set of assemblies will address this issue. We expect the
maize PHG will enable the community to more efficiently and effectively identify the genetic
mechanisms underlying the control of many more phenotypes.

Table 1: Populations genotyped by the PHG

Population Inbreeding Diversity Sequencing Depth
NAM RILs High Low Low
Goodman Association High Moderate Low
Panel GBS
Goodman Association High Moderate High
Panel WGS

Table 2: Summary Main Genotyping results
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Population Panel NAM - 1k legacy Goodman Association Panel - 600k
SNPs Axiom SNP chip
Taxa in PHG database\Data type GBS GBS WGS
Average PHG In DB 99.2% 99.3% 99.3%
benchmark
agreement Not in DB 91.7% 94.3%

*Considering only imputed and not heterozygous sites in the benchmark.

Discussion

Here we have presented a first maize PHG, a pangenome haplotype database, and a genotyping
pipeline that allows the accurate imputation and reconstruction of whole-genome haplotypes and
genotyping with minimal information. By parting from the concept of a closed pangenome, where a
limited number of taxa can represent virtually all of the haplotypes found in a species, we leveraged
the NAM assemblies in the PHG to create a novel genotyping and imputation tool. The maize PHG will
thus facilitate community genotyping efforts by achieving higher accuracy of imputation and
implementing a standardized approach that will return consistent results from low coverage
sequencing.

Processing the assemblies through the PHG pipeline allows us to identify homologous haplotypes
among the included assemblies for most defined reference ranges. Previous analyses of variation in
intergenic (Anderson et al., 2019) and genic regions (Sun et al., 2018) show a relatively similar pattern
to the results observed in this maize PHG database, having regions essentially shared at ~80% rate,
with a relatively small subset of them being mostly missing in the majority of taxa. This is only a first
approach, as potentially a more complete gene model set, resulting in smaller reference ranges, might
better reflect the presence/absence variation of more refined haplotypes. Additionally, choosing a
distinct base reference that more closely resembles the larger pangenome might also allow for the
more direct dissection of otherwise less common haplotypes.

By imputing haplotypes known to be within our database, as shown with the NAM RILs, we
demonstrate the pangenome’s ability to act as a useful target for read mapping. Moreover, the pipeline
functions as an effective tool to process these mappings and accurately identify the underlying
haplotypes from which those reads are derived. This is of particular interest for the maize and general
plant communities, due to the frequently high repetitive nature of their genomes, where the
unambiguous mapping of short sequences continues to be a challenge for accurate and large scale

genotyping.

Assessing the genotyping accuracy on the diverse Goodman Association Panel population, we also
show that this current maize PHG database, while effective, is missing a relatively small but significant
portion of the broader maize pangenome. As opposed to rare alleles, this lack of haplotypes was the
main source of errors, as evidenced by the clustering of errors in a subset of the haplotypes and over
those regions with a high recombination rate. This is particularly the case for samples of European
backgrounds, which are not well represented in the implemented database. We expect an increase in
haplotype diversity within the PHG database, by including additional diverse genomes such as those
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from CIMMYT maize lines, will allow the PHG to be a one-stop solution for the accurate genotyping of
most maize lines.

This first maize PHG database consists of a pangenome haplotype database from 27 high-quality
maize assemblies. It includes the information on the mapping and imputation of over 5,000 NAM RILs
and Goodman Association Panel accessions. We expect that this maize database, along with the
broader PHG pipeline, through its ability to generate accurate genotype calls using either GBS or
WGS reads, small computational footprint, and ease of transferability will help the maize community
achieve accurate and inexpensive genotyping, enabling more analyses to discover the genetic basis of
many more phenotypic traits.

Materials and Methods

Building the PHG

We populated a maize PHG database (Bradbury, 2020) to store the pangenome’s information and
keep track of reference ranges, haplotypes, mappings, and paths imputed. Briefly, the PHG is a
relational database that divides the reference genome in ranges, subdivides other pangenomes in
similar ranges, and allows for rapid and efficient storage and retrieval of information about the
reference ranges, component haplotype IDs, and paths. A Java and R API have been developed for
the PHG software package to implement and interact with this pangenome database (Bradbury, 2020;
Bradbury et al., 2007).

To populate the maize PHG database, we generated a pangenome by leveraging the high-quality
assemblies for the 26 diverse NAM parents (NAM Genomes Project, 2020) and B104 (reference TBA).
To define the pangenome haplotypes, we took a three-stage approach. First, we selected the B73
RefGen_v5 (MaizeGDB, 2019) as the base reference. This allows for a direct comparison with existing
genotyping platforms and results. Second, we defined the haplotype regions by choosing a set of
reference ranges. We selected the B73 RefGen_v5 gene regions (Zm00001e.1) to allow for haplotype
boundaries that are: clearly defined, of biological significance, and more likely to be conserved. We
used the 35,677 genic regions as breakpoints for the definition of the 71,354 B73 haplotypes. Third,
we used Mummer4 (Margais et al., 2018) to identify the haplotypes in those regions on each
assembly. Briefly, the assemblies were divided into individual chromosomes. Each chromosome was
aligned against the B73 RefGen_v5 equivalent using the nucmer program of Mummer4. Testing
values for the -c parameter between 150-500, we set the value to 250, to find a balance between
speed and the length of maize exons (Haberer et al., 2005; MaizeGDB, 2020a). These alignments
were then processed, with each reference range in each assembly having a haplotype ID assigned
and stored in the database. Insertions or deletions found within each reference range are stored as
part of the identified equivalent haplotype, regardless of their size. Reference ranges for taxa that do
not produce an alignment are left empty (Bradbury, 2020).

Alignment to Pangenome

To evaluate the ability of the PHG to impute haplotypes, we utilized the GBS reads originally
generated for the NAM (Rodgers-Melnick et al., 2015) and the Goodman Association Panel (Romay et
al., 2013). Additionally, WGS paired-end reads (Bukowski et al., 2018) were obtained for a subset of
the Goodman Association Panel samples (SRA study accession number SRP108889), which had also
been genotyped with the Axiom 600k SNP array (Unterseer et al., 2014). This allows us to compare
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the ability of the PHG to impute haplotypes to a distinct and diverse set of sequencing data. CO125
was removed from the analysis as its genotyping data suggests a sample mixup in its sequencing.

The reads were mapped to an index of the pangenome generated by minimap2 (Li, 2018) (Ver. 2.17-
r941). We set parameters -k 21 -w 11 -1 90G to reflect the recommended short read alignment kmer
size and the necessity of having the complete pangenome sequence loaded into memory at once.
Failing to set -l large enough to fit the whole pangenome in RAM returns a multi-part index, which
produces poor mapping processing results. The read mappings made use of the short read heuristics
(-k21 -w11 --sr --frag=yes -A2 -B8 -012,32 -E2,1 -r50 -p.5 -N25 -f1000,5000 -n2 -m20 -s40 -g200 -
2K50m --heap-sort=yes). To maximize the likelihood of getting read mappings to all matching
haplotypes, we modified the flag -N to produce 25 secondary mappings. The mappings were then
processed through and stored in the PHG database. Briefly, only edit distance optimal alignments are
considered, reads that map to multiple reference ranges are discarded, and reads that map to specific
haplotypes are identified among the read mappings for the haplotypes within the reference range.

Imputation evaluation

Once the read mappings are loaded into the PHG database, imputation is done by finding a path
through the haplotype graph using the BestHaplotypePathPlugin in the Java PHG API. Briefly, the
read mappings are used to count the number of times reads mapped to each haplotype. Using these
counts, and the transition probabilities between adjacent haplotypes, an HMM algorithm finds the most
likely haplotype path through the graph. The parameter minReads is set to 0 so that the algorithm
imputes haplotypes for all reference ranges, including those that have no reads mapping to them. The
resulting imputed paths are stored in the PHG database. Finally, all SNPs within imputed haplotypes
are exported as a VCF file (PathsToVCFPIugin). This generates a 1TB VCF with >42M sites for the
4,705 NAM accessions. A similar process was followed to impute and generate the SNP calls for the
Goodman Association Panel’s taxa.

An SNP benchmark set was defined for the NAM RILs and Goodman Association Panel population
samples to evaluate imputation accuracy. For the NAM population, the 1,144 legacy SNP set
(McMullen et al., 2009), NAM_map_and_genos-120731.zip, was obtained (Panzea, 2009) and uplifted
from AGPv2 to v5 in a two-step approach. First, from the original v2 to v4, we used CrossMap (Zhao et
al., 2014) and the corresponding chain file (ENSEMBL, 2020). These were then uplifted from v4 to v5
using the liftover_vcf pipeline (https://github.com/qisun2/liftover_vcf) and a v4 to v5 chain file
(MaizeGDB, 2020b). This returned 1,106 variant sites uplifted to v5 coordinates, which we then used
to compare our imputation results. For the Goodman Association Panel, the 600 K (Unterseer et al.,
2014) Axiom SNP array was uplifted from AGPv4 to v5 coordinate equivalents through Crossmap and
utilized as a benchmark.

Custom code was written to evaluate the accuracy of the imputed SNP calls by comparing them to the
benchmarks. In short, the imputed VCF files were intersected with the Axiom SNP sites using bedtools
(Quinlan & Hall, 2010). These VCF files were then loaded into R (R Core Team, 2018) through the
SNPRelate package (Zheng et al., 2012). Heterozygous genotypes in the benchmark were set as
missing, as the haplotypes are expected to be homozygous, and the current pipeline imputes
homozygous SNPs. Then, the two sets of SNPs were matched to the equivalent taxa, and the
correspondence of reference or alternate allele calls were evaluated as correct or incorrect if they
agreed or not. Error rates are calculated as the number of incorrect allele calls divided by the total
number of correct and incorrect calls. For sites on taxa where the PHG makes no allele call, or where
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the benchmark has a heterozygous allele, the evaluation is set as NoCall. To identify the proportion of
errors between genic and intergenic regions, the GenomicRanges package (Lawrence et al., 2013)
was used to identify the SNPs as found within either set of regions, and the data.table (Dowle &
Srinivasan, 2019) package was then used to summarize each region type’s calls.

Assessing causes that influence the error rate

Evaluating runs of errors
SNP evaluations sorted by position were processed through the rle function (R Core Team, 2018) of R
to get the run-length of error calls on each of the chromosomes for each taxon. These runs of errors
were then analyzed by whether the taxa were represented in the pangenome database or not. A
random set of 30% of the SNP evaluations for each taxon and chromosome were selected, effectively
randomizing the SNP positions, on which we then calculated the run-length of errors. The frequency of
each of the run-length of errors was then calculated for each category.

Comparison of error rate vs. recombination rate
Recombination rates on the NAM population were obtained from (Ramstein et al., 2020). These were
uplifted from v4 to v5 through Crossmap. The uplifted values were then matched to the evaluated SNP
calls. This combined data set was then sorted by the recombination rate. The mean recombination and
error rate were calculated over 100 bins of equal size number of SNPs.

Comparison of error rate vs. minor allele frequency
Minor allele frequencies were obtained from the Axiom 600k SNP array from the taxa under analysis
through the snpgdsSNPRateFreq of the SNPRelate package. These frequencies were matched to the
evaluated SNP calls. One hundred bins of equal length were then created after sorting by increasing
recombination rate or minor allele frequency. The means for error rate, recombination rate, and MAF
were then calculated on each bin.

Comparison of error rate vs. read counts
Imputed haplotypes for each sample were obtained from the PHG database through the
pathsForMethod function of the rPHG package (Monier et al., 2019). For each taxon, read mappings
were obtained from the PHG database through the readMappingsForLineName, also of the rPHG
package. The mappings were then matched to the haplotypes imputed for each taxon. The mean error
rate and mean read count were calculated for the haplotypes over each reference range by the
sample representation status in the pangenome database and by reference range type. The calculated
values over these four categories were then sorted by the mean number of reads and analyzed over
100 bins of equal size. The mean number of reads and the mean error rate were calculated for each
bin.

The maize PHG database is publicly available through the Buckler Lab webpage:
https://www.maizegenetics.net/post/the-first-maize-phg-database-now-available

The code for these analyzes is mostly written in R and made available at:
https://bitbucket.org/bucklerlab/p_maizephg
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