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A Control Theoretic Look at Granger Causality:
Extending Topology Reconstruction to
Networks With Direct Feedthroughs

Mihaela Dimovska “” and Donatello Materassi

Abstract—Reconstructing the causal structure of a net-
work of dynamic systems from observational data is an
important problem in many areas of science. One of the
earliest and most prominent approaches to this problem
is Granger causality. It has been shown that in a network
with linear dynamics and strictly causal transfer functions,
Granger causality consistently reconstructs the underlying
graph of the network. On the other hand, techniques that
allow for the presence of direct feedthroughs usually as-
sume there are no feedback loops in the dynamics of the
network. In this article, we develop an extension of Granger
causality that provides theoretical guarantees for the re-
construction of a network topology even in the presence of
direct feedthroughs and feedback loops. The only required
assumption is a relatively mild condition of well-posedness
named recursiveness, where at least one strictly causal
transfer function needs to be present in every feedback
loop. The technique is compared with other state-of-the-art
methods on a benchmark example specifically designed to
include several dynamic configurations that are challeng-
ing to reconstruct.

Index Terms—Learning (artificial intelligence), stochastic
processes, system identification, time series analysis.

NOTATION
i, © = 1,...,n : Wide-sense stationary processes.
e;, t = 1,...,n: External excitation processes.

AT : Transpose of a matrix or vector A.

C: Field of complex numbers.

F: Set of potentially noncausal discrete-time finite-dimensional
linear time-invariant systems.

F*: Set of causal discrete-time finite-dimensional linear time-
invariant systems.

H (z): Transfer matrix.

(yi,y;): Inner product between two elements y; and y, in a
pre-Hilbert space.

Z(+) : Z-transform of a signal.
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Dy, (2) 1 = 2[Ry, (7)](2) : Cross-power spectral density.

1. Delay operator.
W lyill(y1s..yn) (2): Component associated with y; in the
Wiener filter estimating v from y1, . . ., Y.
|. INTRODUCTION

ETWORKED and modular systems arise naturally in di-
N verse fields such as biology [1], [2], neuroscience [3],
economics [4], political science [5], [6], and social networks [7].
In many application scenarios the objective of the investigation
is to infer how the individual components of the network affect
and influence each other. While in some cases we have access
to, or can directly manipulate the system under consideration,
[8]-[13], there are more challenging scenarios, allowing only
for noninvasive observations of the system. By noninvasive
observations, we mean observations of the system outputs ob-
tained under standard operating conditions and unknown ex-
ternal excitations. A wealth of different methodologies have
been developed to recover the network graph from noninvasive
observations [14]-[20]. These methods have different a priori
assumptions about the system and achieve different reconstruc-
tion outcomes. On one end of the spectrum, some methods
assume that the underlying graph structure is known and they
pursue the identification of the dynamics that govern the direct
couplings [18], [21]. On the other end of the spectrum, there are
techniques whose very objective is to reconstruct the network
structure, while the quantitative identification of the transfer
functions might be a complementary goal [19], [22], [23], or
not pursued at all [20]. The results developed in this article fall
in the latter class of techniques, since an algorithm is provided
with the primary goal of determining the underlying unknown
topology (undirected structure) of a dynamic network.

To this end, most techniques make some assumptions regard-
ing the dynamics between the variables in order to obtain theoret-
ical guarantees. A typical case is given by Granger causality [24],
where the consistency of the reconstruction is guaranteed in the
linear case when all the transfer functions are strictly causal [20],
[25], [26]. In [27], the authors provide an analogous result, but
formulated in the continuous domain, where a by-product of the
procedure is also the identification of the transfer functions in
the network. Similarly, a recent result in [23], under the strict
causality assumption, tackles the problem of reconstructing a
network of heterogeneous data sets via linear regressions.
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A fundamental challenge to these methods is the presence of
transfer functions with direct feedthroughs.

Although there are methods posing no restrictions on the
presence of direct feedthroughs, they typically require some
assumptions on the underlying graph of the network. For ex-
ample, the work in [28] provides an algorithm that recovers the
exact topology for an acyclic network while the work in [29]
specifically targets polytrees.

Reconstructing a network with direct feedthroughs, while
making minimal assumptions on the network topology, is an
active area of research [30]—[32]. Schiatti et al. [32] slightly
modify Granger’s test for causality attempting to capture con-
temporaneous influences, as well. In [30], the detection of links
in a network is obtained via tests that make use of directed infor-
mation. The work in [31] provides a two-test method with the
goal of detecting strictly causal and nonstrictly causal operators
in the network. However, these methods typically do not provide
any theoretical guarantees.

In this article, we provide a method, with theoretical guar-
antees, for the reconstruction of the underlying topology of a
large class of dynamic systems when direct feedthroughs are
present. We do not impose any restrictions on the underlying
graph structure nor on the individual transfer functions as long
as there is at least one strictly causal transfer function in every
feedback loop. In addition, we show that our technique naturally
embeds Granger causality.

This article is organized as follows. In Section II, we introduce
some preliminary notions including linear dynamic influence
models (LDIMs) [33], the class of models which are the object of
investigation in this article; Section III contains the main results,
namely two theorems characterizing properties of predictors in
LDIMs; these results lead to the derivation of the Mixed Delay
(MD) algorithm described in Section IV; Section V makes use
of a benchmark example specifically designed to include several
dynamic configurations that are challenging to reconstruct and
compares MD algorithm with other state-of-the-art methodolo-
gies. Finally, this article concludes in Section VI.

[I. PRELIMINARY NOTIONS

In order to derive the main results, we first briefly recall
some notions of graph theory and then introduce appropriate
vector spaces of stochastic processes (see Section II-A) where
causal Wiener filtering can be reinterpreted as a projection (see
Section II-B) and the class of networks we are investigating (see
Section II-C). We denote a directed (undirected) graph G as a
pair (V, EY) where V is a set of vertices or nodes and E is a set of
directed (undirected) edges (see [34]). Following [35], we define
the skeleton of a directed graph as the undirected graph obtained
by removing all self-loops (edges from one node to itself) and
the orientations from the remaining edges.

On a directed graph we also recall what “chains” (or “directed
paths™) are (see [33]-[35] for the formal definition). A chain
starting from y; and ending in y; is an ordered set of contiguous
edges in

((yw17y7r2)7 (y71‘27y71'3)7 MR | (yﬂ'g,27yﬂ'g,1)7 (y7l'1{,17y7l'[))

G-

Fig. 1. Multi-arrowed graph G with single-headed set of edges F; =

{(y1,93), (y3,94), (ya,¥2), (y1,¥4)} and a double-headed set of edges
Eo = {(y2,y3), (ya,y1)}, E1NEy=(. Observe that this graph is
recursive.

where Y-, = yi, yr, = y;. We also use the standard notions of
parents, children, ancestors, descendants in a directed graph G
[33]. A vertex y; is a parent of a vertex y; if there is a directed
edge from y; to y;. In such a case, we also say that y; is a child
of y;. Furthermore, y; is an ancestor of y; if y; = y; or there is
a chain from y; to y;. In such a case, we also say that y; is a
descendant of y;.

For the developments of this article, we also make use of
a special instance of typed graphs, which is an extension of
directed graphs. A typed graph is a directed graph which allows
for multiple edges of different type between two vertices [36].
In this article, we consider edges of two types: single-headed
edges and double-headed edges.

Definition 1 (Multi-arrowed graph): A multi-arrowed graph
is a t-ple G = (V, Eq, E5) where E1, the set of single-headed
edges, and FE5, the set of double-headed edges, are disjoint
subsets of V' x V.

We can graphically represent a multi-arrowed graph G =
(V, Ey, E5) by drawing a single-headed edge from node y; to
y; if (y;,v;) € B4 or a double-headed edge from node y; to y;
if (y;,y:) € E>. An example of a multi-arrowed graph is given
in Fig. 1.

Note that all the node relations extend naturally to multi-
arrowed graphs by considering £ = E; U E» as aset of standard
edges. For example, vertex y; is a parent of y; if there exists
an edge (y;,y;) that is either in F4 or in Es. Furthermore, if
(vi,y;) € E1 we say that y; is a single-headed parent of y;,
while if (y;,y;) € Eo we say that y; is a double-headed parent
of y;. In particular, we will focus on recursive multi-arrowed
graphs.

Definition 2 (Recursive multi-arrowed graph): We say that
the multi-arrowed graph G = (V, Ey, Es) is recursive if in every
directed loop there is at least one double-headed arrow.

Observe that the multi-arrowed graph in Fig. | is indeed
recursive.

A. Transfer Function Span Spaces

We define the space of processes used in the development of
our theoretical framework.

Definition 3 (Rationally related random processes): Let &£
be a set containing discrete-time scalar, zero-mean, jointly
wide-sense stationary random scalar processes such that, for
any e;,e; € £, the power spectral density ®..;(z) exists,
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is real-rational with no poles on the unit circle and given
by ®c.c,(z) = A(z) 'B(z), where A(z) and B(z) are
polynomials with real coefficients such that A(z) # 0 for any
z € C, with |z| = 1. Then, we say that £ is a set of rationally
related random processes.

We also introduce a class of linear operators F of discrete-time
finite dimensional linear time-invariant systems, to transform
sets of rationally related random processes.

Definition 4: The set F is defined as the set of real-rational
transfer functions that are analytic and invertible on the unit
circle {z € C| |z| = 1}. Given a transfer function H(z) € F,
it can be uniquely represented in the time domain by a biinfinite
sequence hy, (the impulse response of H (z)) satisfying

H(z) = Z hyz " (1

k=—o00

for all |z| = 1. If £ < 0 implies hy = 0, then we say that the
transfer function is causal. We define the space of causal transfer
functions as F 1. If k < 0 implies hj, = 0, then we say that the
transfer function is strictly causal.

As a notation, we define y = H(z)e as the process obtained
by computing the convolution of e with the impulse response
of H(z), namely y(t) = > hy_re(k) for all t € Z. For ex-
ample, %e denotes the process e delayed by one time step. For
a set of processes S = {y1,...,yn}, we denote by H(z)S the
set {H(2)y1, ..., H(2)y,}. For example 1S denotes the set of
all the processes in S delayed by one time step. It is possible to
filter a finite number of rationally related processes with transfer
functions in F or FT to obtain a space of rationally related
processes.

Definition 5 (Transfer function spans): Given a set £ of ra-
tionally related random processes, we define the transfer func-
tion span and the causal transfer function span as

tfspan(E)
= ]:{g = {y = ZHk(z)€k|ek €& Hy € ]:}
k

ctfspan(&)

= f+g = {y - ZHk(Z)ek |€k S gka € ‘F+} .
k

The fact that F€ and FTE are spaces of rationally related
processes is an immediate consequence of the Wiener-Khinchin
Theorem (see [37]). Also, these two spaces equipped with the
inner product

s
i) = 5 [ o ()
are pre-Hilbert spaces [20]. Such an inner product induces the
norm ||y;||* = (y;, y;) in the usual way.

Similarly to standard vector spaces, analogous properties of
unique representation of an element and subspans inclusion
properties hold in a t f span and ct f span as well, as summarized
by the following proposition.

Proposition IL1: LetY = {y1,...,ynt, V ={v1,...,om},
and W = {wy, ..., we} be sets of rationally related processes.
The following statements hold:

a) The transfer functions Hy(z) € F (or Hy € F1), k=
1,...,n, are unique if and only if the power spectral
density matrix @, (') is positive definite for almost
allw € [—m, 7.

b) If v; € ctfspan(wy,...,wy), fori=1,...,m, then
ctfspan (Y, ..., Yns V1, .., 0m) C ctfspan
(y17 ce Yn, Wi, - .71.U£) .

c) Let ¢ = >}, Hi(2)yg, with Hi(z) € F (or Hi(z) €
Fhyfork=1,...n If Hy(z)e F,fork=1,...,n,
then

tfspan (1179% .. ay’n) = tfspan (ylvaa i ayn)

if and only if Hy(z)"! € F. Similarly, if H), € F* for

k=1,...n,
thspan (Q7 Y2, yn) = ctfspan (y17 Yz, - yn)
if and only if Hy(z)"! € FT.
Proof: See Appendix A— C. ]

B. Causal Wiener Filtering Formulation for Causal
Transfer Functions Spans

The goal of this section is to reformulate the well-known
notion of causal Wiener filtering in terms of causal transfer
function spans.

Proposition I1.2 (Causal Wiener Filter): Let v and
Y1, ..., Yn be processes in the space FE for some set of
rationally related processes &. Let y = (y1,...,yn)? and let
Y = ctfspan(yi,...,yn). Consider the problem

. . 2
0 = arg min .y [[v —q|” .

The solution ¢ € Y exists and admits the form & = W (z)y.
If ®,,(e™) is positive definite for w € [—, 7], the transfer
function W (z) is unique and known as the causal Wiener filter.

The proof of this proposition can be found in [20]. In general,
the Wiener filter W (z) estimating v from y1, . . ., y,, is a transfer
vector operating on the vector process y = (yl, cee yn)T. We
introduce a notation to extract the individual components of

Definition 6: Letv and y1, . . ., y, be processes in a space of
rationally related processes. Let © be the causal Wiener estimate
of v from y1,...,yn

b= Wy =3 Wil2)yi.
k=1

We denote Wy, [, 11(y1,....yn) (2) := Wi(2), namely the compo-
nent of the Wiener filter W (z) that operates on the process yj,
to estimate v from y1, . . ., Yn.

We can use the uniqueness of the process v €Y =
ctfspan(y,...y,) that best approximates a process v in the
least square sense to derive the following Lemma, which is going
to be used in subsequent proofs.
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Lemma I1.3: (Hilbert parallel translation) Let v and
Y1,---,Yn be processes in the space FE. Let Y =
ctfspan(yi,...yn). Forallw € Y

arg min,cy ||v — g||* = w + arg mincy [|(v — w) — g,

Proof: See Appendix D. |

The next two notions help us express the conditional uncor-
relation of stochastic processes using geometric concepts.

Definition 7 (Orthogonality to ct fspans): Let v  and
Yi,---Yn be m 4+ 1 rationally related processes. We say
that v is orthogonal to ctfspan(yi,...,y,), denoted as
v L etfspan(yy,...,yn), if and only if the causal Wiener filter
estimating v from yy, . . ., ¥, is the zero transfer vector.

Proposition I1.4: We have that v L ct f span(yy,) for all k =
1,...,n,ifand only if v L ctfspan(ys, ..., Yn).

Proof: See Appendix E. |

Furthermore, orthogonality can be generalized considering a
form of “conditional” orthogonality and the concept of Wiener
separated processes [38] helps us express that.

Definition 8 (Wiener Separated Processes): Let v,y1,...yn
ben + 1 processes in the space 7€ and denote y = (y1, . - -, Yn)-
We say that v and y; are Wiener-separated given the set of
processes S = {yx|k # i}, if Wy 1y.01(41.....u) (2) = 0. We de-
note this relation as wsep(v, S, y;). If, instead, .S is such that
W 1]l (w1eoum) (2) 7 0, we say that S does not Wiener separate
v and y; and we denote that as —wsep(v, S, y;).

Note that if the separating set S' is empty, Wiener separation
reduces to standard orthogonality.

C. Generative Models: LDIMs

The aim of this section is to introduce the class of LDIMs [33],
that will be the focus of the network reconstruction methodolo-
gies developed in the main section.

The underlying intuition is to construct a class of models
describing the input/output interconnectivity of components in a
network of dynamical systems. It is assumed that the dynamics
of each component (node) in the network is represented by a
scalar random process y; (for j = 1,...,n) which is given by
the superposition of its “autonomous behavior” e; and the “in-
fluences” of some other “parent nodes” through dynamic links.
The autonomous behavior on each node is assumed independent
of the others. If a certain component “influences” another, a
directed edge can be drawn and a directed graph can be obtained.
This intuition can be formalized into the definition of LDIMs.

Definition 9 (Linear Dynamic Influence Model): An LDIM
G is defined as a pair (H(z), ¢) where

1) e = (e1,...,en)7T is a vector of n rationally related ran-
dom scalar processes €1, . . . , e, such that . (z) is diag-
onal, namely ®.,., = 0 fori # j.

2) H(z)isann x n transfer matrix with entries in F. H(z)
is termed as the “dynamics” of the LDIM.

The output processes {y; =1 of the LDIM are defined as
yj = e; + Yy Hj;j(z)y;, or in a more compact way

y=ec+H(z)y 2
)T

where Yy= (yla < Yn

Y1 = 0naYs + €1 @
Yo = Q24Yy + €2

_ ; 1 p N
Y3 = sy + ozlys +e3 @

Ya = %Ua +ey @ @

(a) (b)
D D
0& ®

@) () () D
(© (d

Fig. 2. (a) LDIM defined by the scalar parameters a4, a4, @31, a32.
(b) Perfect graphical representation of the LDIM under the assumption
that all the parameters are not zero. (c) Graphical representation of the
LDIM. (d) Graph of instantaneous propagations of the perfect graphical
representation of the LDIM (as per Definition 16).

Note that the term e in the LDIM G = (H(z), ) models an
unknown external input and that if e is the zero vector, the output
1y is also zero.

For an LDIM G = (H, e), multi-arrowed graphs can be used
to suggestively represent sparsity properties of the matrix H (z)
and the strict causality of some of its entries.

Definition 10: (Multi-arrowed graph representation of an
LDIM) Let G = (H,e) be an LDIM with output processes
Yiy- e Yn. Let Vi={y1,...,yn} and let F; and Es be two
disjoint subsets of V' x V' such that

a) (yia yJ) ¢ E1 U E2 1mphes Hji =0

b) (vi,y;) ¢ Erimplies H,;(z) is strictly causal.

We say that the multi-arrowed graph G = (V, Ey, E») is
a graphical representation of the LDIM. Furthermore, if the
implications (a) and (b) hold also in the opposite direction, we
say that G = (V| Ey, E») is a perfect graphical representation
of the LDIM.

By extension, when considering a specific graphical represen-
tation of an LDIM, nodes and edges of an LDIM will mean nodes
and edges of the specific graphical representation. Observe
that the graphical representation of an LDIM provides partial
information about the entries of the matrix H,;(z) that are iden-
tically zero or that are strictly causal. Indeed, if (y;,y;) ¢ En,
then H Jz(z) is definitely strictly causal and if, furthermore,
(vi,y;) ¢ E2, wealsoknow that H;;(z) = 0. However, unless it
is known that the graphical representation is perfect, the presence
of (y;,y;) in E1 U E5 has to be interpreted as H;;(z) is “not
necessarily different from zero” and the presence of (y;,y;) in
F; has to be interpreted as “not necessarily strictly causal.”
These concepts are illustrated in Fig. 2(a)—(c).

We introduce additional terminology related to an LDIM.

Definition 11: We say thatan LDIM G is causal if every entry
of H(z) belongs to FT.

Definition 12: We say that an LDIM G is causally well-posed
if, forevery setofindices I C {1,...,n}, (I — Hy;(z)) ! exists
and is causal.

Authorized licensed use limited to: University of Minnesota. Downloaded on August 03,2021 at 16:57:56 UTC from IEEE Xplore. Restrictions apply.



DIMOVSKA AND MATERASSI: CONTROL THEORETIC LOOK AT GRANGER CAUSALITY 703

Definition 13: (Direct feedthrough) Let G = (H(z), ¢) be a
causal LDIM. If there exists H;;(z) such that lim Hj;(z) # 0,
Z—00

we say that a nonzero direct feedthrough is present in the LDIM.

Definition 14: We say that an LDIM G is topologically
detectable if ®,.,(w) > 0 for any w € [, 7] and for any
i=1,...,n.

The condition of topological detectability prevents patholog-
ical situations where a single node is not excited by an external
input.

Definition 15: We say that an LDIM G is recursive if its
perfect graphical representation is recursive.

Observation 1: Observe that in a recursive LDIM there is
always a strictly causal transfer function in each feedback loop.
Also if a graphical representation of an LDIM is recursive, then
the LDIM is necessarily recursive, but the inverse implication
does not hold in general.

I1l. MAIN RESULTS

We consider the following problem.

Problem: Given a recursive LDIM, infer information about
its perfect graphical representation from observational data.

The contribution of this article to this problem is an algorithm
capable of determining the skeleton of the perfect graphical
representation of a recursive LDIM. Such an algorithm can also
infer the orientation of the double-headed arrows connecting
distinct nodes in the graphical representation, while the single-
headed arrows are left unoriented.

We start presenting a result (Theorem II1.3) that fully extends
Granger causality and enables, under some technical conditions,
to correctly detect whether the past of one process directly
influences the present of another, even in the presence of direct
feedthroughs within the network. This result translates into a
sufficient condition (Corollary II1.5) that could be formulated
as a necessary and sufficient condition if it were exactly known
which links of the network contain a nonzero direct feedthrough.
This knowledge is typically not available when reconstructing
a network from observational data. For this reason, we provide
a second result (Theorem II1.6) that can detect the presence of
direct feedthroughs between nodes. This second result again
translates only into a sufficient condition (Corollary III.7), but,
when combined with Corollary IIL.5, gives tighter conditions
for the detection of a link. Corollary III.5 and Corollary III.7
are then merged to define an algorithm for the reconstruction
of the skeleton of a recursive LDIM. After the application of
Corollary III.7 and Corollary IIL.5, Theorem III.3 is used to
determine the orientation of the double-headed arrows.

A. Extended Granger Causality

Given a graphical representation, we define a graph repre-
senting all the transfer functions in an LDIM with potentially
nonzero feedthrough components.

Definition 16 (Graph of instantaneous propagations):
Consider a well-posed, causal, and topologically detectable
LDIM (H (z), e) with outputs 41, ..., y,. Let G be a graphical
representation of the LDIM. The graph of instantaneous
propagations for the LDIM is the graph G’ where there is an

edge from y; to y; if and only if there is a single-headed link
from y; to y; in G.

For example, assuming the LDIM of Fig. 2(a) and its graphical
representation of Fig. 2(b), the associated graph of instantaneous
propagations is represented in Fig. 2(d). The following propo-
sition plays an important role in the development of the main
results.

Proposition II1.1: Consider a causal, causally well-posed
and topologically detectable LDIM with outputs y =
(Y1, ..., yn)T. Assume G is a recursive graphical representation
of the LDIM and let G be the associated graph of instantaneous
propagations. Define y 4, as the vector of processes containing
all the ancestors of y; in G*. Let Yz, be the vector of processes
which are notin y4,. Then, y; € ctfspan(ea;, %egj ).

Proof: First observe that G’ is a directed acyclic graph
(DAG), otherwise G would not be recursive. We prove the
statement by induction on the number of ancestors of y; in G’
If 7, has itself as the only ancestor in G*, we have that H. ji 18
strictly causal for all 7. Thus, y; € ctfspan(e;, %y) Since the
LDIM is causal y € ct fspan(e;, eAfj) where A; denotes the set

of nonancestors of y;, implying that Ly € ct fspan(Le;, %e,Tj)'
By Proposition IL.1(b), this gives '

1 1 1
y; € ctfspan ej,;y C ctfspan ej,;ej,;efj

1
C ctfspan ej,;efj .

This proves the base step. Now assume that the statement holds
if anode has anumber of ancestorsup to K > 1. If y; has K + 1
ancestors in Gf for K > 1, we can write

yi=ei+ Y, Hu=yi+ Y Hil2)y

Yi€YA; Yi Eij

For y; € Yz,» we have that Hj; is necessarily strictly causal,

otherwise y; would be parent of y; in G?. This yields

1
y; € ctfspan (ej,ij, Zg@j) .

Since G’ is a DAG, all elements in YA, have at most K
ancestors and their ancestors are all ancestors of y;. Thus,
we have from the induction hypothesis that ct fspan(ya;) C
ctfspan(ea,, %ezj ), where A; denotes the set of ancestors of
y;. By inclusion of ct f spans [see Proposition I1.1(b)], we get

1 1 1
ctfspan €i>YA; JYa, C ctfspan €jr€A;s Z€A;0 JYa,
c 1 1
C ctfspan ej,eAj,gezjage

1 1
Cctfspan (ea;, —ex,, e
z z

1
C ctfspan €A €a, | -
z
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The next Proposition gives an explicit expression for the
Wiener filter predicting a node of an LDIM from its parents
in a graphical representation.

Proposition I11.2 (Prediction from parent set): Consider
a causal, causally well-posed, and topologically detectable
LDIM with outputs 1, . . ., ¥, and assume that GG is a recursive
graphical representation for it. Define

Ss = {yk|yx is double-headed parent of y;, yi. # y;}
Se = {yk|yx is single-headed parent of y;, yx, # y; }-

The Wiener filter estimate ; of y; from S = S, U 1S, U {1y;}

Yo 2 (-

Yr €S US,
where F} is the causal Wiener filter estimating e; from Le;.
Proof: From Lemma II.3 and the fact that I{;; and Hy, for
yr € Ss, are strictly causal, the optimal estimate g; is given by

Fy(= Fi(2)

g; = <Hjj + > Hjpyg.

~ . 2
Yj = Arg MIN e ot fspan(S) ”yJ - qH

1 1
= 2Hj;—y; + Z Hjryr + Z “Hij—yr

YrESe YrESs
. 2
+arg mlnqectfspan(S) ”ej - qH

. 2
:Hjjyj+ Z ijyk+arg mlnqeatfspan(S)Hej - q” .
YrESUS,
Lete; = e; — €;, where €; = Fj(z)Le; is the one step ahead
predictor for ej, where e; is the independent component of
y;. Observe that é; € ct fspan(S). Indeed, we have that é; €

ct fspan(Le;) and

> Huw

YreSUS,

ej =y; — Hjy; —

implying that
1 1 1 1
—e; € ctfspan <yj, -Se, SS> .
z 27z z
Again, from Lemma I1.3, we can write §/; as

gi=Hiyi+ > Hjye + ¢
YrE€SUSs

. 2
+ arg mlnqedfspan(S) ||€j - QH .

We observe that €; L ct fspan(Ly;) for all k. Indeed, since
the LDIM is causal we have that Ly, € ct fspan(le) and we
also have that €; = e; — é;. Observe that ¢; is orthogonal to
ctf span(%e i) as €; is the one-step-ahead prediction error. Also,
since €; = e; — F-’T(z)ej and ®.(z) is diagonal, we have that ¢;
is orthogonal to ct f span( %ek) for k # j. From Proposition I1.4,
we have thate; L ctfspan(%e) = ctfspan(%y). Thus, in par-
ticular, €; L ctfspan(%yk) for y, € Ss.

Now, we show that €; L ctfspan(yy) for y; € S.. For
yr € Sc let y4, be the set of ancestors of yj, in the graph
of instantaneous propagations and yz be the remaining

nodes in the LDIM. By Proposition III.1, we have that y; €
ctfspan(ea,, %ezk ). Since there is a single headed edge from
Y toy; in G and G is recursive, there must be at least one double-
headed edge on every chain from y; to y, in G. Thus, y; is not
an ancestor of ¥, in the graph of instantaneous propagations,
implying that for every yi € Sc, yr € ctfspan(ea,, %ezk),
where e; ¢ e, . As O, is diagonal, €; L ctfspan(e) for all
k # j. Also, €; L ctfspan(Lle;) because ¢; is the error ob-
tained from the one-step ahead prediction of e; using iej.
Thus, €; L ctfspan(ea,, %ezk) for all yi € S, leading to
€; L ctfspan(yy) for all y € S..

As a consequence, by Proposition 114, €; L ctfspan(S)
yielding

i =Hjy; + Y Hjgyk + ¢

YyrESUSs
Fj(2)
_ J
= Hj;y; + Z ijyk-i-iz
ykGScUSs
x{y— Y Hpw
ykESSUSC

_ <Hjj+Fj(Z)

F(2)

Y; + (I—]> Hjryg.

> ’ Yk E%;USS o ’
|

Proposition II1.2 provides us with an analytic expression for
the least square estimate of a signal y; from its parents in any
given recursive graphical representation of the LDIM. Since
least square estimates can also be computed from data (i.e.,
via linear regressions), this analytical expression enables us
to obtain information about the graphical representation of the
LDIM using observational time series. Specifically, we would
like to infer the presence of a nonzero direct influence from a
signal y; to the signal y; (that is an edge from y; to y; in every
graphical representation or H,;(z) # 0). This is precisely the
kind of problem that Granger Causality tries to tackle. However,
it is well-known that Granger Causality might detect spurious
causal links in the presence of contemporaneous influences [39].
The following theorem is the first of two tools to address the
problem of determining the presence of a direct form of influence
from y; to y; even in presence of contemporaneous influences by
using a test based on Wiener-separation. Furthermore, this result
has the fundamental property of recovering Granger Causality
as a special case.

Theorem II1.3 (Extended Granger Causality): Consider
a causal, causally well-posed, and topologically detectable
LDIM (H (z), e) with recursive graphical representation G. For
distinct y; and y;, define

Ss = {yr|y is double-headed parent of y; and yx # ;. Yy, }
Se = {yx|yx is single-headed parent of y; and v, # v, y;}-

We have that wsep(y;, S. U %SS U {%yj}, %yz) if and only if
a) Hj;(z) =0;or
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b) HJ1(OO Hﬂ(z) ;é 0 and
Hji(00)Wy, (1412 ys2y;.5..8.) ()

= —[2Hji — zH;i(c0) — Fj(2) Hji] -

) = lim, oo

Proof: We prove the equivalence of the two conditions in
the scenarios: (i) when H; is strictly causal; and (ii) when it is
causal, but not strictly causal.

If H}; is strictly causal and G' has a single headed arrow from
y; to y;, then define the graph G’ as the graph obtained from G
by having instead a double-headed arrow from y; to y;. If Hy;
is strictly causal and G has a double headed arrow from y; to y;,
then define the graph G’ as G. In both cases G is still a graphical
representation of the LDIM. By applying Proposition IT1.2 to G’
we get the expression

Y = ( Ji sz(z)> Yi + <I— FJéZ)) Hjiy;

+ ) <I—FJ£2)> Hkyi

yke(scusa‘)

where §; is the Wiener estimate of y; from S.U 1S, U
{ Yj, Zyl} Since Fj(z) is causal, we have wsep(yj S. U
fS u{i y]}, Ly;) if and only if H;; = 0.

If Hj; is causal, but not strlctly causal, G necessarily has
a single-headed arrow from y; to y;. If we were to apply
Proposition I11.2 to GG, we would get

R Fi(z Fi(z
;= (Hjj + JZ( )> Yyj + (I— JZ()> Hjiy;

+ 0y (IFfiZ)> Hijyy. 3)

Yyr€(SUSy)

Namely, we get the expression of the Wiener estimate of y;
using the processes in S = S, U %SS U {%yyyl} However,
what we want is the Wiener estimate of 3/; from the processes in
S =S8.ULS,U{ly;,Ly;}. For this purpose, let us consider
9, the Wiener estimate of y; from S = S, U 15, U {1y;, Ly,}.
Write y; = y;- + §;, where y;" is the prediction error when
Wiener estimating y; from the processes in .S. Going back to the
expression in (3) and substituting for y; with y;- + ;, as well as
writing Hj;y; = (2Hji — iji(oo))%yi + Hj;(00)y; we get

g; = ( ji sz(z)> yj + Z (I— FJZ(Z)) Hjryr

yr€(ScUSs)
+ Hji(oo

)i + Hji(00);

Let ¢; be the prediction error when predicting y; from S’ =

S.uU %SS U %yj,yi. Namely ¢; = y; — ¢}. From (4), we can
write an expression for the estimate g; of y; from S

~ . 2
Yj = arg mlnqectfspan(s)”yj - qH

= arg minqeatfspan(S) Hg; + € — qH2

Fi(2) Fj(2)
— (H.. J ) _J .
( it ) Yj + Z (I ~ ) Hinve
ykG(SCUSS)
+ H;i(00)gi + [2Hji — 2Hji(00) = Fy(2)Hyi)

+ arg MIN et fspan(S, Ulsu{ly;, Ly}

x || Hji(oo)yi + ¢ qu

where the last step comes from Lemma IL.3.

Note that y; L ctfspan(S U S U{ Yj, Zy,}). Also,
€; L ctfspan(S. U S U { yj,yz} Wthh by Proposition
ILI(c) implies that € L ctfspan(S ULs,u{ly;, ty}).
Thus, we have that the Wiener estimate 7; of y; from S. U
%Ss U {%yj, %yl} is

A . Fj(z)
9 = arg mlnqectfspan(s)llyj - CI” = (H_M + ]Z ) Yj

+ Hji(o0)fi + [Hyi — Hyi(oo) — Fy(2) Hyi £

N Z (I_sz(z))ijyk_ Z

Yr €S USs
We have wsep(y;, Sc U 1S, U {Ly;}, Ly;) if and only there is
no dependence on %yl in the expression of gj. The only two
terms depending on Ly; are Hj;(00)g; and [H; — Hj;(c0) —
Fj(z)Hj;]%. The component in g; that depends on £ is
Wyt s(z )Zyi. Thus, there is no dependence on % if and
only if b) holds. |
Theorem II1.3 has, as a special case, an already known result
about Granger Causality, namely that if the transfer functions of
an LDIM are all known to be strictly causal, Granger Causality
provides a consistent reconstruction of the LDIM graph (see [40,
Th. 35]). Now, this result becomes a straightforward corollary
of Theorem III.3.
Corollary 111.4: (Consistent LDIM graph reconstruction via
Granger Causality)
Consider an LDIM (H (z), €) with output y = (y1,. .., yn)T
where each entry of H(z) is strictly causal. We have that, for
distinct y; and y;

Hji(2) # 0 & Wy, 111y (2) # 0.

Proof: Let G be a graph where there is a double headed
edge from each node to any other node and itself. As each entry
of H(z) is strictly causal, G is a graphical representation of
the LDIM. Now, since all edges in G have a double headed
arrow, the hypotheses of Theorem II1.3 are met with S, = () and
Ss = {yklk # 1, j}. As a consequence, since Hj;(z) is strictly
causal, we have that H;;(z) # 0 < W, el n(z)#0. A

In other words, Corollary II1.4 glves an immediate way to
reconstruct the perfect representation of a strictly causal LDIM
from data: the double headed link (y;,y;) is not present if
and only if iyz (the past of y;) is not needed to predict y;,
given the knowledge of all the nodes’ past. This is nothing
but the test proposed by Granger [24], that can be interpreted
in our framework as testing if wsep(y;, S U {éyj}, %yl) with
S=S8.UlS and S; =0and Ss = {y1,...,yn} \ {¥i-y;}-
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Q) @)
(b) ©)

Fig. 3. (a) LDIM and its perfect graphical representation. (b) Skeleton
of the perfect graphical representation as reconstructed by Granger
causality, which detects a spurious link between y; and y4. (c) Skele-
ton of the perfect graphical representation as reconstructed by using
Corollary II1.5.

However, Theorem III.3 is a more general result, since
it can provide information to reconstruct the topology of a
recursive LDIM (H (z),e) even when it is not known that
all entries of H(z) are strictly causal. Since a graphical
representation of the LDIM is not known, we cannot ap-
ply Theorem IIL3 by testing the condition wsep(y;, ScU
15, U{ly;}, 2y;) since we cannot appropriately select the
sets Ss and S.. Indeed, this would require to know which
parents of y; have nonzero direct feedthrough components.
A possible (naive) approach is to test wsep(y;,S. U 15, U
{1y;}, Ly;) forevery possible choice of disjoint S and S, with
Se,Se €y \{yi,y;}. If we have that ~wsep(y;, Sc U 25, U
{iyj}, %yi), for all possible choices of S, and S., then neces-
sarily we have H;(z) # 0. This is summarized by the following
corollary.

Corollary I11.5 (Link detection via extended Granger Causal-
ity): Consider a topologically detectable, causal, causally
well-posed and recursive LDIM (H(z),e) with output
y=(y1,-.yn). Let y; #y;. If —wsep(y;,S.U %Ss U
{éyj}, %yi) for all disjoint S. and Sg, with Ss,S. Cy\
{yi7 yj}, then HJZ(Z) 75 0.

Proof: Ttis a direct consequence of Theorem II1.3. |

In the context of this article, we limit ourselves to search-
ing among every possible choice of disjoint S. and S5, with
Ss,Se €y \ {yi,y;} for finding a separating set for simplicity
of exposition. Smarter searching strategies than an exhaustive
search among all those subsets of nodes are possible as later
highlighted in Observation 2 when discussing the fundamental
algorithm derived in this article.

We provide an example that highlights the limitations of
Granger Causality and the wider applicability of Corollary II1.5
and Theorem III.3 when feedthrough components are present.
Consider an LDIM with perfect graphical representation as
shown in Fig. 3(a). Since feedthrough components are present,
Granger causality is not guaranteed to correctly detect the net-
work links. It can be verified that Granger causality is able
to correctly detect the direct influence of y; on both y» and
ys, as well as the direct influences of both y, and y3 on y4.
However, because of the direct feedthrough components in the
chains y; — y2 — y4 and y; — y3 — y4, Granger causality
also finds an incorrect link from y; to y4, as shown in Fig. 3(b).
The application of Corollary IIL.5 correctly detects the links
Y1 — Y2, Y1 — Ys, Y2 — Y4, and y3 — y4, as Granger causality

(a) (b)

Fig. 4. (a) LDIM with white noise independent components and its
perfect graphical representation. (b) Both Granger and Corollary 1.5
cannot detect the link between y; and y; and the empty graph is inferred.

does. Yet, in this case, no link from g4 to y,4 is detected since
wsep(ya, (Y2, Y3, ~y4), ~y1) holds, as shown in Fig. 3(c).

This does not mean that we can conclude that there is no actual
link from y; to y4 because Corollary IIL.5 is not a necessary
and sufficient condition. Indeed, instances where two processes
%yi and y; can be Wiener separated by a set .S, but there
is a nonzero transfer function between y; and y;, can occur
in situations of practical relevance. A simple example is the
following. Consider an LDIM consisting of two signals only, y;
and y;, with white noise independent components ¢; and e;, as
shown in Fig. 4(a). Let the only transfer function in the LDIM be
a scalar H;;(2) = «, a # 0. Namely, the only direct influence
is a direct feedthrough from y; to y; without any strictly causal
part. Granger Causality cannot detect the link because the past
of y; is not correlated with the present of y/;, namely %yz does not
help predict y;(¢). Thus Granger Causality infers the skeleton
of Fig. 4(b). This example and the previous one illustrate that
Granger causality can be susceptible to both false negatives and
false positives. Corollary IIL5, instead, is susceptible to false
negatives only. Indeed, this two-node example is a case where
Corollary IIL5 is of no help because of a false negative situation.
It is immediate to verify that W, 1, (z) = 0 implying that
wsep(y;, 0, Ly;), but Hj; # 0. Thus, also Corollary IIL5 infers
the empty graph shown in Fig. 4(b).

Theorem IIL.3, being a necessary and sufficient condition,
helps us understand this case in a better detail. Since we
have wsep(y;, 0, Ly;), but Hj;(c0) # 0 we necessarily need to
have condition b) verified. Indeed, since e; is white, we have
F;(z) = 0. Also, S = () and y; is white, giving Wy, 1y, = 0.
Thus, condition b) of Theorem III.3 becomes

a-0=[za—za—0]

which is trivially verified.

Motivated by this simple example, we would like to find ways
to supplement the test provided by Corollary IIL.5 to reduce the
incidence of false negatives. If it were known that H;(z) has a
direct feedthrough component, we would immediately conclude
that there is a link between y; and ;. On the other hand, if it were
known that Hj;(z) has no feedthrough component, we could
apply Theorem II1.3 avoiding the troublesome situations where
condition b) is verified. This motivates the result developed in
next section, which basically consists in a test to determine links
with nonzero feedthrough component.

B. Test for Strict Causality

In the previous section, we saw that it would be useful to
determine whether the transfer function Hj;(z), indicating the
direct influence from y; to ¥, has a nonzero direct feedthrough
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component. The following theorem, based on preliminary results
described in [41], provides a test towards such a goal using the
notion of Wiener filtering once again.

Theorem II1.6 (Strict causality test): Consider a causal,
causally well-posed, topologically detectable, and recursive
LDIM with output signals ¥ = (y1,...,yn)7. Let 3 and
y; be distinct, and such that the transfer functions H;; and
H;; are strictly causal, namely Hj;(co) = H;;(oc0) =0.
Then, there exist two disjoint sets of processes ST,S~ C
{1, Yn} \ {¥i,y;}, such that the component of the causal
Wiener filter estimating y; from y;, %yj, ST, %S ~ associated
with y; is strictly causal, namely

QLH;C Wy, lill(viLy;,S+,157) (2) =0.

Furthermore, the symmetrical statement

lim W =0

oo wilyill(vs, 2yi, ST, LS) (Z)

holds as well.

Proof: See the Appendix F |

Theorem II1.6 leads to a corollary that allows one to detect
the presence of a link by testing for strict causality.

Corollary I11.7 (Link detection via strict causality test):
Consider a causal, causally well-posed, topologically detectable,
and recursive LDIM with output signals y = (y1, ..., y,)". Let

y; and y; be distinct. If 215210 Wyj[yi]l(yzzéyj,stés*)(Z) #0
or lim Wty 1l(ys ys,s5+, 25 (2) # 0, for all disjoint ST and

S, with S, 5~ C y \ {v;,y;}, then either H;;(z) or H;;(z)
have a nonzero direct feedthrough.

Thus, Corollary II1.7 provides a sufficient condition for de-
termining the presence of a direct feedthrough between two
signals. The result of Theorem III.6 complements the result of
Theorem IIL.3 and we can use both to derive an algorithm for
link detection from observational time series.

IV. MD ALGORITHM TO RECOVER RECURSIVE NETWORKS

Theorems III.3 and II1.6 can be combined to derive an algo-
rithm (that we name MD algorithm), testing, from observational
data, the presence of a link connecting two distinct nodes y;
and y;. The fact that Theorem II1.3 is a necessary and sufficient
condition capable of tackling scenarios with direct feedthroughs
significantly strengthens the preliminary results of [41] which
were instead based on the assumption that the transfer function
H ;(2) had to be strictly causal.

Furthermore, with the exception of self-loops, MD can also
infer the orientation of the double-headed arrows of the graphical
representation, producing a partially-oriented graph containing
information about which links have direct feedthroughs and
which do not. The MD algorithm proceeds as follows. The
first step is to use Theorem II1.6 (or, better, Corollary II1.7) to
test if there is a direct feedthrough. For any possible choice of
disjoint sets ST, S~ compute the Wiener filter estimating y;
from S =S5TULS", y; and Ly;. If there is a pair ST,5~
for which the Wiener filter component associated with y; is
not strictly causal, then, we necessarily have a link between y;
and y; in the skeleton of the perfect graphical representation.

If, at the previous step, a link is not found, we proceed by
using Corollary IIL.5, testing whether there is a set that Wiener
separates %yi and y; or a set that Wiener separates %yj and y;. If
either test fails, we conclude that there is a link between y; and
y; in the skeleton of the perfect graphical representation. Here,
we report the pseudocode of MD algorithm.
Test Link Presence(y;, y;)

0. Test 1: test if there exists ST and S~ as in Theorem I11.6
that lead to W; strictly causal

1. If output of Test 1 is negative
The link between y; and y; is present in the skeleton
. Else
.1 Add a double-headed link from y; to y;
.2 Add a double-headed link from y; to y;
.3 Test2.1: test if there exist S. and S, as in Theorem I11.3
such that y; (¢) is independent of %yl (Extended Granger causal-
ity)

5. If output of Test 2.1 is negative:

I RN

I

7. The double-headed link between y; and y; is present
in the skeleton

8. Else:

9. Test 2.2: test if there exist S. and S as in Theorem
I11.3 such that y;(t) is independent of 1y; (Extended Granger
causality)

10.  If output of Test 2.2 is negative:

11. The double-headed link between y; and y; is present
in the skeleton

12.  Else:

13. No link between y; and y; is present in the skeleton

Observation 2: The statement of the algorithm in this form
is mostly for simplicity of exposition. Indeed, preprocessing
steps can be added to the algorithm in order to narrow down the
search of separating sets. A possible preprocessing step might
make use of the results in [20], where a polynomial method to
infer the so-called Markov blanket of the node y; is given. The
Markov blanket of y; consists of all the children, parents, and
coparents of the node y; in the underlying network of the linear
dynamic system. As it is clear from the proofs of Theorem II1.3
and Theorem III.6, once the Markov blanket of each node is
computed, the search only needs to involve subsets of the union
of the Markov blankets of y; and y;. Indeed, as the Markov
blankets of the nodes y; and y; contain their parents, the search
for the Wiener-separating set can be limited to the nodes in the
union of their Markov blankets. If the network is sparse, and
many naturally occurring large scale networks are, this is going
to drastically reduce the number of subsets to be considered.

Also, note that Corollary III.5 and Corollary II1.7 are sufficient
conditions for the presence of a link in the skeleton of the perfect
graphical representation. For this reason, MD algorithm gives, in
the limit of infinite data, no false positives (all detected links are
present in the skeleton of the perfect graphical representation),
but it might be susceptible to false negatives (some links might
pass undetected). However, a false negative for Corollary II1.5 is
not necessarily a false negative for Corollary II1.7 or viceversa.
Thus, the two tests strengthen each other when combined in
the MD algorithm. A fundamental theoretical problem is the
determination of the conditions leading to false negatives for
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Fig. 5. (a) Perfect graphical representation of the LDIM used for the
numerical comparisons when the parameters a14, a24, asi, as2, a1, a43
are all different from zero. (b) Partially directed graph that is output

of the MD algorithm when applied to the LDIM with perfect graphical
representation given in (a).

MD algorithm even when the data size is large. In this scenario,
the occurrence of false negatives between y; and y; is difficult
to quantify because it boils down to having a component of the
Wiener filter which is strictly causal or null for at least one choice
of separating sets ST and S~ or S, and S, respectively. These
conditions definitely depend on the specific transfer functions of
the LDIM which directly determine the expression of the Wiener
filter. In practical scenarios, this information is generally not
available, thus it typically cannot be assessed.

The real fundamental issue in applications is how MD algo-
rithm performs in the case of finite data where the Wiener filters
or equivalent tools for testing conditional independence need to
be computed from the observed time series. In this case, both
false positives and negatives can occur because of the limited
data size and the fact that the algorithm needs to be implemented
via statistical tests. In next section, we numerically investigate
the performance of the algorithm and compare it with other
state-of-the art methods.

V. NUMERICAL EXAMPLE

The purpose of this section is to numerically compare the
proposed network reconstruction method with other state-of-
the-art techniques.

As a benchmark, we have considered the LDIM

1

Y2

Y3

Ya
0.41 0 0 Zlay y1 0.4e;
0 021 0  ax Y2 0.3e5

T lasm (141) apl o0 0 ys| T [ 0.des
aq 0 a43 0 Y4 0.3e4

where the noise components e;, for 7 = 1,2, 3,4, are Gaus-
sian independent processes with unit variance and the param-
eters have been chosen as a4 = 0.35, asy = —0.5, azo = 0.45,
az1 = 0.6, ag3 = 0.6, ag; = 0.3. The perfect graphical repre-
sentation of this LDIM is given in Fig. 5(a).

The structure of this network has several challenging features
which might complicate its identification: there are feedback
loops, self-loops, and directed feedthroughs along with a so-
called “V-structure” (or collider) [35], namely the presence of

two nonconnected nodes (y; and ys) sharing a child (y3). In
particular, the presence of such a collider makes it difficult to
conclude that there is no link between y; and y- because the
observation of the common child y3 makes the two nodes con-
ditionally correlated. For these reasons, this LDIM constitutes a
simple, but extensive test bed to validate network reconstruction
techniques.

In order to evaluate the performance of different techniques in
terms of false positives and false negatives, we have simulated
such a network for 3000 times, and for another 3000 times we
have simulated the same network with exactly one of its parame-
ters aiy4, Aoy, a32, a31, 43, aq1 set to 0 with uniform probability.
This is effectually equivalent to removing one of the links in the
perfect graphical representation. These numerical experiments
have been repeated for different simulation horizons, generating
time series of 100 000, 10 000, 1000, and 500 data points. We
have considered the following network reconstruction methods:
a modern implementation of Granger causality [24], [42]; an
alternative extension of Granger causality that takes into account
direct feedthroughs [32]; a two-step method to detect lagged and
contemporaneous dynamic relations [31]; a directed information
method [30]; and a graphical model inspired methodology [20].
With the exception of Granger causality, all other methods have
been designed to deal with direct feedthroughs.

The generated data has been used to evaluate the perfor-
mance of each of the methods, asking them to detect the pres-
ence/absence of any of the links present in the skeleton of each
perfect graphical representation and also the presence/absence
of the link between y; and y» (absent in the skeleton of every
perfect graphical representation). The comparison is performed
on the skeleton of the graph because this is a structure containing
common information that all these techniques are capable to
infer. For example, the MD algorithm can differentiate in its
output between strictly causal operators and operators with
direct feedthorugh, but the other techniques in general cannot.

All of those methods rely on essentially determining the
conditional dependence or independence of two variables given
a conditioning set. For example, Corollary II1.5 requires to deter-
mine if a certain component of the Wiener filter vanishes or not.
This test does not necessarily demand the explicit computation of
the Wiener filter. Instead, it can be implemented using statistical
tests of conditional independence, linear regressions, or other
parametric or nonparametric tools.

Since all the simulated systems are linear and Gaussian, our
chosen method to test conditional independence is to apply
an F'-test [43]. Namely, in order to test if %yi and y; are
independent given the variables in a set .S, U iSs, we compute
the mean squared error €; obtained when linearly estimating
y; using S. U %SS and the mean squared error e; obtained
when linearly estimating y; using S. U 1.9, and 1y;. Obviously
€o < €1. However, if the introduction of %yi as an additional
variable to explain y; does not significantly reduce the mean
squared error, we can conclude that %yi and y; are indepen-
dent given S, U %SS. In practice this translates in checking
if 1 — 2 <6 where ¢ is an appropriately chosen threshold
(leading to an approximate F'-test [43]). Similarly, the first test
of MD algorithm (test for strict causality) can be interpreted

Authorized licensed use limited to: University of Minnesota. Downloaded on August 03,2021 at 16:57:56 UTC from IEEE Xplore. Restrictions apply.



DIMOVSKA AND MATERASSI: CONTROL THEORETIC LOOK AT GRANGER CAUSALITY

709

11 1A 1“
£0.8 £0.8 £0.8
w & &
£0.6 100 000 £0.6 100 000 £0.6 7
B 10 000 g 10 000 g 100 000
0.4 1000 0.4 1000 20.4 10 000
2 500 g 500 g 1000
=0.2 509 509 500
02 04 06 08 17 02 04 06 08 17 02 04 06 08 17
False positive Rate False positive Rate False positive Rate
(a) (b) (©)
11 1“ 1“
£0.8 20.8 7A7 20.8
z K » k
£0.6 100 000 £ 0.6f £0.6 ﬁ
Z 10 000 = 100 000 = 100 000
20.4 1000 204 10 000 0.4 10 000
g 500 g 1000 g 1000
50.2 50.2 500 50.2 500
02 04 06 08 17 02 04 06 08 17 02 04 06 08 17

False positive Rate

(d)

Fig. 6.

False positive Rate

False positive Rate

®)

Red is ROC on 100000 data points; blue is ROC on 10000 data points; magenta in ROC on 1000 data points; green is ROC on 500

data points. (a) ROC curve of our method. (b) ROC for Granger causality method. (c) ROC for the method in [30]. (d) ROC for the method in [31].

(e) ROC curve for the method in [32]. (f) ROC for the method in [20].

as a conditional independence statement: the Wiener filter es-
timating y; from ST U 15~ U {y;, 2y;} has a strictly causal
component for y; if and only if the random variables y;(t)
and y;(t) are independent given the variables in St U 15~ U
{%yi, %yj}. This last condition can again be translated into an
F'-test [43].

A common way to compare detection techniques is to
plot their results on a receiver operating characteristic (ROC)
curve [44]. Given a detection method defined by a threshold pa-
rameter, its ROC curve is the plot of the true positive rate versus
the false positive rate for all possible values of the threshold. In
our simulations, a true positive occurs when a link that is present
in the skeleton of the perfect graphical representation of the input
LDIM is inferred as an existing link by the methods. Similarly,
a false positive occurs when a method infers the existence of a
link in the skeleton of the network when such a link does not
exist. A typical metric adopted to quantify the performance of a
detection method is given by the area below the ROC curve. An
ideal detection technique has such an area equal to one because
it leads to perfect detection results for appropriate values of
the threshold. The ROC curve for our identification method is
depicted in Fig. 6(a) showing an underlying area of 1 for the
horizons of 100000 and 10000 data points, about 0.9999 for
the horizon of 1000 data points and about 0.9988 for the horizon
of 500 data points. Furthermore, for the 3000 simulations with
100000 data points in which all the parameters are different
from zero [namely the perfect graphical representation is the

one shown in Fig. 5(a)], we inspected the actual output of the
MD algorithm. In all cases, the output was the partially directed
graph shown in Fig. 5(b) with an oriented edge from ys to ys.
Given that the perfect graphical representation of the LDIM
was the one in Fig. 5(a), what was found in the totality of the
cases is the theoretical output of MD in the limit of infinite
data. This additional numerical verification further validates the
asymptotical consistency properties of the MD algorithm.

The ROC curve for Granger causality is reported in Fig. 6(b).
As the plot clearly shows, this detection method is not ideal. This
is to be expected since Granger causality has deficiencies when
reconstructing a network with direct feedthroughs components
which are present in the benchmark example.

The ROC curves for the detection methods in [30] and in [31]
are reported in Fig. 6(c) and (d), respectively. Observe that these
methods do not achieve a perfect identification even when the
size of the data set becomes large.

The ROC curves for the detection methods in [32] and in [20]
are reported in Fig. 6(e) and (f), respectively. Again, these
methods do not approach the ideal curve even for large data
sets.

From these numerical experiments, we notice that MD pro-
vides a better performance than the other methods even for small
data sizes. Furthermore, in the limit of large data sizes MD
achieves a perfect reconstruction of the skeleton, even though
its theoretical guarantees are only about the absence of false
positives. Other methods do not achieve a perfect reconstruction
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of the skeleton even for large data sets and do not guarantee the
absence of false positives.

VI. CONCLUSION

The main contribution of this article is the MD algorithm
that is an extension of Granger causality for the reconstruction
of the topology of a network. MD algorithm consists of two
edge detection criteria that can be implemented via conditional
independence tests. The first test checks if there is a relationship
with direct feedthrough between two processes. The second test
checks for the presence of a link associated with a strictly causal
transfer function. Granger causality has well-known deficiencies
when applied to the reconstruction of dynamic networks with
direct feedthrough components. The proposed method over-
comes most of these limitations. In particular, if the network
of dynamic systems has at least one delay in each directed loop,
the method provides no false positives in the limit of infinite
data. We provide numerical simulations showing a favorable
comparison of the MD algorithm with several other state-of-the
art techniques. Future work could consider sample complexity
analysis for the application of the MD algorithm to dynami-
cally changing networks/topologies; and the implementation of
distributed strategies on specific communication schemes.

APPENDIX

A. Proof of Proposition Il.1(a)

Consider ¢ € FE (or g € F+E&). By contradiction, suppose ¢
has two distinct representations, namely

g=Hu(2)yn + -+ Hin(2)yn
q=Ho(2)y1 + ...+ Hon(2)yn.

Denote H;(z) = Hy;(z) — Hoi(z)fori =1,...,nand H(z) =
(Hy(2),...,H,(2)). Then, we also have a nontrivial represen-
tation for the null stochastic process (a stochastic process that is
0 at every time almost surely)

(
(

0= Z Hi(2)y; = H(z)y

with at least one H; # 0, where y = (41, . . ., Y )®. Then, for the

power spectral density of 0 we have
0=Hd, H".

Thus, we have a unique representation for ¢ if and only if
®,, (e) is positive definite for almost all w € [—m, 7.

B. Proof of Proposition 11.1(b)

For g € ctfspan(yi, ..., Yn, V1, .., Um), We have
n m
¢=> HY )y + Y H" (2)v;. )
i=1 i=1
Also, fori =1,...,m we have
¢
v = ZK”(Z)U)J (6)
j=1

By substituting (6) in (5) we get the assertion.

C. Proof of Proposition I.1(c)

Let Hy(z)eF* for k=1,.,n. The inclusion
ctfspan(q, y2, .., yn) C ctfspan(yi, yz, ..., yn) is
trivial. Let wus show that ctfspan(yi,ya,...,yn) C
ctfspan(q,ya, .. yn). From q=>"0 | Hyyr, Hi#0
we have that Hy(2)y1 =q— Y p_o Hrys. Clearly,

y1 = Hi(2) "' (g = Yp_y Hyyr) and y1 € F{q,y2,. ., yn}
if and only if H;(z)"! € FT. The proof is analogous for
Hi(z) e Ffork=1,..,n.

D. Proof of Lemma I1.3

Denote

(jo = arg minqectfspan(Y)”v - Q| |2

and

qu = arg minqectfspan(Y)H(v - U)) - Q||2

By Proposition I1.2, both ¢y and ¢, exist and are unique. We want
to show that o = w + §1. As F & is a pre-Hilbert space with
the inner product <, >, we have that ¢y and ¢; are respectively
the only elements in Y that satisfy

<v—{qp,q>=0
<(v—w)=qg1,9>=0
for all ¢ € Y. Observe that, forallg € Y
<v—(w+d),q>=< (v—w)—G,q>=0.

Thus, we necessarily have that o = w + ¢;.

E. Proof of Proposition 11.4

Let v L ctfspan(yy) for all k =1,...,n. Then, it is true
that (v, H(2)yx) = 0, for any Hi(z) € F*. As that holds for
allk =1,...,n we have that

n

<vv ZHk(Z)ykz> = (v, Hy(2)yx) =0

k=1 k=1
for any Hy(z) € F'. Thus, (v—0,q)=0, for g€
ctfspan(yi,...,yn). Denote y = (y1,...,yn). By Propo-
sition (I.2), ©, the Wiener Filter estimate of v from
q € ctfspan(yi,...,yn), is zero, which implies W, is
zero. Thus, v L ctfspan(ys, ..., yn).

Now let v L ctfspan(yi,...,yn). Then, 0 = (e — 0, ¢) for

n

any q € ctfspan(yi,...,Yn),q = Z Hyyy. Thus, for any
k=1

Hy(z) € F* we have that < v — 0, Hi(2)yx >= 0 (y # v),

implying that Wy, = 0. Similarly, W, =0fork =1,...,n.

Thus, v L ctfspan(yg) fork =1,...,n.

F. Proof of Theorem IIl.6

Choose a graph G that is a recursive representation of
the LDIM. Given the graph G, partition the set of nodes
{y1,92, .- .Yn} \ {¥i,y;} in the following subsets.

Authorized licensed use limited to: University of Minnesota. Downloaded on August 03,2021 at 16:57:56 UTC from IEEE Xplore. Restrictions apply.



DIMOVSKA AND MATERASSI: CONTROL THEORETIC LOOK AT GRANGER CAUSALITY 711

1) S;;: The set of strictly causal parents for both y; and y;. — ctfspan [ e:, lyi ’ ly- S+ 157
2) S;Q: The set of parents for both y; and y; that are not in /
Sii 1 1 L 1
3) S;.%: The set of causal but not strictly causal parents of y;, = ctfspan | €, Y Yo ST, ;S :

which are not parents of y;.

4) Sj’; : The set of strictly causal parents of 3;, which are Thus, we can write

not parents of y;. o — H. CLH. A
5) SZ.'E : The set of causal but not strictly causal parents of Yi 5i(2)yi + Hjs(2)y;

Y, which are not parents of y;. + Z Hj(2)ys, + ¢ + arg min, [|¢; — ||
6) S;j : The set strictly causal parents of y;, which are not yreSTUS-

parents of y;.
7) S;; : All other nodes.
Given the above partition of the nodes, define 1 1 1
1) ST := S;'; u S;.% U S]'E and q € ctfspan <€i ' JYioZYi ST, zS) .
2) ST =85-U Sj’g UsSs;. . )
Let us compute the following MLSE (minimum least square ~ For all yj in Sfi us ]+; U S:; define y; = yx — Y, where g, is
the following one-step ahead predictor

subject to

estimate) for y;

y; = arg min, [|y; — q|| , subject to ¢ € ct fspan Ur = arg min, [lyx — q||
1 1 subject to
X (yivijs+7s ) !
“ “ q € ctfspan
Observe that
1) Hjj(z) is strictly causal since G is recursive X (is;rz , % ;F; , %Sjj ; %yl , %yj ; %Sj_i ; % e % Z‘j)

2) H,(%) is strictly causal for y;, € S~

— - +
3) Hjx(z) = 0 for Yr € Si; U S5 Define the set St to be the collection of y;. By Proposi-
From these observations we can apply Lemma II.3 and get tion IL.1(c)

95 = Hji(2)yi + Hj;(2)y;+ 1 ) 1
thspan St’SJr_ SJF_ 7yi77yj375'7i,*5.77.,75.:
J z z z 7 z Ji7 5]

9 ;)
+ Y Hi(2)yw Y
yr€STUS
+ arg min lle; — qll 11 Ty 1o
arg qectfspan(y;,Ly;,s+,15-) 1€ — 4l - =ctfspan | S—, ;yz ) ;yj ) ;S ) ;S .

Let €; = e; — €;, where e; is the independent component of y;
and é; = F}(z)Ze; is the one step ahead predictor for e; from
the past of e; (see [45]). = Ho(x

From Proposition II.1(b), we have that Yi 5#(2)y 5 (2)9;

Thus, we get

+ ) +¢ +argmin, e — g

. 1 1
é; € ctfspan (yi,zyj,SJr,ZS ) . yReStUS-
Thus, applying again Lemma I1.3, we have that subject to
0 — . ) - ) 1 1 1 1
9; = Hji(2)yi + Hjj(2)y; q € ctfspan <ei St SYis Ui ;S+, ZS) .
I 1 . .
+ Z ik (2) LUk +¢; +arg ming [[¢; — g Now, we have the following observations.
yeeSTUS 1) The innovation €; is orthogonal to

ctfspan(%S"’, %yl , %yj , %S‘) as echtfspan(%ej),
and by the assumption that ®.. is diagonal, we have that
q € ctfspan <yi ’ lyj, St 15> ) %ejj_ctfspan(%ek), for all k # j;
z z 2) Furthermore, ctfspan(S*,e;) is orthogonal to
ctfspan(25T, Ly, 1y; 157 by construction.
Thus, we obtain

subject to

Similarly, let ¢; = e; — é;, where e; is the independent compo-

nent of y; and é; = F;(2) %e,- is the one step ahead predictor for
e; from the past of e;. o H. LH. 4
From Proposition II.1(c), we have that Ui = Hi(2)y: + Hjj (2)y;

1 L1 + > Hjr(2)yk + ¢, +argmin, [l; — g

thspan Yi, ;yj vS ) ;S yreStuUS-
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subject to ¢ € ctfspan(e;, ST). Note that if we switched the
roles of y; and y;, following analogous steps, we would get

Ui = Hij(2)y; + Hyi(2)ys

DY

yr€STUS

Hin(2)yr + €; + arg min, [|e; — g

subject to g € ct fspan(e;, S*). Now, at least one of these two
statements holds

1) y; is not a descendant of y; in the graph of instantaneous
propagations associated with G

2) y; is not a descendant of y; in the graph of instantaneous
propagations associated with G

otherwise G would not be recursive. Without any loss of gen-
erality assume that y; is not a descendant of y; in the graph of
instantaneous propagations, otherwise we can flip the roles of
y; and y; in the following arguments.

We have that y; is not an ancestor of any y;, € ST = S;-FZ- U
S;.% U Sjj in the graph of instantaneous propagations.

D If yp, € S; U Sﬂ there is an edge from yy, to y; in the
graph of instantaneous propagations. This means that
there is no chain from y; to y; in the graph of instanta-
neous propagations, otherwise y; would be a descendant
of y; in the graph of instantaneous propagations.

2)ify, € S;rj there is an edge from y;, to y; in the graph
of instantaneous propagations. This means that there is
no chain from y; to yj in the graph of instantaneous
propagations, otherwise we would have a loop in the
graph of instantaneous propagations.

From Proposition III.1, we have that

1
yp € ST =y, € ctfspan <eAk, ZeAk>

where Ay, is the set of indices of nodes that are ancestors of v
in the graph of instantaneous propagations and Ay are all the
other indices. Observe that i ¢ Ay, for every y, € ST. Asy;- €
ct fspan(y, Gx ), we also have that yi© € ct fspan(ea,, %egk ).
From the previous observation we know that e; € ez, for
every y, € S*. Observe that ¢; = ¢; — Fi%ei, thus, we have
€; L ctfspan(e;) for all £ #i. Also ¢; L %ei. Thus, ¢; L
ctfspan(y;) for all y; €S and by using Proposition 11.4,
we have that €; L ctfspan(S™t). It is also straightforward to
conclude that €; L ct fspan(e;), thus, we get

95 = Hji(2)yi + Hj;(2)y;

D>

yreSTUS—

Hjp(2)yr + €5 + arg min, ||le; — q|

subjecttoq € ct fspan(S™). For the expression of §J;, we instead

get
>

yreSTUS—

Ui = Hij(2)y; + Hii(2)ys + Hi(2)yr + €&;.

Thus, we have that

lim

B W i(s+,1s-) (2) =0

which constitutes part of the theorem thesis.
The other part of the theorem thesis is obtained by manipu-
lating the expression for ;.

9 = Hu(z)yi + Hyj(2)y; + Y

yr€STUS~

+ Z W, wiyst ()i

yresSt

= Hﬂ(z)y, + Hjj(Z)y_j + Z

yr€STUS—

+ > W s @y — Y

yk€S+ yreSt

Hji(2)yr + €5

Hjp(2)yr + €5

W, wis (2) 3k

where ¢, the estimate of y, € St from S =STUS U
{viys}

. 1
=) W 2ya125(2) e

yzeg

From the expression of §j;, it is now immediate to verify that for
z — oo the transfer function operating on y; is strictly causal
giving the assertion.
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