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Abstract. In this paper, we generalize proximal methods that were originally de-
signed for convex optimization on normed vector space to non-convex pose graph
optimization (PGO) on special Euclidean groups, and show that our proposed
generalized proximal methods for PGO converge to first-order critical points.
Furthermore, we propose methods that significantly accelerate the rates of con-
vergence almost without loss of any theoretical guarantees. In addition, our pro-
posed methods can be easily distributed and parallelized with no compromise
of efficiency. The efficacy of this work is validated through implementation on
simultaneous localization and mapping (SLAM) and distributed 3D sensor net-
work localization, which indicate that our proposed methods are a lot faster than
existing techniques to converge to sufficient accuracy for practical use.

1 Introduction

Pose graph optimization (PGO) estimates a number of unknown poses from noisy
relative measurements, in which we associate each pose with a vertex and each mea-
surement with an edge of a graph. PGO has important applications in a number of areas,
for example, simultaneous localization and mapping (SLAM) in robotics [1], structural
analysis of biological macromolecules in cryo-electron microscopy [2], sensor network
localization in distributed sensing [3], etc.

In the last twenty years, a number of PGO methods have been developed, which
are either first-order optimization methods [3—5] or second-order optimization methods
[6-9]. In general, first-order PGO methods typically converge slowly when close to
critical points, and thus, second-order PGO methods are preferable in most applications.
In spite of this, second-order PGO methods have to continuously solve linear systems
to evaluate descent directions, which is difficult to distribute and parallelize, and can be
time-consuming for large-scale optimization problems [6—10].

In optimization and applied mathematics, there are a number of algorithms to ac-
celerate the rates of convergence of first-order optimization methods [11-14]. Never-
theless, most of existing accelerated first-order optimization methods [11-14] rely on
proximal methods [15] and need a proximal operator that is also an upper bound of the
objective function, and such a proximal operator, though exists, it is usually unclear
for PGO. In addition, it is common in first-order PGO methods to formulate PGO as
optimization on special Euclidean groups, and update pose estimates using Riemannian
instead of Euclidean gradients [3—5], whereas in general accelerated first-order opti-
mization methods [11-14] only apply to optimization on normed vector space and are
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inapplicable for optimization using Riemannian gradients. As a result, it is in strictly
limited to accelerate existing first-order PGO methods [3-5] with [11-14].

In this paper, we generalize proximal methods [15] that were originally designed for
convex optimization on normed vector space to non-convex PGO on special Euclidean
groups, and show that our proposed methods converge to first-order critical points. Dif-
ferent from existing first-order PGO methods [3-5], our proposed methods do not rely
on Riemannian gradients to update pose estimates and there is no need to perform line
search to guarantee convergence. Instead, our proposed methods update pose estimates
by solving optimization sub-problems in closed form. Furthermore, we present meth-
ods that significantly accelerate the rates of convergence using [11, 12] with no loss
of theoretical guarantees. To our knowledge, neither proximal methods nor acceler-
ated first-order methods for PGO have been presented before. In addition, our proposed
methods can be easily distributed and parallelized without compromise of efficiency.
In spite of being first-order PGO methods, our proposed methods are empirically sev-
eral times faster than second-order PGO methods to converge to modest accuracy that
is sufficient for practical use. In cases when higher accuracy is required, our proposed
methods can be combined with second-order PGO methods [6—10] to improve the over-
all performance.

The rest of this paper is organized as follows. Section 2 introduces notations that are
used throughout this paper. Section 3 reformulates proximal methods in a more general
way that is used in this paper to solve PGO. Section 4 formulates and simplifies PGO.
Section 5 proposes a generalized proximal operator that is also an upper bound of PGO,
which is fundamental to our proposed methods. Sections 6 and 7 present unaccelerated
and accelerated generalized proximal methods for PGO, respectively, which is the major
contribution of this paper. Section 8§ implements our proposed methods on SLAM and
distributed 3D sensor network localization, and makes comparisons with SE — Sync [9].
The conclusions are made in Section 9

2 Notation

R denotes the sets of real numbers; R™*™ and R™ denote the sets of m X n matrices
and n x 1 vectors, respectively; and SO(d) and SE(d) denote the sets of special or-
thogonal groups and special Euclidean groups, respectively. For a matrix X € R™*™,
the notation [X];; denotes the (i, j)-th entry or (4, j)-th block of X. The notation
|| - || denotes the Frobenius norm of matrices and vectors. For symmetric matrices
Y Z e R*"Y = Z(or Z <Y)andY = Z(or Z < Y) mean that Y — 7 is
positive semidefinite and positive definite, respectively. If F' : R™*™ — R is a func-
tion, M C R™*™ is a manifold and X € M, the notation VF'(X) and grad F'(X)
denote the Euclidean and Riemannian gradients, respectively.

3 Generalized Proximal Methods

For an optimization problem

min F(X),
Xex
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in which X is a closed set and F' : X — R is a function with Lipschitz smooth gradient
VF(X) for ascalar L > 0 such that

F(Y)< F(X)+VF(X)T(Y—X)+§||Y—X|\2, 1))

then the proximal operator of the first-order approximation at X(¥) € X is defined to
be [15]

, L
x(E+1) arg)rgleir}{F(X(k)) +VP(XW)T(X - x®) §||X ~ XM (@)

from which it can be concluded that F'(X*+1)) < F(X®*)), An optimization algo-
rithm using Eq. (2) to generate iterates { X (k)} is called the proximal method. Though
originally designed for convex optimization [11, 12, 15], proximal methods have been
used to solve non-convex optimization problems and get quite good results [13, 14].

From Eq. (2), a prerequisite of proximal methods is that there exists a positive scalar
L w.r.t. which F(X) is Lipschitz smooth. In most cases, L is unknown, and finding such
a scalar L can be time-consuming. Instead, if there exists a positive definite matrix €2
such that

1
F(Y)<F(X)+VFX)" (Y - X) + SV - X)' QY - X), 3)
we obtain an first-order approximation that is also an upper bound of F'(X) as
X = arg min F(X®) + VE(X®)T(x — x®) 4
Xex
1
S (X - XENTX — x®)y, (4

We term Eq. (4) as the generalized proximal operator and an optimization algorithm us-
ing the equation above to generate iterates { X (*)} as the generalized proximal method.
For a number of optimization problems, finding a matrix 2 satisfying Eq. (3) is much
easier than finding a scalar L satisfying Eq. (1). Even though it is possible to determine
ascalar L > 0 satisfying Eq. (1) as the greatest eigenvalue of €2, it is still expected that
Eq. (4) results in a better approximation and a tighter upper bound than Eq. (2).

In the following sections, we will propose generalized proximal methods using
Eq. (4) to solve PGO.

4 Problem Formulation

In this section, we review PGO that can be formulated as a least-square optimization
problem and be simplified to a compact quadratic form. It should be noted that both the
least-square and quadratic formulations of PGO have been well addressed by Rosen et.
al in [9], and due to space limitations, we only present the main results and interested
readers can refer to [9] for a detailed introduction.

PGO estimates n unknown poses g; = (R;, t;) € SE(d) with m noisy measure-

A

ments of relative poses g;; = g; *g; = (Ryj, tij) € SE(d). In PGO, the n poses g; and
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m relative measurements g;; are described through a directed graph 8 2 (v, ?) in
which V £ {1, --- , n} and each index i is associated with g;, and (i, j) € T cyxy
if and only if g;; exists. If we ignore the orientation of edges in £, an undirected graph
G = (V, €) is obtained. In the rest of this paper, it is assumed that 6 is weakly con-
nected and G is connected. Following [9], we also assume that the m measurements
(Rij, t;j) are random variables:

bij = ty; + 15 ts; ~ N(0, 7;'1), (5a)

R = R, R;; Ri; ~ LI, Kij), (5b)
in which 9, = (Ri;, Li;) € SE(d) is the true (latent) value of g;;, and N (j1¢, 3¢)
denotes the normal distribution with mean u; € R and covariance 0 < ¥, € R*d,
and L(ug, kr) denotes the isotropic Langevin distribution with mode pug € SO(d)
and concentration parameter kg > 0.

From the perspective of maximum likelihood estimation [9], PGO can be formu-

lated as a least square optimization problem on SE(d)™

. 1 ~ -
un > 5 (’iij IRiRij — Rylf* + 7 - | Ritiy + ti — tj||2) O]
R;€50(d), t;€R?, 2

i=1,-,n (3,5)€

in which R; € SO(d) and t; € R A straightforward derivation further simplifies
Eq. (6) to

1 -
min X) £ —trace(XMX ") @)
X eRIXnx SO(d)" 2

in which F(X) is a quadratic function and X £ [t1---t, Ry -+ R,] € R™" x
SO(d)» ¢ R(d+n For F(X) of Eq. (7), M € RE+Dnx(d+n jg a4 positive-
semidefinite matrix

LW™) VvV

M L . _ ~| e ]R(d-‘rl)nx(d-‘,—l)n7 8

VT LGP+ X% ®)

in which L(W™) € R™n", L(GrF) € Rinxdn | ¢ Rrxdn gnd 5 =

diag{%;, ---, X,} € R?7xdn are sparse matrices defined as Eqs. (13) to (16) in [9,
Section 4].

In the next section, we will propose a generalized proximal operator of Egs. (6)
and (7) whose minimization is n independent optimization problems on SFE(d), and
thus can be efficiently solved, which is fundamental to our proposed methods for PGO.

5 The Generalized Proximal Operator for PGO

In this section, we propose an upper bound of PGO, and show that the resulting
upper bound is a generalized proximal operator of the first-order approximation of PGO.
For any matrices A and B of the same size, it is known that
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1
sIIA=BI* = min [|A-P|*+|B-P|? ©

eRan
1 1
the unique optimal solution to which is P = §A + §B. As a result of Eq. (9), if we

introduce m pairs of extra variables P;; € R%*? and p;; € R for each (i, j) € € 10
Eq. (6), an upper bound of PGO is obtained as

min Z (mj . ||RZ§” — Pij||2 + 755 - | Ritiy + ti _pij||2 +
R;€50(d), t;€R,
i=1,-,n (i,j)E?

Kij 1R — Pigll* +7ij - |1t —pinQ) . (10
If P;; and p;; are chosen as

1 = 1 1 s 1 1
Py = §R§’“)Rij + §R§’“), pij = iRE’“)tij + Etﬁ’“) + §t§k), (11)

with (ng), tgk)) € SE(d)andi =1, --- , n, then Eq. (6) and Eq. (10) attain the same
objective value at ng) and tl(-k). As a matter of fact, Eq. (10) results in a generalized
proximal operator of the first-order approximation of PGO as stated in Theorem 1.
Theorem 1. Let P;; and p;; are chosen as Eq. (11) with (RZ@, tgk)) € SE(d) and
1 =1, -+, n. Then, there exists a constant matrix 0 < Q € READnX(d+Dn gyeh that
Eq. (10) is equivalent to

min - F(X®) + trace (X = X)) TVF(XM)) +
XeRIXn x SO(d)"

1 ~
itrace ((X — X(k))Q(X - X(k))T) (12)

in which X(¥) = [tg’ﬂ ot R L Rﬁf)} e R x SO(d)", F(X®) =

1 ~ .
5 trace(X M X® Y and VE(X®)) = X W]
Proof. See [16, Appendix B.1]. O

It should be noted that Eq. (12) is an upper bound of PGO as well as Egs. (6) and (7),
in which M and (2 are closely related as follows.

Theorem 2. Let M and ) be defined as Eqgs. (7) and (12), respectively. Then,
(1) Q= M;
(Z)foranyceR,oItﬁifg~It]\7[.

Proof. See [16, Appendix B.2]. O

As aresult of Theorems 1 and 2, Eq. (12) is a generalized proximal operator and an
upper bound of PGO, which suggests the possibility of generalized proximal methods to
solve PGO. It should be noted that only the Euclidean gradient VF (X *)) is involved
in Eq. (12), and as a result, we might also accelerate generalized proximal methods
using [11, 12]. In Section 6, we will propose generalized proximal methods for PGO,
and in Section 7, we will further accelerate our proposed generalized proximal methods
for PGO, which is the major contribution of this paper.
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6 Generalized Proximal Methods for PGO

In this section, we propose two generalized proximal methods to solve PGO and
show that our proposed methods for PGO converge to first-order critical points.

6.1 The GPM — PGO Method

Algorithm 1 The GPM — PGO Method

1: Input: An initial iterate X(©) = [tgo) c 0 R§°) R;O)] € Ry x SO(d)", and the
maximum number of iterations N.

2: Output: A sequence of iterates { X <k)}.

3: function GPM — PGO(X | N)

4: fork=0— N —1do

5: [9@ gﬁl’“)} « xmg

6: fori =1 — ndo

7. ngﬂ) < arg max trace(RiTQEk))
R;€S0(d)

8: end for

o: R+D [ngﬂ) Rslkﬂ)]

10: (D) D= 4 xRy

11: x (1) [t(kJrl) R(k+1)]

12: end for

13: return { X ©)}
14: end function

According to Theorem 2, it is known that Q > M , and thus, we obtain a series of
upper bounds of PGO:

: 0y & p(x®) _ x0T ()
eI GXIX®) £ F(X )+ trace (X = X®)TTF(X®)) +

1 ~
5 trace ((X - XMI(Xx - X(’“))T) , (13)

inwhichT = Q+a -1 > M and o > 0. From Egs. (10) and (12), a straight-
forward mathematical manipulation indicates that I" in Eq. (13) takes the form as

ra LE: EZT] with I7™ = diag{T'], --- , I7} € R™*", T? = diag{I?, --- , T2} €
RInxdn and TV = diag{T¥, --- , ¥} € R™*"_in which
IT=a+ Y 2-7;€R, (14a)
(i,4)€€
D =a T+ Y 2k I+ Y 207t € R, (14b)

(ir5)€E (i€
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sz: Z 2-7’1*]*'7,:1‘]‘ ERd. (14¢)
(i,5)€E
For simplicity and clarity, we rewrite VF(X®) in Eq. (12) as VF(X®) =
3T - AL % - 5] € RPN fin which 57 € RY and 77 € R?*? are Euclidean
gradients w.r.t. t; and R;, respectively. Substituting Egs. (14a) to (14c) into Eq. (12) and
simplifying the resulting equation, we obtain

1 ~
min F(X(k)) + E (f trace ((Rz — RZ(-k))Ff(Ri — ng))—r)) +
R;€S0(d), t;€R?, ey 2
i=1, -, n

= 1
Ty TRy = R{)T (1 = 67) + 5t — 7)) 0T (6 = 1)+

wace (77 (R: = RY)) +77 T (1~ 1)), (15)

7

which is equivalent to n independent optimization problems on (R;, t;) € SE(d):

1 ~
min — trace ((RZ — RZ(-k))Ff(Ri - ng))T)) +
R;€50(d), t;€R?

~ 1 ,
T (R = BT (6= 1)+ 507 (1 = ) T (1 — 1)+
trace (WfT(Ri - ng))) + 77T (t; — tgk)). (16)
Furthermore, if R; € SO(d) is given, t; € R can be recovered as

t; =t — RTYTT ' + (RMTY — 47 )7 (17)

%

Substituting Eq. (17) into Eq. (16) to cancel out ¢; and applying R; R, = I to simplify
the resulting equation, we obtain

REkH) =arg max trace(RiTGZ(k)), (18)
R:€50(d)
in which
0" = RO Ty Ty T) #4707 10T =40 e R (19)

From VF(X®) = X[ and Egs. (8) and (13), we might matricize Eq. (19) as
k) — X(k)®,

in which #(%) = {95“ . 92}“)} € R4 and @ € R¢H1)nxdn 5 4 sparse matrix

_ L<WT) T—17vT 0

1%

L(GP)+3 20)

Similarly, as a result of Egs. (8), (13) and (17), we obtain
k) = Rtz 4 x Wy, Q1)
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in which t(k+1) — [t§k+1) o tglk+1):| e Ran, R(k+1) — ngJrl) £)F+1):| c

SO(d)" C R4 and = € R¥*" and ¥ € RE@+DnX" are gparse matrices with
e T — rm— L(WT)
==-I"T 1and\11:[fy_‘7-|—

It is obvious that Eq. (16) is simplified to Eq. (18). From [17], if 9§k) € Rdxd
admits a singular value decomposition Gfk) = UiEiViT in which U; and V; €
O(d) are orthogonal (but not necessarily special orthogonal) matrices, and ¥; =
diag{oy, 09, -+, 04} € R¥*? is a diagonal matrix, and 0y > 03 > -+ > 04 > 0 are
singular values of 6;, then the optimal solution to Eq. (18) is

} '™ 1, respectively.

-Z+ T g T
g = (UL deiUVT) >0 o
UV, det(U;V;') <0,
in which ¥ = diag{1, 1, ---, 1} and ¥~ = diag{1, 1, ---, —1}. If d = 2, the

equation above is equivalent to the polar decomposition of 2 x 2 matrices, and if d = 3,
there are fast algorithms for singular value decomposition of 3 x 3 matrices [18]. In both
cases of d = 2 and d = 3, Eq. (18) can be efficiently solved. As long as R; € SO(d)
is known, we can further recover t; € R? using Eq. (21) so that a solution (¢;, R;) €
R? x SO(d) to Eq. (16) is obtained with which Eq. (15) is also solved.

Therefore, Eq. (15) only involves n singular value decomposition to solve Eq. (18)
on R; € SO(d), and a matrix-vector multiplication to retrieve ¢; € R? using Eq. (21),
which suggests the GPM — PGO method (Algorithm 1).

6.2 The GPM — PGO* Method

It is according to Eq. (7) that PGO can be reformulated as

1 -
min —trace (LL(W7)t") + trace (VR t)+
teRdxn ReSO(d)™ 2

5 trace(RL(G?)RT) +  trace(REPRT), (23)

in which t = [t; -+ t,] € R™" and R = [Ry--- R,] € SO(d)". Follow-
ing a similar procedure in [9], if the rotation R = R(**1) in the equation above is
given, we can optimally recover the corresponding translation ¢ = (k1) a5 ¢(h+1) =
—REHDYTL(W™)F, which is further simplified to

tH) — _REHDTTOAT(AQAT)T, (24)

In Eq. 24), A € R™"™, Q € R™*™ and T € R™¥ gre sparse matrices that are
defined as Eqs.(7), (22) and (23) in [9, Sections 3 and 4], respectively.

As a result, instead of computing each tEkH) € R? sub-optimally using Egs. (17)
and (21), we might use Eq. (24) to optimally recover t(*+1) ¢ R*" wrt. R+ ¢
SO(d)™ as a whole. Furthermore, if t(*+1) is recovered by Eq. (24), we have 7 = 0 for
alli=1, ---, ninEq. (16), and thus, only the Euclidean gradient 3 = [¥] --- 7] =

VrF(X®) wrt. R® needs to be computed, and then 6% is simplified to
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Algorithm 2 The GPM — PGO* Method

1: Input: An initial iterate z(® = [t R®] e R¥™ x SO(d)" in which t© =
—ROTTQAT(AQAT), and the maximum number of iterations NN

2: Output: A sequence of iterates { X (k)}.

3: function GPM — PGO*(X© | N)

4: fork=0— N —1do

5: [gyc) ggc)} — X® g

6: fori=1—ndo

7 REkH) < arg max trace(RiTQEk))
R;€S0(d)

8: end for

: k+1 k+1 k+1

9 ROHD o [REHD . R

10: 0+ _REHDTTQAT(AQAT)

11: X+ [t“““) R(k+1)]

12: end for

13: return { X ")}
14: end function

o) = RW(TP —TvrT-1TvT) — 77
Following a similar procedure to Eq. (20), we obtain
o) = XK p,

in which (%) = [egk) e eﬁjﬂ € R and d € R(4+Hnxdn jg 3 sparse matrix

o 0 | v
TP _Tvpr-17w T L(ép) + i

From Egs. (24) and (25), we obtain GPO — PGO* (Algorithm 2), which always recov-
ers the translation ¢ optimally w.r.t. R and thus is expected to outperform Algorithm 1.
It is important to establish whether GPM — PGO and GPM — PGO* solve PGO.
Empirically, we observe in the experiments that our proposed methods always converge
to the global optima if the noise magnitudes are below a certain threshold. Theoretically,
we can provide guarantees that GPM — PGO and GPM — PGO* converge to first-order
critical points. Note that existing first- and second-order PGO methods in general need
to choose stepsize carefully to guarantee the convergence to first-order critical points,
whereas there is no stepsize tuning involved in either GPM — PGO or GPM — PGO*.

. 25)

Theorem 3. Ler {X (k)} be a sequence of iterates that is generated by either
GPM — PGO or GPM — PGO*. Then,

(1) F(X™®) is non-increasing;

(2) F(X®) = F> as k — oo; o

(3) |IX*HD — X®)|| - 0ask — oo if I = M;

(4) grad F(X®) = 0ask — oo if I = M;

(5) | X*H) — X®)|| - 0as k — oo ifa > 0;

(6) grad F(X®)) = 0ask — co ifa > 0.

Proof. See [16, Appendix B.3]. O
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Algorithm 3 The NAG — PGO* Method

I: Input: An initial iterate X© = [t RO®] e R¥>" x SO(d)" and XY =
[t RED] € RT™ x SO(d)™ in which £ = —ROTTQAT (AQAT)  and ¢tV =
—REDLTTQAT (AQAT)T, s ¢ [1, +00), and the maximum number of iterations V.

2: Output: A sequence of iterates { X *), s(F)},

3: function NAG — PGO*(X(©, X(=1) 5 N

4: fork=0— N—1do

k
5. G VP HTHT gy g, 8 =1 (X(’“) ,X<k—1>)
2 5(k+1)
k k k
6 [0 0P ] « v ®o
7: fori =1—ndo
8 Rikﬂ) — arg ilgl;g{(d) trace(R;'—ng))
9: end for
. k+1 k+1 k41
10: R<+>%[R§+>--'R£1+)]
11: tHD  _READTTOAT(AQAT)
12: XD o [kt RHD]
13: end for

14: return { X s(*)1
15: end function

7 Accelerated Generalized Proximal Methods for PGO

GPM — PGO and GPM — PGO* generalize proximal methods that use Euclidean
gradients to update pose estimates, which is different from existing first-order PGO
methods [3-5] using Riemannian gradients, and thus, it is possible to accelerate
GPM — PGO and GPM — PGO* using [11-14].

Following Nesterov’s accelerated proximal method [11, 12], we might extend
GPM — PGO* to NAG — PGO* (Algorithm 3). NAG — PGO* is almost the same as
GPM — PGO* at the beginning when s(*) is small but then more governed by the mo-
mentum term X (*) — X (*=1) a5 [ increases. If we relax the constraints of R; € SO(d)
to any closed convex sets and choose initial iterate X(©) = X(=1 and 5O = 1,
NAG — PGO* would converge to the global optima within O(1/N?) time, whereas
theoretically GPM — PGO* can not have a rate of convergence better than O(1/N)
[11, 12]. Even though PGO is a non-convex optimization problem, NAG — PGO* is
expected to inherit the characteristics of Nesterov’s accelerated proximal method and
outperform GPM — PGO*, and empirically, NAG — PGO* is indeed much faster than
GPM — PGO*.

Different from GPM — PGO*, NAG — PGO* is not a descent algorithm, and might
have “Nesterov ripples” due to high momentum term as k increases [19]. Moreover,
even though NAG — PGO* is empirically much faster than GPM — PGO* to converge
to first-order critical points, it seems difficult to have any theoretical guarantees of con-
vergence for NAG — PGO*. In order to address these theoretical and practical draw-
backs of NAG — PGO*, we propose AGPM — PGO* (Algorithm 4) that is an extension
of NAG — PGO* with adaptive restart — a restart scheme is commonly used to im-



Pose Graph Optimization 11

Algorithm 4 The AGPM — PGO* Method

1: Input: An initial iterate X(© = [t RO € R™™ x SO(d)™ in which t©
—ROTTQAT (AQAT)T, the maximum number of outer iterations N, the maximum num-
ber of inner iterations No, n € (0, 1], and 6 € [0, 00).

2: Output: A sequence of iterates { X ©)}.

3: function AGPM — PGO*(X® N, Ny, 9)

40 a9 1, TO « xO O p(x©)

5: fork=0— N—1do

6

7

8

(VO s}« NAG — PGO*(X®), 7™ o) Ny)
if F(V(NO)) < fR_g. ||V(No) _ X<k)||2 then
aFtD) o gWNo) - x(kt1) 3 (No) - plk+1) 3/ (No—1)

9: else

10: {ZW} « GPM — PGO*(X®) | Ny)

11: a®tD 1, x*+D) . Z(No)  plkt1) . 7(No)
12: end if

13: FE (1 =m) - f 4 F(XED)

14: end for

15: return { X (®)}
16: end function

prove the convergence of accelerated proximal methods in convex optimization [19].
In AGPM — PGO*, we implement GPM — PGO* for several iterations and then restart
NAG — PGO* whenever the momentum term seems to take us in a bad direction, and
as is shown later, though not a descent algorithm, AGPM — PGO* is guaranteed to
converge to first-order critical points under mild conditions. Since NAG — PGO* is
usually preferred than GPM — PGO*, it is recommended to choose a small ¢ in line 7
of Algorithm 4. Besides acceleration, NAG — PGO* and AGPM — PGO* are expected
to escape saddle points faster than GPM — PGO* with some additional simple strate-
gies adopted, for which interested readers can refer to [14] for more details. Similar
to NAG — PGO* and AGPM — PGO*, we might also extend GPM — PGO to obtain
NAG — PGO and AGPM — PGO, which are shown in [16, Appendix A].

In the experiments, we observe that AGPM — PGO and AGPM — PGO* converge
to the global optima as long as GPM — PGO and GPM — PGO* converge to the global
optima, however, AGPM — PGO and AGPM — PGO* are a lot faster than GPM — PGO
and GPM — PGO*. Even though AGPM — PGO and AGPM — PGO* are not descent
algorithms if n < 1, we still prove that AGPM — PGO and AGPM — PGO* converge
to first-order critical points under mild conditions.

Theorem 4. Let {X )} be a sequence of iterates that is generated by either
AGPM — PGO or AGPM — PGO*. Then,

(1) F(X™®) = F> as k — oo;

(2) HXUH‘U—X(k)”—>Oask—>ooiff>]\~4and(5>0;

(3) gradF(X(k))—>Oask—>ooiff>]\2,5>0andN0:1;
4) || X*) — X®)|| = 0ask — ocoifa > 0andd > 0;

(5) grad F(X®)) - 0ask — ooifa>0,8 > 0and Ny = 1.
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Proof. See [16, Appendix B.4]. O

Note that even though (3) and (5) of Theorem 4 require the maximum number of
inner iterations Ny = 1 to guarantee grad F'(X(®)) — 0, we still observe in the exper-
iments that AGPM — PGO and AGPM — PGO* always converge to first-order critical
points for any Ng > 1. As a result, it should be empirically all right to specify Ny > 1
so that the number of objective function evaluation is reduced and the overall efficiency
is improved.

8 Experiments

In this section, we evaluate the performance of generalized proximal methods for
PGO that are proposed in Sections 6 and 7 on SLAM and distributed 3D sensor network
localization, and make comparisons with existing techniques. All the tests have been
performed on a Thinkpad P51 laptop with a 3.1GHz Intel Core Xeon that runs Ubuntu
18.04 and uses g++ 7.4 as C++ compiler.

8.1 SLAM Benchmark Datasets

In the first set of experiments, we implement AGPM — PGO* (Algorithm 4) on a
variety of popular 2D and 3D SLAM datasets and compare the results with SE — Sync
[9], which is one of the fastest PGO methods.

For each of the dataset, we choose « = 0, Ny = 10,7 = land § = 1 X 10~°
for AGPM — PGO*, and AGPM — PGO* terminates once the relative improvement of
the objective function is less than ¢ = 0.002, i.e., F(X®) < (1 + ¢)F(X (D),
For SE — Sync, we use the default settings except the stopping criteria. In default,
SE — Sync does not stop until attaining a local optimum, whereas in our experiments,
for a fair comparison, we terminate SE — Sync once it achieves an equivalent accuracy
as AGPM — PGO*, which takes less time than the default settings. For all the datasets,
we use the chordal initialization [20] for both AGPM — PGO* and SE — Sync.

The results for these experiments are shown in Tables 1 and 2 and Figs. 1 to 3. In
Tables 1 and 2, n is the number of unknown poses, m is the number of edges, f* is
the globally optimal objective value that can be obtained using SE — Sync, and f is
the objective value attained by AGPM — PGO* and SE — Sync. In Figs. 1 and 2, we
present the speed-up v.s. SE — Sync and the relative objective error (f — f*)/f* of
AGPM — PGO*. In all the experiments, AGPM — PGO* is several times faster than
SE — Sync to achieve modest accurate solutions with an average speed-up of 5.14x for
2D SLAM datasets and 9.14x for 3D SLAM datasets. In addition, the average rela-
tive objective errors of AGPM — PGO* for 2D and 3D SLAM datasets are 0.25% and
0.075%, respectively, and such an accuracy is generally sufficient for practical use in
SLAM. Furthermore, though not presented in this paper, AGPM — PGO* converge to
the global optima in all the experiments if enough computational time is given.

We also compare the convergence of GPM — PGO, GPM — PGO*, AGPM — PGO
and AGPM — PGO* with SE — Sync on 2D and 3D SLAM datasets, whose results are
shown in [16, Appendix C].
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Dataset N m - SE — Sync [9] AGPM — PGO™ [ours]

f ‘ Time (s) f ‘ Time (s)
ais2klin||15115|16727|1.885 x 102||1.885 x 10%|4.83 x 107!|1.901 x 10%|6.19 x 10~2
city {|10000|20687|6.386 x 10?||6.387 x 10%|3.19 x 107|6.388 x 10?|4.02 x 102
CSAIL || 1045 | 1172 (3.170 x 10*||3.170 x 10'|4.02 x 1073|3.171 x 10*{7.81 x 1074
manhattal| 3500 | 5453 |6.432 x 10%]/6.434 x 103|9.02 x 1073|6.435 x 103(3.26 x 1073
intel || 1728|2512 [5.235 x 10'||5.235 x 10*|1.05 x 1072|5.248 x 10*|5.10 x 1073

Table 1: Results of the 2D SLAM datasets

Dataset n m - SE — Sync [9] AGPM — PGO* [ours]

f ‘ Time (s) I ‘ Time (s)
cubicle || 5750 [16869|7.171 x 102%|[7.174 x 10%[1.99 x 10~}|7.178 x 10?%|6.64 x 1072
garage || 1661 | 6275 [1.263 x 10°|[1.263 x 10°[4.38 x 1071[1.264 x 10°|1.21 x 1072
grid || 8000 [22236|8.432 x 10*||8.433 x 10%|1.10 x 10° |8.433 x 10*|1.54 x 107!
rim 10195(29743|5.461 x 10%||5.463 x 10%|1.15 x 10° |5.465 x 103(3.03 x 107!
sphere || 2500 | 4949 |1.687 x 10%||1.687 x 10%(1.74 x 10~ *|1.687 x 10®|2.66 x 1072
torus || 5000 | 9048 |2.423 x 10%(|2.423 x 10*|1.89 x 107'|2.425 x 10*|5.50 x 1072
sphere-al| 2200 | 8827 [2.962 x 10°((2.963 x 10°(1.56 x 1071(2.963 x 10°[4.06 x 102

Table 2: Results of the 3D SLAM datasets
8.2 Distributed 3D Sensor Network Localization

In the experiments of distributed 3D sensor network localization, it is assumed
that the 3D sensor network is static and connected, and each node in the network can
only communicate with its neighbours and can only measure the relative pose w.r.t.
its neighbours, and as a result, we need to solve it distributedly to estimate poses
of each node. As mentioned before, GPM — PGO* and AGPM — PGO* always opti-
mally recover the translation ¢, and thus, expect a faster convergence than GPM — PGO
and AGPM — PGO. However, in distributed PGO, similar to second-order PGO meth-
ods [6-9] solving linear systems to evaluate the descent direction, GPM — PGO* and
AGPM — PGO* have to use iterative solvers to solve Eq. (24) to recover the transla-
tion ¢, which usually reduces the efficiency of optimization. In contrast, GPM — PGO
and AGPM — PGO only need the estimated poses of itself and its neighbours in opti-
mization and do not have to solve linear systems as GPM — PGO* and AGPM — PGO*
and second-order PGO methods [6-9]. Therefore, GPM — PGO and AGPM — PGO are
well suited for the distributed PGO without inducing extra efforts. Furthermore, there
is no loss of theoretical guarantees for GPM — PGO and AGPM — PGO in distributed
PGO.

In the experiments, we simulate a distributed 3D sensor network on an ellipsoid
with n = 200 vertices (nodes) and m = 600 edges. The noisy measurements g;; =

(Ri;, tij) € SE(3) are generated according to the model Eij = Rijexp(¢fl) and
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ais2klinik ais2klinik

city city n—
3 B
124 0
%@ CSAIL = CSAIL m——
< <
A A
manhattan manhattan EE— ——

EAGPM-PGO* i
|
BSE-Syuc intel

intel

0 2 4 6 8 1074 100 102
Speed-up v.s. SE-Sync (fF=F)/f

(@ (b)

Fig. 1: The results of AGPM — PGO* for 2D SLLAM datasets. The results are (a)
speed-up v.s. SE — Sync [9] and (b) the relative objective error (f — f*)/f* of
AGPM — PGO*. For 2D SLAM datasets, the average speed up is 5.14x and the av-
erage relative objective error is 0.25%.

cubicle E— 1 cubicle EE—— ———
garage g garage I
grid o — grid m———
%f Tim [— % Tim
A —— A
sphere g 1 sphere n—
torus pu— OIS |
B AGPM-PGO*
sphere-a u— IlSE-Sync i sphere-o I —
0 2 4 6 8 10 12 104 1073
Speed-up v.s. SE-Sync f=rm/r
(@ (b)

Fig.2: The results of AGPM — PGO* for 3D SLAM datasets. The results are (a)
speed-up v.s. SE — Sync [9] and (b) the relative objective error (f — f*)/f* of
AGPM — PGO*. For 3D SLAM datasets, the average speed up is 9.14x and the av-
erage relative objective error is 0.075%.

fij =ty +§fj, in which 55 ~ N(0, og-1) with §g = 0.05rad with §fj ~ N(0, 4 -1)
and 0; = 0.05 m. We compute the statistics over 30 runs and use the chordal initializa-
tion' for all the runs. The results are shown in Fig. 4. In all the 30 runs, AGPM — PGO
converge to the global optima with an average rotation error of 0.0253 rad and an aver-
age relative translation error of 1.60%.

9 Conclusions

In this paper, we have proposed generalized proximal methods for PGO and proved
that our proposed methods converge to first-order critical points. In addition, we have
accelerated the rates of convergence without loss of any theoretical guarantees. Our

! The chordal initialization can be distributedly solved by relaxing PGO as convex quadratic
programming.
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proposed methods can be distributed and parallelized with minimal efforts and with no
compromise of efficiency. In the experiments, our proposed methods are much faster
than existing techniques to converge to modest accuracy that is sufficient for practical
use. Though not presented in this paper, our proposed methods can also be extended for
incremental smoothing [21].

(a) cityl0000 (b) intel (c) ais2klinik

(d) garage (e) rim (f) sphere
Fig. 3: The results of AGPM — PGO* on some 2D and 3D SLAM benchmark datasets.
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Fig. 4: The results of distributed sensor network localization using AGPM — PGO over
30 runs. The results are (a) average rotation error and (b) average relative translation
error. In all the 30 runs, AGPM — PGO converge to global optima.
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A The NAG — PGO and AGPM — PGO Methods
A.1 The NAG — PGO Method

Algorithm 5 The NAG — PGO Method

I: Input: An initial iterate X© = [t R®] e R¥" x SO(d)" and XY =
[t(fl) R(*l)] € R¥™™ x SO(d)™, s ¢ [1, 400), and the maximum number of itera-
tions N.

2: Output: A sequence of iterates { X ®) s(¥)},
3: function NAG — PGO (X, x(=1 5O )
4: fork=0— N —1do

k
5: s VAsZ +1 41 v x4 S(Ui —1)1 (X(k) _X(k—l)>
, T
. k k k
6: [0§)“.9$L)]<_y()q)
7. fori=1—ndo
8: ngﬂ) < arg i?ao’id) trace(R;r9§k))
9: end for
. k+1 k+1 k41
10: R(Jr)%[Rg*)---RﬁL )]
11: 1) R Z L ()
12: xR+ [t"”” R(k+1)]
13: end for

14: return {X ) s}
15: end function

A.2 The AGPM — PGO Method

Algorithm 6 The AGPM — PGO Method

1: Input: An initial iterate X (©) = [t<0) R<0>] € R¥™ x SO(d)™, the maximum number of
outer iterations N, the maximum number of inner iterations No, n € (0, 1], and ¢ € [0, o).

2: Output: A sequence of iterates { X *)}.

3: function AGPM — PGO(X© | N, Ny, 6)

4 a9 1, TO « xO O p(x©®)

S: fork=0— N —1do

6: (VO s}« NAG — PGO*(X®, 7™ o) Ny)
7: it F(VNO) < fB) 5. ||y (o) — x(*))|2 then

]: alFt1) o gWNo) - x(kt1) oy (No)  plkt1) o 1/ (No—1)
9: else

10: {Z} « GPM — PGO* (X ™| Ny)

11: aF T 1, XD o z(No) - plkt1) . 7(No)
12: end if

13: FED — (@ =n) - f® 4 F(XED)

14: end for

15: return { X ")}
16: end function
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B Proofs

B.1 Proof of Theorem 1

If we let
F{(X) = %HRiéij — R;? (B.1)
and
Fjj(X) = %HRifzj +t; — 5%, (B.2)

then we obtain

R DT
VRIFZJ( ) R R Rz]? (B.3a)
VR, 1]( )=R;j — Riéij, (B.3b)
and
VsztJ( ) = Ritij +t; — t;, (B.4a)
Vg, zg( ) = (Ri{ij +t; — )t;;, (B.4b)
Vt7thg( ) =1t; — Rit;; — t;. (B.4¢c)

Note that Fff(X ) and Ffj(X ) only depend on t¢;, R;, t; and R;, and as a result,
VFZ-I;(X ) and VF},(X) are well defined by Egs. (B.3) and (B.4), respectively. Then,
from Eqs. (B.1) to (B.4), it is straightforward to show that

~ 1 k) = 1 k 1 k) 7S 1 k
[ RiRij — §R§ 'Ry - §R§- 2+ |IR; - §R§ 'Rij; - §R§- |17
=18 = B 4| Ry — B+ trace ((Ri — R) "V FHX®) )+
trace ((R; — BY) "V ]Fff(X(""'))> + FR(x®) (B.5)
k
=R ~ RPIP + IR - B P+
trace ((X xT VFR(X“f))) + FR(x®),
and
~ 1 k)~ 1 k k)7 k k
|Riti; +t; — §R£ )tij - 2t£ )~ t( )”2 +1t; — Rz( )tij 2t£ : 2t§ )H2
k)\g k k )\ T
—l(R;i — Ry +t: — t )2 + |1t —té 2+ (¢ -ft( N 'L FLX R+
trace ((R RN 'V FY, (X(k))) + (t; — 9TV, FL(XW) 4 FL(X®)

R; 5 t;fj

=1 (R: = ROy + 6 =t + ity — 62
K\ T

trace((X—Xi( )) VFfj(X(’“))) +szj(X(k))’

(B.6)
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It is by definition that

F(X)= > (ki FHX)+7 FL(X)), (B.7)
(z‘,j)e?
and
VF(X) = Z (Kij - VE(X) + 75 - VEL(X)) (B.8)
(z‘,j)e?

Substitute Eqgs. (B.5) and (B.6) into Eq. (10) and simplify the resulting equation with
Egs. (B.7) and (B.8), the result is

F(X®) + trace ((X - X(’“))TVF(X(’“))) +

%traee ((X — X(k))fl(X - X(k))T) , (B.9)

N [0 L S - = xn &
in which Q = S oe with Q7 = diag{Q7, -+, Q7} € R™", Q°r =
diag{Q, ---, Q2} € R¥™xdn and Qv = diag{Q¥, ---, 0%} € R¥*" in which
0= > 2-7;€R, (B.10a)

(i,5)€€
ﬁ;): Z 2-/*61‘]"1—‘:- Z 2'7’,‘j'7§ijt~; GRdXd, (BlOb)
(i,5)€€ (i, ))EE
S?ZZV = Z 2- Tij * Eij S R (B.10c)
(i,)EE

The proof is completed.

B.2 Proof of Theorem 2
Proof of (1) It is without loss of any generality to reformulate Eq. (7) as
F(X) = F(X™) + trace ((X . X(k))TVF(X(k))) +
1 ~
5 trace (X = X)L (x = x*) 7). @.1)

Note that (B.9) is an upper bound of F/(X) and Eq. (B.11), and as a result, we obtain
Q = M, which completes the proof of (1).
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Proof of (2) From Egs. (B.10a) to (B.10c), if we reorder X = [ty - t,, Ry -+ Ry]
to X' = [t1 Rita Ry t,, Ry], then Q is accordingly reordered to a block diago-
nal ' 2 diag{€?,, ---, Q,} € RE+Dnx(d+Dn_in which ) € REFDx(@+D) gre
the principal minors of 2 .M. Let /\max(ﬁ;), )\max(fl), Amax (]\~4 ), etc., be the greatest
eigenvalue of corresponding matrices. As a result of Courant-Fischer theorem [22, The-
orem 4.2.6], it is straightforward to show Apax (%) < 2 Apax(M ), from which we

further obtain Amax () = Amax (') < 2-Amax (M ). Then, for any ¢ € R, if g I=M,
we obtain ¢ > 2 Apax (]\7[ ), and thus, ¢ > )\max(ﬁ) andc-I > §~2, which completes the
proof of (2).

B.3 Proof of Theorem 3
Proof of (1) For GPM — PGO, it should be noted that we define G/(X|X*)) as

G(X|X®) = F(X®)) + trace ((X - X(k))TvF(X(k))> +
%trace ((X —X(k))f(X _X(k))T) (B.12)

in Eq. (13), with which Eq. (13) is equivalent to

XD — arg min G(X|X®), (B.13)
X eRIXn x SO(d)™

Since G(X | X *)) is an upper bound of F(X) that attains the same value with F'(X) at
X ®) and X *+1) minimizes G(X|X *)), it can be concluded that

P(X*H) < g(x X H) < g(x W x W) = p(X®), (B.14)

which suggests that GPM — PGO is non-increasing.
For GPM — PGO*, if we substitute

t=—RVI LW (B.15)

into Eq. (7) and simplify the resulting equation, we obtain

. ’ L 1 v, T
Rerggr(ld)nF (R) = 3 trace(RMrR "), (B.16)

in which ~ _ _ _ _
Mp = L(GP)+%° - VT LWV, (B.17)

For each iterate in GPM — PGO*, from Eq. (24), it is straight to show that F’(R(k)) =
F(X®),VF'(R®) = VR F(X®)and V,F(X*) = 0, and as a result, G/( X | X (*))
can be simplified to

G(X|X(k)) — F/<R(k)) + trace (VF/(R(k))T(R _ R(k))) +

%trace ((X ~ XMT(X — XU“))T) . (B.18)
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If we substitute Eq. (17) into Eq. (B.18) and marginalize out ¢t € R4*™, we obtain
G'(RIR®) = F'(R®) + trace (VF’(R(’“))T(R - R(’“))) +
%traee ((R — R(k))f’(R — R(k))T) , (B.19)

in which _ _ _ _
1—\/ — Fp _ FI/TFT—ll‘\l/
is positive semidefinte, and it should be noted that
G’(R(’“)|R(’“)) — F’(R(k)) — F(X(k)).
Furthermore, Eq. (18) is equivalent to

R*+Y —arg  min  G'(R|R™), (B.20)
ReSO(d)"

and it is by definition that
F(X(k+1)) — F/(R(k+1)) < G/<R(k+1)|R(k‘)) < F’(R(k)) — F(X(k)), (B.21)

which suggests that GPM — PGO* is non-increasing.
From Egs. (B.14) and (B.21), it can be concluded that F(X *)) is non-increasing,
which completes the proof of (1).

Proof of (2) From (1) of Theorem 3, it is known that F'(X (k)) is non-increasing. Fur-
thermore, F'(X) is bounded below, and as a result, there exists FF*° € R such that
F(X®) — F>, which completes the proof of (2).

Proof of (3) For GPM — PGO, it is from Egs. (B.12) and (B.13) that
F(X®) + trace (X4 = X®) T F(x )4
%trace ((x®D = XONF(xEHD = x0T < p(x®),
and from Eq. (B.11), F(X **+1) is equivalent to
F(XU4) = P(X®) + trace (X4 - x0) TOF(X0)) +
1 ~ T
5 trace ((X<k+1> — X)L (XKD = x(0) ) :
which implies
F(X kDY - p(x (R

<
1 (k+1) W\ (7 (3 (kD) kT
5 trace ((XUH) — XM (7 ~T) (X ¢+ - x0) ) (B.22)
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IfT = ]\~4, there exists € > 0 such that T > M + € - L. Then, from Eq. (B.22), it can be
concluded that

F(X®D) — px W)y < —e. || X *+D — x(R)))2, (B.23)
For GPM — PGO*, it is from Eqgs. (B.19) and (B.20) that
F/(RM) + trace ((REHD — RO) TV F/ (X ®)) +
1 k+1 E)\ TS k41 BT k
5 trace (RO — RO (REHD — RO)T) < F/(RO),
and from Eq. (B.16), F(R(**1)) is equivalent to
FI(REHD) = F'(R®) + trace ((R*) — W) TV F/(RM)) +
1 k+1 E)\ 17 k )Y T
5tmce((Rﬂ D WAL (R — (M) )
which implies
F/(R(k:+1)) o FI(R(k)) S
1 L
5 trace ((R<k+1> — R®) (M —T7)(R*HD — R<’<>)T) . (B24)
From ' >~J\~4 = 0, it is straightforward to show that IV = M’ and there exists ¢ rR>0
such that IV > M’ + ep - I, and as a result, we obtain
F'(R*D) — F(RW)) < —ep - ||R*+D) — R(W)|12, (B.25)

Furthermore, from Eqgs. (B.25) and (24), it can be shown that there exists ¢ > 0 such
that
er - |RETD — RB)|2 > . || x*+D _ x (82, (B.26)

As aresult of F(X®)) = F/(R®) and F(X®* D) = F’/(R*+1) and Egs. (B.25)
and (B.26), we obtain

F(X®HD) (X)) < —¢. | XKD — x(F))|2, (B.27)

From (2) of Theorem 3, we obtain F(X®*)) — F°. Then, as a result of
Egs. (B.23) and (B.27), it can be shown that for GPM — PGO and GPM — PGO*,
| X *+D — X®)|| — 0as k — oo, which completes the proof of (3).

Proof of (4) For GPM — PGO, from Riemannian optimization [9, 23], if we assume
that the Euclidean gradient is VF(X) = [V F(X) VRF(X)], in which V,F(X) €
R¥™ and VR F(X) € R¥" correspond to the translation ¢ = [ty - - t,] € R*™
and the rotation R = [Ry - -+ Ry,] € SO(d)", respectively, then the Riemannian gra-
dient grad F'(X) can be computed as

grad F(X) = [grad ,F(X) grad zF(X)], (B.28)
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in which
grad . F(X) = V. F(X) (B.29)
corresponds to the translation ¢, and
grad  F(X) = VR F(X) — R SymBlockDiag,(R"VzF(X)) (B.30)
corresponds to the rotation R. In Eq. (B.30), SymBlockDiag,, : R4mxdn — Rdnxdn jg
a linear operator

1
SymBlockDiag,(Z) £ 5 BlockDiag,(Z + z"),

in which BlockDiag, : Ré>dn — Rdnxdn jg a]50 a a linear operator that extracts the
(d x d)-block diagonals of a matrix, i.e.,

Z11

BlockDiag,(Z) £ .
Znn

As a result, Egs. (B.28) to (B.30) result in a linear operator Qx : Rx(d+1)n

R&*(d+1)n that depends on X such that the Riemannian gradient grad F'(X) and the
Euclidean gradient VF'(X) are related as

grad F(X) = Qx (VF(X)). (B.31)
Similarly, for G(X|X (*)) in Eq. (B.12), the Riemannian gradient grad G(X| X *)) is
grad G(X|X®)) =0x (VF(X™)) + Qx (X — X*)T)
=0x (VF(X)) + Qx (VF(X®) - VF(X))+
Ox ((X — X™)T)
=grad F(X) + Ox (VF(X®) - VF(X))+
Qx (X = Xx®)),
and thus, we obtain
grad G(X *HD | X0y =grad F(X* V) + Qe (VF(X W) — VF(X D)) 4

Qxinen (XFFD — XW)T).
(B.32)
It is known that VF(X) is Lipschitz continuous, then there exists L > 0 such that

1Qx e (VE(X®) = VE(XTI)) || < L-[|Qxem [[2- | X = X FHV | (B.33)

in which || - ||2 denotes the induced 2-norm of linear operators. From Egs. (B.28)
to (B.30), note that Qx only depends on R € SO(d)™ and SO(d)" is a com-
pact manifold, and thus, ||Qx]|2 is bounded. Then, from (3) of Theorem 3 that
| X*+D) — X®)|| - 0if T = M and Eq. (B.33), we obtain

Qv (VE(XH®) - VE(XEHD) — 0. (B.34)
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Similarly, since T'is also bounded, we obtain
Qs (XD — xNT) 0 (B.35)
From Egs. (B.32), (B.34) and (B.35), it can be concluded that
grad F(X* V) - grad G(XF+D | x *)), (B.36)

Note that X (*+1) minimizes G(X|X (¥)), and thus, grad G(X (*+1)) = 0 always holds,
then from Eq. (B.36), we obtain

grad F(X*D) - 0

as k — oo, which completes the proof of (4).
For GPM — PGO*, the Riemannian gradient of F’(R) in Eq. (B.16) is

grad F'(R) = VF'(R) — R SymBlockDiag,(R' VF'(R)). (B.37)
From Eq. (B.19), we obtain

grad G'(R|R™) =Qp(VF'(R™)) + Qr((R — R™)T)

=0Qr(VF'(R)) + Qr(VF'(R™) — VF'(R))+
Qr((R—RMIY)

=grad F'(R) + Qr(VF'(R™) — VF'(R))+
Qr((R - RMI),

in which Qg : R4*dn — R4*dn g the linear operator defined by Eq. (B.37), and we

obtain

grad G'(R* V| RW) =grad F/(R**V) + Qpain (VF'(RW) — VF'(RFHD))

Qpasn (REFY — RN,
(B.38)
Similar to GPM — PGO, it can be shown that

grad F'(R**+Y) - grad G'(R*+D | R, (B.39)

and since it is by definition that grad G'(R**+D|R™*) — 0, we can conclude
that grad F/(R(**+1)) — 0. Moreover, as mentioned in the proof of (1), we have
VF'(R®) = VzF(X®) and V,F(X*) = 0, which further indicates that
grad F(X*)) = 0.

Proof of (5) and (6) Note that ' = o- I+ Q = M if a > 0. Then, from (3) and (4) of
Theorem 3, it can be concluded that (5) and (6) hold as long as « > 0, which completes
the proof of (5) and (6).
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B.4 Proof of Theorem 4

Proof of (1) Even though Algorithm 4 is not necessarily a descent algorithm, we can
still prove f(#+1) < f() and F(X(®)) < f(¥) by induction. Note that f(©) = F(X(©)),
and thus, F(X(O)) < O 1f X (B+1) 45 generated from NAG — PGO or NAG — PGO*,
we obtain F(X(*+1)) < f*); otherwise, X #+1) is generated from GPM — PGO or
GPM — PGO*, and according to Theorem 3, we obtain F'(X*+1)) < F(X®) from
which it can be further shown that F(X*t1)) < f(*) a5 long as F(X®)) < f(k),
If F(X®HD) < £ we obtain fE+D) = (1 —p) - f®) 4. F(XEHD) < fk)
and F(X D) < B+ for any n € (0, 1]. As a result, it can be concluded that
fEHD < £ and F(X®) < f*) Furthermore, f(*) is a actually convex combi-
nation of F(X(©) ...  F(X®), and F(X) is bounded below, and thus, f(*) is also
bounded below and there exists F>° such that f(¥) — F>_Since f(¥) — F>, we
obtain (1 — 7)) - f® + . F(X®) — F> as well, then it can be concluded that
F(X®) — F> as k — oo, which completes the proof of (1).

Proof of (2) If =M , there exists € > 0 such that r >~ M + € - I. From Algorithms 4
and 6, it can be concluded that

F(X(k+1)) <f®_5. ||X(k+1) — X(k)H2
if X ®+1) is from NAG — PGO or NAG — PGO*, or
F(x(kﬂ)) < fB) _¢. ||X(k+1) _ X(k)”2
if X*+1 is from GPM — PGO or GPM — PGO*. As a result, we obtain
PXEHD) < f®) — g | X EFD — xR)|j2, (B.40)

in which ¢ = min{é, €}. From Eq. (B.40) and f*+1) = (1 —5) - f®) 4+ 5. F(X®)),
we obtain
FED < B g || X RFD — x (R))|2,

Since f*) — F> and 5, ¢ > 0, it can concluded that | X **+1) — X*)|| — 0 as
k — oo, which completes the proof of (2).

Proof of (3) For AGPM — PGO, if the inner number of iterations Ny = 1, then for
NAG — PGO, X *+1) is actually evaluated as

XD — arg min G(X|Y "), (B.41)
X eRIXnx SO(d)™
in which
y&) — x k) s™ -1 x (k) _ x(k=1) B.42
B G ( B ) ' (B.42)

From Eq. (B.32), we obtain
grad G(X(k+1)|y(k)) =grad F(X(]Hl)) + Qx4 (VF(Y(k)) - VF(X(k+1)))+

Qxren (X*FD — Y(k))f).
(B.43)
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From Algorithms 3 and 5, note that s*) > 1, and

(k) _1 25(k) _9 25(k) _9
s s s
0< = < <1. B.44
= skl Vas®2 41417 250 7 (B.49
From Egs. (B.42) and (B.44), we obtain
sk —1
X = YO = = X = X D) < X ® = X ED) B.45)
s

From (2) of Theorem 4 and Eq. (B.45), we obtain | X*) — Y (*)|| — 0. In addition,
from the triangular inequality of the Frobenius norm, it can be further concluded that

| X *HD —y B 0 (B.46)
Similar to the proof of (4) of Theorem 3, from Eq. (B.46), we obtain
Qxwin (VE(YW) - VE(XHHD) — 0, (B.47)

and _
Q((x*+1) — yI) 0. (B.48)

From Egs. (B.43), (B.47) and (B.48), it can be concluded that
grad F(X**D) o grad G(X *+D |y (),
In addition, from Eq. (B.41), we obtain grad G(X *+1)|y(*)) = 0, which implies
grad F(X 1) - 0. (B.49)

Thus, it can be concluded that grad F(X 1) — 0 if X+ is generated from
NAG — PGO. Following the same proof of (4) of Theorem 3, we can also prove
that grad (X 1) — 0 if X(*+1) is generated from GPM — PGO. As a result,
grad F(X®)) — 0 as k — oo, which completes the proof of (3).

For AGPM — PGO*, the proof is similar to that of AGPM — PGO, which is omitted
due to space limitation.

Proof of (4) and (5) Note thatI' = o - I+ Q = M if a > 0. Then, the proofs of (4)
and (5) are implementation of (2) and (3) of Theorem 4, respectively.

C Experiment Results

C.1 The Comparisons of Convergence on SLAM Datasets
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