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ABSTRACT

A new framework for advanced machine learning-based
analysis of hyperspectral datasets HSKL was built using the
well-known package scikit-learn. In this paper, we describe
HSKL’s structure and basic usage. We also showcase the
diversity of models supported by the package by applying 17
classification algorithms and measure their baseline
performance in segmenting objects with highly similar
spectral properties.

Index Terms— Hyperspectral Imaging, Machine Learning,
Image classification

1. INTRODUCTION

High-quality classification and regression models are
fundamental to the most workflows in hyperspectral image
(HSI) analysis. The typical tasks range from classification of
skin lesions in medical diagnostics [1], to detecting oil spills
in remote sensing [2]. There is a need for a greater selection
of data-driven machine learning algorithms for the rapidly
increasing type and volume of hyperspectral data. Numerous
commonly used statistics-based algorithms for denoising,
dimensional reduction, clustering, and classification have
been adapted for HSI analysis. However, their capabilities are
not sufficient to distinguish subtle differences in the spectral
- spatial domains. While deep learning approaches have been
developed in HSI [3] they are mostly limited by availability
of large standardized and labeled datasets for training and
testing. Moreover, the typical researcher does not have the
access to data at the scale where deep learning models can be
efficiently trained. An intermediate approach that provides
fast satisfactory results from relatively small HSI datasets is
highly appreciated.

In this work, we present a software package,
hyperspectral-scikit-learn (hereon referred to as HSKL) for
relatively quick and convenient identification of objects in
hyperspectral datasets. HSKL aims to provide researchers
and engineers in hyperspectral imaging with an easy-to-use
interface to a family of machine learning algorithms in the
popular python package scikit-learn. Scikit-learn is a well-
known versatile library of established and validated

algorithms with a consistent interface and a rapidly growing
number of classifications, regression, and clustering models
[4]. In comparison to previous rather segmented approaches,
algorithms in scikit-learn provide baseline performance that
enables researchers to carry out classification or regression
tasks with limited data and minimal labeling. Importantly for
hyperspectral data analysis, different estimators and
transformations can be combined using the straightforward
pipeline application programming interface for training
composite or ensemble models.

Despite the advantages of scikit-learn for data analysis,
the direct processing of hyperspectral datasets with this
package is time-consuming requiring careful transformations
of the image, labels, and masks. Even though user can always
apply scikit-learn directly to process hyperspectral data, the
workflow of transforming the images to a scikit-learn
compatible format can be highly error prone because of the
many manual steps involved. HSKL streamlines this process
through 1) handling direct transformation of hyperspectral
image input to scikit-learn-compatible matrices, and ii)
providing availability of common and emerging utilities to
pre-process hyperspectral images. This approach establishes
a flexible yet standardized workflow to data analysis and
reduces boilerplate code required to perform machine
learning studies on hyperspectral data. With a few lines of
code, HSKL users can train and use models, which take
hyperspectral images as input and obtain high quality pixel-
wise or image-level labels, thus achieving the goal of many
hyperspectral data analysis.

Herein, we present an introduction to the HSKL software
package, apply a collection of classification algorithms to an
example hyperspectral dataset acquired on a bench-top
hyperspectral system, and compare baseline model
performance.

2. HSKL DESCRIPTION

The basic workflow for HSKL is shown in Figure 1. The
workflow included the following elements. Preprocessing:
Though algorithms in scikit-learn do not explicitly require
preprocessing, normalization, dimensional reduction and
other standard steps, they are often necessary to achieve a
satisfactory performance. For example, dimensional
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reduction techniques such as principal component analysis
(PCA) and endmember decomposition might serve to remove
noisy channels and decrease the amount of data to the most
essential components. Load images and labels: With the
exception of unsupervised clustering, most algorithms in
HSKL requires some labeling of the training data. The
package allows for convenient input of pixel-level labeling
and masking, accelerating model development workflow.
Estimator fit: This function implements model training for
most estimators in scikit-learn using training hyperspectral
images and labels. This includes but are not limited to
Classification, Regression, and Clustering algorithms. The
outcome of this module is the trained model that can be
applied for inference. Estimator predict: The trained model
from the fit stage is used for predicting and assigning labels
for previously unseen data.

HyperspectTg‘I Acquisition
A4
Preprocessing,
DimensionaI'E‘eduction, etc
s
Load Images and Labels
[

Estimator Fit
1L
Estimator Predict

Figure 1. Overview of features in HSKL and relation to
hyperspectral image analysis workflow.

HSI-Learn is designed to work with NumPy arrays, with a
syntax fully compatible with that of scikit-learn. The
following listing shows the minimal code required to train a
classifier model. The desired method name can be passed to
initialize the model, with the default option being Random
Forest. As consistent with scikit-learn, the classifier features
fit() and predict() methods to train the model and apply
inference, respectively.

import hskl.classification as classification

# Load training, testing, and label images
train, test, label = ...

# Train a classifier and predict test image
cl = classification.HyperspectralClassifier(
method_name="RandomForest”)

cl.fit(train, label)
prediction = cl.predict(test)

Listing 1. Basic usage for HSKL.

Figure 2 shows the structure of the codebase. The
BaseEstimator, ClassifierMixin, and RegressorMixin classes
are all belong to scikit-learn. The BaseEstimator class

implements basic setter and getter methods for the model
parameters; the ClassifierMixin and RegressorMixin classes
implements accuracy scoring functions. Unlike scikit-learn
estimators, the fit and predict methods are implemented in
the parent class HyperspectralEstimator, which handles
transformations and masking of hyperspectral images.
Additionally, a utilities module (hskl.utils) is provided to
generate overlay visualization of labeled images, spectral
normalization, and dimensional reduction using PCA.

Parent Classes Estimator Classes

HyperspectralClassifier

BaseEstimator

Models:

AdaBoost, Bagging, Bernoulli
NB, Gaussian NB, Decision
Tree, Extra Trees, kNN, LDA,
SVC, Random Forest, ...

HyperspectralEstimator
fit(..), predict(..)

== HyperspectralRegressor
ClassifierMixin

score(..)

Models:

Automatic Relevance
Determination (ADA),
AdaBoost, Bagging, Bayesian
Ridge, Canonical Correlation
Analysis, Elastic Net, ...

RegressorMixin
score(..)

.
I
-

Figure 2. Visualization of the HSKL codebase as a class inheritance
diagram. Shown also is a non-exhaustive list of models supported
by HyperspectralClassifier and
HyperspectralRegressor.

3. APPLICATION OF HSKL

The images were collected using and HSI imaging system in
shortwave-infrared (SWIR). The imaging HSI pushbroom
data system featured an SWIR sensitive 2D InGaAs
thermoelectrically cooled CCD camera (Ninox, Raptor), a 25
mm focal length SWIR lens (StingRay Optics), an imaging
spectrograph Imspector N17E (Specim), and a linear, PC-
controlled movable stage (Middleton Inc.). These
components were integrated by Middleton Inc. into a stand-
alone image acquisition system. The system provided
negligible chromatic aberration in the range of 600-1600 nm.
Two conventional incandescent 2x50 W halogen lamps with
broad output from 400 to 2500 nm were used as the light
sources.

The data were processed for spectral analysis, PCA and
endmembers using a hyperspectral imaging software IDCube
(HSpeQ LLC). The number of the endmembers was
performed by the noise-whitened Harsanyi—Farrand—Chang
(NWHFC) method. After the extraction procedures, all
endmembers were presented through the corresponding
abundance maps using N-finder [5]. A map for each
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endmember was visually evaluated and the best combinations
of two endmembers corresponding to the objects were used.
Four types of objects: polymeric round dish, centrifuge tubes,
a coin, and a plastic wrench (Figure 3) were scanned with
HSI-SWIR as shown in Figure 4A. The dataset is considered
challenging to segment because the material composition of
the centrifuge tube and the plastic wrench are similar,
although colored with a different pigment. These colors are
visible to human eyes and conventional visible cameras with
Si-based sensors (blue vs. green) (Figure 3), but not visible
in SWIR because the pigments are not optically active (do not
absorb photons) beyond 1,000 nm. Because of the lack of
spectral difference (Figure 4B), conventional methods, such
as PCA (Figure 4C) or endmember analysis (Figure 4D)
were unable to distinguish between the two.

Figure 3 Objects in a dataset with the visible camera.

Wrench Tube

WAVELENGTH

NORM INTENSITY

1200 1400 1600

Figure 4 Example image set. A: Pseudo RGB image using image
of training data made in SWIR 1094 nm (red), 1301 (green), 1475
nm (blue). B: Normalized spectra of the wrench and the tube from
the selected region of interests. Spectral correlation is 0.93; C: PCA
in pseudo RGB: component 1 (red), component 2 (green),
component 3 (blue). D: Endmembers in pseudo RGB (see text).

Two HSI datasets were acquired, one for model training and
one for testing. Both datasets were segmented manually using
MATLAB’s Image Labeler. For preprocessing, power
normalization in the spectral domain was applied to both
images according to:

(o 2) = e 2 )
Jo Ux,y, D]?ds

where [ is the acquired image; [,, is the normalized image; x,
y and A are the spatial and spectral dimensions, respectively.
The support of captured spectra is from 4, to 4;.

After normalization, PCA was applied to the training image,
reducing the spectral dimension from 510 channels to 19
channels, which contain 80% of the data variance. The
eigenvectors were then used to transform the testing image
into the same space, also with 19 channels.

Model training and testing were carried out using hskl.
Seventeen models were trained using different classification
methods. These are: AdaBoost [6], Bagging [7], Bernoulli
and Gaussian Naive Bayes (NB) [8], Decision Tree [9], Extra
Trees [10], Random Forest [11], Gradient Boosting [12],
Linear and Quadratic Discriminant Analysis (LDA and
QDA) [13], Support Vector Classifier (SVC) [14], Logistic
Regression, Multi-layer Perception (MLP) [15], Ridge
Classifier [16], and Stochastic Gradient Descent [17]. Since
we were evaluating the baseline performance, all models
were trained with default parameters as defined in scikit-
learn, with no further hyperparameter tuning.

4. RESULTS

The results summarized in Figure 5 shows the model-

predicted labels for pixels in the test set. As expected, in most
cases, error from misclassification of the centrifuge tubes was
most severe. However, the majority of the classifier models
were able to separate the two objects based on spectral
characteristics.
The predicted labels were compared with ground truth labels
in the manual segmentation. The precision, recall, and F-
score were used to assess model testing performance. For
each object, the metrics were computed in a binary one-vs-
rest fashion (e.g., wrench vs. non-wrench, coin vs. non-coin).
Precision, recall and F-scores for all objects and classification
methods are shown in Figure 6. Almost all models resulted
in good predictions for the plastic wrench, coin, and rubber
cap, with precision, recall, and F-scores of >0.8. The sole
exception is the AdaBoost classification of the coin, in which
some pixels are misclassified as background and vice versa.

Pixels belonging to the centrifuge tubes are more difficult
to classify. This is mostly due to its similarity with the plastic
wrench in terms of material composition, both appeared to be
made from polyethylene terephthalate. Spectral correlation
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between the wrench and the tubes was found to be 0.93
indicating high similarity between the two subjects. For
comparison, the spectral correlation between the wrench and
the dish was much lower 0.86 facilitating their segmentation.
Another factor is that both materials tubes are semi-
transparent. Therefore, some spectral mixing with the
anodized aluminum tabletop background is present. The
anodized aluminum has low reflection in the visible spectral
range but reflects strongly in SWIR. In addition, the surface
of the centrifuge tube is highly reflective, leading to some
misclassification with the coin. Despite these challenges, the
Extra Trees, Gradient Boosting, Random Forest, SVC, and
somewhat kNN algorithms were still able to classify most of
the pixels belonging to the centrifuge tube, achieving an F-
score > 0.75.

5. CONCLUSIONS
In this work, we showcase a software package HSKL for

the application of general-purpose machine learning
algorithms to hyperspectral im:

Plastic Wrench Coin

sted the

Rubber Cap

classification algorithms on an example hyperspectral dataset
acquired from a bench scanner. Even without parameter
tuning, the baseline performance of most algorithms achieved
satisfactory pixel-wise classification of the objects in the test
image. The package available on GitHub and installable via
the Python Package Index (PyPi). HSKL supports a suite of
image classification and regression algorithms, with more
features are planned, such as support for clustering and robust
hyperparameter tuning.
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Centrifuge Tubes

Figure 5 Ground truth label and model-predicted labels based on pixel spectra. The color encodings are purple-plastic wrench, blue-coin,
red-centrifuge tube, and green-rubber cap. Extra trees, Gradient Boosting, Random Forest, SVC support vector, and kNN methods
demonstrate the best visual differentiation between the plastic wrench and the tubes.
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Figure 6 Precision, recall and F-score for all methods and objects, using default classifier parameters. Each color encodes a pixel type.
Arrows show the classification algorithms with the highest scores for all objects.
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