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Abstract—The controller area network (CAN) is a high-value
asset to defend and attack in automobiles. The bus-off attack
exploits CAN’s fault confinement to force a victim electronic
control unit (ECU) into the bus-off state, which prevents it from
using the bus. Although pernicious, the bus-off attack has two
distinct phases that are observable on the bus and allow the attack
to be detected and prevented. In this paper we present Weeping-
CAN, a refinement of the bus-off attack that is stealthy and can
escape detection. We evaluate WeepingCAN experimentally using
realistic CAN benchmarks and find it succeeds in over 75% of
attempts without exhibiting the detectable features of the original
attack. We demonstrate WeepingCAN on a real vehicle.

I. INTRODUCTION

Motor vehicles are complex cyber-physical systems (CPS)
with more software on more electronic control units (ECUs)
coupled by expansive in-vehicle networks. Increasing com-
plexity provides ubiquitous connectivity for autonomous driv-
ing and infotainment but comes with opportunities to exploit
vulnerabilities in the networks and ECUs [1], [3], [4], [10],
[16], [22], [25], [30]. These exploits motivate authentication
and intrusion detection systems (IDSs) [17], [19], [21], [24],
[26]–[28], [31], [38]–[40] especially in the controller area
network (CAN) because it is used in the majority of vehicles.

A noteworthy attack on CAN is the bus-off attack discov-
ered by Cho and Shin [4]. This attack leverages CAN’s fault
confinement mechanism to cause an ECU to enter the bus-off
state, which removes its access to the bus. The attack, while
interesting, exhibits features that make it easily detectable.

In this paper, we introduce a novel bus-off attack that is
stealthy—it does not provide an obvious feature for detection.
We call this attack WeepingCAN.1 We make the following
contributions with this paper:

1) exposition of WeepingCAN;
2) a skipping attack strategy to increase success;
3) and empirical evaluation of performance and stealthiness.

WeepingCAN is able to bus-off an ECU with success rates
above 75% and low detectability.

Threat Model: Consistent with prior CAN attacks [3],
[4], [10], [16], [30], we assume an adversary (A) controls

1The attack name is a play on the TT emote for crying and TTCAN, which
originally led to our discovery of the attack.

the software on a compromised ECU. A can execute arbitrary
code and can send/receive arbitrary messages on the CAN bus.
Arbitrary code execution implies that A can reprogram CAN
controller registers and interrupt handlers. Although the exploit
to compromise an ECU is out of scope, ECUs are known to
be vulnerable via multiple surfaces [3], [16], [36].

A’s goal is to cause a victim ECU (V) to enter the bus-off
state while A remains stealthy to escape detection. We assume
A conducted an offline analysis and knows the CAN message
parameters [9], [10], [18], [26], [28], [29], [37]. We expect A
can determine the vehicles that satisfy the threat model.

Fault Model: To simplify the attack analysis, we assume
the CAN bus does not incur faults. In reality, faults may in-
crease or decrease the success of attacks and countermeasures.

II. BACKGROUND AND RELATED WORK

We refer interested readers to Natale et al. [23] and Hu [13]
for in-depth coverage of CAN and its error handling.

A. CAN Overview

CAN is a multi-leader broadcast bus with decentralized
arbitration based on the sender’s identifier (ID). Logic-0 bits
are encoded as a dominant signal and logic-1 as a recessive
signal. All nodes float recessive to transmit a 1 and drive a
dominant signal to transmit 0.

A few of the basic CAN data frame’s fields are relevant
to the bus-off attack. The data field can be between 0 and 8
bytes, and senders encode its size in the 4-bit data length code
(DLC) field. The ID field can be 11 or 29 bits. Other fields
are not used explicitly by the attack.

CAN’s error handling is central to the bus-off attack.
Each node can be in one of three states—error-active, error-
passive, and bus-off—depending on the values of its receive
error counter (REC) and transmit error counter (TEC). A
node increases its REC by 1 for each error observed while
not transmitting, and its TEC by 8 for each error while
transmitting. Each successful receive (transmit) decrements the
REC (TEC) by 1. Each node that detects an error transmits an
error-active (error-passive) flag of six dominant (recessive) bits
in the error-active (error-passive) state. Fig. 1 shows the state
machine that governs how the node states change based on the
TEC/REC.

B. Original Bus-off Attack

A identifies some periodic message v that V transmits. A
fabricates two messages: a preceded and an attack message.
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Fig. 1. CAN error state machine with initial state of error-active and
transitions based on transmit/receive error counters (TEC/REC).

1) Preceded Messages (IDs): The preceded message of v is
some message that transmits immediately before v. Sometimes
A can use an authentic message as a genuine preceded ID of
v. The attack success rate can go from below 1% to above
90% by using preceded messages [4].

2) Attack Message (vA): The attack message vA has the
same ID as v and an identical bit-wise prefix up to some bit
at which v is recessive and vA is dominant.

3) Attack Cycle: The attack proceeds in two phases:
Phase 1: A synchronizes with V by enqueueing the preceded
message and the attack message isochronously with v but at
a small negative offset. vA and v transmit in tandem, which
causes a bit error and both ECUs increment their TEC by 8.
They also retransmit synchronously, thus repeating the error in
a cascade of retransmissions. On the 15th retransmission (16th
transmission), both ECUs reach TEC=128 and enter the error
passive state before retransmitting again.
Transition: On the 17th transmission, V’s TEC increases by
8 (to 136) and it transmits a passive error flag, which does not
affect A. Thus, A successfully transmits vA and decrements its
TEC by 1 to reach 127 and re-enter the error active (normal)
state. Then the retransmission of v succeeds and V decreases
its TEC by 1. V is now in the error passive state with a TEC
of 135, and A in the error active state with a TEC of 127.
Phase 2: A continues to inject messages synchronized with v

to increase V ′s TEC by 7 and decrement its own TEC. This
phase iterates with the period of v. Eventually V’s TEC reaches
255 putting it in bus-off.

C. Bus-off Attack Countermeasures

Cho and Shin [4] identified two features that make detect-
ing the bus-off attack possible: feature F1 occurs in Phase
1 when a message encounters consecutive errors; feature F2
happens in Phase 2 when the victim observes a successful
message over its passive error flag. The authors described a
two-pronged countermeasure in which a node that observes
F1 followed by F2 determines a bus-off attack is in progress.
Others have used the same approach [32], [33].

1) Detection: Physical-layer IDSs may detect the bus-off
attack due to differences in the physical characteristics of
A’s and V’s hardware [5]–[7], [11], [15], [41]. These IDSs
generally require additions to a bus, and methods exist to
confuse or circumvent them [10], [30].

2) Prevention: Secure hardware [8], [12], [20], may pre-
vent the attack by detecting and blocking the local transmission
of vA. However, an attacker with access to even one node that

allows arbitrary message transmissions may still conduct the
bus-off attack.

MAuth-CAN [14] is a CAN bus authentication mechanism
that protects the authenticator by using two CAN interfaces and
switching from one to the other in case the TEC exceeds 96.
This approach is unlikely to be generalized because it would
require every ECU to duplicate its CAN hardware.

III. ANATOMY OF THE ATTACK

WeepingCAN is a variation of the original bus-off attack
with a few critical differences, namely: (i) A disables re-
transmission of vA; (ii) A causes recessive bit errors; (iii) A
does not fabricate preceded messages; (iv) A randomizes the
injected bit error. These differences enable the attack without
the detectable features of the original.

A. Attack Message: vA

The attack message has v’s ID, bit-time, and prefix bits
until a random position where v is dominant but vA is
recessive.

B. Attack Cycle

Unlike the original attack, WeepingCAN does not exhibit
behavioral differences due to the error state transitions. Ini-
tially A and V have a TEC of 0 in the error-active mode.
WeepingCAN proceeds as follows:

1) A synchronizes with V using the periodic approach of the
original attack.

2) A disables retransmission of vA.
3) A injects the attack message vA.
4) A’s CAN controller sends an error-active flag due to the

bit error in vA that increases A’s and V’s TEC by 8.
5) V retransmits v and decrements its TEC by 1.
6) V and A decrease their TECs by 1 for other transmissions.

C. Disable Retransmission of vA

Step 2 of the attack aims to avoid feature F1. The ef-
fect of disabling retransmission of vA is that the attack is
characterized by active error flags followed by successful
transmissions. We have found two ways to disable vA’s
retransmission: (i) Disable automatic retransmissions for all
messages; (ii) Abort transmission on transmit error.

1) Disable Automatic Retransmissions for All Messages:
Many commercial CAN controllers can disable automatic
message retransmissions for use with time-triggered CAN
(TTCAN) applications. Prior to injecting vA, A disables
automatic retransmission by writing to a control register,
which typically affects all messages handled by the CAN
controller. Disabling automatic retransmissions also disables
retransmissions due to losing arbitration, so the injection of
vA must occur exactly during the transmission of the message
that precedes v so that v and vA both win arbitration together.

2) Abort Transmission on Transmit Error: Most CAN
controllers can raise an interrupt on transmit errors and allow
A to abort retransmission in the interrupt handler.
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D. Recessive Injection

A injects a recessive (1) bit when v contains a dominant
(0), which causes A’s CAN controller to send an error flag
and increment its TEC by 8. V increments its TEC by 8 and
attempts to retransmit. Since A disabled retransmissions, the
retransmission by V will succeed, decrementing V’s TEC by 1.
Unfortunately, disabling retransmissions means that vA never
successfully transmits: the attack could actually put A into bus-
off! Instead, A can identify additional messages it can transmit
to keep its TEC less than V’s. A needs to transmit at least 1
more message than V for each vA, and V has to transmit fewer
than 7 other messages or its TEC will recover.

Let M be a set of messages, with MV , MA the set of
messages transmitted by V and A, respectively. Let mT denote
the period of m ∈ M . Then A can keep its TEC beneath V’s
if the following holds:

∃v ∈ MV s.t . 8 >

∑

m′∈MV

vT

m′
T

<

∑

m∈MA

vT

mT

. (1)

Example 1 (Basic Attack Strategy): Suppose |MV | =

|MA| = 1, and A’s authentic message is sent with one-fifth the
period of V’s. Eq. 1 holds as 8 > 1 < 5. For every attack on
v ∈ MV , A successfully transmits 5 messages and V transmits
1 message; their TECs will increase by 3 and 7, respectively.
Thus, V can be forced to error passive with 19 attack messages,
while A’s TEC only reaches 57. When V reaches bus-off after
37 injections, A’s TEC reaches 116 and it remains error-active.

Skipping Injections: Subject to Eq. 1, A’s TEC grows
slower than V’s, but A can reach error-passive before V reaches
bus-off. For example, if V’s TEC grows by 7 and A’s grows
by 6, then A’s TEC is 114 when V enters error-passive on
the 19th injection. However, A becomes error-passive on the
22nd, and A eventually goes to bus-off while V recovers. A
can avoid going to bus-off by skipping some injections of vA.
Skipping every other injection will increase V’s TEC by 6 and
A’s by 4, which still is not good enough. Injecting on every
third message of v increases V’s TEC by 5 and A’s by 2,
which puts V in bus-off on the 51st injection.

Example 2 (Skipping Attack Strategy): Consider the case
when |MV | = |MA| = 1, and A’s message is sent with one-
fourth the period of V’s. Eq. 1 holds as 8 > 1 < 4. For
every transmission of v by V , A will successfully transmit 4
messages and their TECs will increase by 7 and 4, respectively.
If A injects on every v, then V goes to error passive with
19 attack messages, while A would only reach a TEC of 76,
but A gets stuck in the error-passive state on the 31st attack
injection before V reaches bus-off, and the attack would fail.
If instead A injects every other v, skipping one iteration, V
would increase its TEC by 6 and A’s TEC would increase
by 0 (fully recover) between attack injections. Thus, V would
reach error passive after 21 injections, and bus-off after 43.

E. Randomized Bit Positions

Creating a generalizeable non-deterministic attack strategy
is challenging because it depends on A’s ability to predict
the bits of v. Despite this challenge, A can employ simple
heuristics to increase the variability of the bit-error position
within the DLC and data fields of vA. The DLC of most

messages is a fixed constant that can be discovered by offline
analysis of a CAN trace. The number of dominant bits in valid
DLCs vary between 1 and 3, so the entropy for a random
injection is low; a clever adversary will inject recessive errors
in the data field.

The data field often encodes a number that does not change
quickly because of physical constraints or an event identifier
that comes from a limited set of events. Messages often repeat
identically for long intervals. If A can identify a deterministic
pattern, then the recessive error can be injected in the data.
Variation within the data field—or lack thereof—is vehicle-
specific. Taylor et al. [34] found that one vehicle (2012 Subaru
Impreza) used 20 IDs for which “many bits were observed to
always be zero” that could reliably be used by A to inject
recessive errors.

IV. EVALUATION

We use a benchtop CAN bus and real vehicle for exper-
imental validation of WeepingCAN using off-the-shelf hard-
ware and in-house software. We conducted several experiments
to evaluate the ideas presented in this paper.

A. Experimental Setup

The benchtop platform includes five microcontrollers—two
BeagleBone Black (BBB), and three TM4C129EXL (TM4C)
boards—that integrate hardware CAN controllers with the
processor chip. We connect them to SN65HVD23x CAN
transceivers that connect via 3.3v CAN in a breadboard. We
use a Saleae Logic Pro 16 to snoop the bus. We run custom
normal workloads and attacker code.

1) Synthetic Benchmark: We adapt the Synthetic Bench-
mark from Cho and Shin [4] to reproduce some of their results.
Specifically, we configure a 500 kbps CAN using three TM4C
boards as nodes X , V , and A to recreate their 3-node setup.
Node X sends message IDs 7 and 9 at a 10 ms period. Node
V sends message ID 17 when it receives ID 7 hence also at
10 ms period. Node A is the attacker.

2) SAE Benchmark: As an intermediate step toward real
vehicles we adopt a modified SAE Benchmark [35] with
sporadic messages omitted. We define message priorities in-
versely to their periods and use constant valued data fields.
We break ties (identical periods) by static prioritization of
the subsystems as follows in decreasing priority order: Ve-
hicle Controller (VC), Brakes, Battery, Driver, Inverter/Motor
Controller (IMC), and Transmission (Trans). Table I shows
the benchmark parameters. Note that, when the subsystems
synchronize with each other, every message except A0 has
at least one genuine preceded ID. In general, they only
synchronize by happenstance.

To allocate the subsystems to boards in our benchtop setup,
we analyze their suitability as both victim and attacker by
calculating Eq. 1 for each combination of subsystem. The
Battery, Brakes, and Trans subsystems can satisfy the role of
victim. The VC, Driver, IMC, and Trans subsystems can be
the attacker in decreasing order of preference. We place the
VC, Driver, and Brakes on separate TM4Cs, IMC on its own
BBB, and Battery and Trans together on another BBB.
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TABLE I. PARAMETERS FOR MODIFIED SAE BENCHMARK [35]

Sending ECU VC Brakes Battery Driver IMC Trans

CAN ID (hex) A0 B0 D0 A1 C1 B2 C2 D2 A3 B3 A4 B4 A5 C5 D5

Size (B) 1 6 1 2 1 1 4 3 1 2 2 2 1 1 1

Period (ms) 5 10 1000 5 100 10 100 1000 5 10 5 10 5 100 1000
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(c) abort transmit error

Fig. 2. TEC increase of dominant bus-off attack with/without retransmissions.

3) F1 Attack Detector: We used the approach described by
Cho and Shin [4] to identify consecutive errors (feature F1)
as indicative of a bus-off attack. We report the performance
of this F1 attack detector in each experiment except for the
last experiment conducted with a real vehicle because we are
unable to observe the internal state of real ECUs.

B. Experiment 1: Bus-Off Attack Reproduction

The first experiment that we conducted is a reproduction of
the original bus-off attack. We replicated the attack to conduct
this experiment using the Synthetic Benchmark setup. The
message ID 9 is the genuine preceded ID of 17. Both messages
are transmitted with a period of 10 ms.

We examined 100 classic bus-off attacks implemented as
described by Cho and Shin [4]. Fig. 2(a) shows how the victim
and attacker TECs grow over time with these attacks; these
plots show the mean over the 100 trials, and all results are
nearly identical.

The F1 detector identified 100% of the attacks with each
synchronization approach and detected 15 retransmissions.

C. Experiment 2: Disabling Retransmissions

As an intermediate step to the full WeepingCAN attack,
we first consider the effect of disabling retransmissions while
continuing to use dominant bit errors as in the original bus-off
attack. Here we evaluate the two approaches for disabling vA’s
retransmission: (1) disable automatic retransmissions, and (2)
abort transmission on transmit error. We implemented each ap-
proach with the TM4C boards. They have TTCAN capability,
support interrupts on bit or stuff errors, and can selectively
abort messages. We measure performance in terms of two
metrics: successful injection rate and injection retransmission
rate. Best performance is a high (100%) injection rate and low
(0%) retransmission rate as measured by the F1 detector.

We again use the Synthetic Benchmark with dominant bit
errors. Node X reliably transmits both preceded messages of
17, therefore A and V can be perfectly synchronized, which
isolates the variable of retransmission approach.

We examined 100 bus-off attacks with each approach to
disable retransmissions and measured the number of successful
attacks and visible transmissions by the attacker. We obtain
these measurements by monitoring the victim (V ) and attacker

(A) nodes TEC values: each increase by 8 is a successful
injection, while multiples of 8 indicate retransmissions.

Disabling automatic retransmissions is done by configuring
the CAN controller. For aborting the transmission on transmit
error we clear the transmit message buffer for the attack
message in the interrupt handler on a bit or stuff error.

Fig. 2(b) and 2(c) show the increase in TEC for victim
and attacker when retransmissions are disabled. Notably, the
initial increase in TEC is much longer and smoother, and the
attacker’s TEC even increases faster than the victim’s, but the
use of a dominant bit error allows for the original attack to
still succeed despite the slower TEC growth of the victim.
The attacker transmits messages successfully because of the
dominant bit error: both disabling automatic retransmission
and aborting on the transmit error result in 18 successful
transmissions.

The F1 attack detector identified 0% of the attacks for all
three approaches. Thus, although these attacks are still based
on dominant bit injections, the F1 feature can be eliminated
to avoid existing detection techniques.

D. Experiment 3: Skipping Attack

We now switch gears to study the stealthy attack by
investigating the effectiveness of skipping attack iterations
with recessive injections. For this experiment we use both the
Synthetic Benchmark and the SAE Benchmark. We evaluate
effectiveness based on the time needed to complete the attack
successfully, the number of completed transmissions of vA,
and the F1 detection rate.

Fig. 3 shows mean TEC increases of 100 attacks skipping
2 to 6 cycles per injection (500 total attacks) with a slight
modification of the Synthetic Benchmark: node A does not
transmit authentic messages thus cannot recover its TEC, so
we add two messages that node A transmits at a period of 10
ms but offset by 5 ms from V ’s transmission of ID 17. Nodes
X and V are unmodified.

Nodes A and V transmit a difference of 1 successful
message per attack, thus A’s TEC increases by 6 and V ’s
by 7 each cycle. This difference is exactly as described in
the example of Section III, and the attack can succeed by
skipping 2 to 6 iterations as explained previously. None of
the trials generated any completed transmissions of vA and
they all successfully put V in bus-off.

The F1 attack detector identified 0% of these attacks and
they all had 0 transmissions of vA prior to bus-off of V .

With the SAE Benchmark, the Battery can be attacked with
the VC, Driver, or IMC by skipping 1 to 5 cycles. Brakes and
Trans can be attacked by VC, Driver, or IMC by skipping 4 or
5. We conducted 75 WeepingCAN attacks skipping 5 cycles
with VC attacking Brakes. The attacker succeeds in 78.1% of
the attacks. The minimum and median number of transmissions
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Fig. 3. TEC increase of WeepingCAN attack with skipping. The apparent thickness of the line with increasing skip amounts is due to the slow progression of
increasing and then recovering some TEC with each injection. Note the change in timescales on the X axes.
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Fig. 5. Evaluation with Real Vehicle (Kia Optima 2016)

of vA was 0, with a maximum of 160 transmissions. The trials
that failed did not manage to synchronize with the victim,
which resulted in mis-timed injections. Figure 4 shows a violin
plot depicting the distribution of transmissions of vA. Zero
transmissions indicates good synchronization and stealthiness,
while higher numbers are less stealthy and have been caused by
poor synchronization. The F1 attack detector identified 2.7%
of the attacks, which we attribute to the lost synchronization.
Fig. 4 shows the number of transmissions prior to bus-off for
the SAE Benchmark was often but not always 0.

1) Experiment 4: Real Vehicle: As a proof-of-concept, we
conducted WeepingCAN on a 2016 Kia Optima (Fig. 5(a))
in a safe environment. We identified a low priority message
with a genuine preceded ID transmitted in the accessory mode.
The targeted message transmits with a period of 100 ms. We
attached a TM4C board configured to attack with the abort
on transmit error policy. Although we do not have access to
the interior state of the target ECU, we used the bus and
attacking board to understand the attack’s effectiveness. We
attempted WeepingCAN against the low priority message (v)
in accessory mode three times with one success. Fig. 5(b)

shows the change in the A’s TEC for the successful trial. In
this trial, v is not observed on the bus for about 3 seconds,
and A does not transmit any messages until about 7 seconds
after starting the attack—the second peak, at which point the
attacker loses synchronization with the target. Note that the
attacker enters bus-off because it is not transmitting additional
messages on the bus, and we immediately reset the attack node
and rejoin the bus as soon as allowed. Our results indicate
that WeepingCAN is feasible to conduct against ECUs in real
vehicles with stealthy and devastating results.

V. CONCLUSION

We introduced WeepingCAN as a stealthy variant of the
original bus-off attack that requires similar capabilities to con-
duct but lacks the same detectable features to defend against
it. WeepingCAN is generalizeable: the attack assumptions are
satisfied by modern vehicles that use CAN. We evaluated
WeepingCAN in synthetic benchmarks and with a real vehicle,
and we found the attack succeeds over 75% of the time under
realistic bus loads. In future work, we plan to investigate
methods to improve the attack effectiveness and thoroughly
explore its stealthiness and detectability. We are interested in
considering secure network architectures [2], physical-layer
IDS, and secure transceivers as promising methods for attack
detection or prevention. WeepingCAN’s stealthy nature makes
it a challenging problem deserving of further investigation.
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