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Background: Effective interactions for elastic nucleon-nucleus scattering from first principles require the use of
the same nucleon-nucleon interaction in the structure and reaction calculations, as well as a consistent treatment
of the relevant operators at each order.

Purpose: Previous work using these interactions has shown good agreement with available data. Here, we study
the physical relevance of one of these operators, which involves the spin of the struck nucleon, and examine the
interpretation of this quantity in a nuclear structure context.

Methods: Using the framework of the spectator expansion and the underlying framework of the no-core
shell model, we calculate and examine spin-projected, one-body momentum distributions required for effective
nucleon-nucleus interactions in J = 0 nuclear states.

Results: The calculated spin-projected, one-body momentum distributions for “He, ®He, and ®He display
characteristic behavior based on the occupation of protons and neutrons in single-particle levels, with more
nucleons of one type yielding momentum distributions with larger values. Additionally, we find this quantity is
strongly correlated to the magnetic moment of the 2% excited state in the ground state rotational band for each
nucleus considered.

Conclusions: We find that spin-projected, one-body momentum distributions can probe the spin content of a
J = 0 wave function. This feature may allow future ab initio nucleon-nucleus scattering studies to inform spin
properties of the underlying nucleon-nucleon interactions. The observed correlation to the magnetic moment of
excited states illustrates a previously unknown connection between reaction observables such as the analyzing

power and structure observables like the magnetic moment.

DOI: 10.1103/PhysRevC.103.054314

I. INTRODUCTION

The study of atomic nuclei is dependent on nuclear
reactions to extract both reaction- and structure-related ob-
servables. From a theoretical perspective, one way to study
these nuclear reactions is by reducing the many-body problem
to a few-body problem and isolating the relevant degrees of
freedom [1]. This few-body problem can then be solved with
the use of effective interactions, which are often called optical
potentials. While different techniques have been implemented
to construct these effective interactions from first principles,
e.g., Refs. [2,3], here we focus on the use of the ab initio
no-core shell model (NCSM) [4-6] and symmetry-adapted
no-core shell model (SA-NCSM) [7,8] to provide the relevant
structure inputs. Specifically, we combine one-body densities
for the target calculated from these methods with scattering
approaches formulated to use structure and reaction input on
an equal footing in a systematic expansion. For elastic scatter-
ing of protons and neutrons from nuclei, a microscopic optical
potential can be derived with a Watson expansion of the mul-
tiple scattering series [9—14]. This spectator expansion allows
for the use of the same nucleon-nucleon (NN) interaction
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when calculating the one-body densities which must be folded
with the NN scattering amplitudes. By using realistic NN and
three-nucleon (3N) interactions derived from chiral effective
field theory [15-19], we can implement this procedure in a
fully ab initio way, provided we include all relevant terms in
the spectator expansion at each order.

Recent work [3] was able to construct and implement effec-
tive nucleon-nucleus interactions that include the spin of the
struck target nucleon consistently at leading order. This was
accomplished by including a spin-projected momentum distri-
bution. While it was employed in Ref. [3] only in the context
of elastic scattering, we note that it may also be relevant for
other scattering processes, e.g., in the leptonic sector (see
Ref. [20] for a recent review), or in the context of short-range
correlations as it has a similar functional form to previously
studied spin-isospin momentum distributions [21]. In Ref. [3],
the results of using those spin-informed effective interactions
to study a nucleon elastically scattering off selected nuclei
in J = 0O states yielded only small changes in some of the
spin observables when compared to previous work where the
spin of the struck target nucleon was neglected. However, the
pattern in where those changes occurred suggests that a closer

©2021 American Physical Society
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investigation is required. Specifically, the “closed shell” nuclei
“He and '°Q exhibited no changes in their elastic scattering
results and the N = Z nucleus '>C showed only minimal
changes. In contrast, the deviations in the analyzing power A,
and spin-rotation parameter Q for proton elastic scattering on
®He and ®*He were much larger and it is a goal of this paper to
examine the cause of these deviations in greater detail.
Progress in ab initio nuclear structure, both in terms of
the development of more specialized realistic interactions
[22-25] and numerical improvements in the many-body meth-
ods [26-29], have illustrated the large extent to which first
principles calculations can describe nuclear states. In par-
ticular, the properties of excited states are increasingly well
described from first principles, including collectivity in light
to medium-mass nuclei [7,8] and the emergence of rotational
bands [30-35]. Indeed, ab initio calculations have shown that
only a few equilibrium shapes dominate within low-lying
states, and that members of a rotational band have the same
shape(s) and, in addition, exhibit very similar spin content
[8,31]. This corroborates earlier studies, starting with the
pioneering work of Refs. [36,37] and including large shell-
model calculations [38—40]. That the nature of rotational
bands can provide insights into orbital angular momentum and
spin components of nuclear wave functions is also shown in
Refs. [41,42]. This is of particular importance here because
the nuclear spin properties are often probed by a nuclear
observable such as the magnetic moment, which is zero for
J = 0 states. In this paper, we exploit the similarity of the
spin content within members of a rotational band, and, by
calculating magnetic moments for the first excited 27" states,
one can probe correlations between the spin features of the
target detected by its magnetic moment and those detected by

J

the spin-projected momentum distribution. Closely correlated
results would imply that one can readily use the spin-projected
momentum distribution in J = 0 states to inform spin features
in these states, or that measured magnetic moments can in-
form spin properties of effective interactions.

In this work, we seek to expand on the formalism presented
in our previous work [3] and provide more physical insight
into the effects of explicitly including the spin of the struck
target nucleon in the effective interaction. In Sec. II we discuss
the relevant derivations for the leading-order effective inter-
action, with a focus on the spin-dependent terms that arise.
In Sec. III we show results for these spin-dependent terms in
the He isotope chain (4He, %He, and 8He) and discuss their
physical interpretations. Furthermore, we note a correlation
between these spin-dependent terms and a more traditional
spin-related observable, the magnetic moment. We discuss our
conclusions in Sec. IV.

II. THEORETICAL FRAMEWORK

Calculating elastic nucleon-nucleus scattering observables
in an ab initio fashion requires the interaction between the
projectile and the target nucleus. In a recent work [3] this
effective interaction was derived and calculated in leading
order of the spectator expansion of multiple scattering theory
for elastic scattering of protons (neutrons) off a 0 ground
state in selected nuclei. Here explicit care is taken so that the
NN interaction is treated on the same footing in the structure
as well as the reaction part of the calculation.

For completeness we start with the explicit expression for
the effective leading-order interaction describing the scatter-
ing of a proton from a nucleus in a 0" ground state,

. 1A+ 1 0
Up(q, KCna, €) = Z /dSICn(q, K, Kna)Apa (q, §|: 2 Kya — K:|;E>P§’_O('P ,P)
a=n,p
+i(@® i) Y /d3ICn(q I, Kna)Cou | 4 AT e —xc|ie oK=0P’ P)
Pt ’ s IVNA ) pa ’ 2 A NA s o )
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+i(e™ ) Y / d*Kn(g, IC, Kna)(—)Mpq (q, 5
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The term n(q, IC, ICn4) is the Mgller factor [43] describing
the transformation from the NN frame to the NA frame.
The functions Apy, Cp, and My, represent the NN interac-
tion through Wolfenstein amplitudes [44]. Since the incoming
proton can interact with either a proton or a neutron in the
nucleus, the index o indicates the neutron (n) and proton
(p) contributions, which are calculated separately and then
summed up. With respect to the nucleus, the operator i(g® -
1) represents the spin-orbit operator in momentum space of
the projectile. As such, Eq. (1) exhibits the expected form of
an interaction between a spin-% projectile and a target nucleus

" Kna — KI:|;6)S,1,Q(’P', P)cos B
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A

IKCna — ICi|;e>Sn,a(’P',”P)cosﬂ. (1)

(

in a J = 0 state [45]. The momentum vectors in the problem
are given as

q=p —-p=kK —k,

1
K=§(P'+P),
P K xgq

I1C x gl

A ’ 1 ’
Kna = A——H[(k +k)+ E(P +P)i|,
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FIG. 1. Schematic diagram of the scattering plane, indicating
the relevant momenta. Note that the normal vector 7 in Eq. (2) is
perpendicular to both the pp’ plane and the ¢/C plane.

A—-1gq
P = KJ+T§
A—-1gq
K——-. 2
P = ) 2

A sketch of the scattering in the NA frame is given in Fig. 1,
which includes the incoming momentum k of the projectile,
its outgoing momentum k’, the momentum transfer ¢, and the
average momentum /Cy4 . The struck nucleon in the target has
an initial momentum p and a final momentum p’. The two
quantities representing the structure of the nucleus are the
scalar one-body density pK‘—O(’P', P) and the spin-projected
momentum distribution S, ,(P’, P). Both distributions are
nonlocal and translationally invariant. Lastly, the term cos

J

in Eq. (1) comes from projecting 7 from the NN frame to the
NA frame. For further details, see Ref. [3].

The scalar one-body density is a well known quantity,
while the spin-projected momentum distributions have not
been studied in detail. In general, a spin-dependent nonlocal
density can be defined as [3]

P (o, p) =« <I>|Zs (i =) Wi —p) Y o5 |®)
i=1 qs

3

where o ("% is the spherical representation of the spin opera-
tor of the struck nucleon in the target nucleus. The operator
structure of the effective interaction [46,47] given by Eq. (1)
requires we calculate the projections of the spin operator on
the momentum basis given by the vectors ¢, IC, and 7. Due
to parity constraints the projections on g and /C are zero. The
projection along the 7 direction becomes

$up, P = 0" 0. p) A=) (=1 0f= (p, pit—y,, (4)

qs

where 71 has been written in terms of its spherical components.
Both p%=0(g, IC) and S,,(¢, KC) use properly normalized wave
functions as inputs. Integrating over /C and evaluating at g = 0
yields the conditions pKv:O(q = 0) = A for J = 0O states [48]
and S,(¢ = 0) = 0. From here, Eq. (4) can be explicitly eval-
uated as [3]

1+
Su(g, K) = Z( 1)~ q‘\/7 vlay Yoy Z > (Kiki, 1q,|Kk)(J—M, Kk|J—M)
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Note that (niclic, ngly : Kiln,l', n.l : K),_,

is a Talmi-Moshinsky bracket used to transform from the pp’ frame to the g/ frame

and the subscript d = 1 is defined in Ref. [48]. The factor e comes from removing the center-of -mass contributions in

the one-body density matrix elements (OBDMESs) of the target. The OBDMEs, of which the (AAJ]| |(a
Eq. (5) is the reduced form, are calculated as the inner product of the creation ("n, ljm) and annihilation (&, ;j, = (—1 )=

w1 ) O 1ALT) term in

an,ljfm)

operators for single-particle harmonic oscillator states labeled by their (., I, j, m) values.
To facilitate calculations of the spin-prolected momentum distribution, we make two choices: (1) use states with J/ = 0 and (2)
choose the vector ¢ in the z direction and /C in the x-z plane. This points 72 along the negative y direction, and Eq. (5) simplifies

to

$i(q.10) = (=) Y m(_l)mﬂ{ls’ !

S
nljnll'j

1 Ia U
j} Z (nichic, ngly = Unll',ngd 1), Ruie (KR, 1, (q)
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For J = O states, the coupling coefficients require K; = 1 and K; = 1 in the Talmi-Moshinsky bracket. While we rely on Eq. (6)
for the numerical implementation of S, (g, /C), we can also examine one-dimensional functions depending only on the momentum

transfer,

Sa(q) = f d’K S,(q,K) = / dK K? / dOxc sin(6,c) / ddgic Su(q, K, Oy, drc), (7
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and on the average momentum,

S,,(IC) = /d3an(qv ’C) = /dqqudqu Sin(qu)/d¢qK Sn(qs K, eqle ¢ql€)- (8)

Note that 6, and ¢4« are the polar and azimuthal angles between ¢ and K. This definition is similar to defining the charge form
factor, which is widely used to characterize momentum distributions in the nucleus.

Lastly, it is worth noting the choice of specific coordinates in Eq. (6) prevents further analytical insights via integration, but
we can use an alternate derivation of Eq. (4) which yields [49]

f Z ‘/(2j+1)(23+1)(—1)j+”1{ls/ ! 1.}
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(

where P, (cos(9,c)) is a Legendre polynomial and the in- in there being zero probability of these nucleons moving to a
teger w is determined by the angular momentum coupling. different harmonic oscillator state, which means the resulting
Furthermore, we can expand the sum over w and consider  S,(q) is independent of the choice of nuclear interaction. This
the lowest nonzero term. This corresponds to n, =n,. =0 approach can then provide a basis for interpreting the S, (q)
and ! = I’ = 1, which only has one nonzero Talmi-Moshinsky

bracket when n, = nx =0 and [, =[x = 1. The Clebsch- 0.8

Gordan coefficients in Eq. (9) are nonzero when w =0, 2, 0 77(3) mE ‘He

yielding an angular dependence of the form ' E °He
0.6 m °He

Po((c0s(94x)) — Pa(c0s(¥yr)) 3

Su( COS(HqIC)) ~ | Sin(quc)| 5 Sln(eqlC)- 0.5 0.00

(10) %0-4’ -0.01
Thus, while the full expression in Eq. (9) is complicated, in 0.31 ~0.02
lowest order it has a relatively simple angular dependence. 0.2 ‘

01l 01 2 3 4 5
II1I. RESULTS AND DISCUSSION 0.0
First, we examine the functions S, (¢) and S,,(K), given by 0 1 2 3 a 5

Egs. (7) and (8) respectively, for selected He isotopes. For q [fm=1]
these comparisons, we use the chiral interaction NNLO,p [22] 7
and a large Ny, value for each calculation, where Nyx is (0) EE ‘He
the maximum number of harmonic oscillator quanta allowed 6 Il SHe
above the valence shell for a given nucleus. For both ®°He 5 mm SHe
and ®He, their S,,(¢) and S, (K) behave similarly, though they 00
differ in magnitude (Fig. 2). In contrast, the curves for “He _4 '
are noticeably different, both in magnitude and sign. Notably, 5% 3 —0.14
the S,(¢) extend to a few fm~! while the S,(C) are largely N -0.21
concentrated below 1 fm~!. As K is considered a nonlocal 2 03l
variable, this likely reflects the nonlocality of S, (g, IC) is well :
confined to within the nucleus. While both can be informative, 1 012345
we focus on S, (g) due to its dependence on physically relevant 0
momentum transfer, g. To better understand these differences 0 1 3 3 a 5
and to develop expectations for what the S,(g) for any given © [fm-1]
nucleus might look like, we examine Eq. (6) more closely. As
the only required inputs are the one-body density matrix ele- FIG. 2. (a) The function S, (¢) for the neutron distribution in “He
ments (OBDMEs), we would expect S,(g) to have some de- at Ny = 18, ®He at Ny, = 18, and 8He at N, = 14 calculated
pendence on the underlying shell structure for a given nucleus. with the NNLO; chiral interaction [22]. (b) The function S,,(K) for

To study this in more detail, we performed toy model  the same values. The bands in each plot indicate variations in /2
calculations in which each given harmonic oscillator state is (16-24 MeV) at that value of Ny,y. The insets show the “He results
completely filled and those nucleons are frozen. This results in better detail.
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FIG. 3. The function S,(g) for protons or neutrons filling each
closed shell configuration at /12 = 20 MeV for (a) the s, p, and sd
shell and (b) the pf shell.

of a realisitic NCSM calculation. As such, in this toy model
S,(q) displays characteristic behavior based on n,, [, and j
values, as shown in Fig. 3. For two nucleons frozen in the
0s1/2 shell, we find no contribution to S,(q) as expected for

in sign as four nucleons frozen in the Op3,, shell, despite there
being more nucleons. In combination, this means full orbitals
with the same n,, [ values sum to zero S,(g) contributions,
which can be seen for all HO shells up to / = 3 in Fig. 3. This
pattern is always such that the j =1 + % state has an overall
positive S,(¢) and the j = [ — % state has an overall negative
S,(q). Furthermore, the equal-in-magnitude behavior can be
observed regardless of how many nucleons it takes to com-
pletely fill the shell; e.g., even for filled 0f5,, (six nucleons)
versus 0f7/, (eight nucleons), the magnitudes of S,(g) are
still the same. Note that while the curves in Fig. 3 only show
so called “diagonal” OBDMEgs, i.e. al&ﬂ where o = 3, these
OBDMEs are larger than the off-diagonal OBDMEs where
a # B. Further, from Fig. 3 we can see that different n, values
will yield different S,(g) curves, though they still maintain
the same opposite-in-sign and equal-in-magnitude behavior.
Given this information, we can now better interpret the
S.(q) of a realistic NCSM calculation. Separating the OB-
DME:s to examine contributions to S,(q) for specific shells,
we see a strong dominance of p3; shells in “He and *He,
as shown in Fig. 4. Since we now know that filled shells
have equal magnitude, we would expect similar partially filled
shells to have a similar magnitudes in their associated S, (q)
curve. For both *He and ®He we can see the p3)» curve has a
magnitude of more than twice that of the p;, curve, indicating
nucleons prefer to fill the p3;, shells. This interpretation is
supported by the ratio of the occupation probabilities calcu-
lated in the NCSM as well. Additionally, since we know the
n, value changes the S, (¢g) curve, Fig. 4 also indicates that the
Op shell largely dominates the total S,(g) since neither *He
nor ¥He show the second peak indicative of the 1p shells. Re-
markably, these results seem to agree with basic expectations
from a traditional shell model. It is worthwhile to note that this
confirmation comes from a significantly more complete ap-
proach, and is in line with the spirit of other similar work [41].
Similarly, if we integrate S, (¢) with respect to g,

I =1"=0 in Eq. (6). For two nucleons frozen in the Op 2
- . : : Si= | dag’S.(a). (1n
shell, we find a contribution equal in magnitude but opposite
(a) — sie () N, — s
0.8 ==- P12 0.81 /. \‘ ==- P12
" P3p | \‘ —" P32
0.6 SHe T dsp 0.6 II \ 8He " dsp2
. — dsp — dsp
—_ -~ —_ 1o
O ERN . g o4 ‘ -
" / . Ll \
0.21 - N 0.21" N
/ N ! '\,\
0.0 ke e 0.0 e
\\\ ””—— \\\ - -
-0.2 " -02{ ~=--T7
1 2 3 4 5 0 1 2 3 4
q[fm=1] q [fm=1]

FIG. 4. The function S, (¢) for the neutron distribution in (a) ®He at Ny = 18 and (b) 8He at Ny, = 14, both with NNLOg [22] and
2 = 20 MeV. The contributions to the total S, (g) curve are broken down by individual diagonal /j OBDME values. See text for further

discussion.
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TABLE 1. Values of S, broken down by nucleon type and diagonal / j OBDME values for NNLO,y, [22] at /i2 = 20 MeV. Results for “He
are at Ny, = 18, for °He at N,,,, = 18, and for *He at N, = 14. The neutron values for °He and *He calculated correspond applying Eq. (11)
to each S, (¢q) in Fig. 4. Note the row labeled f+ corresponds to all remaining diagonal OBDMEs and all off-diagonal ODBME:s. See text for
further detail.

Sy (fm™)
Orbitals “He, protons “He, neutrons SHe, protons He, neutrons 8He, protons $He, neutrons
Si2 0.000 0.000 0.000 0.000 0.000 0.000
Dij2 —0.606 —0.607 —0.274 —0.537 —0.236 —0.606
D32 0.150 0.149 0.154 1.271 0.124 2.565
ds 0.169 0.169 0.074 0.070 0.040 0.049
ds —0.033 —0.032 —0.032 —0.036 —0.016 —0.034
f+ —0.043 —0.043 —0.018 —0.011 —0.016 —0.011
total —0.362 —0.363 —0.096 0.757 —0.104 1.963

we can see that the p3,, contributions to the S, for the neutrons
essentially doubles from ®He to ®He (Table I), in agreement
with expectations from a traditional shell model. In contrast,
the p;,, contributions to the S, for the neutrons is nonzero
and barely changes. Note that Table I also indicates that the
proton contributions to S, barely change from ®He to ®He,
suggesting that the proton information is mostly the same.
The S, values for “He are included in Table I for comparison
purposes. Specifically, it should be noted that the proton value
for *He is more negative than the proton values in °He and *He
despite all three nuclei containing two protons. This possi-
bly indicates the underlying OBDMEs include proton-neutron
pairing effects for N = Z nuclei which are largely suppressed
when N # Z.

While the function S, (g) clearly inherits information from
the underlying shell structure, given its operator structure we
would also expect it to provide more general information
about the spin content of a given nucleus or nuclear interac-
tion. To better facilitate those comparisons, we can examine
the behavior of S, in more detail. For °He and 3He, S, as a
function of N, is largely consistent for a variety of different
nuclear interactions, as shown in Fig. 5 for NNLOgy [22],

Daejeon16 [23], and LENPIC-SCS at N2LO (NN potential)
[16,50,51]. For high Ny« values, we can start to see some
slight deviations as the results approach convergence. For “He,
we can see clear differences in the value of S, depending
on the choice of interaction. While Daejeonl6 provides a
result of almost zero, both NNLO,,; and LENPIC-SCS yield
more negative values, both of which converge toward different
values. This indicates the quantity S, probes a portion of
nuclear interactions that remains distinct, even when the bulk
observables, e.g., binding energy and rms radius, would be in
better agreement; see, e.g., [23,51]. For completeness, we note
that NNLO,,c and LENPIC-SCS at N2LO have well-defined
three-nucleon forces (3NFs). However, we neglect the 3NFs
in NNLO,, because they are known to only give small contri-
butions to densities [52]. Similarly, preliminary analysis of the
3NFs for LENPIC-SCS at N2LO have shown that their effects
on S, are negligible within our current numerical accuracy.
While §,, is not an observable—it is not derived from a
Hermitian operator—we do find that it has a strong correla-
tion with a well-defined observable: the magnetic moment.
Specifically, when S, is calculated for the O;S of a nucleus, we
find a strong correlation between that value and the magnetic
moment of the 2% excited state in the ground state rotational
band, e.g., u = (27|M|2*"). Using the impulse approxima-

NNLOopt tion to the magnetic moment, given as
31 Daejeonl6 3 A
2] | e
|
g where g/ = 1, gt = 0, g = 5.5857, and g}, = —3.8263 [53],
K13 S 6He we would expect some correlation since both operators ex-
plicitly include the spin operator. Additionally, given the
properties of rotational bands, we would expect the spin com-
0% - he ponents of those two wave functions to be quite similar since
e this 2% state is a rotational (L = 2) excitation of the 0;. To
study these correlations, we employed a technique discussed

10 12 14 16 18 20 22

Nmax

2 4 6 8

FIG. 5. Integrated S, values from Eq. (11) for neutrons in “He,
®He, and *He as calculated by the NNLO,, [22], Daejeon16 [23],
and LENPIC-SCS at N2LO (NN potential) [16,50,51] interactions.
The band for each interaction corresponds to variations in /2.

in Ref. [54] and illustrated in Ref. [52]. Briefly, we treat
each calculation of  and S, (for different values of 72 and
Nmax) as elements of two separate vectors. The cosine of the
angle between these two vectors, found by taking their inner
product, tells us how much these quantities overlap and we
can quantify this through a correlation coefficient ¢. The sign
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FIG. 6. (a) Correlation plot for the magnetic moment of the 2%
state in the ground state rotational band and the integrated total
(protons + neutrons) S, value for the 0% in ®He, ®C, and "2C
calculated with NNLOgy. (b) Same plot for the spin contributions
to the magnetic moment. Points for each nucleus were calculated
at i = 16, 20, 24 MeV with Ny = 6, 8, 10 for ®*He and 3C and
Npax = 4, 6,8 for 2C. The solid black line is a perfect positive
correlation and the dashed gray line is a perfect negative correlation.

of ¢ refers to positive or negative correlation and the values
span |¢| = 0 (no correlation) to || = 1 (perfect correlation).
Notably, in Fig. 6(a), we see a strong positive correlation

between the magnetic moment and S, for N < Z @Z,CS“ =
0.990) and N =Z ({IZC = 0.994) nuclei, and a strong nega-

WSy T
tive correlation for the N > Z (¢ “He _ —0.983) nucleus. This

implies the spin information belﬁifgg probed by the magnetic
moment of the 2% excited state already exists in the wave
function of the O though it is not accessible to direct mea-
surement. The strength of this correlation is the important
factor, as the sign comes from the underlying i and S, values,
i.e., both 1 and S, are positive in 8C and '>C, but y is negative
and S, is positive in *He. Additionally, if we separate the an-
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FIG. 7. (a) Correlation plot for the proton spin contributions to
the magnetic moment of the 2% state in the ground state rotational
band and the integrated proton S, value for the 0+ in 8He, 3C, and
12¢ calculated with NNLO,. (b) Same plot for the neutron spin
contributions and the integrated neutron S, value. Points for each nu-
cleus were calculated at 22 = 16, 20, 24 MeV with N,,x = 6, 8, 10
for 8He and ®C and Ny, = 4, 6, 8 for '2C. The solid black line is a
perfect positive correlation.

gular momentum contributions to the magnetic moment given
by Eq. (12), we can see that these correlations are strongly
driven by the spin terms in the magnetic moment, labeled as
W in Fig. 6(b). When comparing Figs. 6(a) and 6(b), it can be
seen that the orbital angular momentum terms in the magnetic
moment slightly decrease the strength of these correlations, as
the correlation coefﬁcients for the latter plot are slightly larger
(¢,S5 =0.996,¢,G =0.995, ¢ = —0.993). Examining
the spin components more closely, we can further separate
it into proton and neutron contributions, as shown in Fig. 7.
The correlation between p and S, is driven by the neutrons
in 8He ({ "eu Siew = = 0.992 versus g“ pm s = —0.791), by the

protons in 8C ({Mg.-n’sg,-g = 0.994 versus guyeu,sgeu = —0.803),
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and shared equally by protons and neutrons in '>C (;;S

0.995 versus £, g = 0.994).

pro —
\Sn

IV. CONCLUSIONS AND OUTLOOK

We have examined in detail the one-body, spin-projected
momentum distribution S,,(¢q, KC), a new term that appears at
leading order in the spectator expansion when the spin of
the struck target nucleon is explicitly included. In particular,
we have examined its dependence on the momentum trans-
fer g and showed changes in S,(g) for a given nucleus and
for a given nucleon type in a nucleus. For the He-isotope
chain (“He, ®He, and 8He) the S,(g) for neutrons increase
in magnitude as more neutrons are added, though the proton
contributions in °He and ®*He remain the same and differ from
those of *He.

Noting the underlying shell structure inherent in our calcu-
lations, we identified interaction-independent characteristics
of S, (¢) based on which harmonic oscillator shells the nucle-
ons occupy. This allowed for the interpretation of S,(g) for a
realistic nucleus in better detail and showed that changes to
S,(q) along the isotopic chain are related to which harmonic
oscillator shells the subsequent nucleons are most probable
to occupy. Furthermore, by investigating the dependence of
the integrated quantity S, for different realistic nuclear inter-
actions, we observed this behavior is largely independent of
the interactions employed but noted different interactions may
yield slightly different overall values for S,,.

To better understand implications of this for an observable
quantity, we compared calculations of S, for a Ogs to the mag-

netic moment of the 2% state in that ground state rotational
band and found a strong correlation, regardless of the nucleus.
This correlation was driven by the spin components of the
magnetic moment and indicates the quantity of interest here,
S, (which is required to perform leading order calculations
of effective interactions in a consistent way), probes spin
information in a J = 0 wave function that would normally
be accessible only through observables in its excited states.
From a structure perspective, it may be possible to exploit
this correlation to, e.g., trace back single-particle effects in
the magnetic moments of high-spin states [55]. From a re-
action perspective, this suggests the exciting possibility that
future ab initio nucleon-nucleus scattering studies could be
sensitive to spin properties of the underlying nucleon-nucleon
interaction, thereby providing further insight than previously
appreciated.
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