
November 2020

EPL, 132 (2020) 32001 www.epljournal.org

doi: 10.1209/0295-5075/132/32001

On the importance of np-pairs in the isovector pairing model
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Abstract – It is shown that the isovector np-pair number operator can be realized in the O(5)
quasi-spin SUΛ(2) ⊗ SUI(2) basis. The computation of the isovector np-pair number is demon-
strated for even-even and odd-odd ds-shell nuclei described by the charge-independent mean field
plus isovector pairing model restricted within the O(5) seniority-zero subspace, thereby binding
energies and low-lying J = 0+ excited states of these ds-shell nuclei are fit, along with estimates
for the isovector neutron-proton pairing contributions. For reasonable neutron-proton pairing
strengths the isovector np-pairing energy contribution to the total binding energy in odd-odd
N = Z nuclei is systematically larger than that in the even-even nuclei. In sum, the results
suggest that the isovector np-pairing mode is favored in odd-odd N = Z nuclei; and addition-
ally, a decrease in the double binding-energy difference for odd-odd nuclei is primarily due to the
symmetry and Wigner energy contributions to the binding energy.
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In atomic nuclei it is evident from both theoretical and
experimental studies that in addition to neutron-neutron
(nn) and proton-proton (pp) pairing, neutron-proton (np)
pairing is also very important, especially in N∼Z nu-
clei [1–8]. Though isoscalar T = 0 np-pairing in nu-
clei becomes important in the high-energy regime [9,10],
isovector T = 1 np-pairing often dominates in the low-
energy regime [8,11], where the shell model mean field
plus isovector pairing seems to provide a simple and clear
picture of the np-pairing correlations [7,12–14]. Exact so-
lution of the charge-independent mean field plus isovector
pairing has been reported in [15,16]. However, since the
basis used in [15,16] is equivalent to the tensor product of
relevant O(5) irreducible representations (irreps) adapted
to the OT (3) ⊗ ON (2) subgroup which is related to the
isospin and the number of valence nucleons, it is not pos-
sible to define a simple operator that counts the number
of isovector np-pairs, so the corresponding two-body np-
pairing interaction related to the isovector np-pairing en-
ergy contribution is often used to account for the number
of isovector np-pairs instead [17].

Besides shell model calculations based on various algo-
rithms with effective interactions [18], which have been
proven to be very successful in describing ds-shell nuclei,

model calculations based on group theoretic or alge-
braic labelling scheme within a multi-particle subspace
of the same shell model configuration is equally feasi-
ble [12,13,19], which is equivalent to choosing a complete
set of orthonormal eigenstates of a set of commuting op-
erators, or the subgroup invariants [20] constructed from
the single-particle creation and annihilation operators of
the shell model mean field. Moreover, though the agree-
ment of the standard shell model results [18] with ex-
periment suggests that the isovector and isoscalar pairing
interactions are realistic, the actual interaction strengths
are subject to considerable uncertainty due to the fact
that the competition of the isovector and isoscalar pair-
ing, deformation, and other correlations leads to a very
complex picture [8]. Therefore, in order to address the
aforementioned issue more directly, in this work, we only
consider isovector pairing corresponding to the J = 0 and
T = 1 two-body interactions adopted in the standard shell
model calculations [18] within a spherical mean field in the
charge-independent form with a Hamiltonian that can be
written as [7,12–16]

Ĥ0 =

p∑

i=1

ǫi n̂i − G
∑

ρ

A+
ρ Aρ, (1)
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where p is the number of j-orbits of the mean field con-
sidered, ǫi is the single-particle energy in the i-th orbit,
n̂i =

∑
m mt

a†
jim tmt

ajim tmt is the valence nucleon num-

ber operator in the i-th j-orbit, A+
ρ =

∑p
i=1 A+

ρ (i) and
Aρ =

∑p
i=1 Aρ(i) [ρ = −1, 0, 1] are collective J = 0

and T = 1 nn-, np-, and pp-pairing operators with
A+

ρ (i) = 1
2

√
2ji + 1(a†

jit
× a†

jit
)010ρ, Aρ(i) = (A+

ρ (i))†, in

which (a†
jit

×a†
jit

)010ρ stands for the angular momentum and
isospin coupling with ji ⊗ ji ↓ 0 and t ⊗ t ↓ 1, and G > 0
is the overall isovector pairing strength. Here a†

jim tmt

(ajim tmt) is the creation (annihilation) operator for a va-
lence nucleon in the i-th j-orbit with isospin t = 1/2 and
angular momentum projection m and isospin projection
mt. In order to demonstrate the evaluation of the num-
ber of isovector np-pairs, some low-lying Jπ = 0+ level
energies of even-even and odd-odd A = 18–28 nuclei up to
the middle of the ds-shell outside the 16O core are fit by
the charge-independent mean field plus isovector pairing.
To fit binding energies and some low-lying Jπ = 0+ level
energies of these nuclei, in addition to Ĥ0 shown in (1),
the Coulomb energy and the symmetry energy (with the
isospin-dependent part of the Wigner energy contribution)
are considered with the same model Hamiltonian as that
used in [21]:

Ĥ = −BE(16O) + ǫ(n̂) n̂ + Ĥ0 + Ec(A, Z)

−Ec(16,8) + αsym(A)T · T, (2)

where BE(16O) = 127.619 MeV is the binding energy of
the 16O core taken as the experimental value, ǫ(n) is the
average binding energy per valence nucleon in the ds-shell
with j1 = 1/2, j2 = 3/2, and j3 = 5/2 orbits, of which
the function of n̂ is determined from a best fit to binding
energies of all ds-shell nuclei considered,

Ec(A, Z) = 0.699
Z(Z − 1)

A1/3

(
1 − 0.76

(Z(Z − 1))1/3

)
(MeV)

(3)
is the Coulomb energy [22], and

αsym(A) =
1

A

(
134.4 − 203.6

A1/3

)
(MeV) + δα(A) (4)

is the parameter of the symmetry energy, of which the first
term is taken to be the empirical global symmetry energy
parameter provided in [22], while δα(A) is adjusted ac-
cording to the experimental binding energy of the nucleus
with a given mass number A needed to account for the lo-
cal deviation from the first term when the Hamiltonian (2)
is used. The experimentally deduced single-particle ener-
gies above the 16O core with ǫ1 = ǫ1s1/2

= −3.27 MeV,
ǫ2 = ǫ0p3/2

= 0.94 MeV, ǫ3 = ǫ0d5/2
= −4.14 MeV [21]

are taken. In order to get a better fitting quality for
the low-lying Jπ = 0+ level energies, the overall isovector
pairing strength is taken as G = 1 MeV for all the nuclei
fitted, which is very close to the value used in [23] with
G = 20/AMeV. Comparing to the standard shell model

calculations in the ds-shell [18], the empirical Coulomb en-
ergy, the symmetry energy, and the average binding energy
terms are introduced to replace the other two-body inter-
action terms of the standard shell model calculations [18],
except for J = 1 and T = 0 isoscalar pairing related to
the J = 1 and T = 0 matrix elements of the two-body
interaction in the standard shell model calculation [18],
which is not included in (2). Therefore, (2) can be con-
sidered as an approximation to the standard shell model
Hamiltonian focusing on the isovector pairing only, from
which the number of the isovector np-pairs in low-lying
Jπ = 0+ states can be estimated reasonably under the
condition that the J = 1 and T = 0 isoscalar pairing can
be neglected.

For convenience, we choose the proton and neutron
quasi-spin SUΛ(2) ⊗ SUI(2) group as the subgroup of
O(5) with generators of the proton quasi-spin group

SUΛ(2){ς
(i)
+ = A†

1(i), ς
(i)
− = A1(i), ς

(i)
0 = n̂π,i/2 − Ωi/2}

and those of the neutron quasi-spin group SUI(2){τ
(i)
+ =

A†
−1(i), τ

(i)
− = A−1(i), τ

(i)
0 = n̂ν,i/2 − Ωi/2}. De-

tails of the relation between the group chain O(5) ⊃
OT (3) ⊗ ON (2) and O(5) ⊃ SUΛ(2) ⊗ SUI(2) are pro-
vided in [24] and shown in the Supplementary Material
Supplementarymaterial.pdf (SM), which provides de-
tails of the O(5) basis and the reduced matrix elements
needed in the calculation. For any orbit, the irreducible
representation (irrep) of O(5) is denoted by (Ω − v/2, t),
where the O(5) seniority number of valence nucleons v and
the reduced isospin t indicate that there are v nucleons
coupled to the isospin t, which are free from the angular
momentum J = 0 and T = 1 pairs. The orthonormal ba-
sis vectors of O(5) ⊃ SUΛ(2) ⊗ SUI(2) ⊃ UΛ(1) ⊗ UI(1)
are labeled as [12,13,24]

∣∣∣∣∣∣∣∣

(Ω − v/2, t)

Λ =
1

2
(Ω − vπ) I =

1

2
(Ω − vν)

μ ν

, (5)

where μ and ν are eigenvalues of ς0 and τ0, respectively,
Λ and I are the proton and neutron quasi-spin quantum
numbers, in which vπ and vν are the proton and neutron
seniority numbers, respectively, with [24]

vπ = (v/2 − t + p) + q,

vν = (v/2 + t − p) + q,
(6)

where p = 0, 1, . . . , 2t and q = 0, 1, . . . ,Ω − v/2 − t, in-
dicating that there are vπ and vν valence protons and
neutrons not coupled to J = 0 pp- and nn-pairs, respec-
tively. However, there may be a portion of the valence
protons and neutrons that are coupled into J = 0 np-
pairs, which is indicated by the number q. As is clearly
indicated in (6), besides the number of valence protons or
neutrons in the np-pairs q, there are v/2 − t + p valence
protons and v/2 + t − p valence neutrons with total v va-
lence nucleons that are coupled to the reduced isospin t
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with J �= 0. Thus, q is the number of isovector np-pairs in
a given orbit, which shows that the isovector np-pair num-
ber operator is well defined in the O(5) ⊃ SUΛ(2)⊗SUI(2)
labelling scheme.

The Hamiltonian (2) is diagonalized within the O(5)
seniority-zero subspace spanned by the tensor product
basis ⊗p

i=1(Ωi, 0) in the O(5) ⊃ SUΛ(2) ⊗ SUI(2) ⊃
UΛ(1) ⊗ UI(1) labelling scheme with p = 3. Eigenstates
of (2) within the O(5) seniority-zero Jπ = 0+ subspace
are denoted as

|ξ; n, MT 〉 =
∑

niMT (i)

Ωi∑

qi=0

C
ξ; q1,...,qp

n1mT (1),...,npmT (p)

×

∣∣∣∣∣∣∣∣

(Ω1, 0); . . . ; (Ωp, 0)

1

2
(Ω1 − q1); . . . ;

1

2
(Ωp − qp)

n1, mT (1); . . . ; np, mT (p)

, (7)

where the eigenstate |ξ; n, MT 〉 with total number of va-
lence nucleons n =

∑p
i=1 ni and total isospin projec-

tion MT =
∑p

i=1 mT (i) is expended in terms of the p
copies of the O(5) tensor product basis ⊗p

i=1(Ωi, 0) in the
O(5) ⊃ SUΛ(2)⊗SU I(2) ⊃ UΛ(1)⊗UI(1) labelling scheme
with

Ii = Λi =
1

2
(Ωi − qi),

μi =
1

4
(ni + 2mT (i) − 2Ωi), (8)

νi =
1

4
(ni − 2mT (i) − 2Ωi),

for i = 1, 2, 3, C
ξ;q1,...,qp

n1mT (1),...,npmT (p) is the corresponding ex-

pansion coefficient, and ξ labels the ξ-th eigenstate with
the same n and MT . Since MT =

∑p
i=1 mT (i) is a good

quantum number, this diagonalization scheme is similar to
the MT -scheme realized in the O(5) ⊃ SUΛ(2)⊗SUI(2) ⊃
UΛ(1)⊗UI(1) basis, which is equivalent to the MT -scheme
with Jπ = 0+ states adopted in the standard shell model
calculation [18]. The details of the O(5) basis and the
reduced matrix elements needed in the calculation are
shown in the SM. Moreover, it is clearly shown that the
eigenstate (7) is a linear combination of the O(5) tensor
product states with different proton and neutron senior-
ity numbers vπi = vνi = qi (i = 1, 2, 3) for 0 ≤ qi ≤ Ωi,
where qi is exactly the number of T = 1 np-pairs in the
i-th orbit. The main difference from the standard shell
model basis is that only J = 0 and T = 1 pairing op-
erators are used in the construction of (7). Other O(5)
seniority-nonzero states constructed by (J = even, T = 1)
and (J = odd, T = 0) pair operators coupled to J = 0 and
at least with the total O(5) seniority number v = 4 are not
considered as an approximation, of which Jπ = 0+ isovec-
tor pairing matrix elements are comparatively small, so
that these seniority-nonzero states have less contribution
to the low-lying Jπ = 0+ states as long as the isoscalar
pairing interaction is negligible. As shown in our previous
works [21,25–27], such an approximation seems adequate

as far as binding energies and a few low-lying Jπ = 0+

level energies are concerned.
The best fit to the binding energies and a few lowest

Jπ = 0+ level energies of these nuclei yields

ǫ(n̂) = −2.3325 − 0.2000n̂ − 0.0125n̂2 (MeV), (9)

of which the first constant is very close to the value
of the average binding energy per valence nucleon with
ǫavg = −2.301 MeV used in [21], and the contribution from
the second term to the binding, which is related to the
other two-body interactions in the standard shell model
calculation [18] becomes smaller because a relatively larger
pairing strength is used in the present calculation, while
the third term is related to the three-body interaction
as an additional correction. The parameter δα(A) (in
MeV), which is obtained from the fitting, is given by
δα(18) = −0.025, δα(20) = −0.700, δα(22) = −0.940,
δα(24) = −0.500, δα(26) = 1.900, and δα(28) = −0.005.
Since the binding energies and a few low-lying Jπ = 0+

level energies of even-even and odd-odd A = 18–28 nuclei
were fit together, there remain deviations between the fit-
ted and experimental binding energies, with a root mean
square deviation σBE = 0.32 MeV, except 22F and 22Al
for which Jπ = 0+ level energies are not available ex-
perimentally. Table 1 shows the lowest experimentally
known Jπ = 0+ level energies (in MeV) of these even-
even and odd-odd ds-shell nuclei. The corresponding shell
model results obtained by using the KSHELL code [28]
with the USD (W) interaction [29] are also provided for
comparison. Though direct computation of the overlaps
of the J = 0+ states of this model with those of the shell
model is not an easy task, the results provided in table 1
show that the low-lying J = 0+ level energies fitted by
the O(5) model restricted within the O(5) seniority-zero
subspace are comparable with those of the standard shell
model calculation. The root mean square deviation for
these excited Jπ = 0+ level energies is σlevel = 1.29 MeV
in this O(5) model and 0.36 MeV in the standard shell
model, while the average deviation of the excited lev-
els, φ =

∑
i |Ei

Th − Ei
Exp|/

∑
i Ei

Exp, where the sum is
over all the excited level energies of these nuclei fitted,
is φ = 16.1% in the O(5) model and 4.0% in the standard
shell model calculation, respectively.

In addition, when the ground state of the nucleus is not
a Jπ = 0+ state, which cannot be determined from present
calculation for J = 0+ states only, the eigenenergy of (2)
is given by

E(ξ, T, J = 0) = −BE(Z, N) + Eex(ξ, T, J = 0), (10)

where Eex(ξ, T, J = 0) > 0 is the excitation energy of the
ξ-th excited state with isospin T and J = 0. The theoret-
ical value of BE(Z, N) is adjusted to reproduce a reason-
able value of the excitation energy Eex(ξ, T, J = 0). Due
to the Coulomb energy contribution and the freedom in
adjusting the binding energy with a reasonable value of
the excitation energy in this case, there is about a few
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Table 1: Binding energy (BE) (in MeV) and a few lowest Jπ = 0+ level energies (in MeV) of the 22 even-even and odd-odd
ds-shell nuclei fit by (2) (Th), where Tξ denotes the ξ-th excited state with the same T , the experimental data (Exp) are taken
from [30] and [31] for the evaluated isobaric analogue states, “–” indicates the corresponding energy level was not observed
in experiments, and the standard shell model results (SM) are obtained by using the KSHELL code [28] with the USD (W)
interaction [29], and the parameters of (2) are the same as those used in fitting the binding energies.

18O Exp Th SM 18F Exp Th SM 18Ne Exp Th SM

BE 139.81 140.00 137.37 137.31 132.14 132.04
Tξ = 1g 0 0 0 Tξ = 11 1.04 1.04 1.19 Tξ = 1g 0 0 0
Tξ = 12 3.63 5.71 4.32 Tξ = 12 4.75 6.75 5.51 Tξ = 12 3.58 5.71 4.32

20O Exp Th SM 20F Exp Th SM 20Ne Exp Th SM

BE 151.37 151.20 154.40 154.40 160.65 160.41
Tξ = 2g 0 0 0 Tξ = 11 3.53 1.23 3.49 Tξ = 0g 0 0 0
Tξ = 22 4.46 5.07 5.04 Tξ = 21 6.52 6.80 6.52 Tξ = 02 6.73 5.90 6.76

Tξ = 11 13.64 11.33 13.64
Tξ = 21 16.73 16.90 16.66

20Na Exp Th SM 20Mg Exp Th SM 22O Exp Th SM

BE 145.97 145.97 134.56 133.84 162.04 161.45
Tξ = 11 3.09 1.48 3.49 Tξ = 2g 0 0 0 Tξ = 3g 0 0 0
Tξ = 21 6.53 7.05 6.52 Tξ = 22 – 5.07 5.04 Tξ = 32 4.91 4.35 4.62

22Ne Exp Th SM 22Na Exp Th SM 22Mg Exp Th SM

BE 177.77 178.23 174.15 174.14 168.58 168.86
Tξ = 1g 0 0 0 Tξ = 11 0.66 0.36 0.66 Tξ = 1g 0 0 0
Tξ = 12 6.24 5.03 6.34 Tξ = 12 – 5.39 7.01 Tξ = 12 5.95 5.03 6.34

22Si Exp Th SM 24Ne Exp Th SM 24Na Exp Th SM

BE 133.28 133.33 191.84 191.60 193.52 193.52
Tξ = 3g 0 0 0 Tξ = 0g 0 0 0 Tξ = 11 3.68 0.37 3.33

Tξ = 22 4.77 4.30 4.66 Tξ = 21 5.97 6.24 5.88

24Mg Exp Th SM 24Al Exp Th SM 24Si Exp. Th. SM

BE 198.26 198.85 183.59 183.59 172.01 171.52
Tξ = 0g 0 0 0 Tξ = 11 – 0.48 3.33 Tξ = 2g 0 0 0
Tξ = 02 6.43 5.16 7.56 Tξ = 21 5.96 6.35 5.88
Tξ = 11 13.04 10.49 12.87
Tξ = 21 15.44 16.35 15.43

26Mg Exp Th SM 26Al Exp Th SM 26Si Exp Th SM 28Si Exp Th SM

BE 216.68 216.78 211.89 211.89 206.04 206.09 247.74 247.67
Tξ = 1g 0 0 0 Tξ = 11 0.23 0.23 0.08 Tξ = 1g 0 0 0 Tξ = 0g 0 0 0
Tξ = 12 3.59 4.24 3.68 Tξ = 12 3.75 4.47 3.76 Tξ = 12 3.36 4.24 3.68 Tξ = 02 4.98 4.25 5.01
Tξ = 13 4.97 5.13 5.20 Tξ = 13 5.20 5.36 5.29 Tξ = 13 4.83 5.13 5.20 Tξ = 11 10.27 10.27 10.29

hundreds of keV energy difference in these excitation en-
ergies of mirror nuclei with J �= 0 ground state as shown
in table 1.

Panel (a) of fig. 1 shows the double binding-energy dif-
ference defined as [32]

δVpn =
1

4
(BE(Z, N) − BE(Z − 2, N)

−BE(Z, N − 2) + BE(Z − 2, N − 2)). (11)

These results show that the δVpn are comparatively
smaller for odd-odd N = Z nuclei with A = 22 and 26.
Since the one- and two-body interaction dominating aver-
age binding energy term (9) and the Coulomb energy term
of (2) only contribute an overall Z- and N -independent
constant to δVpn, the symmetry energy seems to be the
main source that alters the pairing gap staggering pat-
tern. This is consistent with the claim made in [5] that
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∆E

Fig. 1: (a) The double binding-energy difference δVpn (in MeV)
defined in (11) for even-even and odd-odd N = Z ds-shell nu-
clei, where the (red) solid squares are the experimental data,
and the (black) dots connected with the dashed lines are the
results of the present model. (b) The double pairing energy
difference (in MeV) defined in (12), where the (red) open cir-
cles connected with the solid lines are calculated from (12)
with the isovector np-pairing energy, the (black) solid dots
connected with the dashed lines are calculated from (12) with
the total pairing energy, and the (blue) solid squares connected

with the dashed lines are δ̃Vpn values calculated from (11) with

B̃E(Z, N).

the double binding-energy difference (11) actually provides
evidence for the importance of the Wigner energy con-
tribution to the binding energy, and additionaly demon-
strates that the isovector np-pairing energy contribution
is relatively large in the even-even N = Z nuclei [21]. Al-
ternatively, instead of BE(Z, N), we also calculated the
double pairing energy difference defined as

δE =
1

4
(E(1)(Z, N) − E(1)(Z − 2, N)

−E(1)(Z, N − 2) + E(1)(Z − 2, N − 2)), (12)

where

E(1)(Z, N) = 〈ξ = 1, n, TMT |ĤP|ξ = 1, n, TMT 〉
(13)

is the lowest Jπ = 0+ state expectation value of either
ĤP = G

∑
ρ A+

ρ Aρ or ĤP = GA+
0 A0, of which the former

is the total pairing energy contribution, while the latter is
the isovector np-pairing energy contribution to the binding
energy. By substituting BE(Z, N) used in (11) with

B̃E(Z, N) = BE(Z, N)

+
1

A

(
134.4 − 203.6

A1/3

)
T (T + 1) (MeV),

(14)

which removes the symmetry energy contribution to the

binding energy, the resultant δ̃Vpn obtained from (11)
should be close to the double pairing energy differ-
ence (12). And indeed, as shown in panel (b) of fig. 1,

the value of δ̃Vpn is very close to the δE values calculated
with the total pairing energy and the np-pairing energy
contribution to the binding energy. Most noticeably, in
comparison to δVpn, the staggering pattern is clearly evi-
dent, and, to the contrary, the actual np-pairing energy in

the odd-odd N = Z nuclei turns out to be comparatively
strong, which shows that the Wigner energy contribution
plays the important role in the lowest Jπ = 0+ states of
odd-odd N = Z nuclei. Table 2 shows the actual nn-, pp-,
and np-pairing energy at the ground state or the lowest
Jπ = 0+ excited state of (2) for these nuclei defined by

E
(1)
np = G〈ξ = 1, n, TMT |A+

0 A0|ξ = 1, n, TMT 〉,

E
(1)
nn = G〈ξ = 1, n, TMT |A+

−1A−1|ξ = 1, n, TMT 〉,

E
(1)
pp = G〈ξ = 1, n, TMT |A+

1 A1|ξ = 1, n, TMT 〉,

(15)

and the percentage of the isovector np-pairing energy with
respect to the total pairing energy

ηnp = E(1)
np /(E(1)

np + E(1)
nn + E(1)

pp ). (16)

It can be seen from the results that E
(1)
nn in the N = Z + 2

nuclei is the same as E
(1)
pp in the Z = N + 2 mirror

nuclei, while E
(1)
nn = E

(1)
pp in the N = Z nuclei due to

the charge-independent approximation adopted. However,

E
(1)
np = E

(1)
nn = E

(1)
pp in even-even N = Z nuclei, while

E
(1)
np > E

(1)
nn = E

(1)
pp in odd-odd N = Z nuclei, shows

that the isovector np-pairing energy contribution to the
binding energy is the largest in odd-odd N = Z nuclei in
comparison to that in the adjacent N �= Z and even-even
N = Z nuclei.

Finally, the average number of the isovector np-pairs in
the lowest Jπ = 0+ state can be defined as

knp = 〈ξ = 1, n, TMT |q̂|ξ = 1, n, TMT 〉, (17)

with q̂ =
∑p

i=1(Ωi − 2Λ̂i). Hence, the average number of
nn-pairs and that of pp-pairs are given by

knn = (nν − knp)/2, kpp = (nπ − knp)/2. (18)

These values for the each nucleus at the lowest Jπ = 0+

state are shown in table 2. Since the number of isovector
np-pairs is not a conserved quantity in general, its fluctua-
tion in the lowest Jπ = 0+ state of these nuclei defined as

Δknp = (〈ξ = 1, n, TMT |(q̂ − knp)
2|ξ = 1, n, TMT 〉)1/2

(19)
is also provided. It can be observed from table 2 that the
knp value is a definite integer for nuclei with less than or
equal to one valence neutron or proton, for which the knp

value is also easily countable, while (17) must be used for
evaluating knp for nuclei with more valence neutrons and
protons. It is obvious that the knp value is indeed rela-
tively large in the odd-odd N = Z nuclei, which is consis-
tent to the larger isovector np-pairing energy contribution
to the binding energy shown in table 2, while the average
number of the isovector np-pairs knp in the even-even nu-
clei is considerably small with very large fluctuation. The
Δknp value in these even-even N = Z nuclei is almost
two times of the corresponding average value. Though
the isovector np-pair occupation number defined as

ζnp = knp/k, (20)
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Table 2: The isovector np-, nn-, and pp-pairing energy contribution (in MeV) to the binding energy and the percentage of the
isovector np-pairing energy with respect to the total pairing energy ηnp in the 22 even-even and odd-odd ds-shell nuclei described
within the seniority-zero subspace of the model, where the average number of the isovector np-pairs knp and its fluctuation
Δknp, and the isovector np-pair occupation number ζnp in the Jπ = 0+ ground state or the lowest Jπ = 0+ state of these nuclei
are also shown.

Nucleus n Isospin E
(1)
np E

(1)
nn E

(1)
pp knp Δknp knn kpp ηnp ζnp

18
8 O10 2 T = 1 0 5.036 0 0 0 1 0 0% 0%
18
9 F9 2 T = 1 5.036 0 0 1 0 0 0 100% 100%

18
10Ne8 2 T = 1 0 0 5.036 0 0 0 1 0% 0%
20
8 O12 4 T = 2 0 7.945 0 0 0 2 0 0% 0%
20
9 F11 4 T = 1 2.568 2.568 0 1 0 1 0 50% 50%
20
10Ne10 4 T = 0 3.707 3.707 3.707 0.497 0.865 0.7515 0.7515 33.33% 24.85%
20
11Na9 4 T = 1 2.568 0 2.568 1 0 0 1 50% 50%
20
12Mg8 4 T = 2 0 0 7.945 0 0 0 2 0% 0%
22
8 O14 6 T = 3 0 8.666 0 0 0 3 0 0% 0%
22
10Ne12 6 T = 1 2.226 7.356 4.444 0.205 0.606 1.8975 0.8975 15.87% 6.83%
22
11Na11 6 T = 1 9.573 2.226 2.226 1.756 0.940 0.622 0.622 68.25% 58.53%
22
12Mg10 6 T = 1 2.226 4.444 7.356 0.205 0.606 0.8975 1.8975 15.87% 6.83%
22
14Si8 6 T = 3 0 0 8.666 0 0 0 3 0% 0%

24
10Ne14 8 T = 2 1.600 8.393 4.756 0.083 0.159 2.9585 0.9585 10.85% 2.08%
24
11Na13 8 T = 1 5.061 4.167 2.681 1.404 0.645 1.798 0.798 42.49% 35.10%
24
12Mg12 8 T = 0 6.000 6.000 6.000 0.711 1.342 1.6445 1.6445 33.33% 17.78%
24
13Al11 8 T = 1 5.061 2.681 4.167 1.404 0.645 0.798 1.798 42.49% 35.10%
24
14Si10 8 T = 2 1.600 4.756 8.393 0.083 0.159 0.9585 2.9585 10.85% 2.08%

26
12Mg14 10 T = 1 3.615 7.917 7.186 0.234 0.449 2.883 1.883 19.31% 4.68%
26
13Al13 10 T = 1 11.489 3.615 3.615 1.792 1.179 1.604 1.604 61.38% 35.84%
26
14Si12 10 T = 1 3.615 7.186 7.917 0.234 0.449 1.883 2.883 19.31% 4.68%
28
14Si14 12 T = 0 6.847 6.847 6.847 0.585 1.066 2.7075 2.7075 33.33% 9.75%

where k = n/2, in the even-even N = Z nuclei is
small, the isovector np-pairing energy is still compara-
ble to the nn- or pp-pairing energy. Table 2 shows that

the isovector np-pairing energy per pair E
(1)
np /knp is 2.31

and 4.63 times of E
(1)
nn /knn = E

(1)
pp /kpp in 24Mg and

28Si, respectively. In short, the number of isovector np-
pairs is larger in odd-odd N = Z nuclei as described by
the charge-independent mean field plus isovector pairing
model.

In summary, it is shown that the isvector np-pair num-
ber operator can be realized in the neutron and proton
quasi-spin SUΛ(2) ⊗ SUI(2) chain, in which the aver-
age number of the isovector np-pairs and its fluctuation
can be evaluated. The evaluation is demonstrated in
the charge-independent mean field plus isovector pairing
model, thereby binding energies and low-lying Jπ = 0+ ex-
cited states of even-even and odd-odd N∼Z ds-shell nuclei
are fit, and in turn, the isovector np-, nn-, and pp-pairing
energy contributions to the binding energy in the even-
even and odd-odd ds-shell nuclei are estimated. The re-
sults corroborate earlier findings [25,26] that the isovector

np-pairing energy contribution to the lowest J = 0+ level
energy in the odd-odd N = Z nuclei is systematically
larger than that in the even-even nuclei. It is also observed
that the decrease in the double binding-energy difference
for the odd-odd nuclei is mainly due to the symmetry en-
ergy, which includes the Wigner energy contribution, that
alters the pairing staggering patten. Particularly, the av-
erage number of the isovector np-pairs in the Jπ = 0+

ground state or the lowest Jπ = 0+ excited state of
the even-even and odd-odd ds-shell nuclei are evaluated,
which shows that the average number of the isovector np-
pairs knp in the even-even N = Z nuclei is considerably
small with very large fluctuation in comparison to that in
the odd-odd N = Z nuclei, and leads to the conclusion
that the isovector np-pairs increase in number in odd-odd
N = Z nuclei. On the other hand, although the isovec-
tor np-pair occupation number in the even-even N = Z
nuclei is rather small, the isovector np-pairing energy per
pair is systematically larger than the nn- or pp-pairing
energy per pair. It should be stated that the purpose of
this work is mainly to provide the precise definition of the
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isovector np-pair number operator. The computation of
the isovector np-pair number, however, is demonstrated
for the even-even and odd-odd N∼Z ds-shell nuclei de-
scribed by the isovector pairing model restricted within
the O(5) seniority-zero subspace only, where the isoscalar
np-pairs are not involved. In order to reveal the actual np-
pair contents in these N∼Z nuclei, other O(5) seniority-
nonzero configurations must be considered, for which an
alternative O(8) model [33–35] should be more convenient.
Nevertheless, as has been shown in our recent work on the
O(8) model [36], not only the binding energies and the
low-lying Jπ = 0+ level energies shown in table 1, but also
the isovector pairing energy contributions to the binding
energies provided in table 2 are the same as those calcu-
lated from the O(8) model, where the isoscalar np-pairs
are also involved. Therefore, the conclusion of the present
work on the isovector pairing energy contribution to the
binding energies of these ds-shell nuclei is still valid even
in the presence of isoscalar np-pairs.
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[6] Qi C., Blomqvist J., Bäck T., Cederwall B., John-

son A., Liotta R. J. and Wyss R., Phys. Rev. C, 84

(2011) 021301(R).
[7] Bentley I. and Frauendorf S., Phys. Rev. C, 88 (2013)

014322.
[8] Frauendorf S. and Macchiavelli A. O., Prog. Part.

Nucl. Phys., 78 (2014) 24.
[9] Piasetzky E., Sargsian M., Frankfurt L., Strik-

man M. and Watson J. W., Phys. Rev. Lett., 97 (2006)
162504.

[10] CLAS Collaboration (Hen O. et al.), Science, 346

(2014) 614.
[11] Andreoiu C., Svensson C. E., Afanasjev A. V.,

Austin R. A. E., Carpenter M. P., Dashdorj D.,

Finlay P., Freeman S. J., Garrett P. E., Greene
J., Grinyer G. F., Görgen A., Hyland B., Jenk-
ins D., Johnston-Theasby F., Joshi P., Machiavelli
A. O., Moore F., Mukherjee G., Phillips A. A., Re-
viol W., Sarantites D. G., Schumaker M. A., Sew-
eryniak D., Smith M. B., Valiente-Dobón J. J. and
Wadsworth R., Phys. Rev. C, 75 (2007) 041301(R).

[12] Hecht K. T., Phys. Rev., 139 (1965) B794.
[13] Hecht K. T., Nucl. Phys., 63 (1965) 214.
[14] Ginocchio J. N., Nucl. Phys., 74 (1965) 321.
[15] Pan F. and Draayer J. P., Phys. Rev. C, 66 (2002)

044314.
[16] Dukelsky J., Gueorguiev V. G., Van Isacker P.,

Dimitrova S., Errea B. and Lerma H. S., Phys. Rev.

Lett., 96 (2006) 072503.
[17] Engel J., Langanke K. and Vogel P., Phys. Lett. B,

389 (1996) 211.
[18] Brown B. A., Prog. Part. Nucl. Phys., 47 (2001) 517

and references therein.
[19] Moshinsky M., Chacón E., Flores J., deLIano M.

and Mello P. A., Group Theory and the Many-Body

Problem (Gordon and Breach, Scince Publishers Inc., New
York) 1968.

[20] Chen J.-Q., Group Representation Theory for Physicists

(World Scientific, Singapore) 1989.
[21] Miora M. E., Launey K. D., Kekejian D., Pan

F. and Draayer J. P., Phys. Rev. C, 100 (2019)
064310.

[22] Vogel P., Nucl. Phys. A, 662 (2000) 148.
[23] Macchiavelli A. O., Fallon P., Clark R. M., Cro-

maz M., Deleplanque M. A., Diamond R. M., Lane
G. J., Lee I. Y., Stephens F. S., Svensson C. E.,
Vetter K. and Ward D., Phys. Rev. C, 61 (2000)
041303(R).

[24] Pan F., Ding X., Launey K. D. and Draayer J. P.,
Nucl. Phys. A, 974 (2018) 86.

[25] Sviratcheva K. D., Georgieva A. I. and Draayer
J. P., Phys. Rev. C, 69 (2004) 024313.

[26] Sviratcheva K. D., Georgieva A. I. and Draayer
J. P., Phys. Rev. C, 70 (2004) 064302.

[27] Pan F., Ding X., Launey K. D., Dai L. and Draayer
J. P., Phys. Lett. B, 780 (2018) 1.

[28] Shimizu N., Mizusaki T., Utsuno T. and Tsunoda Y.,
Comput. Phys. Commun., 244 (2019) 372.

[29] Brown B. A. and Wildenthal B. H., Annu. Rev. Nucl.

Part. Sci., 38 (1988) 29.
[30] NuDat 2.8, National Nuclear Data Center (Brookhaven

National laboratory), http://www.nndc.bnl.gov/

nudat2.
[31] MacCormick M. and Audi G., Nucl. Phys. A, 925

(2014) 61.
[32] Zhang J.-Y., Casten R. F. and Brenner D. S., Phys.

Lett. B, 227 (1989) 1.
[33] Flowers B. H. and Szpikowski S., Proc. Phys. Soc., 84

(1964) 673.
[34] Pang S. C., Nucl. Phys. A, 128 (1969) 497.
[35] Hecht K. T., Nucl. Phys. A, 444 (1985) 189.
[36] Pan Feng, He Y., Wu Y., Wang Y., Launey K. D.

and Draayer J. P., Phys. Rev. C, 102 (2020) 044306.

32001-p7



Supplemental Material to “On the importance
of np-pairs in the isovector pairing model”

Feng Pan,1, 2 Chong Qi,3 Lianrong Dai,4, 1 Grigor Sargsyan,2 Kristina D. Launey,2 and Jerry P. Draayer2

1Department of Physics, Liaoning Normal University, Dalian 116029, China
2Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001, USA

3Department of Physics, KTH Royal Institute of Technology, 10691 Stockholm, Sweden
4Department of Physics, School of Science,

Huzhou University, Huzhou, Zhejiang 313000, China

1. Fock states in a given j-orbit with the group theoretical classification

In the shell model, let {a†j mj , tmt
, aj mj , tmt} be a set of the (valence) nucleon creation and annihilation

operators in the j-orbit, where mj is the quantum number of the angular momentum projection, t = 1/2
is the quantum number of the isospin, and mt = 1/2 or −1/2 is the quantum number of the isospin
projection, respectively. It is well known that the total number of many-particle product (Fock) states,

Γ, provided by {Ξ†φn
|0〉 =

∏n
mj mt

a†j mj ,tmt
|0〉}, where |0〉 is the (valence) nucleon vacuum state, and φn,

up to the permutations among n creation operators, stands for the n unequal sub-indices involved, is
given by

Γ =

4j+2∑
n=0

(4j + 2))!

n!(4j + 2− n)!
= 24j+2, (1)

which is due to the fact that the maximal number of creation operators involved in the nonzero many-
particle product states is 4j + 2 restricted by the Pauli excursion. It is obvious [1, 2] that the set of

operators {Qφn,φ′
n′

= Ξ†φn
Ξφ′

n′
, 1 ≤ n, n′ ≤ 4j + 2} generate the unitary group U(24j+2). The set of

the many-particle product (Fock) states {Ξ†φ1
|0〉, · · · ,Ξ†φ4j+2

|0〉} spans a complex linear space for the

fundamental irrep [1, 0, · · · , 0] of U(24j+2). A subset of {Ξ†φn
,Ξφn

} with n = 1, 2 and Hφφ′ = Ξ†φ1
Ξφ′

1

generate the O(8j + 5) group. Therefore, U(24j+2)) ⊃ O(8j + 5) with the branching rule [1, 0, · · · , 0] ↓
( 1

2 , · · · ,
1
2 ), where ( 1

2 , · · · ,
1
2 ) with 4j+ 2 components to be 1

2 is a spinor representation of O(8j+ 5). The

largest nontrivial subgroup of O(8j + 5) is O(8j + 4) generated by {Ξ†φ2
,Ξφ2 , Hφφ′} with the branching

rule:

O(8j + 5) ↓ O(8j + 4)
( 1

2 , · · · ,
1
2 ) ↓ ( 1

2 , · · · ,
1
2 ,

1
2 )⊕ ( 1

2 , · · · ,
1
2 ,−

1
2 ),

(2)

where the irreducible representation (irrep) ( 1
2 , · · · ,

1
2 ,

1
2 ) of O(8j+4) is spanned by {Ξ†φn

|0〉} with n even,

while ( 1
2 , · · · ,

1
2 ,−

1
2 ) is spanned by {Ξ†φn

|0〉} with n odd. There are several important subgroup chains

useful to provide various complete basis vectors of the irreps of O(8j + 4), among which the following
chain

O(8j + 4) ⊃ (O(5) ⊃ OT(3)⊗ON (2))⊗ (Sp(2j + 1) ⊃ SUJ(2)) (3)

is used to label the complete basis vectors with nj valence nucleons in the j-orbit, where T is the
quantum number of the total isospin, J is the quantum number of the total angular momentum, and
N (j) = nj/2− Ωj with Ωj = j + 1/2.

The generators of O(5) of this case are (J=0, T=1) pair creation operators A+
µ (j), pair annihilation

operators Aµ(j) =
(
A+
µ (j)

)†
, with µ = +,−, 0, the number operator of valence nucleons in the j-orbit

n̂j , and isospin operators Tµ(j), with



2

A+
µ (j) =

∑
mj>0

(−)j−mja†jmj ,tmt
a†j−mj ,tmt

with µ = 1 or − 1, (4)

corresponding to mt = 1/2 or −1/2,

A+
0 (j) =

√
1

2

∑
mj>0

(−)j−mja†jmj ,t 1/2a
†
j−mj ,t−1/2 +

∑
mj>0

(−)j−mja†jmj ,t−1/2a
†
j−mj ,t 1/2

 , (5)

n̂j =
∑
mjmt

a†jmj ,tmt
ajmj ,tmt

, T+(j) =
∑
mj

a†jmj ,t 1/2ajmj ,t−1/2, T−(j) =
∑
mj

a†jmj ,t−1/2ajmj ,t 1/2,

T0(j) =
1

2

∑
mj

(
a†jmj ,t 1/2ajmj ,t 1/2 − a†jmj ,t−1/2ajmj ,t−1/2

)
, (6)

of which the commutation relations among the above O(5) generators were explicitly shown in [3]. The
generators of Sp(2j + 1) are given by ∑

mt

(
a†j,tmt

ãj,tmt

)(k)

ρ
(7)

with k = 1, 3, · · · , 2j, and ρ = k, k − 1, · · · ,−k for a given k, where ãjmj ,tmt
= (−)j+mjaj−mj ,tmt

, and

(AjBj)
(k)
ρ stands for the angular momentum coupling with j ⊗ j ↓ k.

For a fixed number of valence particles nj , the labels of the O(8j+4) irrep are redundant, the complete
basis vectors of (3) may be denoted as ∣∣∣∣ (v1, v2)

nj β T MT
;αJ MJ

〉
. (8)

In (8), v1 and v2, being positive integers or positive half-integers simultaneously, denotes a possible irrep
of O(5) with v1 ≥ v2 ≥ 0, which are related to the O(5) seniority number of nucleons v and the reduced
isospin t with v1 = Ω−v/2 and v2 = t. v and t indicate that there are v nucleons coupled to the isospin t,
which are free from the angular momentum J = 0 and T = 1 pairs. v and t also label the corresponding
irrep of Sp(2j+1) simultaneously represented by a two-column Young diagram 〈2v, 12t〉 with v+2t boxes
in the first column and v boxes in the second column. β and α in (8) are multiplicity labels for given T
and J needed in the reduction O(5)↓OT(3)⊗ON (2) and Sp(2j + 1) ↓ SUJ(2), respectively.

For the O(5) seniority zero case corresponding to v = t = 0 and J=0 discussed in this work, the
quantum numbers of Sp(2j+ 1) and SUJ(2) are thus neglected. In this case, for given number of valence
nucleons nj , the basis vectors (8) can be constructed by using nj (J=0, T=1) pair creation operators
A+
µ (j) coupled to isospin T as shown in [4].

Moreover, for a given j-orbit, the generators of O(5) in the canonical SUΛ(2)⊗ SUI(2) basis are denoted
as {ςρ, τρ, Uµν} with −1 ≤ ρ ≤ 1 and − 1

2 ≤ µ, ν ≤ 1
2 . where {ς+, ς−, ς0} and {τ+, τ−, τ0} generate the

subgroup SUΛ(2) and SUI(2), respectively, and the double tensor operators {Uµν} satisfy the following
Hermitian conjugation relation:

(Uµν)
†

= (−)µ+ν U−µ−ν . (9)
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The commutation relations of these generators are

[ς0, ς±] = ±ς±, [ς+, ς−] = 2ς0,

[τ0, τ±] = ±τ±, [τ+, τ−] = 2τ0,

[ς0, Uµν ] = µUµν , [τ0, Uµν ] = ν Uµν ,

[ς±, Uµν ] =
√

( 1
2 ∓ µ)( 1

2 ± µ+ 1)Uµ±1ν , [τ±, Uµν ] =
√

( 1
2 ∓ ν)( 1

2 ± ν + 1)Uµν±1,

[U± 1
2

1
2
, U± 1

2−
1
2
] = ±ς±, [U 1

2±
1
2
, U− 1

2±
1
2
] = ±τ±, [U± 1

2
1
2
, U∓ 1

2−
1
2
] = −(ς0 ± τ0).

(10)

The relations of the O(5) generators in the non-canonical O(5)⊃OT (3)×ON (2) basis with those in the
canonical SUΛ(2)⊗ SUI(2) basis are given by [5, 6]

A†1(j) = ς+, A
†
−1(j) = τ+, A1(j) = ς−, A−1(j) = τ−, A

†
0(j) = U 1

2
1
2
, A0(j) = −U− 1

2−
1
2
,

T+(j) = −
√

2U 1
2−

1
2
, T−(j) = −

√
2U− 1

2
1
2
, T0(j) = ς0 − τ0, N̂ (j) = ς0 + τ0.

(11)

Since O(5)↓O(4) is simply reducible and O(4) is locally isomorphic to SUΛ(2)⊗SUI(2), instead of
O(5)⊃OT(3)⊗ON (2) state classification, the (canonical) branching multiplicity-free orthonormal basis
vectors of O(5)⊃SUΛ(2)⊗SUI(2)⊃UΛ(1)⊗UI(1) with

∣∣∣∣∣∣
(v1, v2)

Λ = 1
2 (u1 + u2), I = 1

2 (u1 − u2)
µ, ν

〉
(12)

are used, where (u1, u2) labels possible irrep of O(4) within the given irrep (v1, v2) of O(5) restricted by
v2 ≤ u1 ≤ v1 and −v2 ≤ u2 ≤ v2. The Casimir (invariant) operator of O(5) can be expressed as

C2(O(5)) = 2 ς · ς + 2 τ · τ +
∑
µν(−1)µ+νUµνU−µ−ν

=
∑
ρ

(
A†ρ(j)Aρ(j) +Aρ(j)A

†
ρ(j)

)
+ T(j) ·T(j) + N̂ (j)2,

(13)

where l · l = 1
2 (l+l− + l−l+) + l20. Eigenvalues of C2(O(5)), ς · ς, and τ · τ under (12) are given by C2(O(5))

ς · ς
τ · τ

∣∣∣∣∣∣
(v1, v2)

Λ = 1
2 (u1 + u2), I = 1

2 (u1 − u2)
µ, ν

〉
= v1(v1 + 3) + v2(v2 + 1)

Λ(Λ + 1)
I(I + 1)

∣∣∣∣∣∣
(v1, v2)

Λ = 1
2 (u1 + u2), I = 1

2 (u1 − u2)
µ, ν

〉
,

(14)

where u1 = v1 − q and u2 = v2 − p with p = 0, 1, · · · , 2v2 and q = 0, 1, · · · , v1 − v2.

For a given irrep (v1, v2) of O(5), the matrix representations of O(5) ⊃ SUΛ(2) ⊗ SUI(2) are given
by [5, 6]

〈
Λ− 1

2
I + 1

2

∥∥∥∥U ∥∥∥∥ Λ
I

〉
= −

[
(v1 − I + Λ + 1)(v2 − I + Λ)(v1 − Λ + I + 2)(v2 − Λ + I + 1)

2(2Λ)(2I + 2)

] 1
2

,
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〈
Λ− 1

2
I − 1

2

∥∥∥∥U ∥∥∥∥ Λ
I

〉
=

[
(v1 + I + Λ + 2)(v2 + I + Λ + 1)(v1 − Λ− I + 1)(Λ + I − v2)

2(2Λ)(2I)

] 1
2

(15)

with the SUΛ(2)⊗ SUI(2) conjugation relation〈
Λ
I

∥∥∥∥U ∥∥∥∥ Λ′

I ′

〉
=

[
(2I ′ + 1)(2Λ′ + 1)

(2I + 1)(2Λ + 1)

] 1
2

(−)I
′−I+Λ′−Λ+1

〈
Λ′

I ′

∥∥∥∥U ∥∥∥∥ Λ
I

〉
, (16)

where the phase factor shown in [6] has been corrected.

The branching rule of O(5) ↓ SUΛ(2)⊗ SUI(2) can be expressed as

O(5) ↓ SUΛ(2) ⊗ SUI(2)

(v1, v2) ↓
⊕v1−v2, 2v2

q=0, p=0

(
Λ = 1

2 (v1 + v2 − p− q), I = 1
2 (v1 − v2 + p− q)

)
,

(17)

which can be verified by the sum rule

Dim(O(5), (v1, v2)) =
∑v1−v2
q=0

∑2v2
p=0(v1 + v2 − p− q + 1)(v1 − v2 + p− q + 1)

= 1
6 (2v1 + 3)(v1 − v2 + 1)(v1 + v2 + 2)(2v2 + 1),

(18)

where Dim(O(5), (v1, v2)) is the dimension of the O(5) irrep (v1, v2).

2. Matrix elements of the Hamiltonian and its aidgonalization

The Hamiltonian of the charge-independent mean-field plus isovector pairing model used in this work
is [6]

Ĥ0 =

p∑
i=1

εi n̂i −G
∑
ρ

A+
ρ Aρ, (19)

where ji is abbreviated as i, A+
ρ =

∑p
i=1A

+
ρ (i) and Aρ =

∑p
i=1Aρ(i) are collective pairing operators, εi

is the valence nucleon single-particle energy in the i-th orbit, and G > 0 is the overall pairing interaction
strength. The Hamiltonian (19) is digonalized in the subspace of tensor product ⊗pi=1O(i)(5) basis when
p j-orbits of the shell model are considered, in which each copy of the O(5) irrep is adapted to the
O(5)⊃SUΛ(2)⊗SUI(2)⊃UΛ(1)⊗UI(1) chain. Though the procedure for seniority nonzero cases is the
same, in this work, only seniority-zero configuration with total angular momentum J=0 constructed from
the tensor product of p copies of the O(5) irrep (Ωi, 0) is considered, in which only equal proton and
neutron quasispin Ii = Λi in the i-th orbit is allowed according to (17). Eigenstates of (19) within the
seniority-zero Jπ = 0+ subspace are denoted as

|ξ;n,MT 〉 =
∑

ΛiniMT (i)

C
ξ; Λ1,··· ,Λp

n1mT (1),··· ,npmT (p)

∣∣∣∣∣∣
(Ω1, 0); · · · ; (Ωp, 0)

Λ1; · · · ; Λp
n1,mT (1); · · · ;np,mT (p)

〉
, (20)

where the eigenstate |ξ;n,MT 〉 with total number of valence nucleons n =
∑p
i=1 ni and total isospin

projection MT =
∑p
i=1mT (i) is expended in terms of the p copies of O(5) tensor product basis ⊗pi=1(Ωi, 0)

in the O(5) ⊃ SUΛ(2)⊗ SUI(2) ⊃ UΛ(1)⊗UI(1) labelling scheme with

Ii = Λi, µi = 1
4 (ni + 2mT (i)− 2Ωi), νi = 1

4 (ni − 2mT (i)− 2Ωi) (21)

according to the relations shown in (11), C
ξ; Λ1,··· ,Λp

n1mT (1),··· ,npmT (p) is the corresponding expansion coefficient,

and ξ labels the ξ-th eigenstate with the same n and MT .
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Matrix elements of each terms involved in (19) under the O(5) tensor product basis ⊗pi=1(Ωi, 0) in the
O(5) ⊃ SUΛ(2) ⊗ SUI(2) ⊃ UΛ(1) ⊗ UI(1) labelling scheme can be evaluated according to the results
shown in the previous section. Specifically, we have

〈
(Ω1, 0); · · · ; (Ωp, 0)

Λ′1; · · · ; Λ′p
µ′1, ν

′
1; · · · ; µ′p, ν

′
p

∣∣∣∣∣∣∑p
i=1 εi n̂i

∣∣∣∣∣∣
(Ω1, 0); · · · ; (Ωp, 0)

Λ1; · · · ; Λp
µ1, ν1; · · · ; µp, νp

〉
=

∏p
q=1 δΛqΛ′

q
δµqµ′

q
δνqν′

q

∑p
i=1 2εi(µi + νi + Ωi), (22)

〈
(Ω1, 0); · · · ; (Ωp, 0)

Λ′1; · · · ; Λ′p
µ′1, ν

′
1; · · · ; µ′p, ν

′
p

∣∣∣∣∣∣A+
1 (i)A1(i)

∣∣∣∣∣∣
(Ω1, 0); · · · ; (Ωp, 0)

Λ1; · · · ; Λp
µ1, ν1; · · · ; µp, νp

〉
=

〈
(Ω1, 0); · · · ; (Ωp, 0)

Λ′1; · · · ; Λ′p
µ′1, ν

′
1; · · · ; µ′p, ν

′
p

∣∣∣∣∣∣ ς(i)+ ς
(i)
−

∣∣∣∣∣∣
(Ω1, 0); · · · ; (Ωp, 0)

Λ1; · · · ; Λp
µ1, ν1; · · · ; µp, νp

〉
=

∏p
q=1 δΛqΛ′

q
δµqµ′

q
δνqν′

q
(Λi − µi + 1)(Λi + µi), (23)

〈
(Ω1, 0); · · · ; (Ωp, 0)

Λ′1; · · · ; Λ′p
µ′1, ν

′
1; · · · ; µ′p, ν

′
p

∣∣∣∣∣∣A+
1 (i)A1(j)

∣∣∣∣∣∣
(Ω1, 0); · · · ; (Ωp, 0)

Λ1; · · · ; Λp
µ1, ν1; · · · ; µp, νp

〉
=

〈
(Ω1, 0); · · · ; (Ωp, 0)

Λ′1; · · · ; Λ′p
µ′1, ν

′
1; · · · ; µ′p, ν

′
p

∣∣∣∣∣∣ ς(i)+ ς
(j)
−

∣∣∣∣∣∣
(Ω1, 0); · · · ; (Ωp, 0)

Λ1; · · · ; Λp
µ1, ν1; · · · ; µp, νp

〉
=

∏p
q=1 δΛqΛ′

q

∏p
r 6=i 6=j δµrµ′

r
δνrν′

r
δµ′

i µi+
1
2
δµ′

j µj− 1
2

√
(Λi + µi + 1)(Λi − µi)(Λj − µj + 1)(Λj + µj) (24)

for i 6= j, 〈
(Ω1, 0); · · · ; (Ωp, 0)

Λ′1; · · · ; Λ′p
µ′1, ν

′
1; · · · ; µ′p, ν

′
p

∣∣∣∣∣∣A+
−1(i)A−1(i)

∣∣∣∣∣∣
(Ω1, 0); · · · ; (Ωp, 0)

Λ1; · · · ; Λp
µ1, ν1; · · · ; µp, νp

〉
=

〈
(Ω1, 0); · · · ; (Ωp, 0)

Λ′1; · · · ; Λ′p
µ′1, ν

′
1; · · · ; µ′p, ν

′
p

∣∣∣∣∣∣ τ (i)
+ τ

(i)
−

∣∣∣∣∣∣
(Ω1, 0); · · · ; (Ωp, 0)

Λ1; · · · ; Λp
µ1, ν1; · · · ; µp, νp

〉
=

∏p
q=1 δΛqΛ′

q
δµqµ′

q
δνqν′

q
(Λi − νi + 1)(Λi + νi), (25)

〈
(Ω1, 0); · · · ; (Ωp, 0)

Λ′1; · · · ; Λ′p
µ′1, ν

′
1; · · · ; µ′p, ν

′
p

∣∣∣∣∣∣A+
−1(i)A−1(j)

∣∣∣∣∣∣
(Ω1, 0); · · · ; (Ωp, 0)

Λ1; · · · ; Λp
µ1, ν1; · · · ; µp, νp

〉
=

〈
(Ω1, 0); · · · ; (Ωp, 0)

Λ′1; · · · ; Λ′p
µ′1, ν

′
1; · · · ; µ′p, ν

′
p

∣∣∣∣∣∣ τ (i)
+ τ

(j)
−

∣∣∣∣∣∣
(Ω1, 0); · · · ; (Ωp, 0)

Λ1; · · · ; Λp
µ1, ν1; · · · ; µp, νp

〉
=

∏p
q=1 δΛqΛ′

q

∏p
r 6=i 6=j δµrµ′

r
δνrν′

r
δν′

i νi+
1
2
δν′

j νj−
1
2

√
(Λi + νi + 1)(Λi − νi)(Λj − νj + 1)(Λj + νj) (26)
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for i 6= j, 〈
(Ω1, 0); · · · ; (Ωp, 0)

Λ′1; · · · ; Λ′p
µ′1, ν

′
1; · · · ; µ′p, ν

′
p

∣∣∣∣∣∣A+
0 (i)A0(i)

∣∣∣∣∣∣
(Ω1, 0); · · · ; (Ωp, 0)

Λ1; · · · ; Λp
µ1, ν1; · · · ; µp, νp

〉
=

〈
(Ω1, 0); · · · ; (Ωp, 0)

Λ′1; · · · ; Λ′p
µ′1, ν

′
1; · · · ; µ′p, ν

′
p

∣∣∣∣∣∣ (−1)U
(i)
1
2 ,

1
2

U
(i)

− 1
2 ,−

1
2

∣∣∣∣∣∣
(Ω1, 0); · · · ; (Ωp, 0)

Λ1; · · · ; Λp
µ1, ν1; · · · ; µp, νp

〉
=

∏p
q 6=i δΛqΛ′

q

∑
Λ′′

i
〈Λ′i||U ||Λ′′i 〉〈Λ′′i ||U ||Λi〉

∏p
r=1 δµrµ′

r
δνrν′

r
×

(−1)〈Λ′′i µi − 1
2

1
2

1
2 |Λ
′
iµi〉〈Λ′′i νi − 1

2
1
2

1
2 |Λ
′
iνi〉〈Λiµi 1

2 −
1
2 |Λ

′′

i µi − 1
2 〉〈Λiνi

1
2 −

1
2 |Λ
′′
i νi − 1

2 〉, (27)

〈
(Ω1, 0); · · · ; (Ωp, 0)

Λ′1; · · · ; Λ′p
µ′1, ν

′
1; · · · ; µ′p, ν

′
p

∣∣∣∣∣∣A+
0 (i)A0(j)

∣∣∣∣∣∣
(Ω1, 0); · · · ; (Ωp, 0)

Λ1; · · · ; Λp
µ1, ν1; · · · ; µp, νp

〉
=

〈
(Ω1, 0); · · · ; (Ωp, 0)

Λ′1; · · · ; Λ′p
µ′1, ν

′
1; · · · ; µ′p, ν

′
p

∣∣∣∣∣∣ (−1)U
(i)
1
2 ,

1
2

U
(j)

− 1
2 ,−

1
2

∣∣∣∣∣∣
(Ω1, 0); · · · ; (Ωp, 0)

Λ1; · · · ; Λp
µ1, ν1; · · · ; µp, νp

〉
= (−1)〈Λ′i||U ||Λi〉〈Λ′j ||U ||Λj〉 ×∏p

q 6=i 6=j δΛqΛ′
q
δµqµ′

q
δνqν′

q
〈Λiµi 1

2
1
2 |Λ
′
iµ
′
i〉〈Λiνi 1

2
1
2 |Λ
′
iν
′
i〉〈Λjµj 1

2 −
1
2 |Λ
′
jµ
′
j〉〈Λjνj 1

2 −
1
2 |Λ
′
jν
′
j〉 (28)

for i 6= j, where 〈Λiµi 1
2

1
2 |Λ
′
iµ
′
i〉 and 〈Λjµj 1

2 −
1
2 |Λ
′
jµ
′
j〉 are the CG coefficients of SU(2), and 〈Λ′i||U ||Λi〉

is the SUΛ(2)⊗SUI(2) reduced matrix element with Ii = Λi = (Ωi− qi)/2 for qi = 0, 1, · · · ,Ωi shown in
(15) and (16), in which qi is the number of np-pairs in the i-th orbit for this case. Thus, the number of
np-pairs in the i-th orbit for given Λi can be expressed in terms of the neutron (proton) quasi-spin as

qi = Ωi − 2Λi (29)

for i = 1, 2, · · · , p.

It is obvious that this diagonalization scheme is equivalent to the MT -scheme realized in the O(5) ⊃
SUΛ(2)⊗SUI(2) ⊃ UΛ(1)⊗UI(1) basis. The results produced from this scheme has been checked against
the exact solution of the model up to 3 pairs shown in [3, 7], which shows that the results produced from
this scheme are exactly the same as those obtained from the formalism provided in [3, 7].
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