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Neutron-proton pairing correction in the extended isovector and isoscalar pairing model
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An extended Os7(8) model with multi-j orbits is constructed based on the angular momentum decomposition
with “pseudo”-spin S for valence nucleons in a j orbit. It is shown that the isovector S = 0 and T = 1 pairs
are exactly the J/ = 0 and T = 1 pairs in a given j orbit, while the isoscalar S = 1 pairs are linear combinations
of J = odd pairs, with which the pairing Hamiltonian can be used to estimate isovector and isoscalar pairing
interactions. As an example of the model application, some low-lying J = 0 level energies of even-even and
odd-odd A = 18-28 nuclei up to the half-filling in the ds shell above the '°0 core are fit by the model and
compared with the fitting results of the same Hamiltonian in the Oy ¢7(8) form. It has been verified from the
fitting of both the models that the isoscalar pairing interaction can be neglected in the lower-energy part of
the spectra of these ds-shell nuclei as far as binding energies and a few J = 0" excited levels of these nuclei
are concerned. With the mean-field plus isovector pairing interaction only, neutron-neutron, proton-proton, and
neutron-proton pairing contributions at the ground or the lowest J/ = 0" state of these nuclei are estimated. It is
shown that the isovector np pairing contribution to the binding in the odd-odd N = Z nuclei is systematically
larger than that in the even-even nuclei. Furthermore, the isoscalar np pair content at the lowest J = 0" state
of these nuclei is also estimated. In both the Os7(8) and Ops7(8) models, it is clearly shown that the isoscalar
pair content in the lowest J = 0 state of the N = Z and N = Z £ 2 nuclei increases with increasing of the
valence nucleons, especially in those even-even nuclei, which indicates the isoscalar pairing correlation to be of
importance at low-lying states of N = Z and N = Z = 2 nuclei, especially in those even-even nuclei with more

valence nucleons up to the half-filling, even though the isoscalar pairing interaction is negligible.

DOI: 10.1103/PhysRevC.102.044306

I. INTRODUCTION

It is shown from both theoretical and experimental stud-
ies that, besides the isovector pairing, isoscalar pairing may
also be of importance in N & Z nuclei [1-7]. Besides studies
in the framework of Hartree-Fock-Bogoliubov theory [1,3],
shell-model calculations with effective interactions focusing
on the isovector and isoscalar pairing mainly for N ~ Z fp-
shell nuclei were carried out extensively [4,7—-13]. The a-like
quartet structure of the isovector plus isoscalar pairing ground
state has also been studied [14—17]. The O(8) algebraic con-
struction of the isovector plus isoscalar pairing realized in the
LST -coupling scheme was proposed in Ref. [18], of which the
matrix representation was derived explicitly in Refs. [19,20].
Further analysis and applications of the Oy g7(8) model were
then made in Refs. [21-23]. Exact solution of the charge-
independent mean-field with /-orbit-dependent single-particle
energies plus isovector and isoscalar pairing was presented
[24,25], in which the isovector and isoscalar pairing strengths
were assumed to be the same. However, the single-particle
energy term in the Oz s7(8) model as used in Refs. [19,21-24]
cannot properly reproduce the mean-field part of the ground-
state energy mainly due to the fact that the model space is
restricted within the L = 0 configuration only, of which the
basis vectors are incomplete. An extension of the original
OLs7(8) model including L ## O states is necessary, of which,
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however, the model calculation becomes tedious with other
state vectors outside of the O g7 (8) prescription.

In this work, similar to the original O, s7(8) model in the
LST-coupling scheme, we consider a different angular mo-
mentum decomposition for a valence nucleon in a single-j
orbit, which enables us to realize an extended Og7(8) model
with multi-j orbits. The paper is organized as follows. The
construction of the extended Os7(8) model is presented in
Sec. II. In Sec. III, based on the results shown in Sec. II,
the model Hamiltonian in the ds shell is diagonalized in the
tensor product subspace of Os7(8) in the On(2) ® Os7(6)
basis. Application of the model to even-even and odd-odd
ds-shell nuclei in analyzing the isovector and isoscalar pairing
correlation is made in Sec. IV. A brief summary is presented
in Sec. V.

II. Os7(8) IN THE Usr(4) D On(2) ® SUs(2) ® SUr(2) BASIS

Let {a}mtml, @jmim ) be a set of creation and annihilation
operators for a valence nucleon with isospin £ =1/2 in a
j orbit. To realize a similar pair structure of the Opg7(8)
model for a j orbit, the angular momentum j is decomposed
as j =2¢ 4+ s, where s = 1/2 is the “pseudo”-spin of a va-
lence nucleon in the j orbit, while £ =0, 1/2,1,3/2,2,...
serves as a parameter of the decomposition. Thus, for a given

©2020 American Physical Society
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Jj =20+ s, we set

.
|

ajjl‘m/ = al(;s%;tm,’

a. =a cd =d (1)
Jji—ltm Cls—gstm,” P =ty —tsyitm,’
i _ T

aj —jtmg T aﬂ—[;s—%;tm,'

It should be noted that m, in azmg;sms;tm/ can be taken as
one of the 2¢ + 1 values —¢, —¢ +1,...,£. Thus, Eq (1)
provides the one-to-one correspondence between {azmz;sm;;tmt}

and {a imtm, } with 4j 4+ 2 = 8¢ + 4 of them in each set. Fur-
thermore it should be stated that the decomposition with
the “pseudo”-spin and the quasi angular momentum with its
quantum number £ = (j — 1/2)/2 are not the same as the
pseudo-spin and the pseudo-orbital angular momentum de-
composition proposed previously [26].

Within the present decomposition scheme, the S =0, T =
land § = 1, T = 0 pair creation operators can be written as

\/>(aéstalst)()/1’ D' f(akst aest)u()’ (2)

respectively, where

(alst aest)MsMT

¢
Z Z (smy, sm’|SM)

me=—L mgm,m;m,

x (tmy, tm)|T Mr) a

a(img ssmgstmy € —mygssmistm;
(3

in which the related Clebsch-Gordan coefficients are involved.
Similarly, the number-conserving generators of Usr(4) can be
expressed as

o T 00 T~ 01
n=2a, dest)g Ty = (aést alsz)ow

7o~ 10 ~ 11
Su=(a, avs))y. Wagw = (@), des))hy. (@)

where the ¢-part coupling is the same as that given in Eq. (3),
and

— (_1)1+mx+m,

Zlﬁmg;sms; tmy Ag —my;s —mg;t —my - (5)

Using the correspondence shown in Eq. (1), one can check that
S =0, T =1 pair operators P/I (u=—1, 0, 1) are exactly
the / = 0, T = 1 pair operators in the j orbit with

| . «/2] +1
f i 01
P;I = \/;(aﬁst aist)O;L

(,0)=

VT @ dh 8 ©
J

Osr(8) \

i’l even

690 0691901 TIN=Q -
Osr(6) | SUs(2) ® SUr(2)
(Gv O) @l —0 @W (S =0 —
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However, due to the special decomposition (1), S =1,T7 =0
pair operators DL are a linear combination of / = odd, T =0
pair operators with J/ = 1, 3, ..., 2j. For example, when j =

3/2,
(azstaZst) \/7(‘1]1 jt \/7(61]! ]t()()’

(aészaht):tlo [(a,z ]t):::(l)0+\/>(a]t ,z)ﬂo (N

Therefore, if S = 1, T = 0 D pair operators are involved in a
Hamiltonian, the total angular momentum J and spin S are not
good quantum numbers when j > 3/2. The only exception is
the j = 1/2 case, in which Df, = @(a% at, ;?) are just
the / =1 and T = O pairing operators. Anyway, similar to
the Ors7(8) case, the pairing operators P,, P,I, D,, and DL
shown in Eq. (2) and the number-conserving generators of
U(4) defined in Eq. (4) obey the same commutation relations
as those of generators of O(8), which is called Os7(8) in the
following.

The Ogs7(8) irrep is denoted as (2 — %, D1, P2, P3), where,
instead of €2; = 2/ + 1 in the original Org7(8) model, 2 =
j + 1/2 for a given j orbit, v is the Os7(8) seniority number
indicating that there are v nucleons free of the pairs defined
in Eq. (3), (p1, p2, p3) is an intrinsic Ogr(6) irrep, which
can also be expressed as the corresponding Usr(4) irrep
[w1, w;, w3, w4] satisfying Z?:l wi=vandw; = v > w3 >
w4 = 0 with

p1 = 3(01 + @ — w3 — w4),
P2 = 31 — w2 + w3 — 1), (3)

p3 = 3(@1 — w2 — w3 + wy).

For the Os7(8) seniority-zero and -one cases, due to the local
isomorphism of Ugr(4) with Opr(2) ® Os7(6), where N is
related to the total number of valence nucleons with N =
Q —71/2 for a given j orbit, the related branching rules of
Os7(8) D Usr(4) D On(2) ® SUs(2) ® SU7(2) can be ex-
pressed as those of Os7(8) D Oa(2) ® Os7(6) D ON(2) ®
SUs(2) ® SU7(2):

On(2) ® Osr(6)
UGN (N = @ —n/2) ® (2 —

( _%%%%) 0069?016[/\[:9_

12 — n/2| — 200, 0),

20 +4i+1)/21® (o + 1. 1. 1)
(2a+4z+3)/2]®(a+2,l,—§), ©)

DR (T =i—2q),
ea[(2a+1)/2] @E;ii)_l)/z] (3

=o—i+3)@(T=i—q-1), (10)
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where [y] denotes the integer part of y. The closed expressions of the branching rules shown in Egs. (9) and (10) are consistent
with the results presented in Refs. [19,27,28] and can be checked by using the dimension formulas of O(8) and O(6):

20+ 6)(Q+5)! [ Q+5)!
, 0 +2)0 +3) 111 111 (o +3)!
dimi (0,0, 0), 0(6)] = ~——~——= ,dun[(o S5 2) O(6)]_d1m[( — iy 2) 0(6)] 5 =1y (D

III. DIAGONALIZAING THE Os;(8) MODEL
HAMILTONIAN

The extended charge-independent Os7(8) model Hamilto-
nian is given by

12)

p
Hy=) e =Gi ) PiP,—Go ) DDy,
i=1 4 4

where p is the number of j orbits considered, 7 =
> a;m;rmr @j.mym, 18 the valence-nucleon number operator
in the j; orbit, €, is the valence-nucleon single-particle energy
of the ji orbit, P} = "7 | PI(i), D} = Y7 D} (i), and P, =
Y P P(i), D, =Y D,(i) are collective (S=0,T = 1)
and (S =1, T = 0) pairing operators, G; > 0 and Gy > 0
are isovector and isoscalar pairing interaction strength, re-
spectively. When Gy = 0, the Hamiltonian (12) is exactly the
mean-field plus the / =0, T = 1 pairing one [29-33]. The
related Ogs7(8) irrep for a given j orbit in this case can also
be decomposed according to the Os7(8) D O7(5) ® Os(3)
branching [28]. In this case, though the Hamiltonian of the
Os7(8) model is the same as that of the O(5) isovector pair-

J

|¢;n, SMs TMy) =
n;o;SiTié

where the eigenstate |{;n, SMs TMy) with the total num-
ber of valence nucleons n =Y "  n;, “pseudo”’-spin S and
isospin 7T is expended in terms of the tensor product basis of
the p copies of Osr(8) irreps ®_;(€2;, 0) in the Os7(8) D
Usr(4) D O0On(2)®@SUs(2) ® SUT(2) labeling scheme, & is
a set of the S and T multiplicity labels needed in the coupling,
C él; "T'I U'S ";U”g is the corresponding expansion coefficient, and
¢ labels the ¢th eigenstate with the same n, S, and T. Ma-
trix elements of each term involved in Eq. (12) under the
Os7(8) tensor product basis of ®l’.’:] (2;,0) in the Os7(8) D
Usr(4) D On(2) ® SUs(2) ® SU7(2) labeling scheme can
be evaluated by using the results shown in Refs. [19,22,35],
of which the explicit expressions are also provided in the
Appendix 1.

Using the analytical expressions of the reduced matrix el-
ements A7 in the U(4) D Onr(2) ® SU(2) ® SU(2) labeling
scheme shown in the Appendix, Sec. 1, where A®T = PO or
AT = DOT one can verify that eigenvalues of the isovector

(

ing model, the configuration subspaces of the two models
are different. For example, if the Hamitonian is diagonalized
in the Og7(8) seniority-zero tensor product subspace, which
includes both / =0, T =1 and J = odd, T = O pair states,
the eigenstates should be different from those of the same
Hamiltonian diagonalized in the seniority-zero O(5) subspace
with / = 0, T = 1 pair states only. Though the total angular
momentum quantum number J turns to be not a good quantum
number, the Hamiltonian (12) can be used to estimate J = 0,
T = 1landJ = odd, T = 0 pairing strengths, especially at the
ground state in even-even and odd-odd nuclei described by
the model with any number of j orbits considered, of which
the situation is quite similar to the deformed mean-field plus
K = 0 pairing model [34], where K is the quantum number of
the angular momentum projection in the intrinsic frame.

The Hamiltonian (12) is diagonalized in the subspace of
the tensor product ®ip=10§)r(8) basis when p j-orbits are
included, in which each copy of the Og7(8) irrep is adapted to
the Os7(8) D Usr(4) D On(2) ® SUs(2) ® SU7(2) chain.
Though the procedure for the Os7(8) seniority nonzero cases
is the same, in this work only the Os7(8) seniority-zero con-
figuration is considered. Eigenstates of Eq. (12) within the
Os7(8) seniority-zero subspace are denoted as

(21,0)5 ...; (2,,0)
”zT);’z% nyoy; ...; Np0Op; ESMSTMT>’ (13)
ST o Sp, T,

(

pairing Hamiltonian Hp = Y o, P, Py, those of the isoscalar
pairing one Hp = > 0 D;Dp, and those of the Ugr(4)-
limit one Hyg, @) = Zp (P;Pp + D;Dp) in the Os7(8) tensor
product basis adapted to the Usr(4) D On(2) ® SUs(2) ®
SU7(2) chain in the Og7(8) seniority-zero subspace are al-
ways integers or O in both the original Opsr(8) and the
extended Ogs7(8) models, of which S = § = O casesof n < 6
particles over three j-orbits with j; = 1/2, j, =3/2, and
Jj3 = 5/2, together with the corresponding ones in the Oy ¢7(8)
model for n < 6 particles over two [-orbits with /; = 0 and
I, = 5, are shown in Table I as examples. This feature is quite
similar to that in the O(5) isovector pairing model and can
be used to check the validity of the computation code. In
addition, the dimensions of the model subspaces are greatly
reduced in the original Opg7(8) model because the Ops7(8)
configuration is restricted within the L = 0 subspace only.
It can be observed from the eigenvalues of Hp, Hp, and
Hp + Hp for given n, T, and § = S = 0 that the subset of
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TABLE 1. Eigenvalues of Hp, Hp, and Hp + Hp in the Os7(8) model for n < 6 particles over three j-orbits, with j, = 1/2, j, = 3/2, and
Jj3 = 5/2, and those of the O;s7(8) model over /; = 0 and /, = 5 orbits within the seniority-zero subspace of each model with S = § = 0 and
isospin 7', where the dim[Os7(8)] and the dim[O_s7(8)] columns provide the corresponding dimensions of the subspaces in diagonalizing the
corresponding pairing Hamiltonian, the superscript r of the eigenvalues indicates that the corresponding eigenvalue occurs r times if r > 2,

and “—" denotes that the corresponding state does not exist in the Oy s7(8) model.
n, T dim[Os7(8)] Ep Epip dim[Ops7(8)] Ep Epip
2,1 3 0’ 6, 0? 2 0? 6,0
4,0 11 13, 72, 08 16, 10%, 4%, 0° 5 13, 7, 0° 16,10%,4,0
4,1 3 0’ 6%,0 1 0 6
4,2 5 0’ 10, 42, 0% 2 02 10,4
6,0 2 6,0 6,6 -
6,1 27 113, 6°, 0%° 20, 144, 12, 7 112, 6, 0* 20,14%,12,9,6,4
102,92, 8, 6

5%,43,3,2%,0°
6,2 6 0° 92,52,3,0 1 0 9
6,3 6 0° 12,6%,2%,0 2 02 12,6

the eigenvalues of one of the aforementioned Hamiltonians in
the Osr(8) model overlaps with the whole set of eigenvalues
of the corresponding one of the Op¢7(8) model, especially
the highest eigenvalue of one of the Hamiltonians of both the
models, which is most important for the ground-state energy
of the system, is exactly the same. The fact that there are more
eigenvalues of any one of the Hamiltonians in the Osr(8)
model is because the dimension of the Os7(8) tensor product
subspace is always greater than that of the corresponding
OLs7(8) one. Therefore, the Osr(8) pairing Hamiltonian in
the S = 0 subspace is indeed quite the same as that of the
Ors7(8) model in the S = 0 subspace. Anyway, the Os7(8)
model should provide results similar to those of the Ors7(8)
model, especially those within the seniority-zero subspace.

IV. MODEL APPLICATIONS TO EVEN-EVEN AND
ODD-ODD ds-SHELL NUCLEI

In the Os7(8) seniority-zero subspace as considered, the
Os7(8) model with Gy = 0 is equivalent to the mean-field
plus isovector pairing Hamiltonian diagonalized within the
O(5) seniority-zero and -nonzero configurations including
isoscalar np pairs, while the Ozs7(8) model is equivalent to
the aforementioned calculation restricted within the L = 0
subspace. When G # 0, the total angular momentum J is not
a good quantum number of the model. The standard angular
momentum projection [36] is required, with which one can
calculate the mean value of excitation energies of the model
for a given J. Because the eigenenergy of the model increases
with S, it can be expected that the lowest mean value of energy
with J = 0 is mainly contributed from the lowest eigenenergy
with § = 0 in the Os7(8) model, especially when Gy > 0 is
small.

As an example of the Os7(8) model application, some low-
lying J = 07 level energies of even-even and odd-odd A =
18-28 nuclei up to the half-filling in the ds shell above the
160 core is fit by the Hamiltonian (12) with G; = G(1 + x)/2
and Gy = G(1 — x)/2 in the Og7(8) seniority-zero and S = 0
subspace, where G is the overall pairing strength, x is within
the closed interval x € [—1, 1]. Comparison to the fitting re-

sults of the same Hamiltonian in the O;s7(8) form is also
made. To fit binding energies of these nuclei, in addition to the
mean-field plus isovector and isoscalar pairing, the Coulomb
energy and the symmetry energy with the isospin-dependent
part of the Wigner energy contribution to the binding are con-
sidered, leading to the expression of the model Hamiltonian
similar to that used in the isovector pairing model [37]:

H = —BE('°0) + €(@) i+ Hy + Ec(A, N, Z) — Ec(16,8,8)
+ Aym(A,N,Z)T- T, (14)

where Hj is the mean-field plus the isovector and isoscalar
pairing Hamiltonian of either the Ogs7(8) form given by
Eq. (12) or the Opsr(8) form shown in Refs. [19-22],
BE('%0) = 127.619 MeV is the binding energy of the '°0
core taken as the experimental value, €(n) is the average bind-
ing energy per valence nucleon in the ds shell, of which the
valence-nucleon number dependent form is determined from
a best fit to binding energies of all ds-shell nuclei considered,

Z(Z—-1) _ 0.76
Al/3 [Z(Z — 1)]\/3

E.(A,N,Z) = 0.699 > (MeV)

s5)
is the Coulomb energy [38], and

1 203.6

Asym(A,N,Z) = Z<134.4 — W) (MeV) + éa(A) (16)
is the parameter of the symmetry energy and the isospin-
dependent part of the Wigner energy contribution, of which
the first term is taken to be the empirical global symme-
try energy paramter provided in Ref. [38], while da(A) is
adjusted according to the experimental binding energy of the
nuclei with given mass number A needed to account for local
deviation from the first term when Eq. (14) is used. To get
a better fitting quality for low-lying J = 0" level energies,
the overall pairing strength is taken as G = 1 MeV in both
the models for all the nuclei fitted, which is very close to
the value used in Ref. [39] with G = 20/A MeV. The ex-
perimentally deduced single-particle energies above the '°0Q
core with €] = €5, = —3.27 MeV, ¢, = €0pspy = 0.94 MeV,
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TABLEII. The values of the parameters (in MeV) in Eq. (18) and
8(A) (in MeV) of Eq. (16) used in the overall fitting to the binding
energies and low-lying J = 0% level energies of even-even and odd-
odd A = 18-26 nuclei.

TABLE III. Binding energies BE, (in MeV) of 22 even-even and
odd-odd nuclei with valence nucleons confined to the ds shell up to
the half-filing fitted by the Os7(8) model Hamiltonian (14) and the
same Hamiltonian in the Op¢7(8) form with x = 1 and other parame-
ters shown in the text and Table II, where 7 is the number of valence

a b c nucleons in the corresponding nucleus, and the experimental binding
energy BE ., (in MeV) of these nuclei is taken from Ref. [41].
Osr(8) —2.3325 —0.2000 —0.0125
Orsr(8) —3.2325 —0.2000 —0.0125 BE
A: 18 20 22 24 26 28 *
5(A)  —0.025 —0.750 —0.940 —0500 1900 —0.005 Nucleus n  Isospin  Osr(8)  Osr(8)  BEey
8010 2 T=1 140.000 139.978 139.808
18 —
and €3 = €qq;,, = —4.14 MeV [37] are used for the mean-field ?8F9 2 r=1 137.313 137292 137.369
in the Os7(8) model. In the Ozg7(8) model, for a given /  10Nes 2 T=1 132035 132013 132143
orbit in the ds shell, by using the angular momentum cou-  5°On 4 T=2 151.43 151.550 151.371
pling and recoupling techniques and Wigner-Racah calculus, 2F, 4 T=1 154.395 154.402 154.403
reduced matrix elements of thg single-particle energy term in 20Neq 4 T=0 160.405 160.323 160.645
the Ops7(8) tensor product basis can finally be expressed as N 4 T—1 146.065 145.465 145.970
(@) ST ST, S'T')| Z €; Ajlla1S1Ti; 28, Ta, ST) Mg, 4 T=2 134.139 134.189 134.561
7 20, 6 T=3 161446 161799  162.037
5 , 2Ney, 6 T=1 178228 178204  177.770
(2j+ Dny »
=[] a0, 855,077,858 > g (7 diNay 6 T=1 174144  174.140  174.145
g=1 j ! 2Mg,, 6 T=1 168858  168.834  168.581
where the sum is over j =1 —1/2and j =+ 1/2if [ #0, 1Sl 6 r=3 133.328  133.681 133.276
and j = 1/2if [ = 0, n; is the total number of particles in the B Neyy 8 T=2 191.563 191.871 191.840
[ orbit, for which the Opg7(8) single-particle reduced matrix 2Nays 8 T =1 192.780 193.519 193.522
?le‘l‘;‘e?t [f;*]lted dtoththe (l)LtSTd (% Sefzigo)fity'soge (S;tgs Shoz’g; %Mg,, 8 T=0 198845  198.806 198257
in Reft. an e relate LST D) N ST o _
single-particle isoscalar factors listed in Table 3 of Ref. [27] ZA_I” 8 r=1 183.583 183.589 183.590
have been used. Detailed derivation of Eq. (17) is provided 145110 8 r=2 171.484 171.793 172.013
in the Appendix, Sec. 2. Equation (17) shows that the results  15Mgy, 10 T=1 216775 217.022  216.681
of Refs. [19,22] are consistent with those of the actual ds- BAl; 10 T =1 211.890 212.137 211.894
and fp-shell rpodel calculations if € = Zj Gj% is .taken 20Si1, 10 T =1 206.088 206.335 206.042
for each [ orbit. The best fit of both the models requires a 255, 12 T=0 247 665 248,064 247737

quadratic form of €(71) with
€M) =a+bh+ch’ (18)

The parameters in Eq. (18) adopted after the fitting are shown
in the first part of Table II. It can be seen that the first constant
a in the Os7(8) model is very close to the value of the average
binding energy per valence nucleon with €,,s = —2.301 MeV
used in the O(5) isovector pairing model [37], while a larger
value of |a| is needed in the O;g7(8) model due to the fact
that the model is restricted within the L = 0 subspace. The
contribution from the second term of Ref. (18) to the binding
is related to the two-body interaction, while the third term is
related to three-body interaction as further correction. The pa-
rameter §(A) for both the models used in the fitting is provided
in the second part of Table II.

The best fit of both the models requires x = 1, which in-
dicates that the isoscalar pairing interaction can be neglected
in the lower-energy part of the spectra of these ds-shell nuclei
as far as binding energies and a few J = 07 excited levels of
these nuclei are concerned. Though |x| = 1 can be taken for
the ground state of the N = Z nuclei, x = 41 must be taken
for excited J = 07 levels and the adjacent N # Z nuclei to
keep the fitting quality of both the binding energies and the

oge = 0.32 MeV 0.33 MeV

low-lying J = 0" level energies. Because the Os7(8) model
Hamiltonian (14) with x = 1 is equivalent to the mean-field
plus isovector J = 0 pairing Hamiltonian diagonalized within
the O(5) seniority-zero and -nonzero configurations including
isoscalar np pairs, the total angular momentum J is a good
quantum number in the eigenstate (13) when x = 1. To verify
that the eigenstates (13) with S = 0 in this case are those with
J = 0, numerical diagonalization of the Hamiltonian (14) in
the O(5) seniority-zero tensor-product subspace, of which the
matrix elements were calculated by using the results shown
in Ref. [40], is also performed, which shows that the first few
eigenenergies of the Hamiltonian (14) with & = 0 for a given
number of particles n and isospin T are exactly the corre-
sponding ones with J = 0 in the O(5) seniority-zero subspace.
Therefore,

g5, 8 =Ms =0TMy) =550, 0 =M; =0TMy) (19)

when x = 1. In fact, there are more eigenstates of Eq. (14) in
the O(8) seniority-zero and S = 0 subspace in comparison to
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FIG. 1. A few of the lowest J = 0™ level energies of the 22 even-even and odd-odd ds-shell nuclei fitted by both the Os7(8) (middle in

blue) and O, 57 (8) (right in red) models with x = 1, where T; on the
g denotes the ground state, and the experimental level energies (left
provided in Table IV.

those in the O(5) seniority-zero subspace. These eigenstates
are higher in energy and lie in the O(5) seniority-nonzero
subspace, of which the level energies are not considered in
comparison to the experimental data here.

The fitting results of the binding energies of even-even
and odd-odd A = 18-28 nuclei up to the half-filling in the
ds shell with the root-mean-square deviation of the Og7(8)
model for binding energies ogg = 0.32 MeV and that of the
O.s7(8) model ogg = 0.33 MeV are shown in Table III ex-
cept 22F and 2?Al, for which J = 0% level energies are not
available experimentally. Figure 1 shows the lowest experi-
mentally known J = 07 level energies of these even-even and
odd-odd ds-shell nuclei fitted by both the models with the
same model parameters as used in fitting the binding ener-
gies, of which the corresponding numerical data are provided

right of each level denotes the £th excited level with isospin 7', the label
in black) are taken from Ref. [41]. The corresponding numerical data are

in Table IV. The root-mean-square deviation of the fitting
to these excited J = 0" level energies is ojeve; = 1.30 MeV
in the Og7(8) model and Gieve; = 1.52 MeV in the Op57(8)
model, while the average deviation of the excited level en-
ergies ¢ = >, |Eqy, — Ef |/ 3, Ef,,, where the sum runs
over all the excited level energies of these nuclei fitted, ap-
pears to be ¢ = 16% in the Os7(8) model and ¢ =21%
in the Opsr(8) model. Therefore, the overall fitting quality
of both the models is quite the same. The fitting results of
both the models show that the isovector np pairing interac-
tion, at least, prevails over the isoscalar pairing interaction
in the ground state and the low-lying J = 0" excited states
of the ds-shell nuclei. In addition, the fitting quality of the
Ops7(8) model, which is restricted within the L = 0 subspace,
is comparable with that of the Os7(8) or the O(5) isovector
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TABLE IV. A few of the lowest J = 0" level energies (in MeV) of the 22 even-even and odd-odd ds-shell nuclei fitted by both the Osr(8)

@ 9

and O g7 (8) models with x = 1 as displayed in Fig. 1, where

denotes the corresponding level is not observed experimentally, and the model

parameters are the same as those used in fitting the binding energies shown in Table III (see text).

o) Exp Osr(8) Orsr(8) 18p Exp Osr(8) Orsr(8) "¥Ne Exp Os7(8) Orsr(8)
0t (T=1,) 0 0 0 0 (T=1,) 1.04 1.04 1.04 0t (Tr=1,) 0 0 0
0t (Tz=1») 3.63 5.71 4.78 0t (T:=1,) 4.75 6.75 5.81 0t (Tz=1») 3.58 5.71 4.78
*0 Exp  Osr(8)  Ousr(8) *F Exp  Osr(8)  Osr(8) *'Ne Exp  Osr(8)  Orsr(8)
0t (Tx=2,) 0 0 0 ot (T;=1,) 3.53 1.12 0.92 0" (T:=0,) 0 0 0
0t (Tz=2,) 4.46 5.07 5.66 0t (T;=2) 6.52 6.49 6.45 0t (Tz=0,) 6.73 5.89 4.68

0t (I:=1,) 13.64 11.22 10.93
0t (Tz=2)) 16.73 16.59 16.46
*Na Exp  Osr(8)  Opsr(8) Mg Exp  Osr(8)  Opsr(8)
0t (Tz=1,) 3.09 1.47 0.66 0t (Tx=2,) 0 0 0
0t (Tz=2)) 6.53 6.84 6.19 0t (Tz=2,) - 5.07 5.66

20 Exp  Osr(8)  Opsr(8) *Ne Exp  Osr(8)  Osr(8) *Na Exp  Osr(8)  Osr(8)
0t (T,=3,) 0 0 0 0t (Ti=1,) 0 0 0 0t (Ti=1,)  0.66 0.36 0.38
0t (Tz=3) 491 4.35 6.43 0t (Tz=1,) 6.24 5.03 4.64 0t (Tz=1») - 5.39 5.02
Mg Exp Osr(8)  Orsr(8) 2Si Exp  Osr(8)  Orsr(8) *Si Exp Os7(8)  Orsr(8)
0" (k=1 0 0 0 0" (;=3,) O 0 0 0" (=0, 0 0 0
0t (Tz=1,) 5.95 5.03 4.64 0t (Tz=0,) 498 4.25 6.57

0+ (T=1,) 1027 1027 12.26

*Ne Exp Os7(8) Orsr(8) *Na Exp Os7(8) Orsr(8) 24Mg Exp Os7(8) Orsr(8)
0t (T:=2,) 0 0 0 0t (Tz=1,) 3.68 0.37 0.95 0" (T:=0,) 0 0 0
ot (T:=2,) 4.77 4.70 4.69 ot (Te=2y) 5.97 6.28 5.97 ot (T:=0,) 6.43 5.15 5.72

0t (I:=1,) 13.04 10.48 11.02
0t (T;=2,) 1544 16.38 16.04

#Al Exp Os7(8) Orsr(8) #8i Exp. Os7(8) Opsr(8)
0t (Tz=1,) - 0.47 1.06 0t (Tx=2,) 0 0 0
0t (Tz=2)) 5.96 6.38 6.07
Mg Exp  Osr(8)  Owsr(8) Al Exp  Osr(8)  Ousr(8) Si Exp  Osr(8)  Opsr(8)
0t (Ti=1,) 0 0 0 0t (Ti=1,) 023 023 023 0 (Ti=l,) 0 0 0
0t (Tz=1,) 3.59 4.24 5.60 0t (TIz=1,) 3.75 4.47 5.83 0t (Tz=1,) 3.36 4.24 5.60
0t (Ti=13) 497 5.13 6.61 0t (Ti=13) 5.20 5.36 6.84 0t (Tr=13)  4.83 5.13 6.61
pairing model, which indicates the L = 0 truncation adopted total isovector pairing energy is obtained by
in the Opsr(8) model is indeed acceptable for the ds-shell

1 1 1 1
nuclei. nap = E) [ (ES) + ES)) + E)). 1)

Table V shows isovector nn, pp, and np pairing contribu-
tions at the ground state or the lowest eigenstate of the Osr(8)
model with x = 1 for these nuclei defined by

E)) =Gt =1,n,S=0TM7|PjR|¢ =1,n,8 =0TMy),
E)) =G =1,n8S=0TM7|P"\P_i|c =1,n,8 =0TMr),

E))=G(t=1,n,S=0TM7|P[Pi|¢ =1,n,8 =0TMy),
(20)
where |¢ = 1,n, 8 = 0 TMy) is just the lowest J = 07 state

of these nuclei, and the percentage of the isovector np pairing
energy contribution to the binding energy with respect to the

It can be observed that E'} in the N = Z + 2 nuclei is the
same as E{}) in the Z = N + 2 mirror nuclei, while E)) =
E [(,},) in the N =Z nuclei due to the charge-independent
isovector pairing adopted. However, Ef)) = E\)) = E{) in
even-even N = Z nuclei, while E{}) > E\)) = E{}) in odd-odd
N = Z nuclei, which leads to the isovector np pairing energy
contribution to the binding energy being the largest in odd-odd
N = Z nuclei. Besides 'F with n,, = 100% because there is
no nn Or pp pair, 1, in the other two odd-odd N = Z nuclei
22Na and %Al is always greater than 61%, while it is 33.33%
in even-even N = Z nuclei, 2’Ne, 2*Mg, and 2Si.

Moreover, similar to the analysis of the isovector pairing
[42], the number of the isoscalar np pairs may be estimated
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TABLE V. The isovector np, nn, and pp pairing contributions (in MeV) to the binding energy of the 22 even-even and odd-odd ds-shell
nuclei; the percentage of the isovector np pairing energy contribution with respect to the total isovector pairing energy at the ground state or
the lowest J = 07 state defined in Eq. (20); the expectation value of the isoscalar np pairing at the lowest J = 0 state defined in Eq. (22); and

the ratio related to the number of isoscalar np pairs to that of the isovector np pairs in the lowest J = 0% state defined in Eq. (23).

Nucleus n Isospin E ED ES) Nup ED[0s7(8)] E) [OLsr(8)] Xnp
é8010 2 T =1 0 5.036 0 0% 0 0 -
51,81:9 2 T =1 5.036 0 0 100% 0 0 0
$Neg 2 T=1 0 0 5.036 0% 0 0 -
%0012 4 T=2 0 7.945 0 0% 0 0

SOF“ 4 T=1 2.568 2.568 0 50% 0 0 0
%8N610 4 T=0 3.707 3.707 3.707 33.33% 0.957 0.801 0.51
%?Nag 4 T=1 2.568 0 2.568 50% 0 0 0
Mg, 4 T=2 0 0 7.945 0% 0 0 -
?32014 6 T=3 0 8.666 0 0% 0 0 -
%Ne]z 6 T=1 2.226 7.356 4.444 15.87% 1.582 1.267 0.84
2Nay, 6 T=1 9.573 2.226 2.226 68.25% 1.582 1.267 0.41
2Mg,, 6 T=1 2.226 4.444 7.356 15.87% 1.582 1.267 0.84
2Sig 6 T=3 0 0 8.666 0% 0 0 -
%Nem 8 T=2 1.600 8.393 4.756 10.85% 2.187 1.713 1.17
ﬁNalg 8 T=1 5.061 4.167 2.681 42.49% 1.978 1.364 0.63
BMg;, 8 T=0 6.000 6.000 6.000 33.33% 3.148 2.448 0.72
%‘;Alll 8 T=1 5.061 2.681 4.167 42.49% 1.978 1.364 0.63
XS, 8 T=2 1.600 4756 8.393 10.85% 2.187 1713 1.17
%Mg,, 10 T=1 3.615 7917 7.186 19.31% 4359 3.353 1.10
%gAlB 10 T=1 11.489 3.615 3.615 61.38% 4.359 3.353 0.62
2Sip, 10 T=1 3.615 7.186 7.917 19.31% 4.359 3.353 1.10
BSiy 12 T=0 6.847 6.847 6.847 33.33% 6.506 4.963 0.97

by the expectation value of D' - D. The expectation values of
the isoscalar np pairing at the lowest J = 07 state defined by

EN[0sr(8)] = (¢ = 1,n, S = 0TMy|D'

DIt =1,n,8 =0TMy),
ED[OLsr(8)] = (¢ =1,n,8S =0TMy|D

DIt =1,n,S=0TMr), (22)

for the two models, together with the ratio

Ko = (GED[10s7(8))/ED) ", 23)

np

are also shown in Table V, where x,, roughly estimates the
relative ratio of the number of isoscalar np pairs to that
of the isovector np pairs in the lowest J = 0% state. It can
be seen that the isoscalar pair content becomes noticeable
in the ground state of >°Ne. With further increasing of the
number of valence nucleons up to the half-filling, the ratio
Xnp increases not only in N = Z nuclei but also in adjacent
N = Z + 2 nuclei, especially in those even-even nuclei, while
Xnpinodd-odd N = Z nuclei is comparatively small. Thus, we
conclude that the isoscalar pairing correlation is still important
at low-lying states of N = Z and N = Z =+ 2 nuclei described
by both the O(8) models, especially in those even-even nuclei

with more valence nucleons up to the half-filling, even though
the isoscalar pairing interaction is negligible.

V. SUMMARY

In this work, similar to the original Ozs7(8) model in
the LST -coupling scheme, an extended Ogs7(8) model with
multi-j orbits is constructed based on the angular momentum
decomposition with “pseudo”-spin S for valence nucleons
in a given single-j orbit. It is shown that the S =0 and
T =1 pairs are exactly the /=0 and 7 =1 pairs in a
given j orbit, while isoscalar S = 1 pairs are linear combi-
nations of J = odd pairs, with which the angular momentum
of the system is not a conserved quantity. Nevertheless, the
new pairing Hamiltonian can be used to estimate 7 =1
and T = 0 pairing interaction contributions, especially at the
ground state in even-even and odd-odd nuclei described by
the model with any number of j orbits, of which the situa-
tion is quite similar to the deformed mean-field plus pairing
model [34]. The usefulness of the Og7(8) model lies in the
fact that the shell-model mean-field plus isovector pairing
Hamiltonian diagonalized in the Os7(8) seniority-zero sub-
space is quite similar to the O(5) isovector pairing model
diagonalized within the O(5) seniority-zero and -nonzero
configurations including isoscalar np pairs, from which the
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isoscalar pair content of any state in the Os7(8) model can
easily be estimated. Moreover, the matrix elements of the
Os7(8) Hamiltonian have closed expressions in the Os7(8) D
Usr(4) D On(2) ® SUs(2) ® SU7(2) basis in the O(8)
seniority-zero subspace, while more algebraic work is needed
for the O(5) isovector pairing model [40], especially when the
O(5) senority-nonzero configurations are included.

For multi-;j orbits, it is observed that a subset of the
eigenvalues of the pure pairing Hamiltonian in any one of
the O7(5), Usr(4), and Og(5) limiting cases overlaps with
the whole set of eigenvalues of the corresponding Or(5),
Ugr(4), and Og(5) limiting cases [28] of the Ops7(8) model,
especially when the lowest eigenvalue of both the models in
each limiting case is exactly the same. The fact that there are
more eigenvalues of each limiting case in the Os7(8) model is
because the dimension of the Os7(8) tensor product subspace
is always greater than that of the Opg7(8) model. Therefore,
the Os7(8) pairing Hamiltonian in the & =0 subspace is
indeed quite the same as that of the Oy s7(8) model within the
S = 0 subspace.

As an example of the Ogr(8) model application, some
low-lying J = 0% level energies of even-even and odd-odd
A = 18-28 nuclei up to the half-filling in the ds shell above
the '°0 core are fit by the model within the Os7(8) seniority-
zero and § = 0 subspace and compared with the fitting results
of the same Hamiltonian in the O;g7(8) form. It has been
verified from the fitting of both the models that the isoscalar
pairing interaction can be neglected in the ground state and
the lower-energy part of the spectra of these ds-shell nuclei
as far as binding energies and a few J = 07 excited levels of
these nuclei are concerned. Thus, the Os7(8) model within the
Os7(8) seniority-zero subspace in this case is quite the same
as the mean-field plus isovector pairing model diagonalized
within the O(5) seniority-zero and -nonzero configurations
including isoscalar np pairs, while the O g7(8) model in this
case is equivalent to the mean-field plus isovector pairing
model within the same configurations restricted to the L = 0
subspace. With the mean-field plus isovector pairing interac-
tion only, isovector nn, pp, and np pairing contributions at the
ground state or the lowest J = 0" state of these nuclei in the
Os7(8) model are estimated. It is shown that the isovector np
pairing contribution to the binding energy in the odd-odd N =
Z nuclei is systematically larger than that in the even-even

J

nuclei, which leads to the conclusion that the isovector np
pairing is more favored in odd-odd N = Z nuclei. Most im-
portantly, the number of the isoscalar np pairs at the lowest
J = 07 state of these nuclei is estimated. It is clearly shown
that the isoscalar pair content in the lowest J = 0T state of
the N =Z and N = Z &£ 2 nuclei increases with increasing
of the valence nucleons, especially in those even-even nuclei.
It is concluded that the isoscalar pairing correlation is still
important at low-lying states of N = Z and N = Z £ 2 nuclei,
especially in those even-even nuclei with more valence nucle-
ons up to the half-filling, even though the isoscalar pairing
interaction is negligible.

Because the isovector and isoscalar np pair contents are
estimated by the expectation values of the corresponding two-
body pairing term, the values may be quite different from
the actual numbers of isovector and isoscalar np pairs in the
ground state of the system. To resolve this issue, one may
evaluate these values exactly with the help of the Bargmann
variables in representing these pair operators as shown in
Ref. [20], for which the analysis and further applications of
this model with more j orbits or in other major shells will be
a part of our future work.
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APPENDIX: SOME RELEVANT MATRIX ELEMENTS

1. The reduced matrix elements of the pairing operators

Matrix elements of each term involved in the Hamiltonian
(12) under the Os7(8) tensor product basis of ®f:l(52i, 0) in
the Os7(8) D Usr(4) D On(2) ® SUs(2) ® SU7(2) label-
ing scheme can be evaluated by using the results shown in
Refs. [19,22,35]. Specifically, for the p = 3 case, we have

P
(@ ST ST ST 038313 ST Zéj; AjllarSiTi; 28T, S12Tin; 383133 ST)

i=1

3

= 858811 l_[ 8a 85,5, 81;1, 851, 51,013,732 E €ilis

q=1

where, and in the following, o; = {n;, o;},

p
(AL)

i=1

(@S| T/; 58Ty, Sy T b ST S'T'|PYT - POy Si Ty oS Ta, SiaThio; a3S3Ts; ST)

3 3
= 85587 [ | 8ar,e, [ | 8575,0m1,88,80.8m,10 ) (@ STHIP Il STV o1 STHIPY o) ST,
gq=1

i
o'T;

q'F#i

(A2)
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fori=1, 2, 3,

(@ ST/ 585 Ty, ST ST S'T |PDT - PPy 81 T15 0082 s, SiaTin; a3 S3T5; ST)

3
_ Ti+To+Tn 12 T 1
53’S5TT3a;a;3TT31_!5385512517 1,12 (= DI [QT] + 12T + 1] {T, T le}
q_
x () SI TPV |y 1 Th ) (2 S T | PP |h S, T ), (A3)
() S{T{; S, T, Sile’z;aSS’Tg’;S/T’IIPW PV 81T 008, S1oTha; 3 S3Ts; ST)
T+T{+T] i)l T 1
=33/33T/T3a;a;37731_[53855,2512 o (=DITETRICT + DRT + DI T T,
q=1
x (a1 ST [PV 1o S T Wb S T3 | 1PD |0 Sa T, (A4)

(OtiSiT{;Ot;SéTzl, Sile/z;OlgSQTg/;SlTw|P(1)T ~P(3)||01181T1;01282T2, 812T12;(¥3S3T3;ST>
3
2
= 855077800 01ym | [ 8sys,05,8,(— DT [T, + DT + 1] {
g=1

T, T, 1 ;
TR T }<a383T3||P“”||a;S3T;>
T, Tn

X (=D ER QT + 12T + 1)1‘/2{T I
1 1

1 / /
7 }<a181T1 1P| SiTh), (AS)

(@ SIT; STy, Sy T STy S'TIPPT - POy 8 Ty 080 T, S12Tio; 03 S3T3; ST)
3

= 855818010 Ory7; | | 85,5,881,8, (= DT [T, + DT + 1)]”2{
g=1

T, T, 1 5
T T [(@SBIPeST)
T, To

_ 1\ T+ T+ / 1/2
x(=1) [QT, + DH(2T2 + 1] {Tz Ty

1 l ’ T
T }<a282T2||P<2> |82 T3). (A6)

(@S| T/; 58Ty, Siy Ty b ST ST |PPT - POy S\ T1; 0282 T, SiaTia; a3 S3Ts; ST)
3

ot To 1],
= 85501 T8asand1y1s | | 85,5,05,50 (—DE AT (2T + DQTY + 1)) Z{T T,‘2 - }(a383T3 1P| |3 S5 T3)
q=1
! ’ 7 T T/ 1 / 4
x(=D)HTRAER T + DRT, + 1)]1/2{# g }<a151T1||P“”||a181T1>, (A7)

(S| T/;bS5Ty, Sy Ty b ST S'T|PPT - PPy S\ Ti; 0282 T, SiaTia; a3 S3Ts; ST)

3
T Tio 1], /c v
= 85581 78w w0171, | | 85y5,05,,8, (— DT (2T + DTS + 1)]”2{T T,” T,}<a383T3||P<3>*||a383T3>
q=1
7 T, T, 1 -
x (=) QT 4+ 12T, + 1)1“2{@? L2y }<a282T2||P<2”||a282T2’>, (A8)

and

(@S T;585 Ty, Sy T 5SS S'T 1DV - DOy 81115008, s, S12Tin; a3 S3T3; ST)

3 3
= 85’88T’T 1_[ 8%//%7, 1_[ 85,;5{487-(;7;,85;25]257']’27‘]2 Z ( /S T||D(1)T||a//8// ><a S T||D(Z)T|| //8// ) (A9)
q'#i q=1 al S/

fori=1, 2, 3,

<C¥181T{;C¥;S§Tz/, SizT{z;OlgSgT;;SlTw|D(1)T -D(2)||05181T1;05282T2, 812T12;O[3S3T3;8T)

3
_ S48+ 12|81 S 1
- SS’SST'TSO‘QMSSQ& 1_[18T4Tq83525125T1’2T12(_1) wrere [(281 D28, + D] { 2 S; 812}
q=
x () S T IDV |1 S1 T1) (02 S T [ | DD |h Sy ), (A10)
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(S| T/; 58Ty, Sy T b ST S'T|DPT - Doy ST 2 Sa o, S1aTho; 43 S5 T35 ST)

3
/LG , 1/2 S S 1
:85’58T'T80‘§w383£53 1_[18T4Tq53123128TJ’2T12(_1)82+SI+S]2[(281+1)(282+1)] {S; Si 812}
q:
x (1S T ||DVT o S{ Ty ) (@b Sy T || D |0n S, T), (A1)
(S| T/; 58Ty, Sy Ty b ST S'T'IDMVT - Doy 81 Ty 2 Sa o, S1aTha; 43 S5 T35 ST)
s Sn S
/ 1/2 /o
:sssamsagaza%]"[6T,;T,,6T;2Tu(—1>33+S'2+S[(2812+1)<2S3+1>] { Sf s’ s }<a3S3T3||D<3>T||a383T3>
q:
D (O 1)<2$12+1)]”2{ s S‘?‘z Sl}<aiSiT1||D“”||alslTl>, (A12)
2
(@ SIT; b S Ty, ST ST S'TIDPT - Doy S1 T3 0082 o, SioThas a3 S3Ts; ST)
2 Sn S
5 / 1/2 I
=8S/58T/Taa;mas;sl1"[1am,,anzm(—1>33+31-+3[(2812+1)<283+1)]/ { Sf s’ s }<a383T3||D<3”||a383T3>
—
x(=DSRFSTEH28] + 1)(2812+1>]”2{ 5 S‘?” 81}<a§8§T2||D<2>*||a282T2>, (A13)
1

(@ ST STy, ST ST S'TIDPT - DV S1 T3 008, o, SioThas 383 T3 ST)

3
srs , So 1, /o
= 85587 78uwadsys, | | 811,011, (DTS (281 + DS + 1)1”2{ 5 S,” S,}<a383T3||D<3”||a353T3>
1St S S, 1 .
x(=D)SHSRFSHIQS, + 128, + 1)1‘/2{ s s s }(a,smHD“” llo}S{T1), (Al4)

(@S T} a5 S5Ty, S1o T3 a5 ST S'T'|IDPT - D)0y 1T 28 Ta, Si2Thas 03 S3Ts; ST)

3
Lo L S 1 -
= 855817 8wy 85y, | | 811,81,m, (=TT, + 1)(28) + 1)]”2{ 5 5/” 3,}<agsgn||D<3> o3 S3T3)

q=1

x(=1)FF S8, + 128, + 1)]“2{‘9‘2 Siz 1}<a282Tz||D<2)*||a;S§Tz>. (A15)

S, S S

For any j orbit, within the Os7(8) seniority-zero subspace, the “pseudo”-spin and isospin reduced matrix elements of A7,
where PT = A%" and D' = AT, can be expressed as [19,20]

(2, 0)no'ST||ASTT||(2, 0o S'T')

1 \/0’(9—0’+N+2)(Q+0’—N+4) 5 0 +HQ+0 +N+6)(Q2—0 —N)
- n’n722 o'o+1 p + ) o'o—1 py + )
[oo] [111|[c’c"]
<S’T’ SoTo | ST > (A16)
where V' = Q — 4, and (ng}] ng] |[§Ta ]) is the SU(4) D SUs(2) ® SU7(2) isoscalar factors [35] with
[oo] [11] [cr’a 1)(0—5+T+2)(G—S—T+1)8 S S S d
S/T/ SOE) ST 2(0_ + 1)(0_ +2)(25+ 1) S'S+10T7'TO0S5,10T,000"6+1

85581 7+185,00751805
20 + Do +2)2T + 1) S'SOT'T+1085,007100" 0 +1

T(o+8+T+3)0c—-S+T+2)

* 20 + Do + 22T + 1)

35807 7-185,00110675+1

\/( 1) o +S—T 4200 -S—T+1)
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\/5(0+S+T+3)(J+S—T+2)

85:5-187785,187,0800
20 + Do +2)2S + 1) §'8—10T'T05,10T,0 +1

(5+1)(0+S—T+2)(<T+S+T+3)(3 S 1508
20 +2)0 13)2S + 1) S'S+10T'T08,10Ty000"0 —1

TH+1)o—S+T+2)c+S+T+3)
- 85887 7+185,0075100570 1

2(0 +2)(o +3)2T + 1)

\/T(o—S—T+1)(o+S—T+2)

8 ’ 8 o 8 8 80_/0_7
2(0 4+ 2)(o +3)2T + 1) 58877 -185,081185'0 -1

S0 —-S—T+1)o—-8S+T+2)
- \/ 355-187'785,181,00670—1- (A17)

20 +2)(c +3)2S+ 1)
By using Eq. (A16), the quantities appearing in Eqgs. (A2) and (A9) can be expressed explicitly as
D (Quno! TPV o] ST ) (Qumioi ST PV || 0] ST

o,

5 s 0 +Si+Ti+2)0i+S—Ti+ D)o —Si+Ti+ Do =S —T)
- oi0i=2 1024 (o; + 2)(0; + 1)2 o

X V(i — 20, + 4)(n; + 207 + 8)(4Q; — n; + 20; + 8)(4Q; — n; — 207+ 4)

L8 s 0i+Si+Ti+4)(0;+Si —T;+3) o, —Si+ T, +3)0; — S —T; + 2)
oioit2 1024 (07 + 2)(0; + 3)2 (0; + 4)

X \/(n; = 201)(n; + 20; + 12)(42 — n; + 20, + 12)(4Q2; — n; — 20) + 84,000/ 6,

(0; +3)(20; +n; + 8)(4Q; — n; — 20; +4)(0? + 01 — S? = S+ T2+ Tp) + (01 + D)(n; — 20) (4 + 20; — n; + 12) (067 + 70, — S} = S; + T + T; + 12)
X
2(a; + 1)(0; 4+ 2)(0; X
32(0i + D)(oi + 2)(0; + 3) (A18)

> (Qunjo STIDV||Qun] o] S T (Qunioi ST DT || Qin] 0] S| T;)

i
n G
njol'S;

s s 0 +Si+Ti+2)oi+S —Ti+ )0 = S+ Ti + 1)(0: = §; — Th)
nin; 0o/-0i=2 1024 (0; + 2)(0; + 1)? o;

x /(ni — 207 + 4)(n; + 207 + 8)(4Q; — n; + 20; + 8)(4Q; — m; — 20, + 4)

s s (i +Si+Ti+4)(0i+S —T+3)0oi =S +Ti +3)0: =S — T +2)
niCelore? 1024 (0; + 2)(0; + 3)2 (0; + 4)

X \/(n,~ —20y)(n; + 207 + 12)(42; — n; + 20; + 12)(4€2; — n; — 207) + 8,000/ 0

(07 +3)(20; + 1+ 8)(4Q; —n; — 20 +4) (067 + 0+ S? + S; — T2 — T;) + (0; + D)(n; — 20,)(4Q +20; — n; + 12)(0? + To1 + S? + S; — T — T; + 12)
* 32(01 + (o1 + 2)(0i + 3) '
(A19)
Though the expressions of the diagonal parts of the reduced matrix elements are quite different, it can be checked that Egs. (A18)

and (A19) are consistent with the results shown in Ref. [22], in which some typos of Ref. [19] were corrected. The above results
are also valid in the O, ¢7(8) model with Q = 2/ + 1 for a given [ orbit.

2. Matrix elements of the single-particle energy term in the O s7(8) model
In the O 57 (8) model, the single-particle energy term can be expressed as
4 - " _ 00 .
DD D G, = D Y €/ @A D+ a0 % o)y = D U, (A20)
i jimmy i Ji i

where s =t = 1/2 are the spin and the isospin of the valence nucleons, respectively, and i runs over all / orbits considered, which
obviously is a total angular momentum and isospin scalar in the j-coupling scheme. Because the orbital angular momentum is
always zero, the basis vector |1 S177;a2S,72; ST) in the Ozs7(8) tensor product subspace is equivalent to the corresponding one
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in the j-coupling scheme,
loS1T15028:T2; ST) =

where o; =
U (i), can be expressed as

la1(0S1)J1 = S1, T1;22(0S2)> = Sy, T3 =S, T),

(A21)

{n;, 0;}. Therefore, the reduced matrix elements of the angular momentum and the isospin scalar in the ith / orbit,

2 2

() SI T30Sy T35 S T U™ ()l o i 11 282 To; ST) = sy [ [ 81,185, | [ 8, (i OSHSTHU P @)1 (0S)S,T). (A22)

q=1 q'F#i

The reduced matrix element (o (0S;)S;T;||U 90(7)||et;(0S;)S;T;) can further be expressed as

(@/(0S)S:THIU™ (i)] et (0S;)S; T;)

= ZGJ,(% N3

20/ +1 1°
s { : l’} (@0S{T a1 T ) (08 Tl e ST

S// J// S
ST
2 i 1 , ¥ /
=> ¢, S - > (ef0SiTlla] e 1S] T ) (08T ay |l 1S] T). (A23)
P Q2L+ 1D@2s+1) o5 ;s ;s
where the sum rule of the 6j-symbol for J!” is used. Because al o 18 the 0(8) (12) = (5, 7 5, 5) tensor operator, therefore o’

must belong to the O(8) seniority-one irrep (£2; —

)—(Q_E 2v2a

) Thus, by using the Racah factorization lemma, the

reduced matrix element (c;08;7;| |a}ist [loe/1;S/T;") can further be expressed as

(;08; T||am||a”l STy = 8n~nl_1<9 |||al III<Q - 2), l; ><

(£ —1/2)

(1/2)

Q; [o/] [1]
n; [oioi ] \S/T" st

[oi0i]
ST |

where [0]'] stands for the possible SU(4) irrep involved, and the O(8) single-particle reduced matrix element is given by [27]

(Q|||aj_|||(sz — ). L) = —/4QL + D). (A25)

After substituting Eq. (A24) into Eq. (A23) and summing over #n;, S/, and 7,”, Eq. (A23) can be simplified as

2
00 —-1/2) 1/2)]

(;(OSHS U™ (0)]|ti(0S:)S; Ti) = 87,8, 26112(2]’ +1) [Z:< (6] 1M|n; o] * (A26)

Finally, using the single-particle isoscalar factors of O(8) D U(4) shown in Table 3 of Ref. [27], one obtains

2ji + Dn;

(@OSYSTHU Dl OS)ST) = B, S DM (A27)

2Q2;

Ji

where n; = ny, is the number of valence nucleons in the /; orbit. By substituting Eq. (A27) into Eq. (A22), the final result is used
in Sec. IV for the single-particle energy term in the Oy s7(8) model.
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