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Sound power of vibrating cylinders using the radiation
resistance matrix and a laser vibrometer
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ABSTRACT:

Research has shown that using acoustic radiation modes combined with surface velocity measurements provide an
accurate method of measuring the radiated sound power from vibrating plates. This paper investigates the extension
of this method to acoustically radiating cylindrical structures. The mathematical formulations of the radiation
resistance matrix and the accompanying acoustic radiation modes of a baffled cylinder are developed.
Computational sound power calculations using the vibration-based radiation mode (VBRM) method and the
boundary element method are then compared and shown to have good agreement. Experimental surface velocity
measurements of a cylinder are taken using a scanning laser Doppler vibrometer and the VBRM method is used to

calculate sound power. The results are compared to sound power measurements taken using ISO 3741.
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I. INTRODUCTION

Many methods exist for measuring sound power. The
International Organization for Standardization (ISO) has
published ten standards and two technical specifications
detailing how to obtain sound power measurements. None
of the standardized methods are based on vibration measure-
ments and the two technical specifications give only engi-
neering or survey grade results; there is not a precision
grade vibration-based method. In the early 1990s, a theory
was developed for a method which could potentially fill this
void; this method calculates sound power based on a combi-
nation of measured surface velocities and acoustic radiation
modes."

Acoustic radiation modes provide a convenient basis
with which to describe sound radiation from a structure.
Structural vibration modes describe the displacement of a
structure and satisfy the structural equations of motion and
boundary conditions. Conversely, acoustic radiation modes
describe the acoustic field; these modes are orthogonal with
respect to sound radiation and allow the surrounding acous-
tical field to be calculated based on the vibrations of a struc-
ture. Acoustic radiation modes can be derived from the
radiation resistance matrix. The radiation resistance matrix
R relates the normal surface velocities from discrete ele-
ments of the structure to the radiated sound power IT of the
structure through the equation

M(w) = u™(0)R(0)u(w), )]
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where u is a column vector containing the normal velocity
at each discrete element, ()H signifies the Hermitian trans-
pose, and  is the frequency of interest.” The dependence of
various quantities on w is implied in expressions throughout
the remainder of this paper and the () will be omitted. The
eigenvectors of the radiation resistance matrix are the acous-
tic radiation modes, and the corresponding eigenvalues are
proportional to the radiation efficiencies of the eigenvectors.
The sound power can be written in terms of the acoustic
radiation modes ¢, and eigenvalues 4, as

N
n="> ilyf, )

r=1

where y, = ¢, - u and N is the number of elementary radia-
tors over the surface of the structure.”

Though the theory behind this approach to calculating
sound power has been present for decades, experimental vali-
dations did not come until more recently. In 2002, Bai et al.
published the first experimental sound power calculations
based on acoustic radiation modes.® Their work showed sound
power calculations on baffled flat plates using the most effi-
ciently radiating modes at low frequencies and a modified
approach at higher frequencies. The paper showed good agree-
ment between Bai’s method and standardized sound power
measurements at low frequencies, but the results diverged at
higher frequencies. More recent research® has shown that
acoustic radiation modes can be used to calculate the individ-
ual contributions to sound power from multiple uncorrelated
sources in a system without having to isolate the sources indi-
vidually. That research used the vibration-based radiation
mode (VBRM) method, which will be used throughout this
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paper. The VBRM method consists of using complex-valued
surface velocity measurements with the radiation resistance
matrix to compute the sound power.

In addition to sound power calculations, radiation
modes have found use in the field of active structural acous-
tic control (ASAC).l’5 6 They have been used for power cal-
culations in computational experiments since they were first
introduced. For example, numerical simulations on effec-
tiveness of ASAC control parameters has relied on the radia-
tion modes for evaluation of sound power.” Radiation
modes have also been used as a guide for structural design,
where certain efficient radiation vibration patterns are sup-
pressed through structural modifications.® Recent work
shows that radiation modes may be used as a basis set for
acoustical holography source reconstruction.’

Many early papers that develop acoustic radiation modes
do so for cylinders. The first three papers that introduced radia-
tion modes included a finite cylinder with hemispherical end-
caps'® and two finite cylinders with flat endcaps.'"'? In each
of these cases, only the axisymmetric modes were calculated.
These modes were found by an unspecified numerical method,
boundary integral methods, and the boundary element method
(BEM), respectively. In addition, at least one other paper has
treated the hemispherically capped finite cylinder."® Through
all these publications there has never been a full development
of the radiation modes for a cylinder such that the sound power
could be calculated. Boundary element methods or boundary
integral equations can be used to calculate the radiation resis-
tance matrix,9 but an analytical formulation is desirable, as it
has the potential to reduce complexity and computational load.
More recently, Aslani et al.'* published a formulation for radi-
ation modes of a finite cylinder sandwiched between two infi-
nite pressure release planes using eigenfunction expansion.
That formulation limited the radiation to a space that extended
only from 0 to L in the z dimension. This paper will follow and
expand upon the formulation of Aslani et al. to develop a full
analytical expression for the radiation resistance matrix of
vibrating cylinders with infinite cylindrical baffles radiating
into a full three-dimensional space. This cylindrical radiation
resistance matrix will be used to calculate sound power of
cylindrical objects in both computational and experimental set-
tings. While there are cylindrical structures in engineering
applications, we recognize that most structures to which it
would be desirable to apply this method will not be cylindrical,
and even fewer will be infinitely baffled. The results presented
herein show that it may not be necessary to have such exact
matching between the experimental acoustic environment and
the environment used for deriving the radiation resistance
matrix. The formulations derived in this paper are a step
toward a method of treating more general curved structures.

Il. CYLINDER RADIATION MODES

A. Eigenfunction formulation of the radiation
resistance matrix

The radiation resistance matrix is derived from the pres-
sure that a small vibrating element of a structure generates
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across the structure. This small vibrating element can be
treated mathematically as a point source, or as a small rect-
angular element with constant velocity. We choose to use
the latter, as it more closely matches the discretization that
will be used later in the paper. It is worth noting that a delta
function could be used in the following derivations to repre-
sent the velocity with an identical derivation result. As
shown in Fig. 1, assume that a small portion of a hard, infi-
nite cylinder is vibrating with velocity

u(0,2) = 4 1 01 <0<0y,z1<z<12 3)
’ 0, otherwise

for some 0y, 0, and zy, z; such that aA0 = a(0, — 0))
& 2n/k and Az = (z; — z;) < 2n/k, where k is the acoustic
wavenumber and «a is the radius of the cylinder. This vibra-
tion creates a pressure field that can be written in terms of
cylindrical eigenfunctions as

(o) o0
p(r,0,z) = Z J dk.(A,;, cos m0 + B,, sinm0)
m=00
x (E(k.)cos k.z + F(k.)sin k.2)H'? (k,r),
(€]
where k, = \/k?> — k2, k. is the axial acoustic wavenumber,

m is an integer, H,("Z) () is the m th-order Hankel function of
the second kind, and A,,, B, E(k;), and F(k.) are coeffi-
cients yet to be determined. For this expression, & time
dependence has been assumed, where j= V/—1. The
Hankel function of the first kind is omitted as the absence
of sources outside r = a precludes incoming cylindrical
waves. The coefficients are determined by the surface con-
dition at = a of

dp

E r: = _JpOwu(ea 2)7 (5)

a

where p, is the density of air and w is the angular frequency.
To apply this boundary condition, the velocity given in

Cylinder

FIG. 1. A diagram of the infinitely baffled cylinder geometry. A discretiza-
tion of the non-rigid portion of the cylinder is shown, with the element
described in Eq. (3) highlighted in black.
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Eq. (3) can also be represented in terms of the 0 and z cylin-
drical eigenfunctions as

u(0,2) = J;C dk. (e(k-)cos k.= + F(k.)sin k.)

X

N

(am cos mO + b, sinm0).

m

Il
o

Equation (6a) can be set equal to Eq. (3) to find the coeffi-
cients a,, by, d(k.), and e(k,). Because Eq. (6a) is a separa-
ble expression in 0 and z, their dependence may be treated
separately,

PowAOAz (> dk,
qu = —jTJO k—rCOS [kz(Zq — Zp)]

H?2

m (k"a)
2 (k,a)

m

o0
x>
m=0 &n

cos [m(0, — 0,,)]. (10
(6a)  The radiation resistance matrix is concerned only with the
real part of this expression. Thus, since H®?(k.a)/
k,.H,(nz)/(k,.a) is purely real for imaginary k., the integration
need only be carried out from O to k. The elements of the
radiation resistance matrix are then found as

S
Rpq = ?ERC{ZM}

o0 , 0,<0<0

Z(am cos ml + b, sinmf) = o b= - : _ S;wpy * dk cos [k(z. — =

= 0, otherwise, T an? o ks [ =(% 17)]

(6b) > 1 H'? (k.q)

N e, X ,;)alm{H,(nz)/(kra) cos [m(0, — 0,)],
J (e(k-)cos kuz -+ £ (k.)sin koz)dk. — =i

0 0, otherwise,

(6¢)

where the constant 1, has been arbitrarily assigned to the 0-
dependent expression. The coefficients may now be solved
for using orthogonality and sine and cosine transforms,

0>
up M()AQ
ay = J cos mOdo ~ cos mb,
EmT Jg, EmT
0,
0 . upA0 .
by, = —J sin mOd0 ~ sin m0,
T 0,

2 Az

J cos k,zdz ~ — cos k. z,
. i
1

. Az .
sin k,zdz ~ —sin k. zy,
v

)

AO = 92 — Ql,and

Em = { ®)

The approximate equalities hold because Az and aAf are
small compared to the acoustic wavelength. Substituting Eq.
(7) into Eq. (6a), applying the boundary conditions in Eq. (5),
and simplifying results in the final pressure expression

where Z():(22+Zl)/2, AZ:Z2_Z], 002(02+01)/2,

L,
2,

m=#£0
m = 0.

) _ _uopOwA()Asz% B
p(r,0,z) = ==, T [k-(z = 20)]
> HY (k1)

’

cos [m(0 — 0p)].
m=0 Ser(nz) (kra)

€))
Dividing Eq. (9) by the velocity of the vibrating element,

i.e., 1y, and evaluating at a surface element gives the mutual

impedance between the source point, point 7, and the field

point, j, such that
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(11)
where S, = aA0OAz is the area of a single discrete element of
the structure, and the summation has been moved inside the
integral.

B. Numerical evaluation

Equation (11) is not closed-form; it involves an infinite

sum that must be truncated and an integral that must be
numerically evaluated. This section offers guidance on how
the expression may be evaluated.

The sum is performed first for each integration point. As m
increases from 0, the ratio Im{H?) (k,a) /H,(nz)/ (kya)} starts at a
value of %, peaks at m = k.a, then monotonically decreases,
approaching zero rapidly, as shown in Fig. 2. Therefore, this

coefficient is used as the test for convergence. For the purposes

of this research, once Im{H? (k,a) /H,(HZ)/ (k.a)} <1078, the
sum is considered to have converged.

100 ¢ :
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:“ \
3T 1070 A
SIS R (I ¢
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T k.a \
E ~10 10 ok
= 0Ty .
———-60 A
........ 200 \
10—15 | ! ‘. L
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FIG. 2. (Color online) Plot of Im{H? (k,.a)/H,(f),(k,.a)} as a function of m,
for different values of k.a. In each case, the ratio peaks near m = k,a, then
monoto

nically decreases to zero.
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The truncated sums may be calculated at desired inte-
gration points as dictated by a given integration method.
This paper uses the midpoint rule, with the integrand evalu-
ated at 80 points over the interval [0, k]. Though this is a
rather simple method to perform the integration, it has been
shown to be sufficiently accurate for the purposes of this
research.

It appears there could be a singularity in the integral at
k. = k, where k, becomes zero. Use of the limiting forms of
the Hankel functions as the argument goes to zero shows
that

i (2) @ _
]}Il% Im{Hm (kl'a)/Hm (kla)}/kl - 07

so the integrand may be replaced with zero at the endpoint if
it is needed for the chosen integration method.

C. Radiation modes

Acoustic radiation modes are computed with an eigen-
decomposition of the radiation resistance matrix'? and
provide a useful way to characterize R. The eigenvectors
represent the acoustic radiation modes while the associated
eigenvalues are proportional to the radiation efficiency. The
first nine radiation modes from the formulation above,
ordered by the radiation efficiency of the mode, are shown
in Fig. 3 for a cylinder with a/L = 0.2 at ka = 0.01 rad. The
first mode resembles a monopole with all parts of the cylin-
der vibrating in phase and at equal amplitude. The next three
modes resemble dipoles and the final five modes resemble
quadrupoles. Due to the symmetries associated with a cylin-
der, all radiation modes with 6 dependence come in pairs of
degenerate modes.

Figure 4 shows the nine most efficient radiation modes
for ka = 1. The first four modes follow the same pattern
exhibited in Fig. 3, though the amplitude is tapered toward
the ends of the cylinder. The fourth mode in Fig. 4 is the
second mode from Fig. 3, which has been overtaken by the
third and fourth modes from Fig. 3 in efficiency. The eighth
and ninth modes in Fig. 4 are new modes which were not
seen in Fig. 3.

The modal efficiencies with respect to ka also give
insight into the modal behavior. Efficiencies are plotted in
Fig. 5 for each of the nine modes shown in Fig. 3, with
degenerate mode efficiencies combined into one line. This
plot shows the monopole/dipole/quadrupole radiation char-
acteristics of the modes at low ka: The first mode increases
in efficiency, and therefore power, at a rate of 6 dB/octave,
the next three modes at 12dB/octave, and the last five at
18 dB/octave. The trends with frequency of these modes and
their efficiencies are treated with more detail in a proceed-
ings article by the authors."

Sound power can be calculated using either the radia-
tion resistance matrix as in Eq. (1), or the acoustic radiation
modes, as in Eq. (2). Use of the radiation resistance matrix
requires a matrix-vector multiplication and a dot product
while use of acoustic radiation modes requires an eigenvalue
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FIG. 3. (Color online) The nine most efficient radiation modes for a baffled
cylinder with /L = 0.2 and ka = 0.01.

decomposition of a matrix, several dot products to find y,,
and a sum. Since the complexity of eigenvalue decomposi-
tion is theoretically limited to that of matrix-vector multipli-
cation'®'” and is in practice much slower, there is no benefit
to using the acoustic radiation modes for the sound power
calculation presented in this work. It is possible that interpo-
lation of the radiation modes could, in some future work,
make radiation modes faster for power computation, but in
the simple uses described by Eqgs. (1) and (2) there is no real
benefit to using the radiation modes. We therefore expand
the acronym VBRM to include vibration-based radiation
resistance matrix. The VBRM method power curves in this
paper are calculated using the radiation resistance matrix
given in Eq. (11) as demonstrated in Eq. (1). For brevity, the
cylindrical radiation resistance matrix will not be explicitly
mentioned in Secs. III and IV; however, the following vali-
dations treat both the method and the resistance matrix.

lll. COMPUTATIONAL VERIFICATION OF SOUND
POWER CALCULATIONS

To verify the methodology above, sound power calcula-
tions performed using the VBRM method as just described
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were compared to those performed with the boundary ele-
ment method (BEM). BEM simulations were performed
using VibroAcoustics One (VA One), a commercial package
produced by the ESI Group. The comparison was conducted
on a 41 cm long cylinder with a 7.6 cm radius. The infinite
cylindrical baffle assumed in the theory was approximated
in the BEM simulations by a 1-meter baffle connected to
each end of the vibrating portion of the cylinder.
Simulations were also performed with rigid ends on the cyl-
inder instead of a baffle, and these results showed that the
baffle had a negligible effect on the radiated sound power.
The VA One simulation used linear tri elements, while the

sin (mnz* /L)sin (mnz/L)cos n(0 — 0*)

VBRM method as formulated above is effectively using
constant quad elements. As such, the integration of the
sound power in the VBRM method is performed by multi-
plying velocity values at the center of each element by the
element area. This is handled automatically by the expres-
sion in Eq. (11).

Once the cylinder was modeled in VA One, the surface
velocities of the shell were computed at each nodal point of
the VA One mesh and at the center of each VBRM element
using the modal expansion method developed by Bernoulli
for a cylinder excited by a point force.'® The complex nor-
mal surface velocities were calculated as

eI Pm , (12)

2P o0 o0
us(x,0) = phaLn Z Z

m=1 n=0
En?

i
o

(fI0-€® -E

5 6
8 9
-1 0 1

Normalized Velocity

FIG. 4. (Color online) The nine most efficient radiation modes for a baffled
cylinder with a/L = 0.2 and ka = 1.
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2 [1 = /o] + 42, /0

where P is the point load, p is the density of the cylinder’s
material, % is the thickness of the cylindrical wall, L is the
length of the cylinder, m and n are the longitudinal and
radial mode numbers, respectively, z* and 0* are the longitu-
dinal and radial location of the point force, z and 0 are the
longitudinal and radial locations of the nodal points,  is the
angular frequency of interest, w,,, is the natural angular fre-
quency of a given mode, (,,, is the damping coefficient of
each mode,

_1 2L () pn)

13
1— (w/wmn)z’ (13)

d)mn = tan

109

—
9
ot

107104

Eigenvalues ()

FIG. 5. (Color online) Efficiencies of the nine radiation modes that are most
efficient at low ka. Degenerate mode efficiencies are combined into one
line.
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and ¢, is defined as in Eq. (8). The infinite series in Eq. (12)
were truncated at m =19, n =19, and a damping coeffi-
cient of {,,, = 0.1 for each m, n was used in the calculation.
These velocities were supplied to the VA One BEM simula-
tion and to the VBRM method, which were then used to cal-
culate the sound power of the cylinder.

Multiple simulations were performed using the VBRM
method with different spatial sampling grids and different
numbers of elements to analyze the effect of the spatial
sampling. Velocities were calculated with the following
spatial sampling patterns (longitudinal elements x theta
elements): 8 x 9 (72 elements), 10 x 12 (120 elements),
16 x 19 (304 elements), and 26 x 31 (804 elements).
Figure 6 shows the computational results using the VBRM
method for each of these grids. The 72-element spatial
sampling simulation agrees with simulations using a denser
spatial sampling below 1.5kHz. Above 1.5 kHz the results
begin to diverge. The 120-element spatial sampling simula-
tion agrees with simulations using a denser spatial sample
until 3kHz, after which the results diverge. The reason for
the divergence of the 72- and 120-element simulations is
due to the low spatial sampling density associated with
fewer data points. The 304-element simulation and the
806-element simulation agree exactly throughout the 6 kHz
range shown on the plot.

The sound power results from the 304-element simula-
tion shown in Fig. 6 were compared with the sound power
results calculated using the BEM method for validation of
the VBRM method. The BEM mesh was constructed to con-
tain at least 6 elements per wavelength in the frequency
range of interest and contained 1121 elements and 1157
degrees of freedom. These results are shown in Fig. 7, with
the two methods giving nearly identical results at most fre-
quencies. The VBRM method calculates sound power to be
slightly higher between 3 and 4kHz but the difference
between the two methods is less than 1.5dB at each
frequency.

50

Sound Power (dB)

====304 pts
= = 806 pts

0 1 2 3 4 ) 6
Frequency (kHz)
FIG. 6. (Color online) Numerically calculated sound power using the radia-

tion resistance matrix and simulated complex velocities at several different
numbers of data points.
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FIG. 7. (Color online) Numerically derived sound power of a 41 cm long
cylinder with a 7.6 cm radius using the VBRM and BEM methods.

The VBRM method and BEM method were also used
to calculate the sound power of a 41 cm long cylinder with a
15.2 cm radius. Due to the larger surface area of the 15.2 cm
radius cylinder, the number of elements used in the VBRM
simulation was increased to 576 to ensure the spatial sam-
pling was dense enough for accurate results. The number of
elements in the BEM mesh was also increased to 2256
elements, with 2330 degrees of freedom. Figure 8 shows the
comparison between the two methods for this cylinder. Like
the results from the 7.6 cm radius cylinder, the results from
the two methods for the 15.2 cm radius cylinder line up at
most frequencies, with slight discrepancies at frequencies
higher than 3 kHz. These discrepancies are less than 1.5 dB.

Because constructing a rigid baffle for experimental
tests is difficult, additional BEM simulations were run to
determine how sensitive sound power calculations are to the
presence of a baffle. The BEM calculations in Fig. 7 were
repeated with the same mesh on the cylinder and the same
cylinder velocities, but with rigid end caps instead of a rigid
baffle. The results, shown in Fig. 9, are less than 1 dB apart
above 90Hz, and are less than 0.2dB above 470Hz.

50

——BEM
—-—-VBRM||

Sound Power (dB

0 1 2 3 4
Frequency (kHz)

FIG. 8. (Color online) Numerically derived sound power of a 41 cm long
cylinder with a 15.2 cm radius using the VBRM and BEM methods.
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FIG. 9. (Color online) Numerical comparison between a baffled and an
unbaffled 41 cm long cylinder with a 7.6 cm radius using the BEM method.
(a) The sound power of the baffled and unbaffled cylinders. (b) The differ-
ence in sound power between the baffled and unbaffled cylinders.

This suggests that sound power calculations may not be sen-
sitive to the presence of a baffle.

IV. EXPERIMENTAL VERIFICATION OF SOUND
POWER CALCULATIONS

This section will detail the experimental sound power
measurement of a cylinder using the VBRM method. The
results calculated using the VBRM method will then be
compared to sound power measurements taken using ISO
3741 in a large reverberation chamber, with the results being
reported in one-third octave bands. While the formulation
presented above treats a cylinder with an infinite rigid baffle,
our experimental measurements and the numerical results
above suggest that the exact matching of that acoustic
boundary condition is not necessary to get accuracy rivaling
that of sound power measurement standards. In other words,
the results below suggest that radiation resistance matrices
need not exactly match the acoustic environment to get
accurate sounds power measurements.

A. Experimental setup and measurement
of a cylindrical shell

A 4lcm long aluminum cylinder with a radius of
7.6 cm and flat endcaps was mounted on a plywood board as
shown in Fig. 10. A Modal Shop 2007E shaker was sup-
ported by the same plywood board with a small piece of
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1

FIG. 10. (Color online) Setup of a mounted cylinder on a turntable with a
shaker to excite the cylinder. The microphones and reverberation chamber
used for ISO 3741 are seen in the background.

foam minimizing the transfer of vibrations from the shaker
to the plywood. The stinger of the shaker was attached to
the cylinder 8.5cm from its bottom edge. The mounted
cylinder and shaker were then attached to an Outline
ET250-3D electronic turntable and placed in a reverberation
chamber with approximate dimensions 5m x 6 m X 7 m. In
preparation to make ISO 3741 sound power measurements,
six microphones were set up inside the reverberation cham-
ber according to guidelines of the standard.

The experimental setup described above does not per-
fectly match the theoretical and computational assumptions
presented in previous sections. Sections II and IIT assumed
an infinite cylindrical baffle (approximated by a 1-m baffle
in VA One) extending from each end of the cylinder, and
simulations treated a simply supported cylinder. While the
radiation resistance matrix is independent of structural
boundary conditions, the lack of a cylindrical baffle and the
presence of a turntable and wooden base are departures
from assumptions made in the preceding formulations.
Because of the BEM results presented already comparing a
baffled and unbaffled cylinder (see Fig. 9), those departures
are not expected to significantly alter the results.

The shaker was excited using pseudo-random noise
between 0 and 12.4kHz. Using a scanning laser Doppler
vibrometer (SLDV), line scans measuring the complex sur-
face velocities of the cylinder were taken at 10° intervals
around the circumference of the cylinder. Each line scan
contained 31-points, resulting in a total of 1116 scan points
over the surface of the cylinder. This number of experimen-
tal points was well above the number of points needed to
obtain accurate results up to 6kHz, as shown in Fig. 6.
Figure 11 shows an example of one line scan.

The shaker blocked a small section of the cylinder from
the laser, making surface velocity measurements in that area
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FIG. 11. (Color online) Example of one of the 36 line scans taken over the
surface of the cylinder to measure complex surface velocities.

unobtainable. As such, velocity data from points 180° from
the blocked points were used to approximate these velocity
data, at a total of 25 out of the 1116 scan points. Due to the
proximity of the blocked portions of the cylinder to the point
of excitation, the approximated velocity data at those points
are likely underestimations. These approximate velocity
data, along with measured data at the other locations, were
then used as inputs to the VBRM method.

After the surface velocity measurements were collected,
the SLDV was removed from the reverberation chamber,
and sound pressure measurements were taken according to
the procedures set forth in ISO 3741. Sound power was cal-
culated according to ISO 3741, and the calculated sound
power measurements using the VBRM method were then
compared to these standard results, reported in one-third
octave bands.

B. Sound power results of the cylinder

Figure 12 shows the comparison between the VBRM
method and the ISO 3741 sound power results. The results
are also summarized in Table I which shows the difference
between the methods at each one-third octave band. Below
200 Hz the ISO measured sound power results were within
10dB of the noise floor of the chamber; the results at these
frequencies should therefore be considered upper bounds on
the radiated sound power. Between the 200 Hz and 10kHz
one-third octave bands there is good alignment between the
two methods: In this region the mean difference between the
two methods was 0.3 dB with a standard deviation of 1.6 dB.
The maximum one-third octave band difference was 2.1 dB
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FIG. 12. (Color online) Results of the sound power measurements using the
VBRM method compared to the ISO 3741 standard results.

at the 5kHz band. These experimental differences are in
line with the differences seen between the BEM and VBRM
methods compared in Figs. 7 and 8. In addition, the overall
levels are very close, as seen in Table I, with only 0.4dB
difference between the two methods.

The differences between the two methods could be the
result of the experimental setup. The theoretical and compu-
tational work assumed an infinitely baffled cylinder, but the
experimental setup included endcaps on each end of the cyl-
inder instead of a baffle. While computational experiments
showed no difference between a baffled cylinder and a cyl-
inder with rigid endcaps, the endcaps in the physical

TABLE I. Results of the sound power measurements using ISO 3741 and
the VBRM method, and the difference between the two.

Sound power (dB)
ISO3741 VBRM Difference
Third octave band by 100 26.0 25.7 0.3
centerband frequency (Hz) 125 21.9 215 0.4
160 21.4 21.9 (0.5)
200 24.9 24.3 0.6
250 27.4 26.0 1.4
315 30.8 29.5 1.3
400 38.7 35.7 3.0
500 54.6 52.0 2.6
630 69.9 68.1 1.8
800 71.5 75.7 1.8
1000 70.0 69.3 0.7
1250 64.1 64.3 (0.3)
1600 72.8 72.3 0.5
2000 69.8 70.3 (0.5)
2500 74.8 74.4 0.4
3150 71.3 72.1 (0.8)
4000 68.5 70.4 (2.0)
5000 69.0 71.1 2.1
6300 70.8 72.6 (1.9)
8000 73.4 74.8 (1.4)
10000 80.5 79.5 1.0
Total 84.9 84.6 0.4
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cylinder were not rigid, and therefore may have radiated
noise which contributed to the sound power measured by
ISO 3741. The experimental setup of the cylinder also
included a plywood mount, a turntable, and a shaker, each
of which could have vibrated from contact with the cylinder.
These surfaces were not measured using the SLDV, thus
any contribution they made to sound power would be mea-
sured by ISO 3741 but not by the VBRM method.

V. CONCLUSIONS

After a brief review of the concept of radiation resis-
tance matrices and their uses, a derivation of the cylindrical
radiation resistance matrix was presented. This produced a
full, analytical expression for the matrix, which can be used
in sound power calculations. The radiation modes computed
from this matrix were shown to match multipole trends at
low frequencies, as would be expected from canonical radia-
tion modes for other geometries. Numerical methods to
evaluate the non-closed form equations were presented.

Following the derivation of the cylindrical radiation
resistance matrix, sound power was computed for analytical
simply supported shell velocities using the VBRM method
with this matrix. This power was compared to that calcu-
lated by BEM, which is treated as a benchmark. These
results showed very good agreement between OHz and
4kHz with discrepancies of less than 1.5dB appearing in
some higher frequency bands.

Experimental surface velocity measurements of an
unbaffled cylinder were collected using an SLDV and the
sound power was determined using the VBRM method and
the cylindrical radiation resistance matrix. The sound power
was also measured using ISO 3741. These experimental
results showed good agreement through the 10kHz one-
third-octave band. Between the 200 Hz and 10 kHz one-third
octave bands the mean difference in the sound power
obtained using ISO 3741 and the VBRM method was 0.3 dB
with a standard deviation of 1.6dB. The maximum differ-
ence between the two methods in any one-third octave band
was 2.1dB which occurred at the 5kHz one-third octave
band.

The results of the numerical simulations and the experi-
mental work presented in this paper have shown that the
cylindrical radiation resistance matrix developed in the
paper, implemented into the VBRM method, allows for the
sound power measurement of baffled cylinders. In addition,
the results presented here indicate that a radiation resistance

J. Acoust. Soc. Am. 148 (6), December 2020

matrix developed for cylinders with infinite cylindrical baf-
fles may accurately compute power for finite unbaffled cyl-
inders, and that an exact match of the radiation resistance
matrix to the acoustic conditions may not be required.

'S. J. Elliot and M. E. Johnson, “Radiation modes and the active control of
sound power,” J. Acoust. Soc. Am. 94(4) 2194-2204 (1993).

’F. Fahy and P. Gardonio, “Sound radiation by vibrating structures,” in
Sound and Structural Vibration, in Radiation, Transmission and
Response, 2nd ed. (Academic Press, Oxford, UK, 2007).

M. R. Bai and M. Tsao, “Estimation of sound power of baffled planar
sources using radiation matrices,” J. Acoust. Soc. Am. 112, 876-883
(2002).

‘C. B. Jones, C. B. Goates, J. D. Blotter, and S. D Sommerfeldt,
“Experimental validation of determining sound power measurements
using acoustic radiation modes and a laser vibrometer,” Appl. Acoust.
164, 107254 (2020).

Y. Cao, S. D. Sommerfeldt, W. Johnson, J. D. Blotter, and P. Aslani, “An
analysis of control using the weighted sum of spatial gradients in active
structural acoustic control for flat panels,” J. Acoust. Soc. Am. 138,
2986-2997 (2015).

op, Aslani, S. D. Sommerfeldt, and J. D. Blotter, “Experimental active con-
trol of cylindrical shells using the weighted sum of spatial gradients con-
trol metric,” J. Acoust. Soc. Am. 143, 271-280 (2018).

73, M. Fisher, J. D. Blotter, S. D. Sommerfeldt, and K. L. Gee,
“Development of a pseudouniform structural quantity for use in active
structural acoustic control of simply supported plates: An analytical
comparison,” J. Acoust. Soc. Am. 131, 3833-3840 (2012).

8J. Liu, Y. Liu, and J. S. Bolton, “The application of acoustic radiation
modes to engine oil pan design,” SAE Technical Paper No. 2017-01-1844
(2017).

°]. Liu, Y. Liu, and J. S. Bolton, “Acoustic source reconstruction and visu-
alization based on acoustic radiation modes,” J. Sound Vib. 437, 358-372
(2018).

9D, M. Photiadis, “The relationship of singular value decomposition to
wave-vector filtering in sound radiation problems,” J. Acoust. Soc. Am.
88(2), 11521159 (1990).

'G. V. Borgiotti, “The power radiated by a vibrating body in an acoustic
fluid and its determination from boundary measurements,” J. Acoust. Soc.
Am. 88(4), 1884-1893 (1990).

124, Sarkissian, “Acoustic radiation from finite structures,” J. Acoust. Soc.
Am. 90(1), 574-578 (1991).

3G. V. Borgiotti and K. E. Jones, “Frequency independence property of
radiation spatial filters,” J. Acoust. Soc. Am. 96(6), 3516-3524 (1994).

l4p, Aslani, S. D. Sommerfeldt, and J. D. Blotter, “Analysis of external
radiation from circular cylindrical shells,” J. Sound Vib. 408, 154-167
(2017).

5c. B. Goates, S. D. Sommerfeldt, and J. D. Blotter, “Frequency trends of
acoustic radiation modes for cylindrical structures,” Proc. Mtgs. Acoust.
35, 065003 (2018).

1y, Demmel, I. Dumitriu, and O. Holtz, “Fast linear algebra is stable,”
Numer. Math. 108(1) 59-91 (2007).

'7S. Winograd, “On the number of multiplications necessary to compute
certain functions,” Commun. Pure Appl. Math. 23(2), 165-179 (1970).

RAA Soedel, Vibrations of Shells and Plates, 2nd ed., revised and expanded
(Marcel Dekker, New York, 1993).

Goates etal. 3561


https://doi.org/10.1121/1.407490
https://doi.org/10.1121/1.1499133
https://doi.org/10.1016/j.apacoust.2020.107254
https://doi.org/10.1121/1.4934730
https://doi.org/10.1121/1.5020784
https://doi.org/10.1121/1.3699264
https://doi.org/10.1016/j.jsv.2018.08.030
https://doi.org/10.1121/1.399811
https://doi.org/10.1121/1.400211
https://doi.org/10.1121/1.400211
https://doi.org/10.1121/1.401231
https://doi.org/10.1121/1.401231
https://doi.org/10.1121/1.411407
https://doi.org/10.1016/j.jsv.2017.07.021
https://doi.org/10.1121/2.0001020
https://doi.org/10.1007/s00211-007-0114-x
https://doi.org/10.1002/cpa.3160230204
https://doi.org/10.1121/10.0002870

	s1
	d1
	d2
	l
	n1
	n2
	s2
	s2A
	d3
	d4
	d5
	f1
	d6a
	d6b
	d6c
	d7
	d8
	d9
	d10
	d11
	s2B
	f2
	s2B
	s2C
	s3
	f3
	d12
	d13
	f4
	f5
	f6
	f7
	f8
	s4
	s4A
	f9
	f10
	s4B
	f11
	f12
	t1
	s5
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18

