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ABSTRACT:
Research has shown that using acoustic radiation modes combined with surface velocity measurements provide an

accurate method of measuring the radiated sound power from vibrating plates. This paper investigates the extension

of this method to acoustically radiating cylindrical structures. The mathematical formulations of the radiation

resistance matrix and the accompanying acoustic radiation modes of a baffled cylinder are developed.

Computational sound power calculations using the vibration-based radiation mode (VBRM) method and the

boundary element method are then compared and shown to have good agreement. Experimental surface velocity

measurements of a cylinder are taken using a scanning laser Doppler vibrometer and the VBRM method is used to

calculate sound power. The results are compared to sound power measurements taken using ISO 3741.
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I. INTRODUCTION

Many methods exist for measuring sound power. The

International Organization for Standardization (ISO) has

published ten standards and two technical specifications

detailing how to obtain sound power measurements. None

of the standardized methods are based on vibration measure-

ments and the two technical specifications give only engi-

neering or survey grade results; there is not a precision

grade vibration-based method. In the early 1990s, a theory

was developed for a method which could potentially fill this

void; this method calculates sound power based on a combi-

nation of measured surface velocities and acoustic radiation

modes.1

Acoustic radiation modes provide a convenient basis

with which to describe sound radiation from a structure.

Structural vibration modes describe the displacement of a

structure and satisfy the structural equations of motion and

boundary conditions. Conversely, acoustic radiation modes

describe the acoustic field; these modes are orthogonal with

respect to sound radiation and allow the surrounding acous-

tical field to be calculated based on the vibrations of a struc-

ture. Acoustic radiation modes can be derived from the

radiation resistance matrix. The radiation resistance matrix

R relates the normal surface velocities from discrete ele-

ments of the structure to the radiated sound power P of the

structure through the equation

P xð Þ ¼ uH xð ÞR xð Þu xð Þ; (1)

where u is a column vector containing the normal velocity

at each discrete element, ð�ÞH signifies the Hermitian trans-

pose, and x is the frequency of interest.2 The dependence of

various quantities on x is implied in expressions throughout

the remainder of this paper and the ðxÞ will be omitted. The

eigenvectors of the radiation resistance matrix are the acous-

tic radiation modes, and the corresponding eigenvalues are

proportional to the radiation efficiencies of the eigenvectors.

The sound power can be written in terms of the acoustic

radiation modes qr and eigenvalues kr as

P ¼
XN
r¼1

krj~yrj
2; (2)

where ~yr ¼ qr � u and N is the number of elementary radia-

tors over the surface of the structure.2

Though the theory behind this approach to calculating

sound power has been present for decades, experimental vali-

dations did not come until more recently. In 2002, Bai et al.
published the first experimental sound power calculations

based on acoustic radiation modes.3 Their work showed sound

power calculations on baffled flat plates using the most effi-

ciently radiating modes at low frequencies and a modified

approach at higher frequencies. The paper showed good agree-

ment between Bai’s method and standardized sound power

measurements at low frequencies, but the results diverged at

higher frequencies. More recent research4 has shown that

acoustic radiation modes can be used to calculate the individ-

ual contributions to sound power from multiple uncorrelated

sources in a system without having to isolate the sources indi-

vidually. That research used the vibration-based radiation

mode (VBRM) method, which will be used throughout this
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paper. The VBRM method consists of using complex-valued

surface velocity measurements with the radiation resistance

matrix to compute the sound power.

In addition to sound power calculations, radiation

modes have found use in the field of active structural acous-

tic control (ASAC).1,5,6 They have been used for power cal-

culations in computational experiments since they were first

introduced. For example, numerical simulations on effec-

tiveness of ASAC control parameters has relied on the radia-

tion modes for evaluation of sound power.7 Radiation

modes have also been used as a guide for structural design,

where certain efficient radiation vibration patterns are sup-

pressed through structural modifications.8 Recent work

shows that radiation modes may be used as a basis set for

acoustical holography source reconstruction.9

Many early papers that develop acoustic radiation modes

do so for cylinders. The first three papers that introduced radia-

tion modes included a finite cylinder with hemispherical end-

caps10 and two finite cylinders with flat endcaps.11,12 In each

of these cases, only the axisymmetric modes were calculated.

These modes were found by an unspecified numerical method,

boundary integral methods, and the boundary element method

(BEM), respectively. In addition, at least one other paper has

treated the hemispherically capped finite cylinder.13 Through

all these publications there has never been a full development

of the radiation modes for a cylinder such that the sound power

could be calculated. Boundary element methods or boundary

integral equations can be used to calculate the radiation resis-

tance matrix,9 but an analytical formulation is desirable, as it

has the potential to reduce complexity and computational load.

More recently, Aslani et al.14 published a formulation for radi-

ation modes of a finite cylinder sandwiched between two infi-

nite pressure release planes using eigenfunction expansion.

That formulation limited the radiation to a space that extended

only from 0 to L in the z dimension. This paper will follow and

expand upon the formulation of Aslani et al. to develop a full

analytical expression for the radiation resistance matrix of

vibrating cylinders with infinite cylindrical baffles radiating

into a full three-dimensional space. This cylindrical radiation

resistance matrix will be used to calculate sound power of

cylindrical objects in both computational and experimental set-

tings. While there are cylindrical structures in engineering

applications, we recognize that most structures to which it

would be desirable to apply this method will not be cylindrical,

and even fewer will be infinitely baffled. The results presented

herein show that it may not be necessary to have such exact

matching between the experimental acoustic environment and

the environment used for deriving the radiation resistance

matrix. The formulations derived in this paper are a step

toward a method of treating more general curved structures.

II. CYLINDER RADIATION MODES

A. Eigenfunction formulation of the radiation
resistance matrix

The radiation resistance matrix is derived from the pres-

sure that a small vibrating element of a structure generates

across the structure. This small vibrating element can be

treated mathematically as a point source, or as a small rect-

angular element with constant velocity. We choose to use

the latter, as it more closely matches the discretization that

will be used later in the paper. It is worth noting that a delta

function could be used in the following derivations to repre-

sent the velocity with an identical derivation result. As

shown in Fig. 1, assume that a small portion of a hard, infi-

nite cylinder is vibrating with velocity

u h; zð Þ ¼
u0; h1 � h � h2; z1 � z � z2

0; otherwise

(
(3)

for some h1; h2 and z1; z2 such that aDh � aðh2 � h1Þ
� 2p=k and Dz � ðz2 � z1Þ � 2p=k, where k is the acoustic
wavenumber and a is the radius of the cylinder. This vibra-

tion creates a pressure field that can be written in terms of

cylindrical eigenfunctions as

p r; h; zð Þ ¼
X1
m¼0

ð1
0

dkz Am cosmhþ Bm sinmhð Þ

� E kzð Þcos kzzþ F kzð Þsin kzzð ÞH 2ð Þ
m krrð Þ;

(4)

where kr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2z

p
; kz is the axial acoustic wavenumber,

m is an integer, Hð2Þ
m ðxÞ is the m th-order Hankel function of

the second kind, and Am; Bm; EðkzÞ; and FðkzÞ are coeffi-

cients yet to be determined. For this expression, ejxt time

dependence has been assumed, where j ¼
ffiffiffiffiffiffiffi
�1

p
. The

Hankel function of the first kind is omitted as the absence

of sources outside r ¼ a precludes incoming cylindrical

waves. The coefficients are determined by the surface con-

dition at r ¼ a of

@p

@r

����
r¼a

¼ �jq0x u h; zð Þ; (5)

where q0 is the density of air and x is the angular frequency.

To apply this boundary condition, the velocity given in

FIG. 1. A diagram of the infinitely baffled cylinder geometry. A discretiza-

tion of the non-rigid portion of the cylinder is shown, with the element

described in Eq. (3) highlighted in black.
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Eq. (3) can also be represented in terms of the h and z cylin-
drical eigenfunctions as

u h; zð Þ ¼
ð1
0

dkz e kzð Þcos kzzþ f kzð Þsin kzzð Þ

�
X1
m¼0

am cosmhþ bm sinmhð Þ: (6a)

Equation (6a) can be set equal to Eq. (3) to find the coeffi-

cients am; bm; dðkzÞ, and eðkzÞ. Because Eq. (6a) is a separa-
ble expression in h and z, their dependence may be treated

separately,

X1
m¼0

am cosmhþ bm sinmhð Þ ¼
u0; h1 � h � h2
0; otherwise;

(

(6b)

ð1
0

e kzð Þcos kzzþ f kzð Þsin kzzð Þdkz ¼
1; z1 � z � z2

0; otherwise;

(

(6c)

where the constant u0 has been arbitrarily assigned to the h-
dependent expression. The coefficients may now be solved

for using orthogonality and sine and cosine transforms,

am ¼ u0
emp

ðh2
h1

cosmhdh � u0Dh
emp

cosmh0;

bm ¼ u0
p

ðh2
h1

sinmhdh � u0Dh
p

sinmh0;

e kzð Þ ¼ 1

p

ðz2
z1

cos kzzdz �
Dz
p
cos kzz0;

f kzð Þ ¼ 1

p

ðz2
z1

sin kzzdz �
Dz
p
sin kzz0; (7)

where z0 ¼ ðz2 þ z1Þ=2, Dz ¼ z2 � z1, h0 ¼ ðh2 þ h1Þ=2,
Dh ¼ h2 � h1, and

em ¼ 1; m 6¼ 0

2; m ¼ 0:

�
(8)

The approximate equalities hold because Dz and aDh are

small compared to the acoustic wavelength. Substituting Eq.

(7) into Eq. (6a), applying the boundary conditions in Eq. (5),

and simplifying results in the final pressure expression

p r;h; zð Þ ¼ �j
u0q0xDhDz

p2

ð1
0

dkz
kr

cos kz z� z0ð Þ
� �

�
X1
m¼0

H 2ð Þ
m krrð Þ

emH
2ð Þ0
m krað Þ

cos m h� h0ð Þ½ 	: (9)

Dividing Eq. (9) by the velocity of the vibrating element,

i.e., u0, and evaluating at a surface element gives the mutual

impedance between the source point, point i, and the field

point, j, such that

Zpq ¼ �j
q0xDhDz

p2

ð1
0

dkz
kr

cos kz zq � zpð Þ
� �

�
X1
m¼0

H 2ð Þ
m krað Þ

emH
2ð Þ0
m krað Þ

cos m hq � hpð Þ½ 	: (10)

The radiation resistance matrix is concerned only with the

real part of this expression. Thus, since Hð2Þ
m ðkraÞ=

krH
ð2Þ0
m ðkraÞ is purely real for imaginary kr, the integration

need only be carried out from 0 to k. The elements of the

radiation resistance matrix are then found as

Rpq ¼
Se
2
Re Zpqf g

¼ S2exq0
ap2

ðk
0

dkz
kr

cos kz zq � zpð Þ
� �

�
X1
m¼0

1

em
Im

H 2ð Þ
m krað Þ

H 2ð Þ0
m krað Þ

( )
cos m hq � hpð Þ½ 	;

(11)

where Se ¼ aDhDz is the area of a single discrete element of

the structure, and the summation has been moved inside the

integral.

B. Numerical evaluation

Equation (11) is not closed-form; it involves an infinite

sum that must be truncated and an integral that must be

numerically evaluated. This section offers guidance on how

the expression may be evaluated.

The sum is performed first for each integration point. As m
increases from 0, the ratio ImfHð2Þ

m ðkraÞ=Hð2Þ0
m ðkraÞg starts at a

value of 1
2
, peaks at m � kra, then monotonically decreases,

approaching zero rapidly, as shown in Fig. 2. Therefore, this

coefficient is used as the test for convergence. For the purposes

of this research, once ImfHð2Þ
m ðkraÞ=Hð2Þ0

m ðkraÞg < 10�8, the

sum is considered to have converged.

FIG. 2. (Color online) Plot of ImfHð2Þ
m ðkraÞ=Hð2Þ0

m ðkraÞg as a function of m,
for different values of kra. In each case, the ratio peaks near m ¼ kra, then
monotonically decreases to zero.
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The truncated sums may be calculated at desired inte-

gration points as dictated by a given integration method.

This paper uses the midpoint rule, with the integrand evalu-

ated at 80 points over the interval ½0; k	. Though this is a

rather simple method to perform the integration, it has been

shown to be sufficiently accurate for the purposes of this

research.

It appears there could be a singularity in the integral at

kz ¼ k; where kr becomes zero. Use of the limiting forms of

the Hankel functions as the argument goes to zero shows

that

lim
kr!0

Im H 2ð Þ
m krað Þ=H 2ð Þ0

m krað Þ
n o

=kr ¼ 0;

so the integrand may be replaced with zero at the endpoint if

it is needed for the chosen integration method.

C. Radiation modes

Acoustic radiation modes are computed with an eigen-

decomposition of the radiation resistance matrix12 and

provide a useful way to characterize R. The eigenvectors

represent the acoustic radiation modes while the associated

eigenvalues are proportional to the radiation efficiency. The

first nine radiation modes from the formulation above,

ordered by the radiation efficiency of the mode, are shown

in Fig. 3 for a cylinder with a=L ¼ 0:2 at ka ¼ 0:01 rad. The
first mode resembles a monopole with all parts of the cylin-

der vibrating in phase and at equal amplitude. The next three

modes resemble dipoles and the final five modes resemble

quadrupoles. Due to the symmetries associated with a cylin-

der, all radiation modes with h dependence come in pairs of

degenerate modes.

Figure 4 shows the nine most efficient radiation modes

for ka ¼ 1. The first four modes follow the same pattern

exhibited in Fig. 3, though the amplitude is tapered toward

the ends of the cylinder. The fourth mode in Fig. 4 is the

second mode from Fig. 3, which has been overtaken by the

third and fourth modes from Fig. 3 in efficiency. The eighth

and ninth modes in Fig. 4 are new modes which were not

seen in Fig. 3.

The modal efficiencies with respect to ka also give

insight into the modal behavior. Efficiencies are plotted in

Fig. 5 for each of the nine modes shown in Fig. 3, with

degenerate mode efficiencies combined into one line. This

plot shows the monopole/dipole/quadrupole radiation char-

acteristics of the modes at low ka: The first mode increases

in efficiency, and therefore power, at a rate of 6 dB/octave,

the next three modes at 12 dB/octave, and the last five at

18 dB/octave. The trends with frequency of these modes and

their efficiencies are treated with more detail in a proceed-

ings article by the authors.15

Sound power can be calculated using either the radia-

tion resistance matrix as in Eq. (1), or the acoustic radiation

modes, as in Eq. (2). Use of the radiation resistance matrix

requires a matrix-vector multiplication and a dot product

while use of acoustic radiation modes requires an eigenvalue

decomposition of a matrix, several dot products to find ~yr,
and a sum. Since the complexity of eigenvalue decomposi-

tion is theoretically limited to that of matrix-vector multipli-

cation16,17 and is in practice much slower, there is no benefit

to using the acoustic radiation modes for the sound power

calculation presented in this work. It is possible that interpo-

lation of the radiation modes could, in some future work,

make radiation modes faster for power computation, but in

the simple uses described by Eqs. (1) and (2) there is no real

benefit to using the radiation modes. We therefore expand

the acronym VBRM to include vibration-based radiation

resistance matrix. The VBRM method power curves in this

paper are calculated using the radiation resistance matrix

given in Eq. (11) as demonstrated in Eq. (1). For brevity, the

cylindrical radiation resistance matrix will not be explicitly

mentioned in Secs. III and IV; however, the following vali-

dations treat both the method and the resistance matrix.

III. COMPUTATIONALVERIFICATION OF SOUND
POWER CALCULATIONS

To verify the methodology above, sound power calcula-

tions performed using the VBRM method as just described

FIG. 3. (Color online) The nine most efficient radiation modes for a baffled

cylinder with a=L ¼ 0:2 and ka ¼ 0:01:
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were compared to those performed with the boundary ele-

ment method (BEM). BEM simulations were performed

using VibroAcoustics One (VA One), a commercial package

produced by the ESI Group. The comparison was conducted

on a 41 cm long cylinder with a 7.6 cm radius. The infinite

cylindrical baffle assumed in the theory was approximated

in the BEM simulations by a 1-meter baffle connected to

each end of the vibrating portion of the cylinder.

Simulations were also performed with rigid ends on the cyl-

inder instead of a baffle, and these results showed that the

baffle had a negligible effect on the radiated sound power.

The VA One simulation used linear tri elements, while the

VBRM method as formulated above is effectively using

constant quad elements. As such, the integration of the

sound power in the VBRM method is performed by multi-

plying velocity values at the center of each element by the

element area. This is handled automatically by the expres-

sion in Eq. (11).

Once the cylinder was modeled in VA One, the surface

velocities of the shell were computed at each nodal point of

the VA One mesh and at the center of each VBRM element

using the modal expansion method developed by Bernoulli

for a cylinder excited by a point force.18 The complex nor-

mal surface velocities were calculated as

u3 x; hð Þ ¼ 2P

qhaLp

X1
m¼1

X1
n¼0

sin mpz
=Lð Þsin mpz=Lð Þcos n h� h
ð Þ

enx2
mn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x=xmnð Þ2
h i2

þ 4f2mn x=xmnð Þ2
r e�j/mn ; (12)

where P is the point load, q is the density of the cylinder’s

material, h is the thickness of the cylindrical wall, L is the

length of the cylinder, m and n are the longitudinal and

radial mode numbers, respectively, z
 and h
 are the longitu-
dinal and radial location of the point force, z and h are the

longitudinal and radial locations of the nodal points, x is the

angular frequency of interest, xmn is the natural angular fre-

quency of a given mode, fmn is the damping coefficient of

each mode,

/mn ¼ tan�1 2fmnðx=xmnÞ
1� ðx=xmnÞ2

; (13)

FIG. 4. (Color online) The nine most efficient radiation modes for a baffled

cylinder with a=L ¼ 0:2 and ka ¼ 1:

FIG. 5. (Color online) Efficiencies of the nine radiation modes that are most

efficient at low ka. Degenerate mode efficiencies are combined into one

line.
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and en is defined as in Eq. (8). The infinite series in Eq. (12)

were truncated at m ¼ 19; n ¼ 19, and a damping coeffi-

cient of fmn ¼ 0:1 for each m; n was used in the calculation.

These velocities were supplied to the VA One BEM simula-

tion and to the VBRM method, which were then used to cal-

culate the sound power of the cylinder.

Multiple simulations were performed using the VBRM

method with different spatial sampling grids and different

numbers of elements to analyze the effect of the spatial

sampling. Velocities were calculated with the following

spatial sampling patterns (longitudinal elements � theta

elements): 8� 9 (72 elements), 10� 12 (120 elements),

16� 19 (304 elements), and 26� 31 (804 elements).

Figure 6 shows the computational results using the VBRM

method for each of these grids. The 72-element spatial

sampling simulation agrees with simulations using a denser

spatial sampling below 1.5 kHz. Above 1.5 kHz the results

begin to diverge. The 120-element spatial sampling simula-

tion agrees with simulations using a denser spatial sample

until 3 kHz, after which the results diverge. The reason for

the divergence of the 72- and 120-element simulations is

due to the low spatial sampling density associated with

fewer data points. The 304-element simulation and the

806-element simulation agree exactly throughout the 6 kHz

range shown on the plot.

The sound power results from the 304-element simula-

tion shown in Fig. 6 were compared with the sound power

results calculated using the BEM method for validation of

the VBRM method. The BEM mesh was constructed to con-

tain at least 6 elements per wavelength in the frequency

range of interest and contained 1121 elements and 1157

degrees of freedom. These results are shown in Fig. 7, with

the two methods giving nearly identical results at most fre-

quencies. The VBRM method calculates sound power to be

slightly higher between 3 and 4 kHz but the difference

between the two methods is less than 1.5 dB at each

frequency.

The VBRM method and BEM method were also used

to calculate the sound power of a 41 cm long cylinder with a

15.2 cm radius. Due to the larger surface area of the 15.2 cm

radius cylinder, the number of elements used in the VBRM

simulation was increased to 576 to ensure the spatial sam-

pling was dense enough for accurate results. The number of

elements in the BEM mesh was also increased to 2256

elements, with 2330 degrees of freedom. Figure 8 shows the

comparison between the two methods for this cylinder. Like

the results from the 7.6 cm radius cylinder, the results from

the two methods for the 15.2 cm radius cylinder line up at

most frequencies, with slight discrepancies at frequencies

higher than 3 kHz. These discrepancies are less than 1.5 dB.

Because constructing a rigid baffle for experimental

tests is difficult, additional BEM simulations were run to

determine how sensitive sound power calculations are to the

presence of a baffle. The BEM calculations in Fig. 7 were

repeated with the same mesh on the cylinder and the same

cylinder velocities, but with rigid end caps instead of a rigid

baffle. The results, shown in Fig. 9, are less than 1 dB apart

above 90Hz, and are less than 0.2 dB above 470Hz.

FIG. 6. (Color online) Numerically calculated sound power using the radia-

tion resistance matrix and simulated complex velocities at several different

numbers of data points.

FIG. 7. (Color online) Numerically derived sound power of a 41 cm long

cylinder with a 7.6 cm radius using the VBRM and BEM methods.

FIG. 8. (Color online) Numerically derived sound power of a 41 cm long

cylinder with a 15.2 cm radius using the VBRM and BEM methods.

3558 J. Acoust. Soc. Am. 148 (6), December 2020 Goates et al.

https://doi.org/10.1121/10.0002870

https://doi.org/10.1121/10.0002870


This suggests that sound power calculations may not be sen-

sitive to the presence of a baffle.

IV. EXPERIMENTALVERIFICATION OF SOUND
POWER CALCULATIONS

This section will detail the experimental sound power

measurement of a cylinder using the VBRM method. The

results calculated using the VBRM method will then be

compared to sound power measurements taken using ISO

3741 in a large reverberation chamber, with the results being

reported in one-third octave bands. While the formulation

presented above treats a cylinder with an infinite rigid baffle,

our experimental measurements and the numerical results

above suggest that the exact matching of that acoustic

boundary condition is not necessary to get accuracy rivaling

that of sound power measurement standards. In other words,

the results below suggest that radiation resistance matrices

need not exactly match the acoustic environment to get

accurate sounds power measurements.

A. Experimental setup and measurement
of a cylindrical shell

A 41 cm long aluminum cylinder with a radius of

7.6 cm and flat endcaps was mounted on a plywood board as

shown in Fig. 10. A Modal Shop 2007E shaker was sup-

ported by the same plywood board with a small piece of

foam minimizing the transfer of vibrations from the shaker

to the plywood. The stinger of the shaker was attached to

the cylinder 8.5 cm from its bottom edge. The mounted

cylinder and shaker were then attached to an Outline

ET250-3D electronic turntable and placed in a reverberation

chamber with approximate dimensions 5m� 6 m� 7 m. In

preparation to make ISO 3741 sound power measurements,

six microphones were set up inside the reverberation cham-

ber according to guidelines of the standard.

The experimental setup described above does not per-

fectly match the theoretical and computational assumptions

presented in previous sections. Sections II and III assumed

an infinite cylindrical baffle (approximated by a 1-m baffle

in VA One) extending from each end of the cylinder, and

simulations treated a simply supported cylinder. While the

radiation resistance matrix is independent of structural

boundary conditions, the lack of a cylindrical baffle and the

presence of a turntable and wooden base are departures

from assumptions made in the preceding formulations.

Because of the BEM results presented already comparing a

baffled and unbaffled cylinder (see Fig. 9), those departures

are not expected to significantly alter the results.

The shaker was excited using pseudo-random noise

between 0 and 12.4 kHz. Using a scanning laser Doppler

vibrometer (SLDV), line scans measuring the complex sur-

face velocities of the cylinder were taken at 10� intervals

around the circumference of the cylinder. Each line scan

contained 31-points, resulting in a total of 1116 scan points

over the surface of the cylinder. This number of experimen-

tal points was well above the number of points needed to

obtain accurate results up to 6 kHz, as shown in Fig. 6.

Figure 11 shows an example of one line scan.

The shaker blocked a small section of the cylinder from

the laser, making surface velocity measurements in that area

FIG. 9. (Color online) Numerical comparison between a baffled and an

unbaffled 41 cm long cylinder with a 7.6 cm radius using the BEM method.

(a) The sound power of the baffled and unbaffled cylinders. (b) The differ-

ence in sound power between the baffled and unbaffled cylinders.

FIG. 10. (Color online) Setup of a mounted cylinder on a turntable with a

shaker to excite the cylinder. The microphones and reverberation chamber

used for ISO 3741 are seen in the background.
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unobtainable. As such, velocity data from points 180� from

the blocked points were used to approximate these velocity

data, at a total of 25 out of the 1116 scan points. Due to the

proximity of the blocked portions of the cylinder to the point

of excitation, the approximated velocity data at those points

are likely underestimations. These approximate velocity

data, along with measured data at the other locations, were

then used as inputs to the VBRM method.

After the surface velocity measurements were collected,

the SLDV was removed from the reverberation chamber,

and sound pressure measurements were taken according to

the procedures set forth in ISO 3741. Sound power was cal-

culated according to ISO 3741, and the calculated sound

power measurements using the VBRM method were then

compared to these standard results, reported in one-third

octave bands.

B. Sound power results of the cylinder

Figure 12 shows the comparison between the VBRM

method and the ISO 3741 sound power results. The results

are also summarized in Table I which shows the difference

between the methods at each one-third octave band. Below

200Hz the ISO measured sound power results were within

10 dB of the noise floor of the chamber; the results at these

frequencies should therefore be considered upper bounds on

the radiated sound power. Between the 200Hz and 10 kHz

one-third octave bands there is good alignment between the

two methods: In this region the mean difference between the

two methods was 0.3 dB with a standard deviation of 1.6 dB.

The maximum one-third octave band difference was 2.1 dB

at the 5 kHz band. These experimental differences are in

line with the differences seen between the BEM and VBRM

methods compared in Figs. 7 and 8. In addition, the overall

levels are very close, as seen in Table I, with only 0.4 dB

difference between the two methods.

The differences between the two methods could be the

result of the experimental setup. The theoretical and compu-

tational work assumed an infinitely baffled cylinder, but the

experimental setup included endcaps on each end of the cyl-

inder instead of a baffle. While computational experiments

showed no difference between a baffled cylinder and a cyl-

inder with rigid endcaps, the endcaps in the physical

FIG. 11. (Color online) Example of one of the 36 line scans taken over the

surface of the cylinder to measure complex surface velocities.

FIG. 12. (Color online) Results of the sound power measurements using the

VBRM method compared to the ISO 3741 standard results.

TABLE I. Results of the sound power measurements using ISO 3741 and

the VBRM method, and the difference between the two.

Sound power (dB)

ISO 3741 VBRM Difference

Third octave band by

centerband frequency (Hz)

100 26.0 25.7 0.3

125 21.9 21.5 0.4

160 21.4 21.9 (0.5)

200 24.9 24.3 0.6

250 27.4 26.0 1.4

315 30.8 29.5 1.3

400 38.7 35.7 3.0

500 54.6 52.0 2.6

630 69.9 68.1 1.8

800 77.5 75.7 1.8

1000 70.0 69.3 0.7

1250 64.1 64.3 (0.3)

1600 72.8 72.3 0.5

2000 69.8 70.3 (0.5)

2500 74.8 74.4 0.4

3150 71.3 72.1 (0.8)

4000 68.5 70.4 (2.0)

5000 69.0 71.1 (2.1)

6300 70.8 72.6 (1.9)

8000 73.4 74.8 (1.4)

10 000 80.5 79.5 1.0

Total 84.9 84.6 0.4
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cylinder were not rigid, and therefore may have radiated

noise which contributed to the sound power measured by

ISO 3741. The experimental setup of the cylinder also

included a plywood mount, a turntable, and a shaker, each

of which could have vibrated from contact with the cylinder.

These surfaces were not measured using the SLDV, thus

any contribution they made to sound power would be mea-

sured by ISO 3741 but not by the VBRM method.

V. CONCLUSIONS

After a brief review of the concept of radiation resis-

tance matrices and their uses, a derivation of the cylindrical

radiation resistance matrix was presented. This produced a

full, analytical expression for the matrix, which can be used

in sound power calculations. The radiation modes computed

from this matrix were shown to match multipole trends at

low frequencies, as would be expected from canonical radia-

tion modes for other geometries. Numerical methods to

evaluate the non-closed form equations were presented.

Following the derivation of the cylindrical radiation

resistance matrix, sound power was computed for analytical

simply supported shell velocities using the VBRM method

with this matrix. This power was compared to that calcu-

lated by BEM, which is treated as a benchmark. These

results showed very good agreement between 0Hz and

4 kHz with discrepancies of less than 1.5 dB appearing in

some higher frequency bands.

Experimental surface velocity measurements of an

unbaffled cylinder were collected using an SLDV and the

sound power was determined using the VBRM method and

the cylindrical radiation resistance matrix. The sound power

was also measured using ISO 3741. These experimental

results showed good agreement through the 10 kHz one-

third-octave band. Between the 200Hz and 10 kHz one-third

octave bands the mean difference in the sound power

obtained using ISO 3741 and the VBRM method was 0.3 dB

with a standard deviation of 1.6 dB. The maximum differ-

ence between the two methods in any one-third octave band

was 2.1 dB which occurred at the 5 kHz one-third octave

band.

The results of the numerical simulations and the experi-

mental work presented in this paper have shown that the

cylindrical radiation resistance matrix developed in the

paper, implemented into the VBRM method, allows for the

sound power measurement of baffled cylinders. In addition,

the results presented here indicate that a radiation resistance

matrix developed for cylinders with infinite cylindrical baf-

fles may accurately compute power for finite unbaffled cyl-

inders, and that an exact match of the radiation resistance

matrix to the acoustic conditions may not be required.
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