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ABSTRACT
Surveys in the next decade will deliver large samples of galaxy clusters that transform
our understanding of their formation. Cluster astrophysics and cosmology studies will
become systematics limited with samples of this magnitude. With known properties,
hydrodynamical simulations of clusters provide a vital resource for investigating po-
tential systematics. However, this is only realized if we compare simulations to ob-
servations in the correct way. Here we introduce the Mock-X analysis framework, a
multiwavelength tool that generates synthetic images from cosmological simulations
and derives halo properties via observational methods. We detail our methods for gen-
erating optical, Compton-y and X-ray images. Outlining our synthetic X-ray image
analysis method, we demonstrate the capabilities of the framework by exploring hy-
drostatic mass bias for the IllustrisTNG, BAHAMAS and MACSIS simulations. Using
simulation derived profiles we find an approximately constant bias b ≈ 0.13 with clus-
ter mass, independent of hydrodynamical method or subgrid physics. However, the
hydrostatic bias derived from synthetic observations is mass-dependent, increasing to
b = 0.3 for the most massive clusters. This result is driven by a single temperature fit
to a spectrum produced by gas with a wide temperature distribution in quasi-pressure
equilibrium. The spectroscopic temperature and mass estimate are biased low by cooler
gas dominating the emission, due to its quadratic density dependence. The bias and
the scatter in estimated mass remain independent of the numerical method and sub-
grid physics. Our results are consistent with current observations and future surveys
will contain sufficient samples of massive clusters to confirm the mass dependence of
the hydrostatic bias.

Key words: methods: numerical – galaxies: clusters: general – galaxies: clusters:
intracluster medium – X-rays: galaxies: clusters

1 INTRODUCTION

Galaxy clusters form from the largest amplitude fluctua-
tions present in the early Universe. Growing hierarchically
over cosmic time as gravity draws in gas, stars, dark mat-
ter and other collapsed structures, galaxy clusters are the
most massive collapsed objects we encounter at the cur-
rent epoch. The distribution of galaxy clusters observed as
a function of mass and redshift depends strongly on the
initial spectrum and growth of the primordial fluctuations
(e.g. Davis et al. 1985; Peacock & Heavens 1985; Bardeen
et al. 1986). Therefore, clusters have the potential to place
stringent constraints on the fundamental cosmological pa-
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rameters that describe the Universe (e.g. Allen et al. 2011;
Kravtsov & Borgani 2012), including the nature of dark en-
ergy (e.g. Weinberg et al. 2013). However, a prerequisite for
cluster cosmology studies is well characterized observable-
mass relations (e.g. Reiprich & Böhringer 2002; Vikhlinin
et al. 2003; Giodini et al. 2013). Given that dark matter
comprises ∼ 85 per cent of most clusters, mass estimates
are difficult and require very high-quality data. Addition-
ally, as galaxy clusters collapse the galaxies residing within
them grow and evolve via a range of astrophysical processes,
such as radiative cooling, star formation, supernovae and the
energetic outbursts of supermassive black holes. These pro-
cesses continually shape the cluster’s baryonic components,
making many observables a complex interplay of both cos-
mology and astrophysics. Therefore, for cluster cosmology
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2 D. J. Barnes et al.

studies a detailed understanding of both the mass estimate
and observed properties are critical.

Galaxy clusters have proven to be an invaluable tool in
placing relatively competitive constraints on fundamental
cosmological parameters (e.g. Mantz et al. 2014; de Haan
et al. 2016; Bocquet et al. 2019), which includes dark en-
ergy, the summed neutrino masses (e.g. Mantz et al. 2015a;
Madhavacheril et al. 2017) and modifications to gravity (e.g.
Okabe et al. 2013; Wilcox et al. 2015). Additionally, the con-
straints provided by clusters are often orthogonal to those
produced via other methods. Due to the high-quality data
required for reliable mass estimation, many studies are cur-
rently limited by statistical errors due to small sample sizes.
However, the current decade will see a transformation in
galaxy cluster observations. Surveys from facilities such as
Euclid (Laureijs et al. 2011), LSST (LSST Science Collab-
oration et al. 2009), e-Rosita (Merloni et al. 2012), SPT-
3G (Benson et al. 2014) and the Simons Observatory (Ade
et al. 2019) will yield samples with > 105 objects, orders of
magnitude larger than currently available. Combined with
extensive follow-up programs, these surveys will provide a
detailed, multiwavelength 10 Gyr picture of the growth and
evolution of clusters. In this new regime of precision cluster
cosmology, systematic uncertainties will dominate statisti-
cal errors. Therefore, to realise the potential of galaxy clus-
ters as precision probes of cosmology and to maximise the
scientific return from future surveys we require a thorough
examination of all potential sources of systematics.

Numerical simulations provide a vital resource in this
regard: galaxy clusters with exactly known properties. Cos-
mological simulations have now matured to the point that
many independent groups have simulated either a suffi-
ciently large volume or performed targeted zoom simula-
tions that yield large samples of realistic galaxy clusters, i.e.
their properties are broadly matched with observed clusters
(e.g. Planelles et al. 2013; Le Brun et al. 2014; Pike et al.
2014; McCarthy et al. 2017; Barnes et al. 2017a,b; Springel
et al. 2018; Henden et al. 2018; Cui et al. 2018; Tremmel
et al. 2019). Lacking both the computational power and a
detailed understanding of the physics, simulations model the
astrophysical processes known to be important in structure
formation in a subgrid manner and calibrate the relevant free
numerical parameters on key observational scaling relations,
such as the stellar mass-halo mass or gas mass-halo mass re-
lations (e.g. Vogelsberger et al. 2014a; Schaye et al. 2015;
Pillepich et al. 2018a; Davé et al. 2019). Therefore, indepen-
dent models may produce similar global effective behaviours,
such as the formation of a quiescent galaxy population or the
expulsion of baryons from massive haloes, but they can vary
dramatically in the details of how this behaviour is realised.
Although simulations may not capture the full picture of
galaxy and structure formation, the plethora of statistically
large simulated galaxy cluster samples provide an excellent
resource for exploring systematics that have the potential to
impact cosmological constraints from future surveys.

However, it is well known that the direct comparison
of simulations to observational data is intrinsically flawed, a
significant challenge at X-ray wavelengths (e.g. Nagai et al.
2007; Khedekar et al. 2013). The impact of membership,
projection effects, multi-temperature structures, and con-
taminating foregrounds and backgrounds complicate any in-
sights gained from direct comparisons. To overcome these

difficulties, especially at X-ray wavelengths, there have been
efforts to create synthetic observations of simulation data
(e.g. Rasia et al. 2008; Heinz et al. 2011; Chluba et al. 2012;
Biffi et al. 2013; ZuHone et al. 2014; Torrey et al. 2015).
Synthetic images are produced by projecting the calculated
emission spectrum of a source along a chosen line of sight,
convolving with the instrumental response and adding any
required backgrounds. However, many synthetic observation
codes simply produce the image. Rather, to quantify any
bias or scatter introduced during an observation we require
a self-consistent framework that produces images and then
derives quantities from them in a manner consistent with
observational techniques. A comparison of synthetic-image-
derived quantities to those derived directly from the simula-
tion has the potential to highlight systematics and quantify
the scatter introduced by analysis techniques (e.g. Ruppin
et al. 2019b).

In this paper we introduce Mock-X, an analysis frame-
work designed to derive observed properties from multi-
wavelength synthetic images of numerical simulations. De-
signed to explore the systematics that may impact cosmo-
logical constraints from future surveys, it yields optical,
Compton-y and X-ray images of simulated galaxy clusters
and analyses them in a manner consistent with observational
techniques. We will detail how synthetic images are gener-
ated from a numerical simulation and how we derive directly
observable and reconstructed properties from these images.
Given that one of the most significant systematics is the
modelling of baryonic astrophysical processes, the frame-
work is designed to be agnostic to the numerical simulation
used as input. To demonstrate the capabilities of Mock-
X, we then present a study of bias introduced by measur-
ing cluster masses from synthetic X-ray observations under
the assumption of hydrostatic equilibrium using the Illus-
trisTNG, BAHAMAS and MACSIS simulations. We explore
the impact of projection on recovered mass and examine how
the bias and scatter in estimated mass varies as a function
of cluster mass. In future work, we will explore the redshift
evolution of the mass bias (Kannan et al. in prep.), study
the multitude of criteria used to define relaxed clusters (Cao
et al. in prep.), examine the scatter and covariance of clus-
ter observables (Jorgensen et al. in prep.), and analyze the
impact of choosing a cluster centre (Barnes et al. in prep.).

The rest of this paper is structured as follows. In Sec-
tion 2 we provide a brief description of the simulations used
throughout this work, outline our sample selection criteria,
present how the synthetic images are produced and detail
our approach to deriving the thermodynamic profiles and
mass estimates of galaxy clusters from synthetic X-ray im-
ages. We then examine the bias introduced by estimating
cluster masses assuming that they are in hydrostatic equi-
librium in Section 3, comparing to bias found in recent ob-
servational studies, exploring the scatter in estimated mass,
and examining the impact of cluster projection. In Section
4, we study how the assumption of spherical symmetry im-
pacts the recovered mass estimate and how selecting relaxed
cluster subsets impacts the result. Finally, in Section 5 we
examine why the profiles from synthetic X-ray images yield
a mass-dependent hydrostatic bias and we present our con-
clusions in Section 6.
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2 METHODS

In this Section, we outline our numerical approach. First, we
briefly detail the simulations used throughout this work and
the halo selection method. We then define quantities that
are computed directly from the simulations, before outlin-
ing the methods used for generating synthetic images for
each halo. Finally, we summarize the analysis method for
estimating cluster masses from synthetic X-ray images, in-
cluding the derivation of the thermodynamic profiles from
the images, the chosen deprojection method and the mass
estimation method. We note that the chosen X-ray image
analysis method is not unique and is one combination of
many possible choices (e.g. Ettori et al. 2013). However, the
method outlined below is sufficiently computationally effi-
cient to determine masses for the ∼ 14, 500 cluster projec-
tions used in this work.

2.1 Simulated cluster samples

One of the most significant systematics is our incomplete
knowledge of the physical processes that drive galaxy for-
mation. Combined with the limited dynamic range afforded
by finite computational resources, this necessitates the “sub-
grid” approach adopted by all numerical simulations that
model galaxy formation on cosmological scales. A significant
step forward in the last decade has been the development of
calibrated subgrid galaxy formation models by independent
groups. Calibrated subgrid models adjust their numerical
free parameters until they match a limited set of key ob-
servational relations, such as the stellar mass function or
gas mass-halo mass relation. Although most models repro-
duce the overall effects of key astrophysical processes, like
galactic winds or the formation of the quiescent galaxy pop-
ulation, the detailed implementation can vary dramatically,
such as the feedback channels for stars and active galactic
nuclei (AGN). Therefore, throughout this work, we make
use of three numerical simulations to explore the impact
of different subgrid models and other associated numerical
choices, such as hydrodynamic scheme and numerical resolu-
tion. Below, we briefly describe the subgrid models employed
by these simulations but refer the reader to the relevant pa-
pers for a more detailed explanation. Key properties of the
simulations used in this work are summarised in Table 1.
We note that the small differences in adopted cosmologies
between the simulations have a negligible impact on the re-
sults presented in this paper. We then outline the sample
selection method applied to all simulations.

2.1.1 IllustrisTNG

The IllustrisTNG project (Marinacci et al. 2018; Naiman
et al. 2018; Nelson et al. 2018; Pillepich et al. 2018b; Springel
et al. 2018) is the successor of the Illustris project (Vogels-
berger et al. 2014b,a; Genel et al. 2014; Sijacki et al. 2015).
The updated galaxy formation model (Pillepich et al. 2018a;
Weinberger et al. 2017) has been shown to reproduce a wide
range of observable properties from dwarf galaxies to cluster
scales. In particular, for galaxy clusters, it has been shown
to reproduce the metal content of the ICM (Vogelsberger
et al. 2018) and yield reasonable cool-core fractions at low-
redshift (Barnes et al. 2018). In this work, we make use of all

Table 1. Table summarising key properties of the different nu-
merical simulations used throughout this work. From left to right

the columns present the simulation, (target) gas mass, gas soften-
ing length, dark matter mass, dark matter softening length and

the number of clusters (projections) selected at z = 0.1, respec-

tively.

Simulation mgas εgas mDM εDM Nclusters (Nproj)
[M�] [kpc] [M�] [kpc] [M200 ≥ 1014 M�]

TNG300-
l1

1.1×107 0.37 5.9×107 1.48 250 (1500)

TNG300-
l2

8.8×107 0.74 4.7×108 2.95 250 (1500)

TNG300-
l3

7.0×108 1.48 3.8×109 5.90 242 (1452)

BAHAMAS 1.2×109 5.96 6.6×109 5.96 1994 (11964)
MACSIS 1.2×109 5.96 6.6×109 5.96 390 (2340)

three resolution levels (L1, L2, and L3) of the largest volume
simulation - TNG300, a periodic cubic volume with a side
length of 302.6 Mpc. All IllustrisTNG simulations use a cos-
mological model whose parameters are chosen in accordance
with the Planck Collaboration et al. (2016a) constraints:
Ωb = 0.0486, ΩM = 0.3089, ΩΛ = 0.6911, σ8 = 0.8159,
H0 = 100 h = 67.74 km s−1 Mpc−1, and ns = 0.9667.

Employing an updated version of the Illustris galaxy
formation model (Vogelsberger et al. 2013; Torrey et al.
2014), the IllustrisTNG subgrid model includes a new ra-
dio mode AGN feedback scheme (Weinberger et al. 2017),
a re-calibrated SN wind model and an extended chemical
evolution scheme (Pillepich et al. 2018a), magnetic fields
(Pakmor & Springel 2013) and refinements to the numer-
ical scheme that improve its convergence properties (Pak-
mor et al. 2016). The magneto-hydrodynamics equations are
evolved with the moving-mesh code Arepo (Springel 2010).
The dark matter particles have a mass, mDM, of 5.9×107 M� ,
4.7 × 108 M� and 3.8 × 109 M� for the level 1, 2 and 3 res-
olutions, respectively. The collisionless particles, i.e. dark
matter and stars, have softening lengths, εDM, of 1.48 kpc,
2.95 kpc and 5.90 kpc for levels 1, 2 and 3 respectively, which
is a fixed physical length for z ≤ 1 and comoving for z > 1.
The gas cells have a target mass, mgas, of 1.1 × 107 M� ,

8.8 × 107 M� and 7.0 × 108 M� , and an adaptive comoving
softening length, εgas, that reaches a minimum of 0.37 kpc,
0.74 kpc and 1.48 kpc for levels 1, 2 and 3, respectively. We
note that the subgrid model for IllustrisTNG is calibrated
once, for the highest resolution TNG100 volume, and re-
mains fixed across the three different resolution levels, en-
abling a convergence study with chosen numerical resolution.

2.1.2 BAHAMAS

The BAHAMAS project (McCarthy et al. 2017) is a suite
of periodic cubic volumes with a side length of 596 Mpc that
vary both their cosmological parameters and the free param-
eters of the subgrid galaxy formation model. An evolution of
the Cosmo-OWLS project (Le Brun et al. 2014), the project
was designed to yield large samples of realistic simulated
clusters for cluster cosmology studies. The galaxy formation
model was calibrated to ensure that the baryonic content of
galaxy clusters is well matched to observed clusters, and

MNRAS 000, 1–20 (2018)
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the reference calibration of the model reproduces a wide
range of observed scaling relations. In the work, we make
use of the reference Planck cosmology run. This assumes
a flat ΛCDM cosmology constrained by Planck Collabora-
tion et al. (2014): Ωb = 0.0490, ΩM = 0.3175, ΩΛ = 0.6825,
σ8 = 0.834, H0 = 100 h = 67.11 km s−1 Mpc−1, and ns = 0.9624.

With its origins in the OWLS (Schaye et al. 2010) and
GIMIC (Crain et al. 2009) projects, BAHAMAS evolves the
hydrodynamics equations using traditional SPH. The galaxy
formation model includes radiative cooling (Wiersma et al.
2009a), stochastic, metallicity independent star formation
that by construction reproduces the Kennicutt-Schmidt re-
lation (Schaye & Dalla Vecchia 2008), mass and metal return
due to stellar evolution (Wiersma et al. 2009b), kinetic wind
supernovae feedback (Dalla Vecchia & Schaye 2008), and the
seeding, growth and feedback from supermassive black holes
(Springel et al. 2005; Booth & Schaye 2009). The initial gas
particle mass is 1.21 × 109 M� and the dark matter particle
mass is 6.63 × 109 M� . The gravitational softening length is
set to 5.96 comving kpc for z > 3 and to the same value in
physical kpc for z ≤ 3. The minimum smoothing length of the
SPH kernel is set to a tenth of the gravitational softening.

2.1.3 MACSIS

The rarity of massive galaxy clusters is such that even a vol-
ume of ∼ 6003 Mpc3 is too small to contain the largest clus-
ters expected to form in a ΛCDM cosmology. The MACSIS
project (Barnes et al. 2017a) was designed to simulate these
missing clusters. From a dark matter only periodic cube with
a side length of 3.2 Gpc, all haloes identified by a standard
Friend-of-Friends (FoF) percolation algorithm whose mass
MFoF > 1015 M� were grouped in logarithmically spaced bins
with a width ∆ log10(MFoF) = 0.2. All haloes in a bin were se-
lected if the number of objects in the bin was less than 100,
otherwise, 100 haloes were selected from the bin at random.
The end result of this process is a sample of 390 massive
galaxy clusters.

Each cluster in the sample was resimulated at increased
resolution via the zoomed simulation technique (Katz &
White 1993; Tormen et al. 1997), with the high-resolution
region free of contaminating tidal particles out to 5 r500

1.
The BAHAMAS galaxy formation model was used for the
full physics resimulations and the mass and spatial res-
olution was chosen to be identical to the original BA-
HAMAS volume. The cosmology of the MACSIS simula-
tions was not altered from the parent dark matter vol-
ume, which assumes a marginally different flat ΛCDM cos-
mology constrained by Planck Collaboration et al. (2014):
Ωb = 0.04825, ΩM = 0.307, ΩΛ = 0.693, σ8 = 0.8288,
H0 = 100 h = 67.77 km s−1 Mpc−1, and ns = 0.9611. The com-
bination of MACSIS and BAHAMAS spans the complete
mass range of galaxy clusters expected to form in a ΛCDM
cosmology. We note that the MACSIS sample suffers from
selection effects, due to haloes being selected by Friends-of-
Friends mass and the analysis below using spherical over-

1 The radius r500 denotes the radius of sphere that encloses a
mass M500 and has a mean density equal to 500 times the critical

density of the Universe.

density masses. We highlight where this potentially impacts
the results presented.

2.1.4 Sample selection

All simulations used in this work identified haloes via a stan-
dard Friend-of-Friends algorithm run on the dark matter
particles, with a typical value of the linking length in units
of the mean interparticle separation (b = 0.2). Baryonic par-
ticles/cells are attached to haloes by locating their nearest
dark matter particle. Self-bound structures were then identi-
fied by via subfind (Springel et al. 2001; Dolag et al. 2009),
with the most massive subhalo in each FoF group defined
as the central object, and the remaining self-bound struc-
tures being defined as subhaloes. For all simulations, clus-
ters were selected from the snapshot closest to z = 0.1 via
the mass cut M500 ≥ 1014 M� . With this threshold, the sim-
ulated cluster samples contain 250, 250, 242, 1994, and 390
clusters for TNG300-1, TNG300-2, TNG300-3, BAHAMAS
and MACSIS, respectively. Throughout this work, we define
the cluster centre as the potential minimum, which is cho-
sen to be the most bound particle identified by the subfind
algorithm.

2.1.5 Properties derived from the simulation

In this work, we use or compare to some cluster properties
derived directly from the simulations. Three-dimensional
cluster centric radial density and mass-weighted tempera-
ture profiles were computed in the range 0 − 1.5 r500,sim by
binning the gas cells/particles in 50 linearly spaced radial
bins, where the subscript sim denotes that the value was pro-
duced by the subfind algorithm. The mass-weighted tem-
perature is defined as

Tmw =

∑
k mkTk∑
k mk

, (1)

where mk is the mass of the kth cell/particle, T is the tem-
perature and the sum runs over all particles in a given radial
bin. Additionally, to ensure that the fitting of APEC tem-
plates to synthetic X-ray spectra is computationally efficient
we compute 2D density, temperature and metallicity cluster
centric radial profiles by projecting the cells/particles along
the axis of interest and then binning them into 50 linearly
spaced radial bins over 0 − 1.5 r500,sim.

We compute a theoretical criterion for defining a cluster
as relaxed: the energy ratio Erat. The energy ratio (Barnes
et al. 2017b) is the kinetic energy of the gas within the clus-
ter divided by its thermal energy. When clusters collapse or
undergo significant mergers there will be substantial energy
stored in the random kinetic motions of the gas. Over time,
this energy is converted to thermal energy via weak shocks
(e.g. Kunz et al. 2011) and potentially turbulent cascades
(Zhuravleva et al. 2014) as the cluster relaxes. Therefore, re-
laxed clusters should have a lower ratio of kinetic to thermal
energy relative to disturbed objects. We measure this ratio
within r500,sim by removing the bulk motion of the cluster
and then computing the ratio of the sum of kinetic energy
to the sum of thermal energy for all gas cells/particles that
lie within the 3D aperture

Erat = Ekin,500 / Ethm,500 . (2)

MNRAS 000, 1–20 (2018)
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In this work, we define as cluster as relaxed if it Eratio < 0.1.
Unless otherwise stated, all other cluster properties used in
this work are derived from the synthetic images.

2.2 Synthetic image generation

For every cluster in the simulation samples, we generate syn-
thetic images that form the basis of our analysis. The centre
of every image is taken to be the projection of the potential
minimum. We note that how to define the centre of a clus-
ter and how derived quantities depend on this choice (e.g.
Ruppin et al. 2019a) is still an open question, but we leave
this issue to future work.

To investigate the impact of projection effects we create
6 projections of every halo. We create 3 projections along
x, y and z. In addition, we characterize the shape of every
cluster via the mass distribution tensor M, or equivalently
the inertia tensor I (e.g. Bett et al. 2007). Modelling the
cluster as a uniform ellipsoid, the mass distribution tensor
is a square matrix with components:

Mi j =

N200∑
k=1

mk rk,i rk, j , (3)

where mk is the mass of the kth cell/particle, rk,i is the
ith component of the position vector rk in cluster centric
coordinates and the sum is over the number of particles,
N200, within r200,sim. The square roots of the eigenvalues A, B
and C of matrixM are the lengths of the semiprincipal axes,
with the convention that A ≥ B ≥ C. Via the mass tensor,
we rotate the particle/cell distribution for every cluster and
produce a further 3 projections along the semi-principal axes
A, B and C. Additionally, we parameterize how spherical

every cluster is by computing its sphericity s = (C/A)
√

3,
where a perfectly spherical cluster would have s = 1.

A schematic of our approach is shown in Fig. 1 for the
IllustrisTNG level 1 simulation, with the left panel showing a
1 Mpc depth slice through the gas column density at z = 0.1.
In the centre of the image is the most massive cluster in the
simulation volume, with the red square denoting 3 r500,sim.
The right-hand column of three images shows a synthetic
bolometric optical luminosity image, the Compton-y image
and a smoothed soft-band (0.5−2.0 keV) X-ray photon counts
image of this cluster projected down the z axis. The bottom
left and bottom middle panels show the X-ray counts pro-
jected down the longest (A) and shortest (C) axes through
the cluster.

We note that in this work we assume perfect signal to
noise, i.e. the synthetic images have no background. For the
X-ray images explored in this work the lack of background
produces a minor reduction in the scatter but does not bias
the results (e.g. Rasia et al. 2008). Therefore, we leave the
description of how we generate background noise to future
work where it is relevant.

2.2.1 Optical

Following previous work (e.g. Torrey et al. 2015), we gener-
ate optical images by treating every star particle as a stellar
population with a single metallicity and age given by the
simulation and assuming a Chabrier (2003) initial mass func-
tion. For each star particle its bolometric luminosity and its

luminosity in the Sloan Digital Sky Survey u, g, r, i, z bands
is computed. In principle, the light from every star particle
should be attenuated by intervening dust and gas. To accu-
rately model this obscuration we require detailed knowledge
of the gas and dust distributions on sub-parsec scales and
should perform detailed radiative transfer calculations. How-
ever, all of the simulations used in this work lack the spatial
resolution and the self-consistent dust physics to perform
such calculations. Instead, we estimate the impact of dust
obscuration by calculating the column density of dust along
the line of sight from every star (e.g. Hopkins et al. 2005;
Wuyts et al. 2009). We note that, given the limited spatial
resolution of the simulations and the treatment of the in-
terstellar medium as an effective single-phase medium, this
is still a relatively naive calculation of the optical depths to
star particles.

For all star particles with the FoF group, the stellar
light is then projected along the relevant axis and smoothed
to create maps in all six bands. The smoothing length of ev-
ery star particle of interest was computed using a k-d tree.
Throughout this project we determine a star’s smoothing
length by computing the distance to the 32nd nearest gas
neighbour. Potentially, the choice of smoothing length can
subtly alter the shapes of galaxies. However, for the cluster
scale maps generated here, we find that the choice smooth-
ing length has a negligible effect. For our fiducial maps, we
assume an SDSS-like angular pixel resolution of 0.24 arcsec
and use a square field of view of length 3r500.

2.2.2 Compton-y

The free electrons in the hot plasma of the ICM interact with
the photons of the cosmic microwave background (CMB) via
inverse Compton scattering, shifting the energy distribution
of the CMB from its black-body spectrum and producing the
Sunyaev-Zel’dovich (SZ) effect. In the Mock-X framework
we focus on the non-relativistic, thermal SZ effect. Proposed
in 1970 (Sunyaev & Zeldovich 1972), the first cluster was
discovered via the SZ effect was presented in Staniszewski
et al. (2009) and it is now routinely used to build large cat-
alogues of galaxy clusters (e.g. Reichardt et al. 2013; Has-
selfield et al. 2013; Planck Collaboration et al. 2016b; Bleem
et al. 2019). An advantage of SZ selected cluster samples is
that they are relatively unbiased to the presence of a cool-
core (Lin et al. 2015). To compute realistic images of the
SZ effect, in principle one should compute the response of
every gas cell/particle at several frequencies and extract the
Compton-y signal using a match filtering approach. How-
ever, for this initial set of projects, we only desire the inte-
grated Compton-y signal and centre derived from it. There-
fore, we directly compute the expected Compton-y signal ex-
pected for every gas cell/particle. The projected Compton-y
signal along a given line of sight, l, is proportional to the
projected electron pressure

y =
σT

mec2

∫
Pe(l)dl , (4)

where σT is the Thompson scattering cross-section, me is
the mass of an electron, c is the speed of light, Pe = nekBT is
the electron pressure, ne is the electron number density, kB
is the Boltzmann constant and T is the temperature. The
Compton-y parameter is computed for all gas cells/particles

MNRAS 000, 1–20 (2018)



6 D. J. Barnes et al.

Figure 1. Mock-X schematic from the IllustrisTNG 3003 Mpc3 volume. Top left : Gas density slice of 1 Mpc width through the simulation
volume centred on the most massive cluster at z = 0.1. The red square denotes the 3 r500,sim square field-of-view used for synthetic
image generation. Top right : Synthetic optical image of the cluster showing the bolometric luminosity of the star particles. Middle right :

Synthetic Compton-y image for a NIKA2-like facility. Bottom row : Synthetic X-ray images for a Chandra-like telescope projected along
the shortest axis (C, left), longest axis (A, middle) and the x axis (right) of the simulation volume. The dashed blue line in the synthetic

image panels denotes r500,sim.

within the FoF group and then projected down the relevant
axis to yield Compton-y maps. We create square maps with a
physical side length of 3 r500 for all clusters with a resolution
of 11 arcsec, similar to the spatial resolution of current SZ
facilities like NIKA2 (Adam et al. 2018) and MUSTANG-2
(Dicker et al. 2014).

2.2.3 X-ray

The impact of multi-temperature structure, gas clumping
and projection effects are particularly relevant for X-ray
observations and synthetic observations are a vital tool in
the faithful comparison of simulations to observations. Our
method for generating synthetic X-ray observations mirrors
many previous works in this area (e.g. Gardini et al. 2004;
Nagai et al. 2007; Rasia et al. 2008; Heinz & Brüggen 2009;
Biffi et al. 2012; ZuHone et al. 2014, Pop et al. in prep.).
However, we have optimised it for the large sample sizes
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used in this work and the high resolution of some clusters,
where a single cluster can contain > 107 resolution elements
within r500.

Similar to previous work (e.g. Le Brun et al. 2014;
Barnes et al. 2017a), we begin by generating an X-ray spec-
trum for every gas particle/cell within the FoF group via a
lookup table of spectral templates. We generate the table us-
ing the Astrophysical Plasma Emission Code (apec; Smith
et al. 2001) via the pyatomdb module with atomic data
from atomdb v3.0.9 (last described in Foster et al. 2012).
For the 11 chemical elements tracked by the simulations we
create a spectral table that spans the temperature range
106 − 109 K with a spacing ∆ log10(T/K) = 0.02. The energy
range and resolution of the spectra depend on the desired
instrument, for example, the table of an instrument simi-
lar to Chandra ACIS-I has an energy range of 0.5 − 10.0 keV
with an energy resolution of 150 eV. Improving on previous
work, the spectra are convolved with the corresponding re-
sponse matrix and the effective area for the desired energy
bins is taken from the instrument’s ancillary response file.
We account for galactic absorption using the wabs model
(Morrison & McCammon 1983), assuming a fixed column
density of nH = 2×1020 cm−2. Via this method, it is trivial to
precompute spectra lookup tables for current, e.g. Chandra,
XMM, eRosita, and proposed, e.g. Athena, Lynx, AXIS, fa-
cilities and we demonstrate this by computing the expected
emission for a 1.7 × 1014 M� cluster at z = 1 for current and
(potential) future missions in Fig.2. We have deliberately se-
lected a cluster below the detection threshold of the eRosita
mission, predicting it would see 7 counts within r500 for a
100 ksec exposure, and the power of future missions is clear,
with a significant number photons expected out to r500 for
Athena, AXIS and Lynx. Unless otherwise stated, through-
out the remainder of this work we assume an instrument
similar to Chandra ACIS-I.

For every particle/cell we then compute a total spec-
trum using its temperature, density and metal abundance
by summing over the chemical elements tracked by the sim-
ulations, which all track the same elements. We note that we
discard the final “element” tracked by TNG that ensures the
total mass of the elements is equal to the mass of the gas cell.
If a particle/cell breaches any of the following conditions we
exclude it from the analysis: i) its temperature is less than
106 K, ii) its star formation rate is non-zero (i.e. it is follow-
ing an enforced equation of state), or iii) its net cooling rate
is positive (i.e. it is increasing in temperature). These crite-
ria typically remove a few per cent of the total cells/particles
within a cluster, ensuring that gas that would not be X-ray
emitting or is following an enforced equation of state (i.e.
eligible to form stars) is excluded from the image generating
process. Substructures are removed at this stage of image
production via subfind, with any gas cells/particles bound
to any structure other then the central object removed.

The spectrum for every particle is then projected down
the relevant axis and smoothed onto a square grid with a
physical side length of 3r500. In this work, we neglect is-
sues such as chip gaps, the requirement of stitching multi-
ple pointings together, or that the instrument response can
vary across the focal plane. The pixel resolution of the syn-
thetic image is set by the angular resolution of the chosen
instrument, which we set to 0.5 arcsec for a Chandra-like in-
strument. Each image pixel stores the combined spectrum of

all particles smoothed onto it. This creates a 3D datacube,
where the first two dimensions are the pixel locations on the
image map and the third dimension is the X-ray spectrum
of the pixel. We then assume an exposure time of 100 ksec
to generate the expected photons in each pixel, though with
perfect signal to noise this step is academic for this study.

The final result of the synthetic image generation pro-
cess is a set of images for every simulated cluster: 6 optical
images, a Compton-y image and an X-ray image for each of
the 6 chosen projection axes. For the remainder of this work,
we focus on the estimation of cluster masses from synthetic
X-ray images and spectra, assuming hydrostatic equilibrium.
We now outline our analysis method for extracting the ther-
modynamic profiles of clusters from synthetic X-ray images
and how they are used to estimate the mass of the cluster.

2.3 Hydrostatic masses from Synthetic X-ray
images

We now detail how cluster masses are estimated from the
synthetic X-ray images. We begin by noting that the ap-
proach presented below is by no means a unique approach
to extracting estimated cluster masses from thermodynamic
profiles (e.g. Pointecouteau et al. 2005; Nulsen et al. 2010;
Sanders et al. 2018). We direct the interested reader to Ettori
et al. (2013) for a review of advantages and disadvantages
of different approaches. The approach taken in this work is
designed to yield stable mass estimates in a manner that is
sufficiently computationally efficient to enable the analysis
of > 104 mock X-ray datacubes.

2.3.1 Gas density profiles

When computing the thermodynamic radial profiles we cen-
tre on the potential minimum of the cluster, defined as the
most bound particle identified by the subfind algorithm. We
extract the gas density profile of each datacube from its sur-
face brightness map in the energy band 0.7− 1.2 keV. In this
band, the emission is relatively insensitive to the gas tem-
perature and proportional to the square of the density. The
pixels are binned into 25 linearly spaced annuli in the range
0.0 − 1.5 r500. We then compute the median surface bright-
ness within each annulus. In agreement with previous work
(e.g. Zhuravleva et al. 2013), we find the median, relative
to the mean, to be more robust to the presence of accreting
material and the inhomogeneities found in the gas distribu-
tion at larger cluster centric radii (Nagai & Lau 2011; Vazza
et al. 2013; Roncarelli et al. 2013). We use the same apec
lookup table used to generate the datacubes, with the same
galactic absorption model and instrument response and ef-
fective area, to model the emission in each annulus as a thin
plasma. The emission measure is then related via

Norm =
10−14

4π [dA(1 + z)]2

∫
V

nenHdV , (5)

where dA is the angular diameter distance, ne is the electron
number density, and nH is the ion number density, where
we assume ne = 1.17nH (Anders & Grevesse 1989). The pro-
jected, 2D radial gas density profile is then computed from
the derived emission measure.
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Figure 2. Synthetic X-ray images of a cluster in the TNG300 level 1 volume at z = 1 for facilities like those currently available and
planned. We demonstrate the expected images from Chandra (top left), XXM (top middle), eRosita (top right), Athena (bottom left),

AXIS (bottom middle) and Lynx (bottom right) like instruments. The blue circle denotes r500,sim. We note the chosen cluster is below

the expected detection threshold of eRosita at this redshift, with 7 total photons predicted within r500,sim for an exposure of 100 ksec.
The power of future facilities is demonstrated by the significant increase in photons collected at larger radii.

2.3.2 Deprojection

The modelling of the surface brightness profile yields the 2D
emission measure and density profiles that require depro-
jection. Under the assumption of spherical symmetry, the
emission measure and density profiles can be deprojected
by computing the projected volume V of each spherical shell
onto each 2D annulus. The profiles are deprojected using the
L1 regularization method, a non-parametric method that is
built upon the work of Croston et al. (2006) and Ameglio
et al. (2007). For a given 2D emission measure profile E MP,
the values of the 3D emissivity profile ε are then given by
maximising the likelihood function

−2 logL = χ2 =
∑
(V × ε − E MP)2 + λ

∑���� ∂2 log ε
∂ log r2

���� , (6)

where Vi, j is the geometrical matrix volume of the jth shell
intercepted by the ith annulus, × denotes a matrix prod-
uct, and the sum is performed over all annuli. The second
derivative of the emissivity is computed numerically as the
derivative of ε(r). The first term on the right-hand side of
equation 6 for observations is typically divided by the un-
certainties, however a perfect knowledge of the 2D emission
measure profile is assumed throughout this work. The sec-
ond term on the right-hand side is a penalty term introduced
to kill spurious small-scale fluctuations in the recovered 3D

profile (Diaz-Rodriguez et al. 2017). The parameter λ de-
termines the degree of regularisation of the recovered pro-
file and setting it zero makes the method equivalent to the
onion-peeling technique (introduced in Kriss et al. 1983; Et-
tori et al. 2002, 2010).

We have compared this approach to the multiscale fit-
ting deprojection method presented in Eckert et al. (2016)
and Ghirardini et al. (2019). In general, we find good agree-
ment between the recovered 3D gas density profiles when
the two methods are applied to synthetic images of clusters
with more regular morphologies. However, we found that for
disturbed images the multiscale approach led to significantly
more smoothing of features in the density profile relative to
the 3D density profile produced directly from the simulation.
Additionally, the multiscale fitting approach for disturbed
clusters was found to be more computationally expensive
for disturbed clusters. Therefore, we adopt the L1 approach
for deprojection throughout this work.

2.3.3 Temperature profile extraction

To extract a temperature profile from a synthetic image, the
pixels were first binned into 25 linearly spaced annuli in the
range 0.0 − 1.5 r500. In each annulus, the pixel spectra were
summed to yield a single spectrum for each annulus. The
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spectrum was then modelled as a single-temperature plasma
with the temperature, emission measure and metallicity free
to vary. We leverage the 2D mass-weighted temperature,
emission measure and metallicity profiles extracted directly
from the simulation to provide an initial starting point for
the fit, leading to a significant increase in the computational
efficiency of our approach. The solar abundance of Anders
& Grevesse (1989) was assumed. To mimic the observations
more closely, each fit assumes an integration time of 100 ksec
to convert the spectrum from erg s−1 to photon count in each
energy bin, using the midpoint of the energy as the assumed
photon energy. The fit was then performed in the energy
range 0.5 − 10.0 keV for those energy bins that contained at
least 1 count, making use of spectra interpolated from the
APEC lookup table.

The method yields a spectroscopic temperature mea-
surement in each annulus, the combined result of fitting all
annuli produces the 2D temperature profile. This profile is
then deprojected using the projection matrix V weighted by
the emissivity produced when deprojecting the gas density
profile. Following Mazzotta et al. (2004) and Ghirardini et al.
(2019), the 2D spectroscopic temperature profile is weighted
in a spectroscopic-like fashion during the deprojection, i.e.

Tsl =

∑
n2

eT−1/2∑
n2

eT−3/2 . (7)

This yields a 3D spectroscopic temperature profile for each
synthetic image. The analysis produces spectroscopic mea-
surements of the thermodynamic profiles for every projec-
tion. Under the assumption that the cluster is in hydrostatic
equilibrium, we then compute an estimated mass for each
projection using the 3D profiles derived both directly from
the simulation and those computed from the synthetic X-ray
images.

2.4 Hydrostatic mass estimation

Deriving a cluster’s mass assuming spherical symmetry and
that it is in hydrostatic equilibrium is a well-established
technique. There have been many observational (e.g. Miy-
atake et al. 2019, and references therein) and theoretical
(e.g. Nelson et al. 2014; Biffi et al. 2016) studies that have
explored the bias induced by the required assumptions. Fol-
lowing Vikhlinin et al. (2006), the 3D gas density profile is
modelled via a modified β-model profile

nenH = n2
0

(r/rc)−α

(1 + r2/r2
c )3β−α/2

1
(1 + rγ/rγs )ξ/γ

, (8)

where the value of γ is fixed such that γ = 3 and unphysically
sharp density breaks are excluded via the condition ξ < 5.
The best-fit values obtained are then fed into the analytic
derivative of eq. (8) to yield a smoothly varying estimate of
the density gradient.

Additionally, the 3D temperature profiles are fit with
the general model

T3D(r) = T0tcool(r)t(r) , (9)

where T0 is a model parameter and

tcool(r) =
x + TminT0
(x + 1) , (10)

where x = (r/rcool)acool and

t(r) = r/rt[
1 + (r/rt)b

]c/b . (11)

The best fitting model parameters are again used in the
analytic derivative of eq. (9) to provide a smoothing varying
estimate of the gradient of the temperature.

The cumulative total mass profile of the projection is
then computed assuming hydrostatic equilibrium via

Mtot(< r) = rkBT(r)
Gµmp

[
d log ρg
d log r

+
d log T
d log r

]
, (12)

where r is the 3D radial cluster centric distance in Mpc, G
is the gravitational constant, µ = 0.59 is the mean molecular
weight and mp is proton mass. Given the cumulative mass
as a function of cluster centric radial distance, the density
profile of a given projection can then be computed. For a
given redshift and cosmology, the density is divided by the
critical density and r500,est is found by interpolating the pro-
file to the radius at which it crosses a value of 500. The
estimated cluster mass, M500,est, is then given by the sum-
ming the cumulative mass profile to the value of r500,est. De-
pending on the profiles used for the estimate, we label the
recovered mass and radius as follows. For thermodynamic
profiles extracted directly from the simulation, we denote
them as M500,hse and r500,hse, respectively, while for spectro-
scopic profiles extracted from the synthetic X-ray images we
label them as M500,x−ray and r500,x−ray, respectively. For each
cluster, we compute 6 mass estimate using the deprojected
spectroscopic profiles and 1 estimate from the mass-weighted
profiles.

2.5 Centroid shift criterion

The centroid shift criterion is used to classify clusters as dy-
namically relaxed and is computed from the surface bright-
ness maps of galaxy clusters. It has been used extensively
in the literature (e.g. Mohr et al. 1993; Thomas et al. 1998;
Poole et al. 2006; Kay et al. 2007; Maughan et al. 2008;
Böhringer et al. 2010; Rasia et al. 2013). The criterion mea-
sures the deviation of the X-ray centroid as the radius of
the chosen aperture reduces. The centroid shift measures
the circular symmetry of the X-ray emission and tests for
the presence of significant X-ray emission associated with
larger substructures. We compute the centroid shift via

w =
1

r500,sim

√∑
∆i − 〈∆〉
M − 1

, (13)

where ∆ is the separation of the centroids, the angle brackets
denote the average, and we compute the centroids in circular
apertures with radii in the range 0.15−1.0 r500,sim with steps
of 0.05 r500,sim. A cluster is classified as relaxed if w < 0.01
(e.g. Weißmann et al. 2013).

3 HYDROSTATIC MASS BIAS

We begin by exploring the bias induced by estimating clus-
ter masses assuming that they are in hydrostatic equilib-
rium. Throughout this work we define the bias as b = 1 −
M500,est/M500,sim, and we denote the subfind mass, M500,sim,
as the “true” cluster mass. Using density and temperature
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Figure 3. The median hydrostatic mass estimate to true mass (M500,sim) ratio as a function of true mass at z = 0.1 for estimates derived
from simulation (left) and synthetic X-ray image (right) profiles. We plot simulated samples from BAHAMAS (dark blue), MACSIS

(light blue), TNG300 level 1 (dark green), level 2 (medium green), and level 3 (light green). The shaded area denotes the 1σ scatter and

the dashed lines denote the median ratio where the number of clusters in a bin of width ∆ log10(M500,sim /M�) = 0.1 is less than 10. The
hydrostatic bias is relatively independent of true mass for profiles derived directly from the simulation but is clearly mass-dependent for

synthetic X-ray profiles.

profiles extracted from the simulation, we find that for Il-
lustrisTNG there is an excellent agreement in the ampli-
tude of the median bias for the highest resolution runs with
b = 0.11 ± 0.01 and b = 0.11 ± 0.01 for levels 1 and 2, respec-
tively. We find a decrease in the median bias for the lowest
resolution, with b = 0.05 ± 0.01 for level 3, but this differ-
ence is significantly smaller than the scatter in the popula-
tion. The uncertainty on the bias is computed via bootstrap
resampling the cluster populations 10, 000 times. The BA-
HAMAS sample yields a median bias of b = 0.13 ± 0.002, in
good agreement with the IllustrisTNG level 1 result. Finally,
the MACSIS sample yields a median bias of b = 0.15±0.003.
In the left panel of Fig. 3, we plot the ratio of the estimated
mass from simulation derived profiles to true mass as a func-
tion of true mass. All simulations show a significant scatter
in the estimated to true mass ratio, with TNG yielding a
slightly larger scatter relative to BAHAMAS at fixed mass.
The MACSIS sample yields a larger scatter relative to BA-
HAMAS, which may be due to the selection function of the
MACSIS haloes. We find no obvious trend of hydrostatic
bias with mass when using the thermodynamic profiles de-
rived directly from the simulation. The choice of numerical
resolution, hydrodynamic scheme and subgrid physics reas-
suringly appears to have minimal impact on the hydrostatic
bias recovered, under the assumption that the simulation is
being performed at, or near, the numerical resolution level
at which the subgrid model was calibrated.

If the spectroscopic density and temperature profiles,
estimated from synthetic X-ray projections, are used to
compute an estimated mass, we find that the IllustrisTNG

samples yield similar results, with a median bias of b =
0.10 ± 0.01, b = 0.12 ± 0.01 and b = 0.08 ± 0.01 for levels
1, 2 and 3, respectively. The BAHAMAS sample yields a
bias of b = 0.11 ± 0.003, consistent with the value from sim-
ulation derived profiles. However, the median bias of the
MACSIS sample increases to 0.25± 0.005. In the right panel
of Fig. 3, we plot the ratio mass estimated via spectro-
scopic profiles to true mass as a function of true mass and
we find that hydrostatic bias is now mass-dependent. For
low mass clusters (M500,sim < 3× 1014 M�) the bias is consis-
tent between the different samples, with TNG again yielding
slightly larger scatter. However, above this mass the hydro-
static bias begins to increase and for the most massive clus-
ters (M500,sim > 2 × 1015 M�) the bias is as large as b = 0.3.
Although lacking the statistics for a rigorous comparison, all
of the simulation samples show some evidence that the bias
is increasing with cluster mass. The mass dependence of the
hydrostatic mass bias is consistent with previous numerical
work that computed estimated cluster masses from spec-
troscopic profiles (Henson et al. 2017; Barnes et al. 2017b;
Pearce et al. 2020), although these works did not account
for the impact of projection. We now compare our results to
those of previous work.

3.1 Comparison to previous results

Observationally, there are many approaches to estimating a
cluster’s mass. Relative mass calibration is very common and
derives a cluster’s mass by equating an observable property,
such as X-ray temperature or integrated Compton-y signal,
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Figure 4. The median hydrostatic mass derived from X-ray im-
ages to true mass ratio as a function of true mass at z = 0.1 against

a collection of observed biases. The simulation lines styles are

the same as Fig. 3. The collection of observational points com-
pare hydrostatic mass estimates to weak lensing derived mass

estimates and are taken from Weighing the Giants (WtG) (von
der Linden et al. 2014), CCCP (Hoekstra et al. 2015), CS82-

ACT (Battaglia et al. 2016), LoCuSS (Smith et al. 2016), CLASH

(Penna-Lima et al. 2017), PSZ2LenS (Sereno et al. 2017), HSC-
Planck (Medezinski et al. 2018) and HSC-ACT (Miyatake et al.

2019). We find excellent agreement in the magnitude of hydro-

static bias between the simulated and observed samples. Addi-
tionally, the sample variance of the observations is well matched

to the scatter of the simulated sample.

to an observable-mass scaling relation. However, this method
is only possible once a scaling relation is calibrated via ab-
solute mass measurements. Absolute mass calibration mea-
surements typically require very high-quality observational
data. The member galaxies of a cluster can be used to es-
timate its mass, either through measuring the richness (e.g.
Yee & Ellingson 2003; Simet et al. 2017), i.e. the number of
galaxies present, or by using them as kinematic tracers of
the underlying potential (e.g. Diaferio & Geller 1997; Zhang
et al. 2011; Bocquet et al. 2015; Sereno & Ettori 2015; Gif-
ford et al. 2017). However, this approach is fundamentally
limited by determining cluster membership (e.g. Old et al.
2014) and the fact that theoretical studies have shown galax-
ies are biased tracers of the underlying potential, agreeing on
the size of the bias but not its sign (Munari et al. 2013; Ar-
mitage et al. 2018). A study of caustic mass estimates to hy-
drostatic mass estimates by Maughan et al. (2016) favoured
a hydrostatic bias of less than 10 per cent, though we caution
that a recent detailed study of the X-COP clusters found
caustic masses underestimate hydrostatic mass significantly
(Ettori et al. 2019).

With the advent of deep and wide optical surveys, weak
lensing, the statistical distortion of background galaxies due
to the intervening mass, has become the absolute cluster

mass estimator of choice. Using the weak lensing cluster
mass estimate as a measure of the true cluster mass, it is
possible to infer the bias induced by measuring a cluster’s
mass assuming it is in hydrostatic equilibrium. Though we
caution that theoretical studies have shown that weak lens-
ing mass estimates themselves typically underestimate clus-
ter masses by 5 − 10 per cent (e.g. Becker & Kravtsov 2011;
Bahé et al. 2012; Rasia et al. 2014; Henson et al. 2017).

There is mild disagreement in the magnitude of the
hydrostatic bias between observational studies. Some have
found that the bias is less than 10 per cent, with Applegate
et al. (2014), Israel et al. (2014) and Smith et al. (2016)
finding values of b = 0.04, b = 0.08 and b = 0.05, respec-
tively. However, others have found biases greater than 20
per cent, with studies by Mahdavi et al. (2008), Mahdavi
et al. (2013), von der Linden et al. (2014), Hoekstra et al.
(2015), Simet et al. (2015), Battaglia et al. (2016), Penna-
Lima et al. (2017), Sereno et al. (2017), Medezinski et al.
(2018) and Miyatake et al. (2019) all finding significantly
larger hydrostatic bias, on the order of 20 − 30 per cent. A
potential explanation for part of the differing bias estimates
may be attributed to the varying overdensities at which the
masses are estimated and the different mass and redshift
distributions of the various samples.

In Fig. 4 we compare our hydrostatic bias measurement
from spectroscopically measured thermodynamic profiles as
a function of true cluster mass against a collection of obser-
vational results taken from Miyatake et al. (2019), many of
which were also presented in Medezinski et al. (2018). We
find excellent agreement between the observed hydrostatic
bias measurements and those recovered from the synthetic
images of simulated samples. Additionally, we note that the
sample variance of the observational results is well matched
to the scatter in the simulated results. We note that scatter
in the simulated ratios will increase slightly if lensing masses
were used, rather then the true mass, due to the intrinsic
scatter in the mass estimate. However, we delay a detailed
study of lensing mass estimates to a future study. The ob-
served amplitude of the hydrostatic bias is reproduced by the
simulations and the presence of a mass-dependent mass bias
is certainly not ruled out by the observations, with Medezin-
ski et al. (2018) stating that the observations may suggest a
mass-dependent bias.

Our results are also consistent with previous numeri-
cal studies. Those that derive a hydrostatic mass estimates
directly from simulation data, typically mass-weighted pro-
files, find they are biased low relative to true masses by
10 − 20 per cent (e.g. Lau et al. 2009; Kay et al. 2012; Ra-
sia et al. 2014; Nelson et al. 2014; Biffi et al. 2016; Ange-
linelli et al. 2019; Ansarifard et al. 2019). Additionally, for
those studies that compute a cluster’s thermodynamic pro-
files from synthetic X-ray data also find good agreement,
biased low at the level of 10 − 20 per cent for low mass
(M500,sim < 8 × 1014 M�) clusters (e.g. Nagai et al. 2007;
Rasia et al. 2012; Le Brun et al. 2014) with a bias that
increases with increasing mass (Henson et al. 2017; Pearce
et al. 2020). We note that Biffi et al. (2016) also compute the
bias using a spectroscopic-like weighted profiles (Mazzotta
et al. 2004) and find that the hydrostatic bias in their rela-
tively massive (M200,sim > 8×1014 h−1 M�) sample increased.
Given the large scatter in estimated mass, the small sample
size of many of these studies, typically < 50, is a limiting
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Figure 5. The median X-ray derived hydrostatic mass to true mass ratio as a function of true mass at z = 0.1, split by simulation and
projection axis. For TNG300 levels 3 (top left), 2 (top middle), 1 (top right), BAHAMAS (bottom left) and MACSIS (bottom middle)

we plot the median ratio along axes x (grey), y (green), z (blue), A (orange), B (red) and C (purple). The dashed lines denote the median

ratio where the number of clusters in a bin of width ∆ log10(M500,sim /M�) = 0.1 is less than 10 and the shaded regions denote the 1σ
scatter in the ratio. In the bottom right panel, we compare projections along the longest (A) and shortest (C) axes of the cluster and find

minor differences in the median ratio that are significantly smaller than the scatter in any given sample.

factor and the synthetic X-ray approach is typically limited
to the direct computation of 3D profiles, ignoring issues such
as projection effects and the presence of clumpy gas.

3.2 The impact of projection

All clusters to varying degrees are triaxial in nature and de-
termining the projection angle is very difficult (e.g. Morandi
et al. 2012; Sereno et al. 2017), although there have been in-
teresting recent works relating the orientation of the bright-
est cluster galaxy to the cluster triaxiality (e.g. Wittman
et al. 2019; Herbonnet et al. 2019). This is potentially an
issue for hydrostatic mass estimates due to the assumption
that the cluster is spherically symmetric. The triaxial nature
of clusters can be removed from analyses by stacking many
clusters into a single profile. However, in numerical simula-
tions, we know the orientation of the cluster. Therefore, we
now examine the impact of projection on the estimated clus-
ter masses by splitting the synthetic images for the different
simulations into their projection axes. To assess the median
hydrostatic bias of randomly orientated haloes we use the
Cartesian projection axes (x, y, z) as samples of randomly

projected clusters, making the fair assumption that a clus-
ter’s triaxiality should be independent of its orientation in
the simulation volume. The projections along the eigenvec-
tors of the mass tensor (A, B, C) enable an examination of
the impact of cluster triaxiality on the estimated mass.

In Fig. 5 we plot the ratio of the estimated mass from
synthetic X-ray observations to true mass as a function of
true mass for the different samples. Although somewhat
noisy, we find that the median of the ratio of estimated mass
to true mass projected along either the A or C axes is consis-
tent with values recovered from projecting along the x, y, z
axes for all simulations. Additionally, the scatter in the ra-
tio is also consistent for all the chosen projection axes. For
clarity, in the bottom right panel of Fig. 5 we plot the me-
dian ratios for the BAHAMAS, MACSIS and IllustrisTNG
level 1 simulations computed for synthetic images projected
along the A and C axes. The average change in the bias
from projecting along C rather than A is ∆b = −0.01, 0.02
and 0.03 for TNG100-L1, BAHAMAS and MACSIS, respec-
tively. However, the difference in hydrostatic bias for any
of the simulated samples is significantly smaller than the
scatter in the population of the cluster sample. Therefore,
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we conclude that for a sufficiently large sample of clusters
the projection angle has minimal impact on the hydrostatic
mass estimate. On a cluster-by-cluster basis, the scatter in
estimated mass will dominate over the projection angle.

3.3 Estimated mass scatter

To study the scatter in estimated mass, we first compute a
kernel-weighted moving average of the mass estimated from
synthetic X-ray observations as a function of true mass for all
simulated cluster samples. For the ith cluster of mass Mi , we
average over the neighbouring clusters using of a Gaussian
weight function of the form

wk =
1
√

2πτ
exp

[
−
µ2
k

2τ2

]
, (14)

where µk = log(Mk /Mi) for the kth neighbour. The param-
eter τ is a hyperparameter that specifies the width of the
kernel, with a small value leading to a noisy moving aver-
age and a large value over-smoothing. After testing, we use a
value of τ = 0.1 to compute the moving average. We compute
the moving average in log-log space.

We then compute the scatter about the moving average
for a set of 17 points in log mass that are linearly spaced in
the range 14.0 < log10(M /M�) < 15.7 with ∆ log(M) = 0.1
via

σ =

√√√
1

N − 2

N∑
k

[
log10(Yk ) − log10(YMA(Mk ))

]2
, (15)

where the sum runs over the N clusters within a top-hat win-
dow function of width ∆ log10(M) = 0.2, Yk is the estimated
mass for the kth cluster and YMA is the moving average of
the estimated mass at true mass Mk ≡ Mk,500,sim of the clus-
ter. We compute the uncertainty on the estimated scatter
by bootstrap resampling the samples 10, 000 times.

In Fig. 6, we plot the scatter in estimated mass as a
function of true mass for all simulated samples. For Illus-
trisTNG, we find that the scatter in estimated mass reduces
with increasing cluster mass, independent of numerical res-
olution, but increases in the final mass as the sample size
reduces. The amplitude of the scatter appears to increase
with decreasing numerical resolution. At M500,sim = 1014 M� ,
there is small increase in scatter from level 1 (σ = 0.112)
to level 2 (σ = 0.114), but a significantly larger increase
in scatter for IllustrisTNG level 3 (σ = 0.147). The nor-
malization of the estimated mass scatter is slightly larger
for the BAHAMAS sample relative to IllustrisTNG level 1,
with σ = 0.120 at M500,sim = 1014 M� . However, we find
the same trend of decreasing scatter with increasing cluster
mass, before increasing again as the sample statistics become
small. The MACSIS sample has greater scatter at fixed mass
relative to the BAHAMAS sample, however, this is likely
due to the way the sample was selected. These lower mass
MACSIS clusters have a significantly larger FoF mass rela-
tive to M500,sim, as they were selected via MFoF ≥ 1015 M� ,
compared to the BAHAMAS sample. Using the BAHAMAS
sample, if we restrict our analysis to clusters with similar
values of M500,sim /MFoF we find that these systems are just
forming and very dynamically disturbed and that the ampli-
tude of the scatter in estimated mass increases. Therefore,
the selection of the MACSIS sample likely explains why the
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Figure 6. Hydrostatic mass estimate scatter as a function of
true mass at z = 0.1 for the simulation samples. Line styles are

the same as Fig. 3. The scatter does not change significantly with

mass, but there is evidence of a minor trend of decreasing scatter
with increasing mass before the sample statistics become small

and the scatter increases. Selection effects are likely the cause
of the increased amplitude of the scatter at fixed mass for the

MACSIS sample relative to the BAHAMAS sample.

scatter in estimated mass is larger at fixed mass relative to
the BAHAMAS sample. We find that the scatter for the
MACSIS clusters is generally flat, though there is evidence
that the scatter decreases with mass before increasing again
as the sample statistics become small.

Accounting for selection effects, the simulated samples
overall produce a similar level of scatter in estimated mass
at fixed mass, suggesting that it is insensitive to the imple-
mentation of subgrid physics. As the numerical resolution
decreases from that at which the model was calibrated, we
find that the scatter in estimated mass increases marginally.
Overall, the amplitude of the hydrostatic bias we recover ap-
pears insensitive to the numerical choices, yielding a similar
trend with mass and level of scatter. Additionally, the bias
recovered shows good broad agreement with the bias mea-
sured observationally using weak lensing masses as a proxy
for true mass.

4 SPHERICALLY SYMMETRIC HALOES

The other assumption required for many cluster mass es-
timation techniques is that galaxy clusters are spherically
symmetric. Often in cluster studies (e.g. Mantz et al. 2015b)
the most regular systems are selected because it is believed
their three-dimensional properties can be recovered with re-
duced systematic uncertainty, which reduces the systematic
uncertainty on the mass estimate. We now explore this as-
sumption using the mass tensor. Specifically, we measure
how spherical a cluster is via its sphericity, with an idealized
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Figure 7. Relative standard deviation (RSD) of the estimated mass between cluster projections as a function of cluster sphericity at

z = 0.1. From left to right we plot the TNG300 level 3, 2, 1, BAHAMAS and MACSIS samples, respectively. The points are coloured

by the log of the true mass. The filled (open) points are classified as relaxed (unrelaxed) by the energy ratio (top) and centroid shift
(bottom) criteria. We find the expected result that the RSD in the estimated mass reduces as the cluster becomes more spherical. Overall,

the relaxation criteria remove those clusters with the largest estimated mass variations, but they do not select more spherical haloes on

average nor do they classify the same subset of clusters as relaxed.

spherical halo yielding s = 1. As a measure of how reliable
the mass estimate is we compute the relative standard devi-
ation (RSD), also known as the coefficient of variation, for
the different projections of each cluster

RSD =
1

〈M500,x−ray〉

√∑(M500,x−ray − 〈M500,x−ray〉)2

N − 1
, (16)

where the sum runs over all of the projections and the angle
brackets denote the mean value of the estimated mass. If
the profiles of more regular clusters can be recovered with
less systematic uncertainty, then one would expect the RSD
value to decrease for clusters whose sphericity values are
larger.

In Fig. 7, we plot the estimated mass RSD as a function
of sphericity for the different simulated samples. Addition-
ally, to explore any trend with mass we colour the symbol
based on the true mass of the cluster. Overall, all of the
simulated samples in this work show the same trend: a re-
duction in the value of the RSD as the sphericity of the
cluster increases. The median estimated mass difference is
∆M500,x−ray ≈ 0.1. Therefore, our result confirms that more
spherical clusters yield estimated masses with reduced sys-
tematic uncertainty. We note that the MACSIS sample has
a lower median sphericity value relative to the other sim-
ulated samples. This is driven by the fact that the sample
is more massive and, therefore, has formed more recently.
These clusters have had less time to relax since their for-
mation and the most spherical clusters are absent from the
sample. Finally, there is no discernible trend with cluster
mass for any of the samples, which likely reflects a large
range of formation histories possible for a cluster at fixed
mass.

Additionally, we split the simulated samples plotted in
Fig. 7 into relaxed and unrelaxed via two criteria. In the top

row, we use the energy ratio Eratio, a theoretical, 3D aperture
criterion that measures the ratio of kinetic energy to thermal
energy for gas cells/particles within a spherical aperture, to
define a relaxed subset. In the bottom row, we classify the
clusters using the centroid shift, an observational 2D aper-
ture criterion that measures how much the centroid of the X-
ray surface brightness shifts when the aperture used to com-
pute it changes. The definitions of the energy ratio and cen-
troid shift and how we compute them are presented in Sec-
tions 2.1.5 and 2.5, respectively. Relaxed (unrelaxed) clus-
ters are denoted by filled (open) symbols. Observationally,
relaxed clusters play a prominent role in studies of cluster
astrophysics, scaling relations and cosmology because they
are thought to be the most regular systems with minimal
systematic uncertainties. For both criteria used in this work
we find the same result, selecting relaxed clusters removes
those objects with the largest RSD values. Interestingly, the
selection of relaxed clusters does not lead to any significant
change in the median sphericity value of the sample. Finally,
we note that although both relaxation criteria remove the
largest RSD values they do not select the same clusters, with
48, 49, 54, 72 and 19 per cent of those clusters classified as
relaxed by the energy ratio appearing in the subset defined
as relaxed by the centroid shift for TNG300 level 1, level 2,
level 3, BAHAMAS and MACSIS, respectively. A detailed
study of many common relaxation criteria, both theoretical
and observational, is presented in Cao et al. (in prep.).

5 ORIGIN OF MASS DEPENDENT BIAS

We now seek to understand why the hydrostatic bias be-
comes mass-dependent for profiles derived from the syn-
thetic X-ray images. As shown in eq. 12, the hydrostatic
mass estimate depends linearly on the temperature mea-
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sured at the radius of interest, i.e. r500,x−ray. Therefore, we
use the estimated mass to derive the radial point of interest
and then extract both the mass-weighted and spectroscopic
temperatures. In practice, we interpolate the radial temper-
ature profiles to obtain the temperature estimates at the
radius of interest.

In Fig. 8, we plot the median bias of the spectroscopic
temperature relative to the mass-weighted temperature as a
function of the cluster’s true mass for all simulated samples.
For low-mass clusters (M500,sim < 4 × 1014 M�), the spec-
troscopic temperature is consistent with the mass-weighted
temperature, though there is significant scatter in the sam-
ples. We find that the numerical resolution and the subgrid
physics implementation does not affect the recovered tem-
peratures, with the TNG300 level 1, 2, 3 and BAHAMAS
samples all yielding similar median values around zero. The
scatter in the bias is slightly larger for all TNG samples.
However, as the mass of the cluster increases, we find that
the spectroscopic temperature is increasingly biased low rel-
ative to the mass-weighted estimate. This result is domi-
nated by the MACSIS cluster sample but the other simu-
lated samples also show the spectroscopic measurement is
biased low, though we are limited by small sample statis-
tics. For the most massive clusters (M500,sim ≥ 2 × 1015 M�)
the median bias reaches 0.2, i.e. the spectroscopic tempera-
ture is only 80 per cent of the mass-weighted temperature,
and the scatter reaches values close to 0.3. Given the linear
dependence of the hydrostatic mass on the temperature at
the radius at which the estimate is made, the increasingly
bias spectroscopic measurement is sufficient to explain the
apparent mass dependence. For massive clusters, the mass
bias can be explained as the sum of the bias induced by as-
suming the cluster is in hydrostatic equilibrium (b = 0.1) and
the bias produced by the spectroscopic temperature being
lower than the mass-weighted temperature (b = 0.2), yield-
ing a total bias of b = 0.3. Those clusters with the largest
scatter would agree with the hydrostatic bias found for the
most massive clusters in Pearce et al. (2020).

To understand why the spectroscopic temperature es-
timate is biased low relative to the mass-weighted temper-
ature, we now explore the distribution of gas temperatures
and pressures as a function of radius for two subsets of simu-
lated clusters. We select the entire BAHAMAS sample, not-
ing that similar results are obtained for all resolution lev-
els of IllustrisTNG, and all MACSIS clusters with a mass
M500,sim ≥ ×1015 M� . The MACSIS cluster subset ensures
that any impact of the sample selection function is min-
imized. For each cluster, the gas cells/particles are binned
into 50 linearly spaced radial bins in the range 0−1.25 r500,sim.
Within each radial bin, the mass-weighted cumulative distri-
bution function of the temperature is computed and stored
at 200 percentile points, i.e. increments of 0.5. Additionally,
the volume-weighted pressure distribution is computed in
each radial bin for the cells/particles still ordered by their
temperature. For both samples, the value of the median per-
centile in every pixel is then computed. At this stage, it is
important to account for the fact the more massive clus-
ters are hotter and have larger pressures due to their deep
potential wells. The mass dependence is removed from the
temperature and pressure distributions by dividing them by
the virial temperature, kBT500, and pressure, P500, expected
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Figure 8. Median spectroscopic temperature bias relative to the
mass-weighted temperature measured at r500,x−ray as a function of

true mass. Line styles are the same as Fig. 3. For low-mass clus-

ters (M500,sim < 4 × 1014 M�) the two temperature estimates are
consistent within the scatter of the samples. However, at higher

masses, the spectroscopic temperature estimate consistently un-

derpredicts the mass-weighted estimate for all simulation samples.
The amplitude of this bias is sufficient to account for the mass

dependence of the hydrostatic mass bias.

for a system with mass M500,sim. These are calculated via

kBT500 =
GM500,simµmp

2r500,sim
, (17)

and

P500 = 500 fbkBT500
ρcrit
µmp

, (18)

where fb is the universal baryon fraction and ρcrit is the crit-
ical density of the Universe at z = 0.1. For both samples, the
median value in every pixel is then computed and we rein-
troduce the mass dependence by multiplying back through
by the median values of kBT500 and P500.

Fig. 9 shows the temperature and pressure distributions
as a function of radius for the two samples. As expected, for
BAHAMAS the average temperature decreases with radius.
A similar result is seen for the IllustrisTNG samples, as seen
in Barnes et al. (e.g. 2018, 2019). At r500,x−ray, all of the gas
resides within a small temperature range (1.1−2.8 keV). The
MACSIS samples yields the same radial decline in tempera-
ture, but, as expected for a more massive sample, the tem-
perature normalization is larger. At any radius the MACSIS
sample has a significantly wider temperature distribution,
with the gas temperatures in the 3.1 − 13.1 keV at r500,x−ray.
Examining the gas pressure we find both samples yield dis-
tributions with a similar width, the pressure varies by a fac-
tor 2.5 at r500,x−ray. For the MACSIS sample the width of the
pressure distribution is significantly smaller than the tem-
perature distribution. Given that P = nkBT , the wider tem-
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Figure 9. Temperature (left) and pressure (right) distributions for the BAHAMAS sample (top) and those clusters in the MACSIS
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ordered by the temperature of the gas. Despite the large temperature range in the MACSIS sample, the gas has a significantly smaller
range in pressure. Therefore, the cooler gas must have a higher density and a larger relative contribution to the spectroscopic temperature,

due to the quadratic density weighting of the emission process.

perature distribution in the MACSIS sample implies a wider
distribution of densities, with cooler gas having a linearly
higher relative density. This difference in density is further
amplified by the n2 dependency of the X-ray emission mech-
anism. Therefore, the cooler gas is disproportionately rep-
resented in the X-ray emission and the spectroscopic fitting

yields a lower temperature than the mass-weighted temper-
ature estimate for the most massive clusters.

This leads to the question of why this lower entropy gas
has not sunk to centre of these massive clusters. The likely
answer is that these haloes are only just collapsing by the
current epoch, and this infalling, colder gas has not had the
opportunity to settle closer to the cluster centre. However,

MNRAS 000, 1–20 (2018)



Mock-X mass bias 17

examining the history and fate of this gas is beyond the
scope of this study and we leave it to future work.

The mass dependence of the hydrostatic bias found in
this study is driven by the result of fitting a single tempera-
ture plasma model to an X-ray spectrum that is the sum of
gas at a range of temperatures. Given the unimodal nature
of temperature distribution for the massive clusters present
in the MACSIS sample, it is not obvious that fitting a two
(or more) component model to the spectrum is the correct
approach to removing this bias. The recent X-COP study
found that the pressure profiles derived from X-ray data
were in good agreement with the pressure profiles from SZ
observations (Ghirardini et al. 2019). Due to the different
emission mechanism, observations of the SZ signal should
yield a temperature estimate that is more closely aligned
with the expected mass-weighted temperature. Therefore,
they found that the mass-weighted and spectroscopic tem-
perature estimates were in good agreement with each other.
This study agrees with the X-COP results. The median mass
of the X-COP sample is 5 × 1014 M� (Eckert et al. 2017),
where we find that the median spectroscopic temperature is
biased 3 per cent lower than the mass-weighted temperature
and the scatter encompasses an unbiased result. Therefore,
the simulated spectroscopic and mass-weighted pressure pro-
files will agree with each other. The limitation of the X-COP
study is the small number of low-mass objects (12) studied.
The next generation of detailed surveys that sample a larger
number of clusters, with significant statistics for very mas-
sive clusters (like the XMM Heritage cluster project), have
the potential to fully characterize the amplitude of the hy-
drostatic bias as a function of cluster mass.

6 CONCLUSIONS

In this work, we have introduced the multiwavelength anal-
ysis framework Mock-X. The framework is agnostic to
the chosen simulation, generating synthetic multiwavelength
images of simulated haloes. We have generated synthetic
images for 18, 756 projections of mass-limited (M500,sim >

1014 M�) samples from all three resolution levels of the Il-
lustrisTNG (300)3 Mpc3 volume, the reference Planck BA-
HAMAS volume and the MACSIS simulations. We have used
the synthetic Chandra-like X-ray images to explore the bias
induced by estimating cluster masses assuming that they are
in hydrostatic equilibrium. The mass estimates are derived
from the thermodynamic profiles extracted directly from the
synthetic images, with our chosen approach following com-
mon observational methods (Section 2). Our main results
are as follows:

• Hydrostatic mass estimates derived from mass-weighted
simulation profiles yield a bias of b = 0.11 − 0.15 with sig-
nificant scatter in the population (Fig. 3). The choice of
hydrodynamical method or subgrid physics implementation
has a negligible impact on the recovered bias. However, when
masses are estimated using the thermodynamic profiles de-
rived from synthetic X-ray images we find that the bias
shows a significantly stronger mass dependence. The bias
increases from b = 0.1 at 1014 M� to b = 0.3 at 2 × 1015 M� .
• We compare the bias recovered from synthetic X-ray

images to a collection of hydrostatic mass bias estimates

from Miyatake et al. (2019) and references therein. The ob-
servations use mass estimates derived from weak lensing as
a proxy for the true cluster mass. We find that the ampli-
tude of the hydrostatic bias yielded by the simulations is in
excellent agreement with observed bias amplitude (Fig. 4).
Additionally, the sample variance of the observations is in
good agreement with the scatter in mass bias found for the
simulated samples.

• We examine the impact of projection on the recovered
hydrostatic mass estimate (Fig. 5) and find it has a negligible
impact on the recovered mass. The amplitude and scatter in
recovered mass is consistent for all projections and numerical
samples.

• The scatter in estimated mass is roughly constant as
a function of mass (Fig. 6). There is some evidence it de-
creases slightly with increasing cluster mass, but the scatter
increases again as the sample statistics become small. Ad-
ditionally, we find some evidence the mass scatter increases
as the resolution of the TNG simulation decreases. The BA-
HAMAS and TNG300 level 1 samples yield consistent scat-
ter, suggesting it is independent of chosen numerical method
or subgrid physics. The MACSIS sample has a higher scat-
ter at fixed mass, but this is driven by the method used to
select the sample (i.e. via MFoF).

• We examined the relative standard deviation of the esti-
mated mass as a function of halo sphericity (Fig. 7), finding
the expected result that the mass is more reliably estimated
for those clusters that are more spherical. We then select re-
laxed clusters using the theoretical energy ratio criterion and
the observational centroid shift criterion. Although the two
criteria select those clusters whose mass is more consistently
recovered, neither preferentially select more spherical haloes
nor do they select consistent subsets of relaxed clusters.

• We then explored the origin of the mass dependence of
the hydrostatic bias by exploring the bias induced by mea-
suring temperatures spectroscopically, rather than mass-
weighted, at the radius of interest r500,x−ray (Fig. 8). At low

mass (M500,sim = 1014 M�) we find that the spectroscopically
estimated temperature is consistent with the mass-weighted
temperature. However, for high-mass clusters (M500,sim =

2 × 1015 M�) the spectroscopic temperature is only 80 per
cent of the mass-weighted temperature.

• We then examined the temperature distribution of the
gas as a function of radius (Fig. 9) and find that for low-mass
clusters there is a narrow range (∼ 2 keV) of temperatures at
a given radius. For high-mass clusters, the width of the tem-
perature distribution increases to > 10 keV. However, at any
given radius we find that the width of the pressure distribu-
tion is significantly smaller. Given the P = nkBT , this implies
that the cooler gas in massive clusters is denser than the hot
gas. Due to the quadratic density dependence of the X-ray
emission, this implies that the cold gas has a greater weight-
ing in the spectroscopic temperature fit that decreases the
recovered temperature for more massive clusters. Given the
hydrostatic mass estimate depends linearly on temperature
(equation 12), this result explains why the hydrostatic bias
is mass-dependent for thermodynamic profiles derived from
synthetic X-ray images. We left the origin and fate of this
colder gas to a future study.

Despite the mass dependent bias found in this study, the re-
sults presented in this work are consistent with current ob-
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servational results. For example, at the median mass of the
X-COP sample we find that the spectroscopic temperature is
statistically consistent with the mass-weighted temperature
and the X-ray and SZ pressure profiles should agree. Both
future simulations and observations will be important tests
of this result. Larger volume numerical simulations with a
different hydrostatic method (e.g. Cui et al. 2018) that varies
the subgrid physics implementation (e.g. Kannan et al. 2017;
Barnes et al. 2019) will be important to further assess the
impact of numerical choices on the hydrostatic bias. Future
observational projects, such as the X-COP successor the
XMM heritage cluster project, that will yield detailed X-
ray observations of more massive clusters that can confirm
the presence of a mass-dependent hydrostatic bias.
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chia C., Crain R. A., Theuns T., 2018, MNRAS, 474, 3746
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Davé R., Anglés-Alcázar D., Narayanan D., Li Q., Rafieferantsoa
M. H., Appleby S., 2019, MNRAS, 486, 2827

Davis M., Efstathiou G., Frenk C. S., White S. D. M., 1985, ApJ,
292, 371

Diaferio A., Geller M. J., 1997, ApJ, 481, 633

Diaz-Rodriguez J., Eckert D., Monajemi H., Paltani S., Sardy S.,
2017, arXiv e-prints,

Dicker S. R., et al., 2014, Journal of Low Temperature Physics,
176, 808

Dolag K., Borgani S., Murante G., Springel V., 2009, MNRAS,

399, 497

Eckert D., et al., 2016, A&A, 592, A12

Eckert D., Ettori S., Pointecouteau E., Molendi S., Paltani S.,
Tchernin C., 2017, Astronomische Nachrichten, 338, 293

Ettori S., De Grandi S., Molendi S., 2002, A&A, 391, 841

Ettori S., Gastaldello F., Leccardi A., Molendi S., Rossetti M.,

Buote D., Meneghetti M., 2010, A&A, 524, A68

Ettori S., Donnarumma A., Pointecouteau E., Reiprich T. H.,

Giodini S., Lovisari L., Schmidt R. W., 2013, Space Sci. Rev.,

177, 119

Ettori S., et al., 2019, A&A, 621, A39

Foster A. R., Ji L., Smith R. K., Brickhouse N. S., 2012, ApJ,
756, 128

Gardini A., Rasia E., Mazzotta P., Tormen G., De Grandi S.,

Moscardini L., 2004, MNRAS, 351, 505

Genel S., et al., 2014, MNRAS, 445, 175

Ghirardini V., et al., 2019, A&A, 621, A41

Gifford D., Kern N., Miller C. J., 2017, ApJ, 834, 204

Giodini S., Lovisari L., Pointecouteau E., Ettori S., Reiprich
T. H., Hoekstra H., 2013, Space Sci. Rev., 177, 247

Hasselfield M., et al., 2013, J. Cosmology Astropart. Phys., 2013,

008
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