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1. Introduction

Estimation of production frontiers is becoming an increasingly popular research topic
in economics and statistics in recent years. Since the seminal work of Debreu (1951)
and Koopmans (1951), a large amount of literature has been developed on specification
and estimation of production frontiers, and on measurement of the associated technical
efficiency of production units.

Consider a non-negative vector (x,y) € R% x Ry, where x represents the d
inputs used in production and y represents the output. According to economic
theory (Koopmans 1951, Shephard 1970), the production set is defined as ¥ =
{(x, y) € Ri X R4 | x can produce y}, i.e., the set of physically attainable points (x,y).
The production function or frontier of ¥ is defined as p(x) = sup {y, (x,y) € ¥}, which
is the upper boundary of the production set. The output efficiency measure is defined as
R =1y/p(x) € [0,1]. The production function specifies the maximal achievable level of the
output for a firm working at the level of inputs x, and presents a useful benchmark value
or reference frontier which can be used to assess efficiency of firms operating at the same
level of inputs. The main focus of frontier analysis is on the specification and estimation
of the production frontier function p(-) given a random sample of the production units
(X0, Yo}y,

In the existing literature, two main classes of models have been proposed for the pro-
duction frontier function: the deterministic frontier model and the stochastic approach.
The deterministic frontier models rely on the assumption that all data lie in the produc-
tion set ¥, i.e., P{(X;,Y;) € ¥} = 1, for i« = 1,...,n. Two nonparametric estimators
were developed under this framework: data envelopment analysis (DEA) (Charnes et al.
1978, Farrell 1957) and free disposal hull (FDH) (Deprins et al. 1978). Both methods
employ linear programming to find the smallest free disposal set or the smallest free dis-
posal convex set covering all data points. Their improved versions can be found in Hall
et al. (1998), Hall and Park (2002), Jeong and Simar (2006) and Knight (2001), which
employed methods such as local polynomial or piecewise polynomials to obtain frontier
estimates that are smooth. These methods are appealing since they rely on very few
assumptions on ¥ and the joint distribution of {X,Y}. However, both methods can be
severely influenced by the presence of outliers or extreme values since they envelope all
data points by construction. The stochastic approach, initiated by Aigner et al. (1977)
and Meeusen and Van den Broeck (1977), allows some observations to be outside of the
production set. However, the stochastic frontier models often assume strong parametric
restrictions on the shape of the frontier function p(-) and a misspecified model can lead
to invalid estimation and inference results.

Martins-Filho and Yao (2007) proposed an appealing deterministic frontier regression
model which is nonparametric in nature and flexible to capture complex structure of
the production frontier. It is also more robust to extreme values and outliers than the
DEA and FDH approaches. Martins-Filho and Yao (2007) estimated the frontier using a
three-step procedure based on local polynomial smoothing. However due to "the curse of
dimensionality", their method can only accommodate low dimension of input variables.
In addition, econometric theories often impose shape constraints on the frontier functions.
The general production axiom of free disposability of inputs and outputs (Fére et al. 1985,
Shephard 1970) implies that the frontier function p (-) is monotone. The convexity of the
production set W implies that p (-) is also concave, corresponding to diminishing marginal
returns. Therefore, it is of interest to provide frontier estimates that automatically satisfy
such shape constraints.
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In this paper, we extend the nonparametric regression frontier model in Martins-Filho
and Yao (2007) for multiple input variables and impose an additive structure on the
frontier functions to circumvent "the curse of dimensionality". Furthermore, we consider
the estimation of frontier functions under shape constraints, which is not well studied
in the existing literature. The nonparametric methods, such as DEA and FDH, give
monotone estimates. However their estimates are step-wise and hard to interpret, and as
pointed out in Daouia et al. (2016), they often underestimate the true support boundary.
More recently, Wu and Sickles (2018) proposed a monotone spline estimator (Ramsay
1988) for a semi-parametric frontier model. It achieves monotonicity and concavity by
using integral transformations of non-constrained second order derivative functions. But
the class of such integral transformed functions is relatively small compared to the class
of all monotone and concave functions. Better estimation results can be obtained by
using more general spline functions. Daouia et al. (2016) extended the idea in Hall et
al. (1998) and proposed a novel method to estimate the boundary of the production set
using constrained spline methods. They used linear programming or second-order cone
programming to find the closest constrained spline function that envelope the data set.
However, they only focus on single input case. In addition, similar to DEA and FDH,
their method is sensitive to outliers since it is constructed to envelope all data points.

In this paper, we propose an additive frontier model and a two-step constrained poly-
nomial spline method for the frontier estimation. Our proposed method guarantees a
smooth estimator and is easy to implement. Most importantly, we incorporate the shape
constraints (monotonicity and/or concavity) to capture the shape of frontier more accu-
rately. The simulation studies illustrate that our proposed method with shape constraints
is effective in enhancing the estimation accuracy. In addition, the proposed estimator is
more robust to the outliers than the estimator proposed in Martins-Filho and Yao (2007).

This paper is organized as follows. Section 2 describes the additive frontier model that
we are interested in. In section 3, we propose a two-step polynomial spline method for the
estimation of the frontier functions. Asymptotic properties of the proposed estimator are
also established. Section 4 introduces several extensions of the additive frontier model to
allow interactions among input variables. Section 5 includes simulation studies and the
application of the proposed method to a real data set. The assumptions and technical
proofs are contained in the appendix.

2. Additive Frontier Model

In this paper, we develop an additive frontier model which is inspired by the deterministic
nonparametric regression frontier model proposed in Martins-Filho and Yao (2007). The
construction of the additive frontier model is as follows. Suppose there are n observations
independently generated from the additive frontier model

}/’LZP(XZ)R’M izl,...,n, (21)

where Y; is the output variable and X; = (Xj1,... ,Xz-d)T are the input variables of
the i-th observation. The unobserved random variable R; represents the efficiency of
i—th observation, which takes values in [0,1]. The larger value of R; indicates more
efficient production because the realized output Y; is closer to the production frontier
p(X;). In a special case with R; = 1, the maximum output is obtained. In addition, we
assume the frontier function p (X;) is of an additive structure and written as p (X;) =
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po+p1 (Xi1)+...+pg (Xiq), where pg is an unknown intercept and {p; (-)}ld:1 are unknown
univariate nonparametric functions which quantify the effects of input variables on the
maximum output. For model identification, we assume that each additive component p; (+)
is theoretically centered with E[p; (X;)] = 0, for [ = 1,...,d. Furthermore, we assume
that E (R;|X;) = pup € (0,1) and var (R;|X;) = 0%. The parameter up is viewed as the
mean efficiency given the production set and o is the scale parameter for the distribution
of R.

In the proposed additive frontier model (2.1), there is no strong parametric restriction
on the production set ¥ since the frontier function p (-) is not constrained to a specific
parametric family. Compared with the nonparametric frontier model in Martins-Filho and
Yao (2007), our additive frontier model restricts the contribution of each input variable on
the frontier to be additive. The proposed additive frontier model enjoys the advantages of
additive models and is unaffected by the curse of dimensionality. However, the additive
assumption can be restrictive when the marginal output of a given input depends on
other input variables. In section 4, several extensions of the additive frontier model are
considered to allow for potential interactions among input variables.

Our main interest lies in the estimation of frontier function p(-) of model (2.1). To
begin with, we rewrite model (2.1) as

where m (X;) = p(Xi)pug = mo + m1 (X)) + ... + mg(Xia) and m; = p;up for
j =0,...,d. The error term &; = R; — pp satisfies E (¢;|X;) = 0 and var (g;|X;) = o%.
In the regression model (2.2), the additive regression function m; characterizes the shape
of p;. These two functions are different only by a scale parameter pp. In the following
section, we propose a two-step polynomial spline method to estimate the additive fron-
tier functions {p; (-)}?:1. In the first step, we estimate the additive regression functions
{my (-)}7:1 which describe the shape of frontier functions using polynomial splines. Pro-
duction theory in econometrics often imposes shape constraints on the additive frontier
functions {p, (-)}fl:1 such as monotonicity and/or concavity. Therefore, in order to cap-
ture the shape of frontiers more accurately, we also incorporate shape constraints in the
first step. The second step is for estimating the location of the frontier function which is
associated with the mean efficiency pp. Finally, with the fact that m(-) = p(-) up, the
estimator of frontier functions can be obtained by combining estimators in the previous
two steps.

3. Methodology and Theory

3.1. Proposed Method

We propose to estimate the frontier functions in two easily implementable steps. In
the first step, we estimate the mean functions {my (-)}7:1 in model (2.2) using poly-
nomial splines. Without loss of generality, assume that X takes value on [0, 1]%. Let u,, =
{0=wup <u; <---<un, <un,+1 = 1} be a knot sequence with N,, interior knots. The
polynomial splines of degree p are polynomial functions with degree p (or less) on the par-
titioned intervals and (p — 1)-times differentiable at the interior knots. Using u, as knots,
denote the space of polynomial splines with degree p as GP = GP (|0, 1] , u,,) which has di-
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mension N,,+p+1. Then denote B-spline basis of GP as B(z) = (B1 (x),...,By, +1 ($)> ,

where J, = N,, + p, see Wang and Xue (2015). Due to the fact that Zj;{l Bj(x) = 1,
without loss of generality, we focus on the first J,, basis and create empirically centered B-
spline basis by taking By; = Bj—n~' > | B; (Xu). Let By (z) = (By1 (2),..., B, ()"
be the centered basis for the input variable X; for [ =1,...,d. Under the assumption that
the additive frontier functions {p; (-)};l:1 are theoretically centered, the intercept term mg
can be consistently estimated as 1o =Y = n~! >, Y;. Then we can approximate the
theoretically centered nonparametric function m; (-) by a linear combination of the cen-
tered B-spline basis with m; (z) ~ B] ()3, for a set of coefficients 8; = (81, ..., BUH)T.

Let Y* = (Yi—1thg,...,Yp—19)" and B, = (Bpni,...,Bpng), where B, =
(B, (Xy),...,B; (an))T7 for | = 1,...,d. The traditional polynomial spline method
(Huang 1998, Stone 1985) estimates the unknown coefficients 8 = ( 1T,...,,8§)T by
minimizing the sum of squared errors,

B= argmin(Y*-B,8) (Y*-B,8) = (BIB,) ' BTY". (3.3)
BERI
Then the estimator of unknown function m; (+) is given as, for I = 1,...,d,
iy (z) = BY (z)B;. (3.4)

The traditional polynomial spline estimator (3.4) enjoys the same optimal rate of con-
vergence as an univariate nonparametric function estimator. However, it does not satisfy
the shape constraints, such as monotonicity and/or concavity. Therefore, to capture the
shape of frontier functions more accurately, we incorporate shape constraints which guar-
antee our estimates to be monotone and/or concave. In the following, Lemma 3.1 gives
a sufficient condition for a polynomial spline to be monotone increasing. In addition to
the monotone constraints, we are also interested in imposing concave constraints to con-
trol the rate of increasing since the rate of technology productivity change is commonly
decreasing in practice. Therefore, the sufficient conditions for a polynomial spline to be
concave are developed in Lemmas 3.2 and 3.3. For notation simplicity, the sufficient con-
ditions in Lemmas 3.2 and 3.3 are derived using equally spaced knot sequence. Let a
polynomial spline g(x) = BT (x)3, where B(z) is the empirically centered B-spline basis
of GP.

Lemma 3.1: A sufficient condition for g(x) to be monotone increasing is that its
coefficients satisfy 1 > 0 and B; > B,;_q, for j =2, ..., Ny + p.

Lemma 3.2: A sufficient condition for a linear spline g(x) to be concave is that its
coefficients satisfy the following conditions: if N, = 1, By—051 < By, otherwise, Bo—F; <
Br and Bj—B;_1 < Bj_1—Bj_g, for j =3,...; Np + 1.

Lemma 3.3: A sufficient condition for a polynomial spline g(z) with degree p > 2 to
be concave is that its coefficients satisfy the following conditions:

Ba—PB1 < 254,

Bi=Bj—1 <iBj—1/ (G —1)=Bj_g, for j=3,...,p—1

Bo=Bp—1 <pBp_1/(p—1) =By,

Bi—Bj_1 < Bj_1—Bj_a, forj=p+1,..,Ny+1

BN, +2=Bn,+1 < (p—1) (5N,L+1—5Nn) /p,
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Bi=Bj-1 < (Nn—j+p+1) (ﬁjfl_ﬁj72) /(Np—j+p+2), forj=Np+3,..,Ny+
p.

For the sake of simplicity, we use Cj; and C¢ to represent the set of spline coefficients
that satisfy the monotone increasing conditions and concave conditions respectively. Wang
and Xue (2015) developed a one-step backfitted constrained polynomial spline method
to estimate monotone additive regression functions. Here, we adopt the same estimation
strategy but with more choices of shape constraints. Based on the traditional uncon-
strained estimator {ml}le, for each [ = 1,...,d, we define the [-th pseudo responses

T
Yo, =Y —Zl,ﬂ my (X)), and Y*, = (Yl’t_l, ey Y;_l) . Then, to obtain a shape con-
strained estimator for m;, we propose to estimate the spline coefficients by minimizing

the following constrained least squares

- . N T fers .
(B;=arg min (Yfz — Bnl,Bl) (Yfl — Bnlﬁl) , subject to 3; € Cj, (3.5)

1

where Cj is the set of shape constraints of the spline coefficients for the I-th additive com-
ponent. For example, taking C; = C)s gives a monotone estimator, and C; = Cyy N Ce
guarantees both monotonicity and concavity. In addition, it is flexible to impose differ-
ent shape constraints for the different additive components. The minimization in (3.5)
is a linearly constrained quadratic optimization problem and can be efficiently solved
through quadratic programming. Instead of the proposed one-step backfitted procedure,
an alternative approach is to impose the shape constraints on all spline coefficients si-
multaneously in the global least squares (3.3) with one constrained estimation. However,
the total number of linear constraints under consideration can be large, therefore lead to
unstable numerical performances.

As a result, the shape constrained estimator of m; (-) is obtained as 1y (x) = BlT(x)Bl,
forl =1,...,d, and the regression function m(-) is estimated as m(x) = m0+2ld:1 my(xp).

In the second step, we observe that the regression function m (-) and the frontier func-

tion p (-) are different only by the mean efficiency pp which is associated with the location

. . . Y p(X)R

of the frontier function. To estimate up, one observe sup mx) = SUP X,

/%, since the maximum value of the efficiency R is 1. Therefore, we propose to estimate
R

LR by

R
:SupE:

i = [max (Vi (X0)] (3.6)

In addition, since the estimator in (3.6) is sensitive to the outliers, in our implementation,
we propose a robust estimator of pp . The details for the robust modification are given
in section 3.3. Finally, the regression model in (2.2) implies that my; (z;) = p; (z;) pg.
Therefore, the additive frontier functions p; can be estimated as p; (x;) = my (;) /i for
I=1,....d, and p(x) = po + 21y Py(1)-

The proposed two-step polynomial spline estimation method gives a smooth estimator
of the frontier function and is easy to implement. Compared with the local linear regres-
sion method in Martins-Filho and Yao (2007), our proposed method is not only easier to
compute, but also allows to capture the shape of frontiers more accurately by the incor-
poration of the shape constraints. In addition, as illustrated in our simulation studies,
the constrained polynomial spline method is more robust to the presence of outliers than
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the unconstrained method.

3.2. Asymptotic Properties

In this section, we establish the asymptotic properties of the proposed frontier estimator.
The assumptions required for asymptotic analysis are presented in the appendix.

Let m; and m; represent the unconstrained and shape constrained (monotone or concave
constrained) estimator of m; respectively. The corresponding estimators of pp and p are
fp (without constraint) or fip (with constraint) and p (without constraint) or p (with
constraint) respectively. The following theorems are developed for both unconstrained
and shape constrained estimator, where we denote the convergence rate L, = /N, /n +
NP

Theorem 3.1: Under assumptions (A1)-(A4), (A5) or (A5%), forl =1,...d, asn — oo,
supy |1 () —my (z)] = Op (Ln) -

Theorem 3.2: Under assumptions (A1)-(A4), (A5) or (A5%), as n — oo, |ip — 1p| =
Op (Ly) .

Theorem 3.3: Under assumptions (A1)-(A4), (A5) or (A5%), as n — oo,
supy [p (2) = p (2)] = Op (Ln) -

The results in Theorems 3.1 and 3.2 refer to the estimators 71, and iz that are obtained
in the first and second estimation step respectively, but without shape constraints. The
asymptotic behavior of our main interest p is a combination of the results in the two steps
and its characterization is given in Theorem 3.3.

Theorem 3.4: Under regularity conditions (A1)-(A5) (for monotone constrained esti-
mator) or (A1)-(A4), (A5%) (for concave constrained estimator), forp < 3 andl =1, ...d,
as n — 00, sup, [y () —my (x)| + g — prl + sup, [p (2) — p(2)| = Op (L) -

Theorem 3.4 is developed for our proposed shape constrained frontier estimator. When
the shape constraints are correctly specified, the results in Theorem 3.4 suggest that the
proposed estimator with shape constraints enjoys the same asymptotic properties as the
unconstrained one. Theorems 3.1-3.4 establish the uniform rates of convergence for the
proposed estimators. On the other hand, local asymptotic results are also desirable for
constructing confidence intervals and making inference for polynomial spline estimators.
However, it is challenging to establish such results. For additive models, one difficulty is
deriving the precise asymptotic expressions for the point-wise bias of polynomial spline
estimator since the support of the additive spline basis functions is no longer locally
supported. For more detailed discussion, please see section 7 of Huang (2003).

3.3. Implementation

-1
In section 3.1, we estimate the mean efficiency by fip = [112'82( (Y;/m (Xl))} . However,
<i<n

this estimator is sensitive to the extreme values or outliers in the data. Therefore, in the
implementation, we propose a modified estimator which is more robust to outliers. Let Q1
and Q3 be the first and third quantiles of {Y;/m (X;)};, respectively. The corresponding
inter-quantile range (IQR) is defined as IQR = Q3 — Q1. The data points that are beyond
1.5 times interquantile range (IQR) are regarded as outliers. Then the adjusted estimator
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-1
isfip = [meaéx (Yi/m (XZ))] ,where § = {i : Y;/m (X;) € [Q1 — L.5IQR, Q3 + 1.5IQR]}

. In our simulation studies, we implement this robust modification and the results show
that this method is effective especially when the data has outliers.

In addition, in our proposed polynomial spline estimation method, the appropriate
selection of the knot sequences is crucial. To reduce computational complexity, we use
the same knot sequences for both initial and constrained polynomial spline estimation
procedures. The knot sequences are equally spaced in the range of each input variable.
The same number of interior knots IV, is used for all input variable. The optimal N, is
selected using the Bayes Information Criterion (BIC). To be specific, let Y; (N,,) denote
the estimator of the i-th observation using NN, as the number of interior knots. Then
the selected Nn is the one that minimizes the BIC value, Nn = argminBIC(N,,) =

argmin {logM SE + [(d(Ny + p) + 1) logn| /n} with MSE = f:l {E -Y; (Nn)}2 /n.

4. Extensions

In model (2.1), the frontier function p(-) is assumed to be of additive form, which enables
easy interpretation and alleviates “curse-of-dimensionality" in estimating multivariate
nonparametric functions. However, this additive structure may not be practical in situ-
ations when the marginal output of an input depends on other input variables. In this
section, we consider several extensions of the additive frontier model to allow for modeling
interactions among input variables.

Extension 1: The most direct and simplest extension is to include products of input
variables as pseudo inputs in the additive model. Let X1,..., X4 be d input variables,
and 71 = X1 Xs, ..., Zg = X4_1X4 be the pseudo input variables that contain all second
order product terms among d input variables with d* = d(d—1)/2. Then one can consider
an additive frontier model of the form

p(X) = pg+ p1(X1) + -+ + pg(Xa) + pay1(Z1) + -+ + paya-(Za-), (4.7)

where the pseudo input variables Z1,..., Z4 are created to incorporate possible inter-
actions among input variables. Higher order product terms can be included. But it can
dramatically increase the number of additive terms and can also introduce collinearity
problem.

Model (4.7) is an additive frontier model with a total of d 4+ d* input variables. If the
shape constraints such as monotoncity and/or concavity are imposed on each individual
function py, ..., pgs -, then our estimation procedure proposed in section 3 can be directly
applied to estimate the unknown functions in above model.

Extension 2: Cobb—Douglas production function has been a popularly used paramet-
ric production function, which is of form p(X) = By X7 -"Xg”, where 3¢, 81,...,8,
are unknown parameters. As an extension of the Cobb~Douglas production function,
we consider log(p(X)) = py + p1(X1) + -+ + p,(Xp). Or equivalently, Y = p(X)R =
exp (pg + p1(X1) + -+ + p,(Xp)) R. It is an additive model in log-scale. Similar to Cobb-
Douglas function, it is multiplicative in input variables. But the contribution of each input
variable to the production function is nonparametric instead. In addition, one observes
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that

Hiogyy(x) = E(log(Y)|X = x) = py + py(x1) + -+ + pp(p) + Hiog(r)
=po+ p1(@1) + 0+ py(ap), (4.8)

where pj = py + Mog(R)- Therefore, the additive functions p;(z1),---,p,(7p) can be

directly estimated using the proposed method, but with log(Y") as the response variable
instead. In addition, one observes that

g Y exp (P0+P1(X1)+"'+Pp(Xp))R
R = Sup = sup
exp(Kogyy (X)) exp(pg + p1(x1) + - + pp(@p)) exP(Liog(r))
B 1
eXp(Mlog(R)) .

Therefore the frontier function can be represented as p(x) = exp(ulog(y)(x))S R-

The proposed two-step estimation method can be slightly modified to estimate this
multiplicative model. In the first step, the constrained polynomial spline method can be
used to estimate the additive components in (4.8). One advantage of this multiplicative
model is that the monotonicity and concavity of each additive components also guarantees
such shape constraints on the total output for each input variable. In the second step, the

location of the frontier function can be estimated by Sg = max;—1... exp(uly—(X)) Fi-
ogv;) !

nally, one combines the results from previous two steps and estimate the frontier function
as p(x) = eXp(ﬂ]og(Y) (x))Sk-

Extension 3: Functional ANOVA model in Huang (1998) and Gu (2013) is an useful
extension of the additive model, which allows for interactions among input variables,
and at the same time retains the flexibility of nonparametric modeling. Similar to the
traditional ANOVA model, it uses functions of a single input to model main effects,
and functions of multiple inputs for lower-order interactions. In particular, we consider a
second-order functional ANOVA model for the frontier

d

p(X) =po+ > pX)+ D ps(X0, X, (4.9)
=1 1<i<s<d

in which {p;(21)},<;<4 are the main effect terms, and {p;s(z;,7s)}<;c 5«4 are bivari-
ate functions and flexible in modeling second order interactions among input vari-
ables. We assume the main effect terms follow shape constraints such as monotoncity
and /or concavity as in the additive frontier model. For the interaction terms, we assume
Pis1(Ts) = pis(w10, Ts) (and pyg o(71) = pys(71, T50)) follows monotoncity and/or concavity
constraints as a function of xg (and x;) for any fixed x;y (and x40).

To uniquely identify the functional components in (4.9), one often assumes the identi-
fication conditions (Gu 2013) that A;p;(X;) = 0, and A;p;(X;, Xs) = Asp1( X1, Xs) =0
for all 1 <1 < s < d. Here A; is an averaging operator that averages out the variable
X;. For simplicity, we consider A;p;, = [ pi,(zs,21)dz;. For any second-order functional
ANOVA model that satisfies shape constraints, one can center the components in (4.9)
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to meet the identification conditions as

d
p(X) =p5+ Y (XD + Y. pi(Xi, Xo), (4.10)
=1 1<l<s<d
with o (X1, Xs) = (I — AYI — As)p(Xi, Xs), pf( X)) = (I — Ap(Xy) +

(I - Al) {Zl<5 Aspls(leXs) + Zs<l Aspls(stXl)}v and pEk) = po t Z?:l Alpl(Xl) +
D oi<ics<a AtAsps(Xi, X). Here I is the identity operator.

One notes that after centering, the functions p; and p;, do not necessarily follow the
shape constraints, although the original functions p; and p;, do. The centering is only
for uniquely defining the individual components in the frontier function. The frontier
function p(X) is unchanged after the centering. In the following, we first extend the
proposed constrained polynomial spline method to obtain estimators that satisfy the
shape constraints; then center these estimators to uniquely estimate the centered unknown
components in (4.10).

The two-step estimation proposed for the additive frontier model can be extended to
estimate model (4.9). In particular, the regression function

d
m(X;) = B(YiXi) =mo+ > m(X)+ > mus(X, X,), (4.11)
=1 1<l<s<d

with m; = pjpup for 1 =0,1,...,d and mys = pjpup for 1 <1 < s <d.
To approximate bivariate functions in model (4.11), we first introduce tensor product

B-spline basis. Let B, = <Bll,...,Bl J) be the uncentered B-spline basis for input

7y defined in section 3.1. Then the tensor product basis constructed from BL and By
is defined as Gy = {Gjj (1, 25),1 < j,j < Jp} with Gy (1, 25) = Byj(x) By (ws) -
Therefore without any shape constraint, the traditional polynomial spline estimator of
the regression function can be obtained by solving

2

n d
(ﬁlo’ﬁ,’?) — argmin {YVi—mo—» B Biu(Xa)— Y viGus(Xu, Xis)
=1

mo,By iy 1<l<s<d

Then the unknown components in (4.11) can be estimated by my(z;) = BlTBl(afl),
mys(xy, ) = &%’;Gls(xl,xs), which also serve as the initial estimator in the constrained
estimation. In addition, let /m(x) = g + S0, myay) + Y i<ics<aMus(Ty, ) be the
corresponding estimator of the regression function for any fixed x = (z1, ... ,a:d)T.

In the following, we extend the one-step backfitted procedure to obtain spline estimators
with shape constraints. In particular, for each 1 <1 < d, to estimate the main effect m;,
we define the I-th pseudo responses Y; _; =Y; — m(X;) + 1m(X;;). Then we consider the
constrained least squares

n

. . 2
B, = arg minz {Yi’_l - B Bl(Xil)} subject to B; € (7,
By i=1

where (] is the set of linear constraints for the [-th main effect term.
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For the interaction terms, consider a bivariate spline function g;s(zs, ;) =
Z‘j];l E;.],"Zl 71573-]-/&]-(30;)35]-/ (xs). Then any fixed z; = 9 , one can write g5 1(xs) =
Gis(xs, 210) = Z;-]/":l Vej (210) By (x5) with Yoy (T0) = Z}-]ll Vis.jj Bij (o). Therefore,
the linear constraints can be imposed on the coefficients ’)’7371(3710) = {fy:j, 1< < Jn}
to ensure the corresponding shape constraints on gjs;(xs) at a fixed xjo. Similarly, for
any fixed z, = w50, let goo(x1) = gis(ws0,21) = Y7 75 (50) Baj () with 7} (2s0) =
Z;‘]/":1 VZS,jj’st/(iUsO)- Then the linear constraints on the coefficients 7j, ,(zs0) =
{’yz‘j, j=1..., Jn} ensure the corresponding shape constraints on g2 (7).

Therefore, for each interaction term myg, let Y; ;s = Y; — m(X;) 4+ mys (X, Xis) be the
pseudo responses, and consider

n
~ . 2
Js=argmin Yy {Y; s — 11 Gie(Xi, Xio)} (4.12)
Yis i=1

subject to v, 1 (Xu) € Cis,Vi52(Xis) € Cis fori=1,...,n.

As a result, the unknown components in (4.11) can be estimated with shape constraints
by

N ~T N N

() = B; Bulay), mus(zr, ) = ¥ Gus(ar, ). (4.13)
In (4.12), there are a total of 2n sets of constraints to ensure the spline estimate 75 (x;, x5)
satisfy the shape constraints as a function of x; when x; = X, for all i = 1,... n, and
as a function of x5 when z; = X;; foralli =1,...,n.

To uniquely estimate the functional components that satisfy the identification condi-
tions, we center the estimators in (4.13) as follows

d
mg =My + ZA[’I’?L[(I]) + Z Ay Astiys (o, @s),
=1

1<l<s<d

g () = (I — Ay (Xy) + (I — Ay) {Z Asrins (X, X) + ZAsmls(X&Xl)} :

I<s s<l
m;‘s(a:l,:cs) = (I — Al)(I — As)mls(xl, JIS).

Here A; is the integration operator with respect to variable x; with Aym(xs,z;) =
| m(zs,x;)dz; and I is the identity operator.

After the mean function is estimated, one can similarly estimate iy using (3.6) with
m(x) = mo+2le Mi(x1) + D1 <j<s<q Mus(21, s). Consequently, the frontier function can
be estimated as p(x) = m(x)/[ip, and the centered components estimated as p;(z;) =
g () i, and iy (w1s) = (w1, w,) i for 1 <1< 5 < d.

In summary, we have discussed three extensions of the additive frontier model to in-
corporate interactions among input variables. Similar to the additive model, extensions
1 and 2 only involve estimation of univariate component functions, but the interactions
are assumed to be of specific structures. Extension 3 is the most flexible in modeling
interactions through nonparametric bivariate functions, but with an increased cost in
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computation and often requires larger sample sizes due to "curse-of-dimensionality". In
addition, in all three extensions, we impose shape constraints on the individual com-
ponent functions. For extensions 1 and 3, these constraints are only sufficient, but not
necessary for ensuring similar constraints on the total production function for each input
variable.

5. Empirical Results

In this section, we conduct simulation studies to evaluate the numerical performance of
our proposed method with finite samples. In the univariate case, we systematically com-
pare our method to several existing methods in the literature including the nonparametric
method using local linear regression in Martins-Filho and Yao (2007), the semiparametric
method under shape constraints described in Wu and Sickles (2018), and the constrained
polynomial spline estimation of the boundary curve proposed by Daouia et al. (2016).
We also study the performance of our proposed method when there are multiple input
variables with data being generated from an additive frontier model, and a frontier model
with bivarate interaction terms. In addition to the simulation studies, the application of
the proposed method to the Norwegian Farm data is also illustrated.

We use the averaged integrated squared errors (AISE) to evaluate the estimation ac-
curacy of different methods. Let p; be an estimator of p; in the k-th replication, and

{x; }?iqid be a set of grid points. Then the integrated squared error (ISE) of p,, is defined

as ISE(py) = kg 095 [y (27) — p (a))? and AISE(p) = L Y1 ISE(py).

5.1. Simulation Study

5.1.1. Univariate Case

In this example, we adopt the simulation set-up as given in Martins-Filho and Yao
(2007) to compare their local linear method with ours. The data is generated from a
frontier model with a single input variable Y = p(X) R, where the frontier function
p(X) =3(X —1.5)%+0.25X + 1.125 and the input variable X is generated from the
uniform distribution on [1, 2]. To generate the efficiency variable R with support on (0, 1),
we let R = exp (—Z) where Z is an exponential variable with scale parameter 5 = 1/3,1,
and 3. These three choices of scale parameters correspond to three different shapes for
the distribution of the production efficiency R: left-skewed, uniform, and right-skewed
and enable us to examine the impact of different underlying distributions of R on the
performance of frontier estimator. We consider sample sizes n = 100, 250, or 500 and
r = 1000 replications are generated for each set-up.

For each simulated data set, we estimate the frontier function using seven different
methods: the nonparametric method via local linear regression (LLR) in Martins-Filho
and Yao (2007); our proposed two-step method using unconstrained linear spline (ULS),
monotone constrained linear spline (MCLS), monotone and concave constrained linear
spline (MCCLS); the integral transformation of linear spline (ITLS) in Wu and Sickles
(2018); and quadratic spline with monotonicity constraint (QS-M), or monotonicity and
concavity constraints (QS-MC) proposed in Daouia et al. (2016).

In this example, the true frontier function is monotone increasing, but not concave. We
consider both monotone constraint, and monotone and concave constraint to illustrate
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the effect of incorporating different shape constraints on estimation accuracy. For the
MCLS and MCCLS methods, shape constraints are imposed as in section 3.1. For the
ITLS method, to estimate the regression function m (), we consider model (4) in Wu
and Sickles (2018), in which we set g(a) = a? to incorporate the monotonicity and
concavity constraints. The model is then estimated by minimizing the sum of squared
residuals. In the LLR method, the direct plug-in method is used to select the bandwidth
in LLR method, as described by Ruppert (1995). The QS-M and QS-MC methods are
implemented by using R package npbr.

The simulation results are summarized in Table B1. Overall, it clearly shows that for
the proposed methods (ULS, MCLS, MCCLS), the AISEs decrease as the sample size n
increases, supporting our asymptotic convergence results. In addition, the method with
correct shape constraints (MCLS) always has better performance than the one without
constraint (ULS). However, when incorrect shape constraint (MCCLS) is used, the results
are mixed. In particular, MCCLS gives generally smaller AISEs for small sample size
(n = 100), and can lead to larger AISEs than ULS due to the mis-specification of the
shape constraint in particular when g =1/3.

Among seven different methods, we observe the performances of QS-M and QS-MC
are among the best, while all the other methods are generally comparable, except that
LLR method has noticeably larger AISEs for § = 1/3. Different from other methods, QS-
M and QS-MC estimate the frontier function directly by finding the shape constrained
spline function that is closest to upper boundary of the data points. In contrast, all the
other methods are implemented in a two-step procedure, and their estimation accuracies
are affected by the estimation of both the mean regression function and the location
parameter from the production efficiency variable.

Tables B1 also shows that the underlying distributions of the production efficiency
variable R has an impact on the performance of different methods. The proposed spline
methods have least favorable performance when 5 = 3 compared to the scenario of g = 1.
This phenomena is mainly due to the difficulty in estimating pp under the right-skewed
distribution of the efficiency variable R where the majority of observations are close to 0.
However, the performance of the LLR method is the worst when 5 = 1/3. This inferior
performance is due to the fact that under this scenario a% = 0.04 which is half of that in
the other two scenarios, leading to a larger variability in estimating the frontier function
as indicated by Theorem 2 in Martins-Filho and Yao (2007). The simulation results show
that the spline methods have great advantage over the LLR method when the efficiency
R has a left-skewed distribution, i.e., when 8 = 1/3.

Furthermore, Table B1 compares the computation time to perform 1000 Monte-Carlo
simulations in R when § = 3 for different methods. Our proposed methods have the best
efficiency in terms of computation time. It is worth mentioning that although the I'TLS
method is comparable with our proposed MCCLS method regarding their performance
and even performs slightly better when sample size is large enough, it comes with ex-
tremely low computation efficiency due to computation complexity involved in the double
integrals. As a result, Table B1 shows that I'TLS method requires much longer computing
time than the other methods.

For our two-step method, a robust procedure is proposed in the estimation of pp to
alleviate the effect of outliers. In order to evaluate its effectiveness, two artificial outliers
(X,Y) = (1.4,3) and (1.6,3) are added manually to each simulated dataset. Then, all
estimation procedures are applied again. To make the LLR and ITLS methods comparable
with our robust method, we also apply similar robust modification in estimating J% and
iR, respectively. Table B2 clearly illustrates the effectiveness of the robust procedures.
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When there are outliers, our proposed spline methods perform noticeably better than the
LLR, QS-M, and QS-MC under all scenarios. For example, when 5 =1 and n = 50, the
AISEs of the MCLS method decrease by 97.8% of that of the QS-M method.

In Figures B1 and B2, we plot the estimated frontier functions from one simulated
data using LLR (solid grey line), ULS (dashed brown line), MCLS (dotted purple line),
MCCLS (long-dashed red line), ITLS (dot-dashed green line), QS-M (dotted orange lines),
and QS-MC (two-dashed blue lines) methods, along with the true frontier (solid black
line). Without outliers, Figure B1 shows that our proposed methods perform very well as
the fitted curves are very close to the true curve and they are noticeably better than the
LLR method when 8 = 1/3 and 1. When there are outliers, Figure B2 shows that the
fitted curves from LLR, QS-M, and QS-MC are pulled up due to two extreme outliers.
After the robust method is applied, the plots indicate that the spline methods work much
better than the LLR method especially for smaller sample size. This suggests that our
methods are more robust to the outliers.

5.1.2. Multivariate Case

In this example, we consider the additive frontier model with multiple input variables
Y = [pg + p1 (X1) + pa (X2) + p3 (X3) + py (X4)] R, where py = 8, py (X1) = 2X1 — 1,
po (X2) = 2Xo+[sin (27 X)] /27—1, py (X3) = 3X3/°—9/4, and p, (X4) = (logXy + 1) /2.
The input variables {Xl}?‘zl are independently generated from the uniform distribution
on [0,1]. The efficiency variable R is generated in the same way as the univariate ex-
ample. The additive frontier model covers a combination of functions that are either
monotone increasing or monotone increasing and concave. Similarly, consider sample size
n = 100, 250, or 500 and r = 1000 replications are generated for each set-up. For each
generated data, we estimate the additive frontier function using the proposed two-step
method with or without shape constraints: ULS, MCLS and MCCLS as described in the
univariate case. Again, AISE and MSE are used to evaluate the estimation accuracy of
the nonparametric functions and the parameter pp, respectively. Two artificial outliers
located at (X7, X9, X3, Xy,Y) = (0.4,0.4,0.4,0.4,12) and (0.6,0.6,0.6,0.6,12) are added
manually to the simulated data set.

The simulation results are summarized in Tables B3 (without outliers) and B4 (with
outliers). For three spline methods, Table B4 shows that the estimation errors decrease
as the sample size increases. The two spline methods with shape constraints (MCLS and
MCCLS) perform much better than the unconstrained method (ULS), in both first and
second step estimation. In addition, MCCLS gives the least AISEs among these three
spline methods. Furthermore, similar to the univariate case, the spline methods have
the worst performance when S = 3 due to the difficulty in estimating ;1. Again, when
using the contaminated data set, without the robust modification, the ULS method gives
very large estimation errors with 8 = 3 because of large errors in the estimation of
. When the robust method is applied, the ULS method is improved greatly but still
worse than the two constrained methods. It shows that the robust method improve the
estimation accuracy of up greatly, especially under the case with right-skewed distribution
of the efficiency variable R, i.e., when § = 3. For example, when applying the robust
modification, the MSE of 1/p 5 obtained using ULS decreases from 3896.62 to 0.07.

5.1.8.  Second order functional ANOVA frontier model

In this example, we consider a functional ANOVA frontier model with a bivariate
interaction term Y = [py + p; (X1) + po (X2) + p12 (X1, X2)] R, where py = 8, py (X1) =
0.4 (X7 +2X1 —0.75) , py (X2) = 0.7 (eX2 — e+ 1), and pjy (X1, X2) = 4X1 Xy — 2X; —
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2X5 + 1. The input variables X; and X5 are independently generated from the uniform
distribution on [0, 1]. The efficiency variable R is generated in the same way as that in
previous two examples. Again, different sample size n = 100, 250, and 500 are considered,
and r = 1000 replications are generated for each set-up. To estimate the frontier functions,
we consider our proposed two-step method using unconstrained linear spline (ULS), and
monotone constrained linear spline (MCLS). Similarly, AISEs are used to evaluate the
estimation accuracy.

Table B3 shows that the AISEs for both methods decrease with the increase of sample
size. Furthermore, the spline method with correctly specified shape constraints (MCLS)
performs much better than the one without constraint (ULS) under all scenarios. In
addition, similar to the univariate and multivariate cases, the proposed method has better
performance for smaller values of 5. We also plot the estimated frontier functions using
the ULS and MCLS methods, along with the true functions, as illustrated in Figure B3.
Obviously, the MCLS method produces better fitted results than the ULS method, since
the fitted curves or surface using the MCLS method are more close to the true functions.
This visually confirm our numerical findings.

5.2. Norwegian Farm Data

We now apply the proposed two-step method to the Norwegian Farm data. This dataset is
originally from Norwegian Farm Accountancy Survey collected by Norwegian Agricultural
Economics Research Institute in 2004 to 2008. The data has been analyzed by Kumbhakar
et al. (2014) and Wang and Xue (2015). We here consider the data on 145 grain farms
of year 2007. We focus on four input variables: total number of hours worked (labor) on
the farm (X1), productive farmland in hectares (X3), variable farm inputs (X3) and fixed
farm input and capital costs (X4), and their interaction terms. The output variable (Y")
is the logarithms of farm revenue measured in Norwegian kroner. In Kumbhakar et al.
(2014), they thoroughly studied 6 different parametric stochastic frontier models for the
estimation of farm efficiency. Wang and Xue (2015) used a monotone additive regression
model to quantify the relationship between the input variables and the output variable.
We here consider the additive frontier model

Y = [pg + p1 (X1) + p2 (X2) + p3 (X3) + py (Xa) + p5 (X1 X2) +
p6 (X1X3) + p7 (X1X4) + pg (X2X3) + pg (X2X4) + pro (X3X4)] x R

to quantify the maximum farm revenue given these four input variables and their in-
teraction terms. Our semi-parametric model is more flexible than the parametric ones
considered in Kumbhakar et al. (2014). In addition, Wang and Xue (2015) focused on
the estimation of the regression or conditional mean function without consideration of
interaction terms.

To estimate the unknown components in the model, we first consider the unconstrained
linear spline (ULS) method. The number of interior knots N, is taken as the integer part
of n'/(2P+3) The knot sequence is selected to be equally spaced in the range of each input
variable. Figure B4 plots the estimated conditional mean function obtained in the first
estimation step. We plot the pseudo responses (black circle) along with the estimated
mean functions using the ULS method (dashed blue line). The 95% point-wise confidence
intervals from bootstrap (dotted blue line) using the ULS method are also plotted. At
each grid point, the 95% point-wise confidence intervals use the 2.5% and 97.5% sample



August 3, 2021

17:30 Journal of Nonparametric Statistics output

16 Lu Wang, Lan Xue and Lijian Yang

quantiles of the ULS estimates obtained from 1000 bootstrap samples as the lower and
upper bounds respectively. Figure B4 shows that the input variables X7, Xo and X3 have
monotone increasing main effects on the farm revenue and the rate of change seems to
decrease as the input variable increases. However, the interaction terms in general do not
follow the monotone increasing constraint. Therefore, we impose monotone increasing or
monotone and concave constraints on the main effect terms (py, py, p3, p4), While no
shape constraint is imposed on the interaction terms ( ps, pg, P7, Pss Pg), given that
some interactions terms may have negative effect on farm revenue. We use the proposed
method to estimate the frontier model with shape contraints on the main effect terms.
In particular, in the one-step backfitted procedure, we consider monotone constrained
linear spline (MCLS) with C; = Cjs or monotone and concave constrained linear spline
(MCCLS) C; =CynNCe forl =1,...,4, and C; = 0 for [ = 5,...,9 with () being an
empty set. Figure B4 plots the estimation results from both MCLS (dot-dashed green
line) and MCCLS (long-dashed red line). It shows that three spline methods give similar
fitted results.

Furthermore, to assess the production efficiency of each farm, in Figure B5 we plot
the estimated maximum farm revenue (left top), efficiency estimates (right top), and the
kernel density distribution of the efficiency estimates (left bottom). We can easily see
that the three estimation method give similar results while using the MCCLS method
for fitting the main effects produces slightly smaller efficiency estimates compared to the
other two methods. Furthermore, it indicates that the majority of 145 farms have high
efficiency with the estimates no less than 0.95. In addition, farms with lower revenue tend
to have lower production efficiency.

In addition, to further explain the difference in efficiency among farms, we explore the
relationships between efficiency and five other explanatory variables of interest includ-
ing off-farm income share (net off-farm income as a proportion of the total net income),
coupled subsidy income share (coupled subsidies as a proportion of the total farm net
income), environmental subsidy income share (farm environmental payments as a propor-
tion of the total farm net income), farmer experience (number of years as a farmer) and
the farmers’ education level. Figure B6 shows the scatter plots of those variables versa the
estimated efficiency and the boxplots of efficiency estimates for different education levels
of farmers using MCCLS method in fitting the main effects and ULS method in fitting
the interaction effects. For the first four continuous variables, we also fit the least squares
regression lines (solid red lines). Clearly, it indicates that larger coupled subsidy income
share or environmental subsidy income share are associated with lower efficiency. These
negative influences may be due to the reason that the motivation of farmers to work is
reduced by the extra off-farm income. We also notice that as the off-farm income share
increases, the efficiency slightly increases. However, it seems that there is no apparent
relationship between the efficiency and farmer experience or the farmer’s education level.
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Appendix A. Assumptions

The asymptotic analysis in subsection 3.2 requires the following assumptions.

(A1) The input variables X; are i.i.d. with support set [0, 1]d. Its joint density function, denoted by
f (%), is continuous and 0 < ¢; < f (x) < ¢2 < o0, for x € [0,1]* and positive constants ¢; and cs.

(A2) The inputs and efficiencies {X;, R;}"_, are i.i.d. with E (R;|X;) = pp and var (R;|X;) = 0% <
+o00. The efficiency R has a continuous distribution function Fg (-) such that Fr (0) =0, Fr (1) =1 and
that the left derivative fr (1) = Fp (1—) exists and is positive.

(A3) The knot sequence {0 = up < u1 < --- < un, < un,+1 = 1} is equally spaced on [0, 1] with u; =
3/(Nn+1) for j =0,1,-++ , N + 1.

(A4) The number of interior knots N, satisfies N2P™2/n — 0 and N2P"5log(n)/n — 400, as n — +oo0.

(A5) For 1 <1 < d, the additive frontier function p, is monotone increasing and (p + 1)-times contin-
uously differentiable for some integer p > 1. We assume that there exists a constant c3 > 0, such that
p; (z) > cs, for z € [0,1].

(A5*) For 1 < [ < d, the additive frontier function p, is concave and (p + 1)-times continuously
differentiable for some integer p > 2. Furthermore, we assume that there exists a constant ¢4 < 0, such
that pl(2> (z) < ca, for z € [0,1].

Assumption (Al) is the same as condition 1 in Stone (1985). Assumption (A2) requires that the
efficiency random variables are i.i.d. with a common distribution. Assumption (A3) assumes that the
interior knots are equally spaced in the interval [0, 1], which is required to simplify the linear constraints
derived in Lemmas 2 and 3 in the main paper. One can relax this condition to the one considered
in Huang (1998), Xue and Yang (2006) and Wang and Xue (2015) which requires the knot sequence
to be pseudo equally spaced. The assumption for the number of interior knots and samples size are
give in the assumption (A4). This assumption is satisfied by N, with the optimal order that N, =
O(n/?+3))  Additionally, for the monotone constrained estimator, Assumption (A5) assumes that each
additive frontier function is monotone increasing and its first order derivative is bounded below from zero.
Similarly, for the concave constrained estimator, Assumption (A5*) requires that each additive frontier

function is concave.

Appendix B. Lemmas and Proofs

_ - ~ T
Proof of Lemma 3.1. Recall that B(xz) = (31 (z),..., BNptp+1 (at)) is

the non-centered B-spline basis of GP. By de Boor (2001) p.115, Bj () =
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(k=1) [*Bﬁl,k—l (@) / (wj41 = Wj—t2) + By (@) / (u; — Uj—k+1)] , for j = 1,...,N + p, where
k = p + 1 is the order of the polynomial spline. Therefore, the first order derivative of the polynomial

spline is

g'(z) = [ ] [Nipﬁ Bijk ( } {Nipﬁ < ok~ zn:Bj,k (mi)>]

Nn+p

=(k-1) [(51/ (ur —u—pt1)) Big—1+ > ((8,=B,-1) / (uj — uj—p)) Bjk

Jj=2

Because the B-spline basis is positive, a sufficient condition to guarantee the monotonicity of the poly-
nomial spline is that the coefficients of the basis are non-negative. Therefore, one has 8, > 0 and
B;—B;—1 =2 0for j =2,.., Ny +p, and Lemma 3.1 follows. ®

Proof of Lemma 3.2. According to equation (B1), the first order derivative of the linear spline can
Np+1

be written as g'(z) = [(m/ (wr = u0)) Bra(@) + Y- ((8;-85-1) / (wy = wy-)) Bj,1<x>] . For a linear
j=2
spline, the rate of change is a constant in each interval. To ensure that g(-) is a concave function, the rates

of change need to be non-increasing in the whole region. Therefore, we’ll have (8,—03;)/ (u2 —u1) <
By/ (ur —uo) and (B;,—B;_ 1)/ (us —uj—1) < (B;,_1—B,_ )/ (uj—1 —u;j—2) for j = 3,...,N, + p and
N, > 2. When N,, =1, one has (8,—08;) / (u2 — u1) < 81/ (u1 — uo) . Since the knots are equally spaced,
Lemma 3.2 follows. l

Proof of Lemma 3.3. By equation (B1), we have g (z) =
Nn+p

(k—1) {(5 / (u1 —u_pi1)) Brg—1 + Z (B;=B;_1) / (uj — uj—141)) Bjx

When degree p > 2, we can take the second order derivative and obtain

Np+p

9 (@) = (k1) [(51/ (= up1)) Bicr + D> ((B;-85-1) / (uj — uj—x11)) Bj s

j=2
Np+p i [
(5 _ Bi—Bi1 ( —Bj+1k—2 B2 )
S J; Uj — Uj—k+1 \Uj — Uj—k42 - Uj—1 — Uj—k+1
_ﬁ ~

+(k-1)(k—-2) (w1 —up1) (;1 — u_p+2)BQ,k—2

= I+1I. (B2)

Furthermore, term I in (B2) can be decomposed as

I=((k-1)(k-2) z_: Bi—Bj- (u_Bj+1,k—2 n ng,k,g )

j=2

Uj = Uj—k+1 \Uj — Uj—k+2  Uj—1 — Uj—k+1

Np+1 ~
B;—B;-1 <_Bj+1,k72 " Bjk—2 )

+k-1)(k=2) )

e~ Wj — Uj— k41
=p W j—k+

Uj = Uj—k+2  Uj—1 — Uj—kl

Np+ ~
Zp B;—Bj_1 (_Bj+1,k72 n Bjr—2 )

+(k-1)(k—2)

T Uj—k+1 \Uj — Uj—k42  Uj—1 — Uj—k+41

. Uj
Jj=Npn+2

=L+ 1L+ 1.



August 3, 2021

17:30 Journal of Nonparametric Statistics output

20 REFERENCES

Let h=wu; —uj_1, for j =1,..., N, + 1. Then, for terms Iy, I>, I3, one has

o= (k—1)(k—2) By—h Bops

(uz = u—py2) (U1 — u—py2)

p—1
_ _ 6j_ﬁj71 _ ﬁj71_5j72 ] o
HEmDEE JZ:;» [(Uj —Ujk1) (W1 = Ukt1)  (wion —wk) (U1 — Ujk41) P
—(Bp1=Bpa) 4
+ (k - 1) (k - 2) (Uk—Q — Ufl) ('LLk-Q — ,UIO)‘BPJ'C*2
B,—B T 8,-8 Bio1—Bj_2] -
=(k-1)(k-2) 2h2132k 2+ (k—=1)(k—2) ]z:{ jflj }112 — (;_11)27]122} Bjk—2
+(k—1) %B@k—% (B3)
Np+1 A ~ — .
5B hﬁp T Bi=Bi (253-71 BJ*Q)BM,Q _ %Bmﬁ’k% (B4)
j=p+1
and
_ _ _ (BNn+2_ﬂN71+l)
L= (k ) (k 2) (uNn+2 - UNn—k+3) (UN,ﬂLl - UNn,—k+3)BNn+2 k2t ( 2 (k 2)
Np+p
Bi—B;_1 _ Bj—1=Bj—2 ]B
J':%;rs [(Ua — ) (Ujm1 — wj—pa1) (W1 — k) (o1 — ujpr) |
- (k_l)WBNﬁ“ o+ (k—1)(k—2) x
Nn+p
Bi—B; 1 B Bi—1=Bj2 ] 3.
j:%n:+3 [(Nn +1—j+p)?h2 (Na+2-j+p)(Nu+1-j+p)h’ Broas (5
Also, IT in (B2) can be written as
II=(k—1)(k—2) ﬁlB2k2 (B6)

h2

By above decomposition, the second order derivative of the polynomial spline of order k can be written as
a linear combination of B-spline basis in the polynomial spline space with order k£ — 2. Since the B-spline
basis is positive, a sufficient condition to guarantee the concavity of the polynomial spline is that the
coefficients of the distinct basis are all non-positive. Now, combine with (B4), (B4), (B5) and (B6), we
have the following set of inequalities:

By, < 28,

B;=Bj_1 <] (Bj—lfﬁj—2) /(G —1),forj=3,..p—1

By—Bp1 <P (Bp_1—Bp_2)/(p—1),

B;=Bj—1 < Bj1—Bj_g,forj=p+1,..,Nn+1

ﬂNn+2_f6Nn+1 <@-1) (ﬁN,le_ﬁNn) /p,

6j_/6j71 <(Nn+1-j+p) (ﬂjfl_ﬁjfz) /(Nn+2—3j+p),for j=Ny+3,..,No+p,

for degree p > 2 and Lemma 3.3 follows. B

In the following, we present the exact forms of constraints for quadratic and cubic splines to be concave.

These results are used in the numerical studies.
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Lemma B.1: A sufficient condition for a quadratic spline g(xz) = BT (2)8 , where B(z) is the empir-
ically centered B-spline basis of G2, to be concave is that its coefficients satisfy the following conditions:
B2—P1 < 264,
Bs—B2 < (B3—B1) /2, for Nn =1, and
Ba=B1 <284,
/Bj_ﬂj—l < 5j—1_ﬁj—27
Bnio—Bni1 < (5N+1_5N) /2, for N >2,j=3,..,N+1.

Proof. It follows directly from Lemma 3.3. B

Lemma B.2: A sufficient condition for a cubic spline g(xz) = BT (2)8 , where B(z) is the empirically
centered B-spline basis of G2, to be concave is that its coefficients satisfy the following conditions:

Ba—B1 < 254,

B3—B2 < Ba—B4,

Bs—Bs < (B3—B3) /2, for Nn = 1,

Ba—B1 < 284,

B3—By < 3(B2—B1) /2,

Ba—Bs <2(B3—B,) /3,

Bs—B4 < (B4—B3) /2, for N, =2 and

By—P1 < 264,

Bs—B2 < 3(B2—B1) /2,

B—Bs 1 < By =By

Briro—Bni1 £2(Bys1—Bn) /3,

Bnis—Bnia < (5N+2_5N+1) /2, for N, >3, 5=4,..,N+1.

Proof. It follows directly from Lemma 3.3. B

Lemma B.3: For any m that is centered with E(m(X;)) = 0 and satisfies condition (A5%) , there exists
a concave function g € G'P) that is empirically centered with > 9(Xu)/n =0, such that |m — g|| <

ch(p'H) N;P7Y and Hm(Q) —g? < ch(p"'l) N, Pt for some constant ¢ > 0 and large

(oo} o0 o0

enough n.

Proof. According to Theorem 1.51 in Schumaker (1981), for any m € CP*' [0, 1], there exists a function
g € G® such that [lm =gl < ch(pH)H N, 7! and Hm(z) 79(2)“ < ch<p+1> NP for
oo oo}

oo
some constant ¢ > 0 and p > 1. By condition (A5*), m® (z) < ¢1 < 0 for some constant ¢; and any

‘m@) —g®| +m® <ei/2 < 0. In addition, if m
[e o)

« € [0,1]. Then for large sample size, one hasg® <
is centered with F (m (X;)) = 0, then

g

n n

90l = ig(a:u)/n < Z[Q(l’u)—m(m)] /n| + Zm(ﬂﬁu)/n
<c Hm(p'H) N NP7 40, (n_l/z) =0, (N, 7).

Let g* = g — 7,,- Then there exists a constant ¢ > 0, such that

I = g"lle < lm = gl +[3.] < e|fm®|| N2,

Hm@),g*(mH :Hm@)fg(z)H SCHm(p+1)H NP
oo oo oo
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Therefore Lemma B.3 follows for sample size large enough. |
For each [ = 1,...,d, let m; be the one-step backfitted estimate of m; when all the other additive

components are known. In this case, it reduces to a univariate polynomial spline smoothing. Define

Y, =Y — Zml Xiur) = my (Xa) + p(Xi) e as the pseudo response, and for | = 1,...,d let Y*; =
V£l
(Y7, ...,Y:ﬂ_l)T. Then m] (z) = Bf (z)3; where 3] = (B7Tlanl)71 BI,Y*,. Note that {m] (as)}fl:1

are unavailable for real data analysis and are constructed only for proving the theoretical results.

Lemma B.4: Under regularity conditions (AZ) (A4),(A5%), for 1l = 1,...,d and L, = \/Np/n +
N, P71, one has SUP,c(0,1] ( >( ) — (2) ‘ =0y (LnN7) .
Proof. By Lemma B.3, for each I = 1,..., d, there exists a concave function g, such that ||m; — g, <

c Hml(p-‘rl)

‘ml(p+1)

N;P~! and Hml(g) - gl(Q) <c N P*1. By definition, one has

m; @ (x)

= B(Q) (w )T/B B(Q) (z ) (BZZBnl) BLY", = ﬁl@) (I)T (BZanl)ﬂ BI, (my + pe)
= BZ(Q) ( ) T (g1 +my — g + pe)
=B (" (BIBu) Ble+B @) (BIBu) Bl (m e
+B{ ()" (BIB.)  Blipe
=1(z)+II(x)+11I(x). (B7)

Since we can write g = B,;7, for some coefficient ~,, I (z) = Bz(2) (z)" (BZZBM)_IBZZB”W[ =
Bl(z) ()" ~, = gl(z) (). Then by Lemma B.3, we have

(2) ml(Q) (1:)’ <ec Hml(P-H)

sup ‘I ml(2) (m)‘: sup ‘g NPT (B8)

z€0,1] z€[0,1]

Note that sup, |B'* (x)‘ = O (N;) and that the number of nonzero elements in B!” () is bounded

sup |II ()] < ON,

z€[0,1]

(BLBw) B (- gz)'

-1
=CN;, (nile;anl) xn” "By (m; —g)].

—1

According to equation (A.10) in Lemma A.3 of Wang and Yang (2009), H (nilBZanl) = Oq.s (Nn),
hence
sup |11 ()] < CNZ X Oae (Na) x [ BT (my — g1)| = Oue (N2) x |0 "B (m1 — g1)|
z€[0,1]

< Oas (N3) x |(Bi,1),,| x CN, P71 < Oas (NFTP) x |(By,1)

n|'
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Applying the inequality sup . }(ap, 1), — (e, 1>| lell™ = 0, (n_1/2N711/210g1/2n) , one obtains that

|(Bi,1),,| < 1(Bi, 1)l + [Bi]| x Op (n~* N ?l0g"*n)

n

=0y (N,ﬂf1 + N,Zl/Q X n71/2N$/210g1/2n) =0y (N,Zl) .
Therefore,

sup |IT ()] < Oa.s (N77P) x Op (N 1) = O, (N, P11 (B9)
z€([0,1]

Since SUP,¢0,1]

BgZ) (:v)‘ = Op (N7), and the element of n™'Bf,pe is n™" 30| Bij(z:i)p(zi)e; =
Op (n_l/gNJI/Q), therefore

sup |11 (z)| = O, (Nﬁ X Ny X n*l/QN,:W) -0, (n*”ZN;’;/?) . (B10)
z€[0,1]

Finally, Lemma B.4 follows from equations (B7), ( B8), (B9), and (B10). B

Lemma B.5: For any function m that satisfies condition (A5%) with p = 2,3 and large enough n,
there exists a concave function g € G™ whose coefficients satisfy the concave constraints such that

Hm _ g”oo <ec Hm(pﬂ)

—p—1
N, P7%, for some constant ¢ > 0.
oo

Proof. By Lemma B.3, for any m € CP*'[0,1] that satisfies condition (A5*) and large sample size,

there exists a concave function g € G, such that ||m — g < 1

’m(pﬂ) H N;7P71 for some constant
c1 > 0. Since m € CP*1[0,1], its first order derivative m’ € CP[0,1]. According to Lemma 3 from
Wang and Xue (2015), for p < 3 and large enough n, there exists a §’ € G®»~Y whose coefficients

satisfy the linear constraints, such that ||’ — ¢’ < c2 |m®TY

N, P for some constant cz > 0. With
g(x) = /g’ (z)dx € G® and follow the similar arguments in the proof of Lemma 3 in Wang and Xue

(2015), we can easily show that ||g — g||_ < c2 Hm(”H) H N, P71, Furthermore, in the proof of Lemma
oo}

3 in Wang and Xue (2015), we showed that the spline coeflicients of §@ are non-positive which suggests

that the coefficients of § satisfy the concave constraints. Therefore, the Lemma B.5 follows. B
In
Recall that m; = > B;;Bj is the one-step backfitted estimate of m; with all other additive components
j=1

known, for [ =1,...,d.

Lemma B.6: Under regularity conditions (A1)-(A4),(A5%), for | = 1,...,d and p = 2,3, there
Jn -

exists a spline function g1 = Y 7,;B; whose coefficients satisfy the concave constraints such that
j=1

3
sup; }'Ylj —ﬂfj‘ = 0, (\/ W) . Therefore, the coefficients of m] satisfies the concave constraints

with probability approaching to 1 as n — oo.

Proof. For p = 2,3, by Lemma B.5, there exists a spline function g; whose coefficients satisfy the
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concave constraints such that ||m; — gi||, = Op (N, ?~") . By definition, we have

—1 —1
IB; = (BEZB’RZ) Bgl (ml + pf‘:) = (BZZBTLZ) BZZ (gl +m; — g + pE)

= (BLB.) Bl + (BLBu)  BL (mi— &)+ (BIB.) Blpe

=T+ IT+1II (B11)
Write g; = By, then
-1
I=(BLBu) BIBuv =7 (B12)

Since | (nlelenl)_l loo = Oa.s. (Nn) and [[m; — g, = Op (N;pfl), similar arguments as these in
(B9) gives that

[I|oo = Oy (N, P71). (B13)

Then, follow the similar argument in the proof of Lemma 4 in Wang and Xue (2015),

3
|10 = O, <,/N"L0gn> . (B14)

From equations (B11), (B12), (B13) and (B14) and assumption (A4), we have sup |3; —~,|« = sup |[I] +
11, = O, N31°g") and then the Lemma B.6 follows. W

JIn,

Recall that m; = > Blj Bj is the one-step backfitted unconstrained estimate of m; for [ =1,...,d.

Lemma B.7: Under regularity conditions (A1)-(A5%), forl=1,...,d and p < 3, there exists a spline

function g = Zj;l v1;B; whose coefficients satisfy the concave constraints such that

N3logn
. .

Therefore, the coefficients of ™, satisfies the concave constraints with probability approaching to 1 as

sup "Yzj - sz =0p
J

n — oQ.

Proof. We have

B B d
B = (BLBu) BhL(y-m )= (BLB.) BL (Zml +pe- ﬁl—l)
=1

—1 —1
= (BZ;ZBM) B (my + pe) + (BZanl) B, (m_; —1h_;)
=06, +1
By Lemma B.6, for any fixed | = 1, ...d, the coefficient 3] satisfies the concave constraints with probability

approaching to 1 as n — oco. Furthermore, similar arguments as these in (B9) gives that |I| = Op (Ln) .
Hence the Lemma B.7 follows. B

Lemma B.8: Under assumption (A2), as n — 0o, 1 — max Ri=0, (n7").
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Proof. Denote M, = 1r£1?<XnRi, then Vr > 0,P[M, <r] = Fg(r)". Take 7, = 1 — anfg' (1) /n for
some a, > 0,n > an,an_%_a >0. Thenr, —1=0 (n_l) and for large enough n, Fr (rn) — Fr (1) =
frR(1) (rn —1)+o0(n"). Then as n — 0o, Fr (tn) = 1+ fr (1) {—anfr' (1) /n}+o(n™") =1—an/n+
o (n_l) ,and P[M, <r,]= {1 —an/n+o (n_l)}" — e 2.

Then as n — oo, Pn(1-M,)<n(l—-r,)] = 1 - PM,<7r,] — 1 — e % So
Pn(1—M,) <anfp'(1)] = 1—e® Hence P[n(1—M,)<z] - 1— e *rM g > 0. Therefore
n (1 — My) converges in distribution, and 1 — M, = O, (nil). [ |

Proof of Theorem 3.1

By the definition of m; (z), one has

- -1
i (v) = Bf ()8, = B} (2) (BLiBwu) BLY
_ nT T -1or ~
=B; (93) B, Bn B Y- Zml’
1 #1
—1 -1
= BlT(x) (Bngnl) BEZ (m; + pe) + BlT(x) (BLBnl) BEZZ (ml/ - ﬁlz/) .

£l

Then we have

-1
sup |y () — my (z)| < sup ‘BZT(CE) (BLBM) B}, (m; + pe) —my ()

-1
+sup BlT(x) (BLBM) BLZ (my; —my)
® U #1

— 411 (B15)

Let my (z) = Bf () (B%Bnl)71 BZ,m,, then by Corollary 3.1 and Theorem 5.1 of Huang (2003),
sup ‘BZT(ZE) (Bngnl)_l BZ:lpe‘ =0p (\/Nn/n) and sup |my (z) — my (z)| = Op (N, ?~"). Therefore,

-1
I <sup ‘BZT(ZE) (B,TLIBM) BI pe

+ sup [ (z) — my (z)]

-0, (m n N;P‘l) . (B16)

For 11, applying similar techniques for proving (B9) and (B10), one obtains that

I1=0, (\/m + N;P‘l) . (B17)

Theorem 1 follows from equations (B15), (B16) and (B17). R
Proof of Theorem 3.2
-1
By the definition of fp and Lemma B.8, we have fp = {max [Y:/m (Xz)]} <

-1
sup,, |m (z)| (maxiﬁ) = O, (1), in which sup, |m (z)] = O, (1) is given by Theorem 1. Since

liig — gl = figpg |Bp" — kg |, we only need to show that |ip' — pp'| = Op(Ln), where L, =
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V/Nn/n 4 NP7 We note that
fir' = | = ut rgma [Vi i (X0)] = 1] = i [pgma [ (X) R/ (X)) = 1

I

= ug ‘mzax [m (X;) Ri/mn (X;)] — 1

therefore it is sufficient to show that ‘m_ax [m (X3) Ri/m (X;)] — 1‘ = Oy (Ln) . By Theorem 1, one has
sup, |m (z) —m (z)| = Op (Ly) . Therefore, for any € > 0, there exists § > 0, such that for all n > N,

P (L;lsgp|m(w) /m(z) — 1] < 5) >1—e. (B18)

When max [m (X;) R;/m (X;)]—1 >0, L;*!

max [m (X;) R /i (X;)] — 1‘ < Ly 'sup, [m (z) /m (z) — 1.
By inequality (B18), P(L;1

max [m (Xi)Ri/ﬁz(Xi)]—l) <5) > 1 — &  When
mzax[m(Xl) Rl/’l’h(xz)] -1 < 0,

max [m (X5) Ri/m (X3)] — 1‘ < 1- mZaXRiiIIlf [m () /m (x)] and

P (L;l max [m (X;) Ri /i (X:)] — 1‘ < 5) >p (masz-mf [m (z) /i (z)] > 1 — Lné) .
By Lemma 4 that 1 — maxR; = Op(1/n) = o0p(Ln) and inequality (B18), for any £ > 0, there

exists 1 and d2 > 0, such that for all n > N, P(inf [m (z) /m(z)] > l—Ln51) > 1—¢ and
P (maxRi >1-— Lnég) > 1 — e. Therefore, for any € > 0, there exists d3 > 0, such that for all n > N,

P (max [m (X:) R/ (X3)] > 1 — Ln53) >1-cm
Proof of Theorem 3.3

By definition, we have

p(x) —p(x) =m(z)/ip —m(z) /ug
=m(x) /fr —m(2) /g + M (x) /g —m(z) /pg

=m(z) (ig' —pr ) +pg () —m()].

By Theorems 1 and 2, sup {ug' [ () — m (z)]} = Op (Ly) and sup [m (z) (ig' — pr')] = Op (Ln).
One then concludes that suxp p(z)—p(x)] =0p(L,). N

Proof of Theorem 3.éf

When each m; is monotone increasing, Theorem 2 in Wang and Xue (2015) showed that for p < 3,
the coefficients of the unconstrained estimator m; satisfy the monotone constraints for large sample
size. Similarly, when each m; is concave, for p < 3 Lemma B.7 indicates that the coefficients of the m;
satisfy the concave constraints with probability approaching one as n — oo. These imply that for p < 3
the unconstrained estimator m; and the shape constrained estimator r; are identical with probability
approaching one as n — oo. Therefore, m; enjoys the same asymptotic properties as m;. Then by Theorem
1, we have sup, |y () — m; ()| = Op (Ly) . Moreover, by Lemma 4 that 1 — miaxRi = Op (1/n), the

results follow directly from Theorems 2 and 3. |
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Table B1. Averaged integrated squared errors (AISE) for the estimation of frontier function using seven
different methods: local linear regression (LLR), unconstrained linear spline (ULS), monotone constrained
linear spline (MCLS), monotone and concave constrained linear spline (MCCLS), integral transformation
of linear spline (ITLS), quadratic spline with monotonicity constraint (QS-M), and quadratic spline
with monotonicity and concavity constraints (QS-MC) under three scenarios without outliers, and
corresponding computation time in R for scenario where 8 = 3 based on 1000 Monte-Carlo simulations.

Method n

B=1

B=3

Computation time
for scenario =3

LLR 100
250
500

0.3432
0.1505
0.0819

0.1046
0.0437
0.0188

0.0911
0.0331
0.0168

1.15 mins
9.55 mins
1.93 hrs

ULS 100
250
500

0.0188
0.0128
0.0090

0.0552
0.0323
0.0231

0.1105
0.0481
0.0260

1.46 secs
1.67 secs
33.83 secs

MCLS 100
250
500

0.0156
0.0117
0.0080

0.0347
0.0255
0.0199

0.0786
0.0366
0.0225

23.07 secs
23.44 secs
1.65 mins

MCCLS 100
250
500

0.0152
0.0142
0.0141

0.0308
0.0229
0.0191

0.0711
0.0317
0.0198

1.24 mins
1.53 mins
4.95 mins

ITLS 100
250
500

0.0135
0.0121
0.0122

0.0359
0.0199
0.0168

0.1269
0.0324
0.0182

1116.19 hrs
1309.83 hrs
1729.63 hrs

QS-M 100
250
500

0.0014
0.0004
0.0001

0.0072
0.0019
0.0007

0.0420
0.0102
0.0042

7.43 mins
34.06 mins
2.48 hrs

QS-MC 100
250
500

0.0045
0.0057
0.0072

0.0124
0.0043
0.0050

0.0263
0.0084
0.0046

5.59 mins
17.35 mins
55.07 mins
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Table B2. Averaged integrated squared errors (AISE) for the estimation of frontier functions using seven
different methods: local linear regression (LLR), unconstrained linear spline (ULS), monotone constrained
linear spline (MCLS), monotone and concave constrained linear spline (MCCLS), integral transformation
of linear spline (ITLS), quadratic spline with monotonicity constraint (QS-M), and quadratic spline with
monotonicity and concavity constraints (QS-MC), under three scenarios with outliers for sample size
n = 50 and 250.

n=>50 mn=250
Method S AISE AISE
LLR 1/3 3.6121  0.5105
1 1.2315  0.2116
3 0.6078  0.0962
ULS 1/3 0.0614 0.0174
1 0.2425  0.0401
3 0.3060  0.0505
MCLS 1/3 0.0350 0.0166
1 0.1116  0.0298
3 0.1274  0.0338
MCCLS 1/3 0.0350 0.0187
1 0.1120  0.0291
3 0.1274  0.0325
ITLS 1/3 0.0458  0.0141
1 0.1296  0.0236
3 0.2375  0.0333
QS-M 1/3 23263 1.2948
1 5.1084  1.3044
3 15.6574 1.3389
QS-MC 1/3 5.3029 1.6103
1 4.9842  1.6017
3 4.1513  1.5909
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Table B3. Averaged integrated squared errors (AISE) for the estimation of {p, (:)};_, and m (X), and
mean squared errors (MSE) for the estimation of 1/pp using three different spline methods: unconstrained
linear spline (ULS), monotone constrained linear spline (MCLS), and monotone and concave constrained
linear spline (MCCLS), under three scenarios without outliers.

Method n  py (X1) pp(X2) p3(Xs) pa(Xy) m(X) 1/pp

8= % ULS 100  0.3455 0.3507 0.3610 0.3888 0.6745 0.0322
250 0.1100 0.1121  0.1188  0.1272 0.2159 0.0303

500 0.0522  0.0515 0.0605 0.0701 0.1220 0.0209

MCLS 100  0.1157  0.1148  0.1227  0.1208 0.2654 0.0197

250 0.0625 0.0607 0.0632 0.0648 0.1377 0.0184

500 0.0354 0.0353 0.0422 0.0446 0.0964 0.0135

MCCLS 100 0.0833 0.0850 0.0929 0.0951 0.2191 0.0170

250 0.0439 0.0444 0.0493 0.0547 0.1245 0.0148

500 0.0228 0.0263 0.0354 0.0399 0.0930 0.0108

=1 ULS 100 1.8027  1.8407 1.8196 1.8220 1.4581 0.1530
250 0.5798  0.6050 0.6049 0.5930 0.3933 0.2209

500 0.2398  0.2419 0.2523 0.2707 0.1773 0.1619

MCLS 100 0.4466 0.4314 0.4074 0.3944 0.4230 0.1252

250 0.2127  0.2108 0.2140 0.1962 0.1839 0.1070

500 0.1152 0.1199 0.1235 0.1268 0.1082 0.0820

MCCLS 100 0.3465 0.3361 0.3236  0.3197 0.3373 0.1259

250 0.1713 0.1617 0.1765 0.1650 0.1593 0.0987

500 0.0866 0.0934 0.0981 0.1036 0.0939 0.0696

B=3 ULS 100  3.8643 3.6581  3.6481 3.7902 1.3299 0.4146
250  1.2790 1.2714  1.2420 1.2874 0.3517 0.0620

500 0.5809  0.5251 0.5071  0.5742 0.1570 0.0250

MCLS 100  0.8374 0.6910 0.7359  0.7785 0.3868 0.1686

250 0.3736  0.3366  0.3823 0.3633 0.1445 0.0469

500 0.2464 0.2192  0.2131 0.2189 0.0819 0.0234

MCCLS 100 0.6503 0.5326  0.5540 0.5868 0.3069 0.1753

250 0.3009 0.2768 0.3040 0.2871 0.1169 0.0465

500 0.1998  0.1782  0.1669 0.1839 0.0679 0.0234
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Table B4. Averaged integrated squared errors (AISE) for the estimation of {p, (:)};_, and m (X), and
mean squared errors (MSE) for the estimation of 1/pp using three different spline methods: unconstrained
linear spline (ULS), monotone constrained linear spline (MCLS), and monotone and concave constrained
linear spline (MCCLS), under scenarios with outliers and sample size n = 250.

Robust ~ Method 8 py (X1)  po(Xa)  p3(Xs)  ps(Xg) m(X)  1/up
(With/
Without)

Without  ULS 1/3 02636 02444 02950  0.2859 0.2664  0.4318

1 1.6994  1.8022  1.8713  1.8441 04639  3.5821

3 7464053 4229166 1272.1126 922.8275 0.4574 3896.6163

MCLS 1/3 02168  0.1855  0.2284  0.2032 0.1689  0.4780

1 05150  0.4835  0.5287  0.4606 0.2014  1.2736

3 1.6137 14409  1.6388  1.5131 0.1636  7.3188

MCCLS 1/3  0.1982  0.1680  0.2129  0.1897  0.1709  0.4743

1 04262  0.3852 04440  0.3968 0.2032  1.0842

3 1.8907  1.3553 23452 1.9947  0.1600  9.8067

With  ULS 1/3 01278  0.1279  0.1476  0.15630 0.2664  0.0728

1 0.6613  0.6640  0.7003  0.6881 0.4639  0.4431

3 1.2378 12569  1.2498  1.2803 0.4574  0.0713

MCLS 1/3 0.0872  0.0814  0.0915  0.0896 0.1689  0.0755

1 0.3063  0.2936  0.3173  0.2862 0.2014  0.4722

3 0.3627  0.3346  0.3656  0.3510 0.1636  0.0641

MCCLS 1/3 0.0846  0.0782  0.0917  0.0904 0.1709  0.0950

1 02793  0.2595  0.2970  0.2693  0.2032  0.4921

3 0.3415  0.3105  0.3386  0.3197 0.1600  0.0609
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Table B5. Averaged integrated squared errors (AISE) for the estimation of functions p,, p, and p,, using
two different spline methods: unconstrained linear spline (ULS) and monotone constrained linear spline
(MCLS) under three scenarios.

Method n — p; (X1) pp(X2) pyp (X1, Xo)
ULS 100 0.1227  0.1238 0.2494
250 0.0467  0.0450 0.0881
500 0.0223  0.0227  0.0468
MCLS 100 0.0745 0.0750  0.0437
250 0.0337 0.0343 0.0261
500 0.0205 0.0216 0.0192
B=1 ULS 100 0.6748 0.6762  1.3895
250 0.2632  0.2501  0.4899
500 0.1228  0.1248  0.2576
MCLS 100 0.3877 0.3689  0.1140
250 0.1531 0.1514  0.0584
500 0.0898  0.0882  0.0430
g=3 ULS 100 1.5858 1.5691  3.2641
250 0.6939 0.6777  1.3145
500 0.3443 0.3481  0.7017
MCLS 100 0.8986  0.8586  0.2366
250 0.3944 0.3844  0.1140
500 0.2402 0.2351  0.0802
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Figure B1. Simulation results of the frontier estimation for sample size n = 250 without out-
liers when the parameter 8 = 1/3, 1, and 3. In each plot, solid black line represents the true
curve, and solid grey, dashed brown, dotted purple, long-dashed red, dot-dashed green, dotted
orange, and two-dashed blue lines represent the fitted curves obtained using local linear regression
(LLR), unconstrained linear spline (ULS), monotone constrained linear spline (MCLS), monotone
and concave constrained linear spline (MCCLS), integral transformation of linear spline (ITLS),
quadratic spline with monotonicity constraint (QS-M), and quadratic spline with monotonicity

Journal of Nonparametric Statistics

B=1/3

output

REFERENCES

15 20 25
1

1.0

0.5

20
1

15

1.0

@
° o
0 | 0 o o"%o& ° o °
o @o@o o % éﬁo
o o0 ©° o
0O Of

3

@ 8 ° o
I 0° @ 0o 0 O,
= B Eoow 0358 6 0% 0 cow BBHoP o W
T T

o o

T
1.0 1.2 14 1.6

T
20

and concavity constraints (QS-MC), respectively.
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Figure B2. Simulation results of the frontier estimation for sample size n = 50 and 250 with
outliers under the scenario where 8 = 1. In each plot, solid black line represents the true
curve, and solid grey, dashed brown, dotted purple, long-dashed red, dot-dashed green, dotted
orange, and two-dashed blue lines represent the fitted curves obtained using local linear regression
(LLR), unconstrained linear spline (ULS), monotone constrained linear spline (MCLS), monotone
and concave constrained linear spline (MCCLS), integral transformation of linear spline (ITLS),
quadratic spline with monotonicity constraint (QS-M), and quadratic spline with monotonicity
and concavity constraints (QS-MC), respectively. Solid red circle indicates the locations where
twoartificial outliers are added.
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Figure B3. Simulation results of the frontier estimation for sample size n = 250 under the
scenario where 8 = 1. In the first row, solid black, dotted blue, and dashed red lines represent
the true function, fitted curves obtained using unconstrained linear spline (ULS), and monotone
constrained linear spline (MCLS), respectively. In the second row, black, blue and red surfaces
represent the true function, fitted results obtainted using ULS and MCLS, respectivley.
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Figure B4. Norwegian Farm data: Pseudo responses for each input variable are denoted by black
circle. The dashed blue line denotes estimated mean function using unconstrained linear spline
(ULS) method. The dot-dashed green and long-dashed red lines denote estimated mean function
using monotone constrained linear spline (MCLS) and monotone and concave constrained linear
spline (MCCLS) in fitting main effects and using ULS in fitting interaction effects, respectively.
The dotted blue lines represent the 95% point-wise confidence intervals from 1000 bootstrap
samples using the ULS method.
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Figure B5. Norwegian Farm data: Estimated maximum farm revenue (left top), efficiency esti-
mates (right top), and the kernel density distribution of the efficiency estimates (left bottom).
In the top figures, the blue rectangle, green triangle and red plus represent estimated maximum
revenue or efficiency of all 145 farms using unconstrained linear spline (ULS), using monotone
constrained linear spline (MCLS) and monotone and concave constrained linear spline (MCCLS)
in fitting main effects and ULS in fitting interaction effects, respectively. The true farm revenue
is denoted by black circle. In the left bottom figure, the dashed blue, dot-dashed green, and
long-dashed red lines represent kernel density distribution of the efficiency estimates using ULS,
MCLS, and MCCLS, respectively.
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Figure B6. Norwegian Farm data using MCCLS method in fitting main effects and ULS method
in fitting interaction effects: Off-farm income share, coupled subsidy income share, environmental
subsidy income share, and farmer experience versa the efficiency estimates for the 145 farms, in
which solid red lines represent linear least squares fit. Boxplots of the estimated efficiency in the
subgroups with different education levels.



