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Abstract Surface registration is one of the most fundamental problems in geometry processing. Many
approaches have been developed to tackle this problem in cases where the surfaces are nearly isometric.
However, it is much more challenging to compute correspondence between surfaces which are intrinsically
less similar. In this paper, we propose a variational model to align the Laplace-Beltrami (LB) eigensytems
of two non-isometric genus zero shapes via conformal deformations. This method enables us to compute
geometrically meaningful point-to-point maps between non-isometric shapes. Our model is based on a novel
basis pursuit scheme whereby we simultaneously compute a conformal deformation of a ’target shape’ and
its deformed LB eigensystem. We solve the model using a proximal alternating minimization algorithm
hybridized with the augmented Lagrangian method which produces accurate correspondences given only a
few landmark points. We also propose a re-initialization scheme to overcome some of the difficulties caused
by the non-convexity of the variational problem. Intensive numerical experiments illustrate the effectiveness
and robustness of the proposed method to handle non-isometric surfaces with large deformation with respect
to both noises on the underlying manifolds and errors within the given landmarks or feature functions.

Keywords Shape Analysis · Laplace-Beltrami eigensystem · Conformal Deformation · Nonisometric
manifold matching

1 Introduction

The computation of meaningful point-to-point mappings between pairs of manifolds lies at the heart of many
shape analysis tasks. It is crucial to have robust methods to compute dense correspondences between two
or more shapes in different applications including shape matching, label transfer, animation and recogni-
tion [17, 24, 32, 36, 45, 50]. In cases where shapes are very similar (isometric or nearly isometric), there are
many approaches for computing such correspondences [3, 9, 13, 15, 21, 22, 26, 32, 43, 44]. However, it is still
challenging to compute accurate correspondences when the deformation between the shapes are far away
from near isometry.

One of the key challenges in largely deformed non-isometric shape matching is that the intrinsic features
of the two shapes are not similar enough for standard techniques to recognize their similarity. For example,
when computing the correspondence between human faces, it is not particularly difficult to geometrically
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characterize the structure of a ‘nose’. However, similar techniques can not work well to compute a map
between a horse and an elephant face since these two surfaces have many largely deformed local structures
including the drastic difference between the trunk of the elephant and the nose of the horse. Because of this,
it is crucial to develop new methods to adaptively characterize large deformations on surfaces.

The LB eigensystem is a ubiquitous tool for 3D shape analysis (see [3, 6, 10, 27, 28, 30, 34, 36, 38, 41, 42, 43, 47]
and references therein). It is invariant under isometric transformations and intrinsically characterizes the local
and global geometry of manifolds through its eigensystem up to an isometry. In principle, the LB eigensystem
reduces high-dimensional nonlinear isomorphism ambiguities between two isometric shapes to a linear trans-
formation group between two LB eigensystems. This linear transform is necessary due to the possible sign
or sub-eigenspace (geometric multiplicity) ambiguity of LB eigensystems [26]. Additionally, similar shapes
often have similar eigensystems which allow for joint analysis of similar shapes their spectral properties [32].
However, when the deformation between two shapes is far from an isometry, the large dissimilarity between
LB eigensystems of two shapes is the major bottleneck to adapt the existing spectral geometry approach to
conduct registration.

A natural idea to extend spectral geometry methods to register non-isometric surfaces is to deform
the metric of a ”target surface” to the metric of a ”source surface” so that two surfaces share similar
LB eigensystems after deformation. However, directly computing this deformation often requires specific
knowledge about corresponding regions of the surfaces. In this work, we propose a method to simultaneously
compute such a deformation while learning features that can be used for registration. Mathematically, one
way to characterize this type of deformation is through measuring its conformal factor–the local scaling
induced by a conformal deformation. It is well known that there exists a conformal mapping between any two
genus-zero surfaces [19]. Rather than reconstruct the conformally deformed surfaces and/or exact conformal
map, we exploit a fundamental link between the conformal factor and the LB eigensystem by manipulating
the conformally deformed LB eigensystem. This allows us to compute a new basis on the target surface to
align the naturally defined LB eigensystem on the source surface. This leads to a variational method for
non-isometric shape matching which enables us to overcome the natural ambiguities of the LB eigensystem
and align the bases of non-isometric shapes while avoiding the direct computation of conformal maps.

Numerically, we solve our model using a proximal alternating minimization (PAM) method [1] hybridized
with the augmented Lagrangian method [14]. The method is iteratively composed of a curvilinear search
method on orthogonality constrained manifold [54] in one direction to compute the conformally deformed
LB eigenfunctions and the BFGS [5] method for the other direction to compute the conformal factor. The-
oretically, we guarantee the local convergence of the proposed algorithm since the objective function and
constraints satisfy the necessary Kurdyka-Lojasiewicz (KL) condition [1]. Comprehensive numerical results
on largely deformed problems, including horse-to-elephant and Faust benchmark database [7], validate the
effectiveness and robustness of our method.

Related Works. A large number of 3D nonrigid shape matching approaches are based on analysis of the LB
eigensystem (see [10, 22, 26, 30, 32, 33, 35, 36, 38, 43] and reference therein). The LB eigensystem is intrinsic
and invariant to isomorphism, and also characterizes the local and global geometry of a manifold. This makes
it ideal for many shape processing tasks and many early works in the field involve directly comparing the LB
spectrum of the shapes to determine how alike shapes are [30, 35, 36]. More recently, the general concept of
functional maps [32] has played a central role in many new methods that have allowed for the formulation
of accurate correspondence maps. This technique essentially reduces the non-linear transform between two
shapes to a linear transform between their eigensystems. In general, these techniques work well for isometric
and near isometric cases, but can not produce satisfactory results when the LB eigensystems of shapes are
very dissimilar. This occurs when the deformation between shapes is far from an isometry. To overcome
this, the concept of coupled bases (also known as joint-diagonalization) was introduced for shape processing
tasks in [22]. In this work, the authors propose a variational model to define a shared basis for a pair of
shapes which is ‘nearly harmonic’ on one shape and ’similar’ to the natural LB basis on the other. This
joint optimization allows for much more accurate correspondence, but does not characterize the underlying
deformations which lie at the heart of the non-isometric shape matching problem.

Conformal maps have been widely applied to various shape processing tasks in order to characterize
surface deformations [15, 16, 18, 46]. In one of the first works to combine spectral and deformation based
approaches, [40] presents a scheme to find optimal conformal deformation to align two shapes in the em-
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bedded LB Space. Additionally, the authors present a general framework for computing LB eigensystems of
conformally deformed surfaces as well as several other imported related quantities. Continuing on this line of
work in [20], the authors use the LB eigenvalues as a tool to guide conformal deformations. Using derivatives
of the LB eigenvalues, they compute optimal conformal metrics which approximate conformal and topologi-
cal eigenvalues. In our work, we use the spectral coefficients of known features to guide the deformation, so
rather than align the eigenvalues we align the eigenfunctions. This allows us to avoid the subspace ambiguity
of the LB eigensystem and computational errors in calculating high-frequency eigenvalues.

Major Contributions. We introduce a novel variational basis pursuit model for computing non-isometric
shape correspondences via a conformal deformation of the LB eigensystem. This model enhances spectral
approaches from handling nearly isometric surface registration to tackling surfaces with large deformed met-
rics. It naturally combines the conformal deformation to the LB eigensystem and simultaneously computes
surface deformations and LB eigenbasis which also automatically overcomes the ambiguities of LB eigen-
systems in surface registration. We also propose a numerical scheme to solve the variational model with a
local convergence guarantee. Additionally, we introduce a reinitialization scheme to help tackle local minima
and improve the quality of the computed bases. This algorithm successfully handles non-isomorphic shape
correspondence problems given only a few landmarks and is shown to be robust to noise and perturbations
of landmarks.

The rest of this work is organized as follows: In section 2, we review the theoretical background of
conformal deformations of LB eigensystem and functional maps. After that, we propose the variational basis
pursuit model for conformal deformations of the LB eigensystem in section 3. In section 4, we discretize
the model and develop an optimization scheme based on PAM to solve the variational problem. Section
5 is further devoted to discussing a few details of the model and a reinitialization scheme to improve our
numerical solver. In section 6, numerical results on several data sets are presented to show that the model
accurately produces point-to-point mappings on non-isometric manifolds with large deformation given only
a few landmark points. We also show that our approach is robust to both noises in the underlying manifolds
and inaccuracies in the initial landmarks. Furthermore, we test the model to a benchmark data based to
show its effectiveness. Lastly, we conclude our discussions of this project in Section 7.

2 Mathematical Background of LBBP

In this section, we discuss the mathematical background of the proposed method. We first review a few
key properties of the LB eigensystem of a Riemannian surface and discuss its conformal deformations with
respect to deformations of the Riemannian surface metric [11, 19]. After this, we review the functional maps
framework in [32] which will be closely related to our work.

2.1 Conformal Deformation of LB Eeigensystem on Riemannian Surfaces

Given a closed Riemannian surface (M, g), its LB operator in a given local coordinate system, {xi}i=1,2, is
defined as [11, 19]:

∆gφ =
1√
G

2∑
i=1

∂

∂xi
(
√
G

2∑
j=1

gij
∂φ

∂xj
) (1)

where (gij) is the inverse of the metric matrix g = (gij) and G = det(gij). The LB operator is self-adjoint and
elliptic, therefore it has a discrete spectrum. We denote the eigenvalues of −∆g as 0 = λ0 < λ1 ≤ λ2 ≤ · · ·
with the corresponding eigenfunctions φ0, φ1, φ2, · · · satisfying:

−∆g(x)φi(x) = λiφi(x), and

∫
M
φi(x)φj(x) dvolg(x) = δij , i, j = 0, 1, 2, · · · (2)

where dvolg(x) is the area element on M with respect to g. It is well-known that Φ = {φn | n = 0, 1, 2, · · · }
forms an orthonormal basis for the real-valued, smooth function space C∞(M,R) on the manifold (M, g).
This basis can be viewed as a generalization of the Fourier basis from flat space to a differentiable manifold.
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The LB eigensystem is invariant under both rigid and nonrigid isometric transformations, and it uniquely
determines a manifold up to isometry [6].

In differential geometry, a conformal map is one which preserves angles locally. Formally, a conformal
map preserves the first fundamental form up to a positive scaling factor. Given two manifolds (M1, g1) and
(M2, g2), a map F : (M1, g1) → (M2, g2) is conformal if and only if the pullback F ∗(g2) = w2g1 with a
positive function w2 (written this way to emphasize positivity). A conformal deformation of a surface is a
transformation which changes the local metric by a positive scaling factor. A well-known result in conformal
geometry is that there exists a conformal map between any two genus-zero surfaces [19].

Given a closed surface (M, g) with conformal deformation w2, the LB eigensystem of the deformed man-
ifold (M, w2g) can be viewed as a weighted LB eigensystem on the original surface (M, g). This simple fact
intrinsically links the LB eigensystem of the deformed manifold to a weighed LB eigensystem on the original
manifold. It allows us to compute the LB eigensystem of the conformally deformed manifold without explic-
itly reconstructing its embedding or coordinates. This also bridges information about the local deformation
and global eigensystem, which later becomes the cornerstone of our approach. Formally, we have:

Proposition 1 Let {φw2

n , λw
2

n }∞n=1 be a LB eigensystem of a conformally deformed surface (M, w2g), then

{φw2

n , λw
2

n }∞n=1 is equivalent to the following weighted LB eigensystem on (M, g):

−∆gφi(x) = λw2(x)φi(x),

∫
M
φi(x)φj(x)w2(x) dvolg(x) = δij , (3)

Proof This is because:

∆w2gφ =
1

w2
√
G

2∑
i=1

∂

∂xi
(w2
√
G

2∑
j=1

w−2gij
∂φ

∂xj
) = w−2∆gφ

Hence the eigen problem: −∆w2gφ = λφ is equivalent to −∆gφ = λw2φ. Additionally, it is clear that:
dvolw2g = w2 dvolg, since changing the local metric is equivalent to rescaling the local area element.

The problem of finding the LB eigensystem of a Riemannian manifold is equivalent to finding an or-
thonormal set of functions Φ = {φi} which have minimal harmonic energy on the surface. From the above
proposition, the LB eigensystem of a conformally deformed manifold (M, w2g) can be formulated as the
following variational problem:

arg min
Φ={φi}

∑
i

∫
M
||∇Mφi(x)||2 dvolg(x), s.t.

∫
M

φi(x)φj(x)w2(x) dvolg(x) = δij (4)

2.2 Functional Maps

Functional maps were introduced in [32] for isometric and nearly isometric shape correspondence. This
method has been shown a very effective tool for various shape processing tasks [22, 32, 37]. Here we provide
a basic overview of their framework. Consider Riemannian surfaces (M1, g1) and (M2, g2), a smooth bijection
F :M1 →M2 induces a linear transformation between functional spaces of these two manifolds as:

FT : C∞(M1,R)→ C∞(M2,R), f 7→ f ◦ F−1

Instead of computing surface map F , the crucial idea of functional map is to compute the linear map FT
between these two functional spaces. After that, the desired surface map can be encoded by considering
images of indicator functions under FT .

Finding a functional map, FT , associated with a map F is equivalent to finding the matrix representation
of FT under a fixed orthonormal basis {φi} of C∞(M1,R) and a fixed orthonormal basis {ψi} of C∞(M2,R),
respectively. Namely, if we write FT (φi) =

∑
j cjiψj , then any two given corresponding functions f =

∑
i fiφi

and g =
∑
j gjψj under FT can be represented using C = (cij) as:

FT (f) = g ⇔ FT

(∑
i

fiφi

)
=
∑
i

fiFT (φi) =
∑
i

fi
∑
j

cjiψj =
∑
j

gjψj ⇔
∑
i

cjifi = gj .
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Each entry of the matrix cij can be found by finding the jth coefficient of FT (φi) expressed in the {ψi}
coordinate system, i.e. cji = 〈FT (φi), ψj〉g2 . In practice, one can use two finite sets of orthonormal functions
to approximate C∞(M1,R) and C∞(M2,R), thus the functional map can be approximated by a finite
dimensional matrix. For instance, the first N eigenfunctions of the LB eigensystem is one common choice of
such a basis. Then, the problem of finding the transformation FT can be approximated by the problem of
seeking a finite dimension matrix C. As long as C is computed, the desired map F can be computed through
C operating on indicator functions.

3 Conformal LB Basis Pursuit for Nonisometric Surface Registration

In this section, we propose a LB basis pursuit model for non-isometric surface registration. On the tar-
get surface M2, the model simultaneously finds a conformal deformation and a conformally deformed LB
eigensystem so that the coefficients of the corresponding feature functions expressed on the deformed LB
eigensystem of M2 are the same as the coefficients on the fixed source surface M1.

3.1 Variational PDE model

Given two non-isometric genus-zero Riemannian surfaces (M1, g1) and (M2, g2), we aim at finding a geo-
metrically meaningful correspondence between these two surfaces. In the case that M1 and M2 are nearly
isometric, there are many successful methods to constructing maps betweenM1 andM2 by comparing their
isometric invariant features. Using spectral descriptors from solutions of the LB eigensystem on manifolds
is a common way of constructing such descriptors [10, 30, 36, 39, 49]. As extensions, some other descriptors
such as Heat kernel signature [47], wave kernel signature [3] and optimal spectral descriptors [31] have also
been proposed in the literature. However, most of the existing methods consider the construction of descrip-
tors for nearly isometric manifolds. Registration methods based on the existing LB spectral descriptors can
not provide satisfactory results for constructing correspondence between two non-isometric surfaces as their
eigensystems are possibly quite far apart.

We propose to overcome the limitation of the LB spectral descriptors for largely deformed non-isometric
shape registration by considering a continuous deformation of the LB spectral descriptors. Intuitively, given
two non-isometric shapes (M1, g1) and (M2, g2), our idea is to deform the metric of (M2, g2) such that the
deformed surface is isometrically the same as (M1, g1). Then the LB spectral descriptors can be applied as
in isometric shape matching. However, it is challenging to find an appropriate deformation as the accurate
amount of deformation on each local region of M2 depends exactly on an accurate correspondence which is
precisely the problem we would like to solve.

To tackle this challenge, we propose to simultaneously find an optimal correspondence and an optimal
deformation. More specifically, by fixing the LB eigensystem {Φ,Λ} of (M1, g1), we seek a map T :M1 →M2

and a conformal factor w2 :M2 → R+ such that the LB eigensystem {Φ,Λ} of (M1, g1) can be aligned to
the LB eigensystem {Ψ,Θ} of (M2, w

2g2) via T . This problem can be written as the following variational
PDE problem:

(T ∗, w∗, Ψ∗) = arg min
T,w,Ψ={ψi}Ni=1

N∑
i=1

∫
M1

‖φi − ψi ◦ T‖2 dM1 +
1

2

N∑
i=1

∫
M2

‖∇M2
ψi‖2 dM2,

s.t.

∫
M2

ψiψj w
2 dM2 = δij

(5)

where dM1 = dvolg1 , dM2 = dvolg2 and w2dM2 = dvolw2g2 .The first term measures the alignment of two
bases as the correct correspondence should map one LB eigensystem to another one. The second term together
with the constraints solves the first N LB eigenfunctions {ψi} for the deformed manifold (M2, w

2g2) due to
the variational problem (4). Existence of a solution to this variational problem (5) is guaranteed as any two
genus-0 surfaces are conformally equivalent and the LB operator is invariant under isometric transformations.

Computationally, the numerical search for T in the mapping space is usually very time-consuming. In-
spired by the idea of functional maps [32] and the coupled quasi-harmonic bases [22], we choose to represent
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T in the functional space. Instead of finding T directly, we look for a basis Ψ = ψi ◦ T = FT (ψi) which is
nearly harmonic on (M2, w

2gM) and represents the corresponding features with the same coefficients as Φ
does. More precisely, given a set of corresponding features F = {f1, · · · , fk} onM1 and G = {g1, · · · , gk} on
M2, such that fi(x) = gi(y) if x and y are corresponding points on M1 and M2, we can replace the direct
measurement of the basis alignment term with a coefficient matching term. That is, instead of measuring the
alignment of Ψ and Φ via T , we measure how closely the coefficients for G in the computed basis Ψ match
the coefficients for F in the fixed LB basis Φ. Formally, we measure the coefficient alignment by constructing
a matrix of the coefficients in for F in Φ and for G in Ψ so that the ijth term represents the coefficient for
the ith corresponding function in the jth basis and computing their difference under the Frobenius norm.
With this in mind, we propose the following model:

(w∗, Ψ∗) = arg min
w,Ψ

r1

2
‖〈F,Φ〉g1 − 〈G,Ψ〉w2g2‖

2
F +

r2

2

N∑
i=1

∫
M2

‖∇M2
ψi‖2dM2,

s.t.

∫
M2

ψiψj w
2dM2 = δij

(6)

where we write:

〈F,Φ〉g1 =
(∫
M1

fiφj dM1

)
i,j=1,2,...,k

and 〈G,Ψ〉w2g2 =
(∫
M2

giψj w
2dM2

)
i,j=1,2,...,k

.

In practice we use indicator functions for F and G, but heat signatures [47], wave kernel signatures [3], or any
other corresponding functions will also work. Once Ψ∗ = {ψ∗1 , · · · , ψ∗M2

} is obtained, we can easily compute
the functional map as

FT : C∞(M1)→ C∞(M2), FT (h) =
∑
i=1

(∫
M1

hφi dvolg1

)
ψ>i . (7)

The main advantage of this model over previous existing methods for shape correspondence is that we
are able to employ much more of the information encoded in the differential structures ofM1 andM2 in our
algorithm by combining the spectral descriptors and local deformations. This additional flexibility enables us
to compute correspondences between largely deformed shapes. Information about the conformal deformation
of the metric allows us to find a harmonic basis on the deformed shape, meanwhile information about the
alignment of the functional spaces guides our calculation of the conformal deformation. Furthermore the
additional constraint of the feature alignment overcomes ambiguity casued by the fact that there is no
unique conformal deformation between any two genus zero surfaces. To the best of our knowledge, the link
between the conformal factor and deformed LB basis has not been exploited in such a way. Previous works
have used only the conformal factor [15, 21] or only the functional space [22, 32] as stand alone tools rather
than in concert as we present here.

3.2 Regularization and Area Constraint

We add harmonic energy term to smooth the conformal deformation and regularize the problem. This can
both increase the speed of the algorithm and improve the quality of the map, both in terms of the geodesic
errors of the final correspondence, and the accuracy of the resulting conformal factor. This is particularly
helpful to handle deformations between the shapes which are far from isometry and to reduce the required
number of features. Rather than smooth the conformal factor w2 directly, we instead add the harmonic
energy of w to the objective function. Using w instead of w2 allows for easier analytic computation of the
derivatives and a more efficient algorithm. In cases where the deformations are likely to be highly localized,
this term may be omitted.

Lastly, we add an area preservation constraint to our model. That is, we would like the final deformed
shape to be of the same size as the one we are matching it to. To enforce this, we mandate that the deformed
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manifold have the same surface area as the original manifold. This eliminates any scaling ambiguity. Then
the final version of our model can be stated as:

(w∗, Ψ∗) = arg min
w,Ψ={ψi}Ni=1

r1

2
‖〈F,Φ〉g1 − 〈G,Ψ〉w2g2‖

2
F +

r2

2

N∑
i=1

∫
M2

‖∇M2
ψi‖2dM2 +

r3

2

∫
M2

||∇M2
w||2dM2,

s.t.

∫
M2

ψiψj w
2dM2 = δij and Area(M1)g1 = Area(M2)w2g2

(8)

where Area(M1)g1 =
∫
M1

1dM1 and Area(M2)g2 =
∫
M2

w2dM2

4 Discretization and Numerical Algorithms

In this section, we describe a discretization of the proposed variational model (8) using on triangular rep-
resentation of surfaces. After that, we design a numerical algorithm to solve the proposed model based on
proximal alternating minimization method.

4.1 Discretization of the LBBP Model

The main method we use to discretize surfaces and differential operators is based on a finite element scheme
similar to that developed in [12, 36, 47]. Let {pi}ni=1 be a set of vertices sampled on the manifold M. A
surface can be discretized as a triple {P,E, T} made of vertices (P ), connected by edges (E) which form
triangular faces (T ). We define the first ring of pi, the set of all triangles which contain pi as N(pi). For each
edge Eij connecting points pi and pj , we define the angles opposite Eij as angles αij and βij .

We define a diagonal mass matrix, M, a n× n positive definite matrix with entries given by:

Mii =
1

3

∑
τ∈N(pi)

Area(τ)

We use this simplified version, rather than the standard finite element discretization, for convenience in order
to avoid expensive factorizations later in our algorithm. We remark that the standard version can also be
used in our algorithm at the cost of speed. The surface area can be approximated as Area(M) ≈

∑n
i=1 Mii.

Similarly, given a function f onM with discretization f : P → R, we have the approximation
∫
M f(x) dM≈

1>Mf =
∑n
i=1 fiMii. The stiffness matrix, S, is a n× n symmetric positive semidefinite matrix given by:

Sij =
∑
τ

∫
τ

∇τei · ∇τej = −1

2
[cotαij(pi) + cotβij(pi)]

where ei is a linear pyramid function which is 1 at pi and zero elsewhere. These mass and stiffness matrices
can be used to approximate the LB eigenvalue problem as: Sf = λMf .

We remark that one can also work with point clouds representation instead of triangulated meshes. These
definitions for the stiffness and mass matrices can be approximated by the point clouds method discussed in
[29]. The only change we would need to make is to use only the diagonal entries of the version of the mass
matrix M proposed in their paper to populate the strictly diagonal version employed here.

Suppose two surfaces (M1, g1) and (M2, g2) are represented by triangular meshes with the same number
of points1. We denote M1, S1 ∈ Rn×n as the mass and stiffness matrices of M1 and let Φ ∈ Rn×k be the
first k LB eigenfunctions of M1, and F ∈ Rn×` be ` feature functions. Similarly, we write M2, S2 as the
mass and stiffness matrices of M2, Ψ as the first k LB eigenfunctions of M2 (under w2g2) that we would
like approximate, and G as ` corresponding feature functions, ordered the same as in F . We also write w2

as the discretized conformal factor on M2 and diag(w) as a diagonal matrix.

1 In fact, we do not need to require that the surfaces have the same number of points, but doing so for now will allow for
more convenient notation.
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Therefore, the discretized optimization model (6) can be written as:

(w∗, Ψ∗) = arg min
w,Ψ

r1

2
‖F>M2Φ−G>diag(w)M2diag(w)Ψ‖2F +

r2

2
tr(Ψ>S2Ψ) +

r3

2
w>S2w,

s.t. Ψ>diag(w)M2diag(w)Ψ = Ik, and w>M2w = A
(9)

Here Ik is the k × k identity matrix and A =
∑n
i=1 M1(i, i). Since M2 is symmetric positive definite and

diagonal, we can easily calculate the matrix decomposition M2 = L>L. If we also substitute Ψ̄ = L diag(w)Ψ ,
then (9) can be written as:

(w∗, Ψ̄∗) = arg min
w,Ψ̄
E(w, Ψ̄) =

r1

2
‖F>M1Φ−G>diag(w)L>Ψ̄‖2F +

r2

2
tr(Ψ̄>S̄2(w)Ψ̄) +

r3

2
w>S2w,

s.t. Ψ̄>Ψ̄ = Ik and w>M2w = A

(10)

where S̄2(w) = (L>)−1diag(w)−1S2diag(w)−1L−1. Note that this parameterization of the problem moves the
conformal factor w out of the orthogonality constraint (and into S̄). We will soon see that, for any fixed Ψ̄ ,
this will make the problem for w easier to solve.

4.2 Numerical Optimization of LBBP Model

The two variables w and Ψ̄ in (10) make the optimization problem different from orthogonality constrained
problems solved by nonconvex alternating direction method of multipliers (ADMM) methods considered in
[23, 25, 52, 53]. Rather than solve this problem directly for Ψ̄ and w simultaneously by directly minimizing
(10), we employ a method based on the framework of proximal alternating minimization (PAM) method [1].

Let S = {Ψ̄ ∈ Rn×k | Ψ̄>Ψ̄ = Ik} and W = {w ∈ Rn | w>M2w = A}. We also define indicator functions

δS(x) =

{
0, if x ∈ S

+∞, otherwise
, δW(x) =

{
0, if x ∈ W

+∞, otherwise
(11)

Then it is clear that δS and δW are semi-algebraic functions as S and W are zero sets of polynomial
functions [2]. Therefore, we write an equivalent form of (10) as

(w∗, Ψ̄∗) = arg min
w,Ψ̄
E(w, Ψ̄) + δS(Ψ̄) + δW(w). (12)

Using the PAM method, we have the following iterative scheme
Ψ̄ j+1 = arg min

Ψ̄
E(wj , Ψ̄) +

1

2η
||Ψ̄ − Ψ̄ j ||2, s.t. Ψ̄>Ψ̄ = Ik

wj+1 = arg min
w
E(w, Ψ̄ j+1) +

1

2η
||w − wj ||2, s.t. w>M2w = A

(13)

Here η is a step size parameter. These proximal terms penalizes large step sizes in and prevents the algorithm
from “jumping” between multiple local minimums. The addition of these proximity terms allows us to analyze
the proposed method in the framework of the PAM algorithm [1]. It has been shown in [1, 2, 8] that such
proximal terms can guarantee the solutions generated at each step converge to a critical point of the objective
function. Formally, we have the following convergence theorem in accordance with Theorem 9 in [1].

Theorem 1 Let {wj , Ψ̄ j} be the sequence produced by (13), then the following statements hold:

1. E(wj+1, Ψ̄ j+1) +
1

2η
||Ψ̄ j+1 − Ψ̄ j ||2 +

1

2η
||wj+1 − wj ||2 ≤ E(wj , Ψ̄ j), ∀j ≥ 0.

2.
∞∑
j=1

(‖wj − wj−1‖2 + ‖Ψ̄ j − Ψ̄ j−1‖2) <∞.

3. {wj , Ψ̄ j} converges to a critical point of E(w, Ψ̄).
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Proof To prove this, we show that our model obeys the conditions required for local convergence of PAM in
[1]. To do so, we need:

(1) Terms which contain only one primal variable are bounded below and lower semicontinous.
(2) Terms which contain both variables are C1 and have a locally Lipschitz continuous gradients.
(3) The entire objective satisfies the Kurdyka-Lojasiewicz (KL) property.

It is immediately clear that that the first two properties are satisfied by our objective. Furthermore, it is
known that all semi-algebraic functions have KL property [1, 2, 53]. Our objective is semi-algebraic so we
can guarantee local convergence of the proposed optimization method.

We use the augmented Lagrangian method to solve the constrained sub-optimization problem for w in
(13). For convenience, let’s write

L(Ψ̄ , w; b) = E(w, Ψ̄) +
r4

2

(
w>M2w −A+ b

)2

(14)

Overall, we solve (10) in the following way by hybridizing PAM with the augmented Lagrangian method.
Ψ̄ j+1 = arg min

Ψ̄
E(wj , Ψ̄) +

1

2η
||Ψ̄ − Ψ̄ j ||2 s.t. Ψ̄>Ψ̄ = Ik

wj+1 ←

wj+1,s+1 = arg min
w
L(w, Ψ̄ j+1; bj+1,s) +

1

2η
||w − wj ||2

bj+1,s+1 = bj+1,s + (wj+1,s+1)>M2w
j+1,s+1 −A.

(15)

The subproblems for minimizing Ψ̄ require a some special consideration. The main challenge this first
sub-optimization problem is the nonconvex orthogonality constraints. Recently, several approaches have been
developed to solve orthogonally constrained problems in feasible or infeasible ways [23, 25, 52, 53, 54]. For
our implementation, we have chosen the feasible approach developed in [54] which uses a curvilinear method
based on the Cayley transform together with Barzilai-Bowein step size line search. This method updates
variables along a geodesic curve on the Stiefel manifold, a geometric description of the orthogonality. It
preserves the orthogonality constraints and guarantees convergence to critical points in our scenario. More
precisely, given a feasible starting point Ψ̄s and the coordinate gradient Y s at this point, the update scheme
is as follows: 

Ds = Y s(Ψ̄s)> − Ψ̄s(Y s)>

Qs = (I +
dt

2
Ds)−1(I − dt

2
Ds)

Ψ̄s+1 = QsΨ̄s

(16)

Here dt is a step size parameter chosen by the Barzilai-Bowein criteria developed in [4]. Although convergence
to a global minimum is not guaranteed, this method has proven effective for our purposes and only requires
the computation of the objective function and its coordinate gradient Y s with respect to Ψ̄ at each step
provided by:

∇Ψ̄
(
E(w, Ψ̄) +

1

2η
||Ψ̄ − Ψ̄ j ||2

)
=− r1G

>diag(w)L>
(
F>M1Φ−G>diag(w)L>Ψ̄

)
+ r2S̄2Ψ̄ +

1

η
(Ψ − Ψ̄ j)

(17)

The subproblem for w (as written in (15)), on the other hand is smooth and unconstrained. For our
implementation, we use the well known quasi-Newton BFGS algorithm [5]. The gradient of objective function
with respect to w can be written as:

∇w
(
L(w, Ψ̄ ; b) +

1

2η
||w − wj ||2

)
= r1 diag

(
G>(F>M1Φ−GwL>Ψ̄))Ψ̄>L

)
+ r2 diag

(
ΨΨ>Sw−1

)
� w−2

+ r3S2w + r4

(
w>M2w −A+ b

)
M2w +

1

η
(w − wj)

(18)

where diag
(
·
)

denotes the diagonal of the matrix, � signifies element-wise Hadamard product and w−2 is
the inverse of diagonal matrix w multiplied with itself.
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4.3 Computation of Point-to-Point Map

One naive way to compute a point-to-point map is to find the functional map by using the final deformed
manifold and its LB eigensystem with respect to the deforamtion. However, this may not work well because
of the ambiguity of LB eigensystem. Additional effort is needed to handle possible ambiguity of LB eigen-
system such as the method discussed in [26]. As an advantage of the proposed method, the resulting basis
generated by the proposed algorithm (recovered as Ψ∗ = A−1wΨ̄) to will naturally correct ambiguities of
LB eigensystem. This is similar to the method discussed in [22]. Thus, we can compute the functional map

as FT (h) =
∑k
i=1(

∫
M1

hφi dM1)ψ>i = ΨΦ>M1h. However, this method is still quite inefficient and may be
sensitive to small errors in the resulting basis.

Instead, after we recover the final basis from our method, we can compute the point-to-point map between
the two surfaces by comparing the values of each of the basis functions. This is essentially the same scheme
presented in [32], but applied to our new basis. We use a KNN search (with K = 1) to match rows of Φ and
Ψ . This requires a search of n points in k dimension, but is much more efficient and accurate than using
the delta function approach described in the previous paragraph. Other methods used to refine functional
maps such as [37] can be applied in this setting without changes. We summarize our numerical method for
nonisometric surface registration as Algorithm 1.

Algorithm 1: LB Basis Pursuit (LBBP) Algorithm.

Input: Triangulated surfaces M1 and M2 and list of known corresponding functions F and G.
Output: Ψ∗, w, point-to-point map

1 Compute stiffness and mass matrices for each surface: M1,M2, S1, S2;
2 Use stiffness and mass to calculate LBO eigensystems: M1Φ = λS1Φ;
3 Initialize: Let Ψ0 be the LB eigenfunctions of target surface: M2Ψ = λS2Ψ ;
4 Compute Ψ̄0 = LwΨ ;
5 while not converged do

6 Update Ψ̄ j+1 = arg min
Ψ̄
E(wj , Ψ̄) +

1

2η
||Ψ̄ − Ψ̄ j ||2 using the curvilinear search algorithm (16);

7 while s ≤ ` do
8 Update wj+1,s = arg min

w
L(w, Ψ̄ j+1; bj+1,s) +

1

2η
||w − wj ||2 using BFGS;

9 bj+1,s+1 = bj+1,s + (wj+1)>M2w
j+1 −A;

10 wj+1 = wj+1,s;

11 Recover Ψ∗ = wL−1Ψ̄ ;
12 Compute correspondence map with KNN-search of coefficient space

5 Discussion

In this section, we discus our choice of feature functions, as well as ways to overcome problems which may
arise from the non-convexity of the proposed optimization problem.

5.1 Choice of Feature Functions

The simplest, and in many applications, most natural features to choose for F and G are indicator functions
for known landmarks. Let {x1

i }ki=1 be a set of points onM1 and {x2
i }ki=1 be a corresponding set onM2. We

can view each fi and gi as a δ-function on M1 and M2 respectively to indicate these landmarks.
Another option is to use heat diffusion functions. Given a corresponding pair of points we can use delta

functions to define an initial condition and solve the heat diffusion problem
∂u

∂t
(x) = ∆u(x, t) using the
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Crank-Nicholson scheme
(
M+

dt

2
S
)
ui+1 =

(
M− dt

2
S
)
ui where dt is a step size parameter. By taking “snap

shots” (solutions of the equation for various t values) of u at different time values, we can generate multiple
functions from a single corresponding pair. This choice allows for a multi-scale selection of features and
often results in better correspondences, although it is computationally more expensive. Also, since the heat
diffusion is sensitive to local geometry, it is often necessary to recompute the diffusion with respect to the
conformal factor. This can be included as a step in the reinitialization scheme which will be discussed in the
next section.

The wave kernel signature (WKS) has also been used for characterizing points on non-rigid three dimen-

sional shapes [3]. These functions are defined as the solutions to the Schrodinger equation:
∂u

∂t
(x) = i∆u(x, t)

at different points on the surface. Given two corresponding points we can solve the equation at each point
and use these as our corresponding functions. However, the solutions to these equations are highly depen-
dent on both local and global geometries of the manifold. Because of this, they are only suitable for shape
correspondence when the shapes are very similar and, in general, do not work well for non-nearly-isometric
problems. The same problem exists for heat diffusion features, however, in general heat diffusion tends to be
much more stable with respect to local deformations.

SHOT features [48] are also a popular choice of feature functions for shape processing tasks. For nearly
isometric shapes these descriptors work well, but since they are not intrinsically defined they do not work
well with the re-initialization scheme detailed in the next section. Updating these features with respect to a
conformal deformation requires computing the deformed embedding, which the rest of our method explicitly
avoids.

5.2 Reinitialization Schemes

Although we have shown that the proposed PAM based optimization algorithm converges to a critical point
of the objective function, it is still challenging to achieve a global optimum as the problem is non-convex. In
practice, we have found that the numerical results can often be improved in terms of both accuracy and speed
of computation by adding a simple reinitialization scheme to our algorithm. The motivation for the scheme
comes from an observation that if we know the exact conformal deformation w2 and the source surface has
a simple eigensystem (no repeated eigenvalues), then the LB eigensystem of (M1, g1) is the same as the
LB eigensystem of (M2, w

2g2) up to a change in sign. With this in mind, we propose to reinitialize the Ψ
problem by resetting Ψ to be the solution to weighed eigenproblem S2Ψ = Λdiag(w2)M2Ψ . We remark that
this reinitialization method to achieve an optimizer closer to the global one is empirical, although it is based
on the geometric intuition.

Computationally, to avoid introducing ambiguities of LB eigensystem by calling a standard eigen-solvers,
we solve a discrete counterpart to (4) as min

Ψ
tr(Ψ̄>S̄2(w)Ψ̄), s.t. Ψ̄>Ψ̄ = I based on the curvilinear search

method discussed in Section 4.2 and using the current eigensystem, Ψ̄ j+1, as an initial guess for this problem.
By using Ψ̄ j+1 as warm start for the eigenproblem we can avoid re-introducing sign or multiplicity ambiguities
into the problem which our algorithm has already resolved.

When using heat diffusion, wavelet kernel signatures, or any other functions which are defined based on
local geometry as the input feature functions, then we also need to recalculate these functions with respect
to the conformally deformed metric. For example, if we are using heat diffusions, we can recompute the
heat diffusion functions on the deformed manifold (M2, w

2g2) by multiplying the mass matrix by w2 in the

Crank-Nicholson scheme:
(
M2diag(w2) + dt

2 S2

)
ui+1 =

(
M2diag(w2) − dt

2 S2

)
ui, A similar re-computation

technique can be applied to wave kernel signatures, or any other features which are computed using finite
element-like operators.

5.3 Sub-sampling scheme

The most computationally demanding step of our algorithm is the update of Ψ̄ . As a result, the time
complexity of our algorithm depends on the number of points in the discretization of M2. However, the
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overall geometry of the shape can often be closely estimated by a relatively small subset of the points
contained in a triangulated mesh or point cloud. Inspired by this observation, we propose a warm start
method in which we solve a smaller problem on a subset of the full mesh and use it as a warm start for the
full problem. One way to do this would be to sub-sample the mesh and compute a new (local) triangulation
[29]. However, the re-meshing process can be computationally expensive. Therefore, we instead seek a method
to approximate Ψ̄ on the entire mesh, using only the sub-sampled points.

Given a mesh M with n points, we first compute a sub-sample of points M̄ with n̄ < n points which
most articulately represents the original mesh. To do so, we begin with a random seed point and compute
the point on the mesh which has the greatest (geodesic) distance from it and include this point in M̄ . Then
we iteratively add points to M̄ by finding the point on M which has the greatest minimal distance to any
point already included in M̄ .

Algorithm 2: Subsampling and Warm Start Algorithm.

Input: Set of vertices and faces of source (M1) and target (M2) manifolds, number of subsample
points n̄, list of known corresponding functions F and G, Stiffness and Mass Matrices
S1, S2,M1,M2

Output: Ψ∗, w∗,
1 Initialize: Let Ψ be the LBO eigenfunctions of target surface: M2Ψ = λS2Ψ ;
2 Compute downsampled points to represents M1;
3 Compute down sampled bases and representation of F ;
4 Use Algorithm 1 to solve (20) for D∗, C∗;

5 Compute Ψ̄ =
∑n̄
i=1 Ciui and w =

∑n̄
i=1Diui ;

To approximate a function f defined on M with only n̄ variables, we define linear projection and recon-
struction operations to down-sample the problem. One naive idea would be to restrict the values of f to
M̄ and use linear interpolation in the other direction. However, this fails to capture many of the details of
functions in the projection step, and doesn’t respect the local geometry in the reconstruction step. Instead,
we use a new approximate basis with elements, U = {ui : M → R}n̄i=1, created by diffusing a delta function
on M , centered at each point on M̄ for a fixed time t. The resulting basis contains n̄ elements. We define a
projection operation and reconstruction operations as

Proj(f) := (U>MU)−1U>Mf = f̄

Recon(f̄) := f̄U
(19)

We can then use this new approximate basis to reduce the dimension of the optimization problem and solve
the simplified problem very quickly. We consider the projection of Ψ and w onto the {ui} set which can be
represented as the coefficients Ci = 〈Ψ̄ , ui〉 and D = {〈w, ui〉}i. Plugging these into our model we get:

(D∗, C∗) = arg min
D,C
E(D,C) =

r1

2
‖F>M1Φ−G>diag(DU)L>UC‖2F +

r2

2
tr(C>S̄U2C) +

r3

2
D>SU2D,

s.t. C>U>UC = In and w>Mu2w = A
(20)

Where MU2 = U>M1U , LU = U>L, S̄U2 = U>S̄2Uand SU2 = U>S2U can all be precomputed. Note that
if {ui}n̄i=1 is, in fact, a tight frame then (20) is the same as (8). This problem can be solved with algorithm
(1), but has significantly fewer variables then (8). By using using the elongation of the solution to (20) as
an initial guess for Ψ̄ and w we can significantly decrease the time needed to solve the full model.

With this warm start algorithm 2 and the re-initialization procedure described in Section 5.2, we propose
a modified version of our numerical solver as Algorithm 3.

6 Numerical Experiments

In this section, we apply our algorithm to several problems. We begin by working on a typical non-isomorphic
matching problem for a pair of shapes with a large deformation: a horse and an elephant. We preform tests
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Algorithm 3: LB Basis Pursuit Algorithm with warm start and reinitialization.

Input: Set of vertices and faces of source (M1) and target (M2) manifolds and list of known
corresponding functions F and G

Output: Ψ∗, w∗, point-to-point correspondence map
1 Compute stiffness and mass matrices for each surface: M1,M2, S1, S2;
2 Use stiffness and mass to calculate LBO eigensystems: M1Φ = λS1Φ;
3 Compute corresponding feature functions F and G on M1 and M2 respectively;
4 Initialize: Let Ψ0 be the LBO eigenfunctions of target surface: M2Ψ = λS2Ψ ;
5 Compute down sampled bases through downsample and heat diffusion;
6 Compute Ψ̄0 and w̄0 through warm start through Algorithm 2;
7 while number of re-initialization steps complete < max number of re-initializations do

8 Update Ψ̄ j+1 = arg min
Ψ̄
E(wj , Ψ̄) +

1

2η
||Ψ̄ − Ψ̄ j ||2 using the curvilinear search algorithm (16);

9 while s ≤ ` do
10 Update wj+1,s = arg min

w
L(w, Ψ̄ j+1; bj+1,s) +

1

2η
||w − wj ||2 using BFGS;

11 bj+1,s+1 = bj+1,s + (wj+1)>M2w
j+1 −A;

12 wj+1 = wj+1,l;
13 if update < tolerance then

14 Re-Initialize Ψ̄ as arg min
Ψ̄

tr(Ψ̄>S̄2(wj+1)Ψ̄), s.t. Ψ̄>M2Ψ̄ = I;

15 if Using feature functions which depend on local geometry then
16 Re-Compute features using M2diag(w2) as Mass matrix

17 Compute correspondence map with KNN-search of coefficient space

showing the effectiveness of our approach given different amounts of landmark points, and demonstrate
robustness with respect to noise both on the manifold and in the initial correspondences. We further conduct
experiments on the Faust benchmark data set [7] and conduct comparisons with several existing methods.
All numerical experiments are implemented in MATLAB on a PC with a 32GB RAM and two 2.6GHz CPUs.

In all of our experiments, we use randomly chosen correspondence points to create indicator functions as
the input features. The first 100 non-trivial LB eigenfunctions are chosen to calculate the coefficient matching
term, as well as for computing the final correspondence. We set r1 = 10, r2 = 10, r3 = 1, r4 = .01, ` = 1
for all experiments, even though the data sets and experimental conditions are very different. This choice
of r1 and r2 allows the coefficient matching terms and eigenfunction term to balance each other out, with
the choice of r3 still being large enough to preserve the area constraint. r4 is chosen to be small so that the
harmonic energy, which tends to be quite large, does not dominate the others. In general, we have observed
that our algorithm is quite robust to different choices of parameters.

6.1 A Large Deformation Pair: Horse to Elephant

The first experiment is designed to test the effectiveness of the proposed method on a pair of shapes with
large deformation. Each surface, a horse and an elephant, is represented by a mesh with 1200 points. One
of the challenges in this pair is the large deformations in the sharp corner and elongated regions such as
ears, teeth, noses and tails on the horse and elephant surfaces. Those regions make the registration problem
very challenging. To demonstrate the efficacy of our approach, we perform this experiment under several
different conditions. Our algorithm produces excellent results given a sufficient number of landmarks, and
it still finds reliable correspondences given limited landmarks. We also show that using our reinitialization
scheme (Algorithm 3) produces a more accurate map than without this extra step (Algorithm 1).

Qualitative illustration The left panel of Figure 1 shows the convergence of the objective function and
illustrates the effectiveness of the reinitialization step. We plot the three terms in the objective function
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Fig. 1 Left top: The coefficient matching term measures: ‖F>M1Φ−G>diag(w)L>Ψ̄‖F . The eigen problem is: (Ψ>S2Ψ) and
the harmonic energy measures: w>S2w and the total energy is the entire model derived in (10). Left bottom: resulting and
exact conformal factors. Right panel: First two rows: The first 9 non-trivial natural LB eigenfunctions of manifolds. The third
row: results from the proposed basis pursuit algorithm. The fourth row: ground truth. Left: convergence curves of our method.

Fig. 2 Top left: 9th, 11th and 44th natural LB eigenfunctions on source. Bottom left: results and ground truth. Middle:
Alignment of the LB eigenvalues. Right: visualization of point-to-point map and texture transfer.

separately as well as the overall objective. We typically observe that the convergence curves in the coefficient
matching and total energy flatten quickly as the algorithm tends to a local minimizer. More importantly,
each reinitialization significantly reduces the objective function. We further demonstrate the validity of our
algorithm by examining the resulting conformal factor. In the left bottom image of Figure 1, we show the
conformal factor calculated by our algorithm as well as the ground truth. The ground truth conformal factor
is calculated by using the ground truth point-to-point map to compare the area of the first ring structure
around each point on the source and target surface respectively. Here we plot u where w2 = e2u for better
visualization. From this figure we can confirm that the produced conformal factor from our algorithm is very
close to the true factor.

Since the elephant and horse are dramatically different shapes, the large dissimilarity of their natural
LB eigenfunctions (first two rows of the right panel in Figure 1) cannot be expected to produce meaningful
correspondence. However, our model overcomes this by capturing the conformal deformation between the
surfaces. As results plotted in the third of the right panel in Figure 1, the basis computed for the horse
(target surface) by our model is consistent with the LB eigenfunctions of the elephant (source surface). We
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further compare these results with the ground truth (showed in fourth row of the right panel in Figure 1)
which is calculated through the push forward of the LB eigenfunction of the source to the target surface
using the ground truth map. This comparison also confirms that functions obtained from the proposed model
produces satisfactory results. Moreover, We highlight the consistency of the produced bases on several highly
distorted regions including ears, nose/trunk and the tails in the left picture of Figure 2. All of these results
visually illustrate that our approach produces a new basis on the target that aligns very closely to the natural
LB basis on the sources manifold. As an additional evidence, the middle picture in Figure 2 shows that the
eigenvalues of the deformed eigenesytem are much closer to the eigenvalues of the source surface than they
are to the target. Although these values are never explicitly taken into account in our numerical algorithm,
it is not surprising that aligning the eigenfunctions also aligns their eigenvalues. This close alignment of the
eigensystems is the reason that accurate registration results can be obtained using the new basis. Finally,
we visually show the obtained high quality point-to-point correspondence based on the resulting basis.

Quantitative illustration Next, we quantitatively demonstrate the dependence of the performance on the
number of given landmarks, the effectiveness of the sub-sampling scheme, the necessity of using conformal
deformation as well as the robustness of our method to noisy data and landmark perturbation. To quanti-
tatively measure the mapping quality, we calculate the normalized geodesic distance from the point on the
target surface produced by the map to ground truth following the Princeton Benchmark method [21]. These
distances are collected into a cumulative error plot where the y-axis measures the percent of points whose
distances are less than or equal to the x-axis value.

The left picture in Figure 3 shows geodesic errors of correspondence using 100, 75, 50 and 25 known
landmark points with and without our reinitialization scheme. It is reasonable to see that the algorithm with
more landmarks provide better numerical performance. For example, in the case of 100 known landmarks,
our algorithm matches over 70% of the points to exact correct point and more than 98% within a 5% error
margin. This is certain more accurate than the correspondence obtained from 25 landmark points although
it still provides a very good corresponding result.

Iterations: WS (250) 250 500 1500
Time 322s 2047s 4521s 1485s

Fig. 3 Left:normalized geodesic errors for various numbers of randomly selected landmarks with and without reinitialization.
Middle: Quality of correspondences produced at various stages of our algorithm, with and without warm start (WS). Right:
Comparisons of results obtained from basis pursuit without deformation, with oracle deformation and our LBBP method.

To illustrate the effectiveness of the sub-sampling scheme presented in section 5.3, we repeat the previous
experiment twice more, both with and without the sub-sampling warm start, and manually stop the algorithm
after 500 iterations. The middle picture in Figure 3 shows the quality of the correspondences produced by
the initial basis, the one produced by the subsampling scheme after 250 iterations, the basis produced by
algorithms after 250 full iterations using the sub-sampled scheme as a warm start, one produced by the
algorithm using 500 iterations of the full scheme without using the warm start and finally results after 1500
and 2500 iterations with and without the warm start. From this figure we observe that the warm start routine
can significantly speed up the basis pursuit by providing a good initialization to the full algorithm.

To show the importance of understanding the deformation between surfaces when using a spectral based
method, we run two tests for finding correspondence between horse and elephant using LB basis pursuit
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algorithm but freezing the conformal deformation. We first set the conformal factor to be 1 everywhere.
This mean no deformation is imposed in the procedure of the LB basis pursuit. Next, we use the exact
deformation, which can be computed as a priori using the exact correspondence. The right image in Figure
3 shows the geodesic errors of the correspondence produced by the optimized bases when using each of these
fixed conformal factors, as well as the result of our algorithm referred as LBBP. Although, our algorithm
does not achieve the same performance as using the oracle deformation (which is not obtainable in practice),
we vastly outperform the non-deformation case.

Fig. 4 Left to right: point-to-point maps for noisy data, normalized geodesic errors for noisy data, Initial perturbations to
landmarks and final error of landmarks, and final registration geodesic errors for all points using perturbed landmarks.

Next, we demonstrate that our algorithm enjoys robustness and flexibility of handling noisy data. Since
noise on the surfaces can be viewed as local deformations, our algorithm is automatically robust to geometric
noise. Medical scans often have noise resulting from the imaging instruments and manual segmentation. Our
model can solve registration problems for this type of data. To demonstrate this, we generate noisy data
by adding noise along the normal of each point. The left two pictures in Figure 4 shows the results of two
experiments: a noisy elephant to an elephant and a noisy horse to an elephant. We observe that our algorithm
still produces very accurate results despite this noise.

Fig. 5 Geodesic errors for randomly selected and
least isomorphic pairs.

We also demonstrate the robustness of our algorithm to
landmark perturbations. Working again on the horse and
elephant, we test cases where the landmarks are perturbed
to another vertex within the first ring. The magnitude of
these perturbations depends on the uniformity and meshing
of the surface. The second most right picture in Figure 4
shows the size of the perturbations of the landmarks points
as well as the error in their final mapping. The most right
picture in Figure 4 compares the geodesic error of the for
all points when 25%, 50% and 100% of the landmarks points
are perturbed. From these tests we conclude that our method
can successfully reduce the error introduced in the perturbed
landmarks and still produce accurate maps in the presence
of perturbations.

6.2 Benchmark test using the Faust Data set

In our next experiment, we test our algorithm on a larger
data set to demonstrate its effectiveness and robustness on a
variety of shapes. The Faust dataset is a collection of 100 3D
shapes composed of 10 real individuals in 10 distinct poses. Instead of testing all 9900 possible correspon-
dences be each of the pairs, we select two smaller subsets of shapes to formulate to smaller test sets. For the
first test, we randomly choose 100 pairs of shapes and compute the correspondences. In the second test, we
choose l0 scans and ensure that each individual and each pose is represented exactly once in the test set and
compute all 90 correspondence maps. (Figure 5) [7]. This selection criteria ensures that no pairs are from
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the same the pose or individual. The bottom left graph in Figure 5 shows the average error of the mappings
for each of these tests. We see that our algorithm again computes very accurate correspondences for both
tests. Furthermore, we see that the results for the harder test set are very close to the results for the first
test set. This indicates that our approach can effectively handle non-isometric matching problems with large
deformations. For each of these test we employ our sub-sampling scheme outlined in Algorithm 2, using a
subsample of 1000 points to compute a basis which we use as a warm start for the dense meshes. Each pair
took roughly 45 minutes to compute.

6.3 Comparisons with Other Nonisometric Techniques

Figure 6 shows the a comparison our algorithm and that of the kernel matching [51], coupled quasi-harmonic
basis [22], basis matching (no deformation in 6.2) and functional maps [32] approaches on the non-isometric
horse to elephant problem and on a nearly isometric problem taken from the FAUST dataset. For each test
the algorithms used 100 randomly generate heat diffusion functions as corresponding features and solve the
minimization problem until the relative objective function update falls below 10e-6.

The horse-to-elephant test has a much larger deformation, but is also much less densely meshed. As a
result the algorithms which are able to encapsulate the change in local geometry, kernel matching and our
approach perform much better than methods developed for near-isometric surfaces. On the other hand the
problem taken from the Faust data set has a much smaller deformation, so methods which rely on the native
eigensystems being closely aligned (functional maps and coupled basis) perform much better on this test
then on the horse-to-elephant case. All of these comparisons show that our method produces more accurate
mapping than those from the state-of-the-art methods.

Fig. 6 Left: Comparison of methods on non-isometric horse-to-elephant. Right: Comparison of methods on FAUST data set.

7 Conclusions

In this work, we have developed a variation method for computing correspondence between pairs of largely
deformed non-isometric manifolds. Our approach considers conformal deformation of the manifolds and
combines with traditional LB spectral theory. This method naturally connects metric deformations to the
spectrum of the manifold and therefore allows us to register manifolds with large deformations. Our approach
simultaneously aligns the bases of the manifolds and computes a conformal deformation without having to
explicitly reconstruct the deformed manifolds. We have also proposed an efficient, locally convergent method
to solve this model based on the PAM framework. Finally, we have conducted intensive numerical experiments
to demonstrate the effectiveness and robustness of our methods.
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