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ABSTRACT

Large volumes of human action image data are becoming
increasingly available due to the prevalence of surveillance
cameras and smart personal devices. While such image data
enables important applications such as activity recognition for
health and safety enhancement, they often contain sensitive
information such as identities that introduce high risks to indi-
vidual privacy. Existing image privacy-enhancing techniques
are either developed at the cost of sacrificing image utility
or lack of provable privacy guarantees. We propose a novel
human action image generation model that enforces rigorous
differential privacy protection. Theoretical analysis is pro-
vided to quantify the privacy protection on the training data
within the differential privacy framework. Experiments with
real-world datasets demonstrate that images generated using
our method achieve higher image utilities than baselines given
similar degrees of privacy protection.

Index Terms— image synthesis, differential privacy

1. INTRODUCTION

Balancing between human action image utilization and pri-
vacy is a fundamental yet challenging problem in computer
vision. On one hand, human action images contain richer
information than skeleton and depth heatmaps for recogniz-
ing activities involving human-object interactions [[1]]. On the
other, those images reveal sensitive information such as gen-
der, race, and identities that can intrude individual’s privacy.
In this paper, we consider to design a mechanism to transfer
raw images to sanitized images so as to assist utilization such
as single-image activity recognition [2]] while preserving pri-
vacy to avoid person identification attacks.

Traditional image privacy-enhancing operations such as
blurring, superpixel clustering [3]], and downsampling [4] do
not consider entangled image factors such as poses and ap-
pearances, and thus image utility is largely sacrificed. In hu-
man action images, some factors such as pose information are
more critical for action recognition and are less intrusive than
others such as appearances. Most of those methods are ap-
plied in the whole image or in the region of interests such as
human faces and bodies to preserve privacy. However, exces-
sive sanitization such as the usage of extreme low resolution

(e.g.,16 x 12) images [} |6] without considering entangled
image factors may reduce data utility.

Generative models have been applied to human action im-
age synthesis [7, 18]. In particular, a framework is proposed
in [9] to learn a disentangled representation of the input hu-
man body images such as foreground, pose, and background.
Novel person images such as images with the same pose but
different cloths can be generated by manipulating the new em-
bedding features of each component. However, neither do
they provide rigorous privacy guarantees on the training data
nor do they generate images with varying degrees of privacy
protection.

In this paper, we propose a novel sanitization solution for
human action images that provides provable privacy guaran-
tee with minimal impact on utility. Firstly, an image is con-
sidered as the composition of several disentangled factors and
a sanitization model is learned to generate synthetic images
based on less intrusive factors such as skeletons in the raw
images. In addition, the model is trained using the original
data in a differentially privacy-preserving mechanism, which
provides theoretical privacy guarantees for the training data.

In comparison with current approaches, our proposed so-
lution has the following contributions: (1) Based on control-
lable differential privacy parameter ¢, the framework can gen-
erate human action images conditioned on poses with varying
degrees of privacy protection. (2) The privacy cost is analyzed
within the framework of differential privacy without assum-
ing any prior knowledge on specific privacy tasks. (3) The
results show empirically that our method performs better than
baselines in terms of balancing between utility and privacy.

2. RELATED WORK

Recent learning based approaches specify utility tasks (e.g.,
action recognition) and privacy tasks (e.g., gender inference),
define the associated privacy costs (e.g., gender classification
accuracy), and formulate the utility-privacy tradeoff as a min-
max optimization problem [10, 4]]. In particular, a function is
learned to transfer raw input (e.g., images, videos) to a sani-
tized version so as to preserve performance on the utility task
and lower performance on the privacy task. For example, in
[4], the utility task is activity recognition and the privacy tasks
are the classifications of private attributes such as gender, age,
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and hair color. In [10], the utility task is face expression clas-
sification and the privacy task is face identity inference. How-
ever, those task-driven methods need prior knowledge such as
specific privacy attackers and training labels, which may be
unknown ahead of data releasing.

Differential privacy [11] has been the gold standard
for sanitizing and releasing statistical datasets. It ensures
that an adversary is less likely to distinguish between two
datasets/databases that differ in at most one element, by ob-
serving the output of certain private algorithms. Recent stud-
ies [[124[13L114] have proposed to sanitize image data with such
rigorous privacy guarantees. For example, Dp-GAN [13] is a
deep generative model trained using the original data enforc-
ing differential privacy principles. However, most of those
privacy preserving techniques assume an image as a set of
pixels, and thus the protection mechanism does not take ad-
vantages of the disentangled image factors such as appear-
ances and poses.

3. BACKGROUND AND PRELIMINARIES

Disentangled image generation: frameworks such as [9]
have been proposed to synthesis novel images by manipulat-
ing new embedding features of independent factors including
appearance and pose. The framework contains two stages.
In stage I, given a person’s image and the pose keypoint
heatmap, the image is divided into three main factors such as
foreground, background and pose. A network is constructed
to encode each factor to a latent feature, which are then com-
bined through a decoder to re-construct the input image. In
stage II, for each factor, a mapping function is trained in an
adversarial manner to map Gaussian noises to the latent fea-
ture space learned in Stage I.

Differential privacy: a mechanism to provide theoretical
guarantees against to what extent an adversary can distinguish
adjacent datasets by observing the results of some randomized
algorithm. In our cases, each training dataset consists of a set
of images. Two of these datasets are considered as adjacent if
only one image is present in one dataset but not in the other.

Definition: let M : D — R be a randomized algorithm
that maps domain D to range R. Let d,d’ € D be two adja-
cent datasets that differ in at most one entry. The algorithm
M is said to satisfy (e, d)-differential privacy, where ¢ > 0
and § > 0, if for any two adjacent datasets d,d’ € D, and for
any subset R C R, the following holds true:

Pr[M(d) € R] <e*Pr[M(d") € R] + 6. (1)

The above definition is a relaxed variant of (e, 0)-DP [L1].
Given a deterministic real-valued function f : D —
R, a common approach to achieve differential privacy is to
add addictive noise to the output according to f’s sensitiv-
ity Af. The sensitivity is defined as the maximum differ-
ence of the outputs of two adjacent datasets d and d’, i.e.,
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Fig. 1. Our framework consists of a two-step generator and a dis-
criminator. The generator first maps Gaussian variables to a latent
feature space and then maps latent features to images conditioned
on poses. The generator has no direct access to real images except
pose keypoint heatmaps. Compared to existing frameworks, ours is
simpler and is capable of rigorous differential privacy analysis.

Af = maxg~q |f(d)— f (d") |. Gaussian mechanism, which
is a common choice to perturb the output, is defined as:

M(d) = f(d) + N (0,(Af)*0?), )

where NV (0, (Af)?c?) is the normal distribution with zero
mean and standard deviation A fo.

4. MODEL AND ALGORITHM

We introduce our novel method that integrates human action
image generator with differential privacy mechanism.

4.1. Privacy-Preserving Generator

As shown in Figure[I] our generator consists of two-step map-
ping functions to map Gaussian noises to the image space.
Firstly, a feature mapping function ¢(z) is learned to map a
Gaussian space to a latent feature embedding space e = ¢(z).
Secondly, a decoder is learned to map the feature embedding
space to the real image space & conditioned on pose keypoints
(i.e., skeleton coordinates). In the end, a discriminator tries to
differentiate generated images from real images. After train-
ing, the generator can synthesize a random image conditioned
on the pose of a source image. In this way, the generated im-
age preserves skeleton/pose information as much as possible
while obfuscating other factors such as appearances.
Compared to existing disentangled frameworks such as
[9], ours is simpler and is capable of supporting differential
privacy analysis. Firstly, the generator loss in existing frame-
work includes an image reconstruction error, which means the
generator has direct access to original training images. How-
ever, the differential privacy costs due to data access from a
complicated generator is hard to track. In our framework, the
generator has no direct access to real images except pose key-
point heatmaps. Secondly, existing framework requires pre-
processing such as decomposing images to multiple factors



like body segments using masks. However, steps involving
extra image segmentation on original images introduce extra
privacy costs and the cost is hard to quantify theoretically. In
our framework, there are no pre-processing stages.

Specifically, in the first step, the intuition of mapping a
noise to a feature embedding space instead of an image space
is as follows. It has been shown that images usually lie in a
low-dimensional space (i.e., feature space). The distribution
of the feature space is more continuous and easier to learn
compared to the original high-dimensional image space.

In the second step, conditioned on pose keypoint
heapmaps, a decoder maps feature embeddings to real im-
ages. Specifically, we adopt a person pose estimator [9] to
obtain pose heatmaps from original images. A pose keypoint
heatmap is a 18-channel image where each channel is an in-
tensity map for one keypoint coordinate. Further, the heatmap
is concatenated with feature embeddings and passed into a
convolutional autoencoder with skip connections, namely “U-
Net”-based architecture, to generate the final image. The
combination of feature embeddings and pose enforces the net-
work to learn to synthesize appearance for each pixel with the
guidance of the pose keypoints.

The network structure is described in Table[Il The feature
mapping is implemented with 4 residual blocks. The decoder
is implemented as a U-Net structure with 8 residual blocks.
Each residual block’s structure is shown in Table[Il Our dis-
criminator is composed of four convolution layers with filter
size increasing from 64 to 512 by doubling filter number every
time. Leak rectified linear units (LeakyReLU) with a = 0.2
is applied after each convolution layer. Dropout layers are
used after the activation function, with 0.25 dropout rate.

4.2. Optimization

In order to optimize the proposed model, we apply Wasser-
stein GAN loss to minimize the earth mover distance between
the generated image distribution and the real image distribu-
tion. Compared to the original GAN, Wasserstein GAN im-
proves training stability and convergence rate. Formally, the
loss functions for Generator G and Discriminator D are:
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where z is the Gaussian noise and p is the pose keypoint
heatmap.

Since our human action image generator is more com-
plicated than a vanilla GAN, it is expected that the training
process may converge slower. More training iterations mean
more privacy cost since each data access introduces additional
cost. To mitigate this problem, we propose to leverage pre-
trained model on public data to initialize our model param-
eters in a way similar to the warm start trick introduced in
[L3]. Specifically, we adopt the decoder in Stage I and the

Table 1. Network architecture. “x2” means repeating the structure
twice. f: filter size, k: kernel size, s: stride length. n; starts from
128 and increases by 128 each time until it reaches 640. ng starts
from 512 and decrease by 128 every time until it becomes 128.

Feature Mapping
Layer
1 512 Fully-Connected, ReLU
2-5 (512 FC, ReLU)x2
6 128 FC
Decoder
1-5 (Conv2D- nf-3k-1s, ReLU) x3
6 (Conv2D-640f-3k-1s, ReLU) x2
7-10 Upsampling-2s, Conv2D-nof-1k-1s, ReLU
(Conv2D-nsf-3k-1s, ReLU) x2
11 Conv2D-3f-3k-1s, Tanh
Discriminator
1-4 Conv2D-nzf-3k-2s, LeakyReLU, Dropout
5 1 Fully-Connected

pre-trained feature mapping function in Stage II of the model
described in [9]. We will continue the training of our model
under the differential privacy constraint and track the privacy
cost. The pre-training strategy makes the model easier to con-
verge and also saves certain amount of privacy budget. Note
that the existence of public data such as research lab human
action data is useful but fairly limited. It is thus critical to
adopt our privacy-preserving model for a large amount of pri-
vate data such as sensor images in homes and hospitals.

4.3. Differentially Private Training

Inspired by the previous work [12} [13], we utilize differen-
tial privacy to enhance the privacy protection in our proposed
model by injecting random noises in the optimization pro-
cedure. Specifically, random noise sampled from Gaussian
distribution is added to the gradients of discriminator in re-
gard to training images. There are two reasons that we do
not add perturbations to the two-step generator, i.e., feature
mapping and decoder. First, only the discriminator has access
to real images, and thus perturbations in training the discrim-
inator is sufficient for controlling the privacy. Even though
the generator has access to pose keypoint heatmaps, those are
not intrusive and hence not considered in the privacy protec-
tion. Second, compared to generators which may have batch
normalization and residual layers, the discriminators are rel-
atively simple and the privacy cost can be tightly estimated.
Based on the theorems of differential privacy, we can estimate
the privacy cost each time we have access to the training data,
and the cumulative privacy loss in the training process.

The construction of our deferential privacy preserving
model is outlined in Algorithm In each step, a batch of data
are randomly sampled from the original dataset. Specifically,
lines from 2 to 3 describe the two-stage generator, which first



Algorithm 1: Differential Private Disentangled GAN

Input: batch size m, training size M, learning rates
Ag» A, iterations ng, clipping parameter c,
gradient norm bound C, noise scale o, total
privacy budget (e, §), pre-trained feature
mapping and decoder if available.

Output: Differential private generator G

while 0 not converge do

fori=1,...,n4ydo

fori=1,...,mdo

L. Sample X~ Prealy Y ™~ Pposes Z ™~ Pz,

2.e=¢(2);

3. & = Dec(e,y);

/l compute gradients of discriminator

4. g5

Vi [fw (m(l)) - fw (99 (2(1)7 y))]’

/I clip gradients

5. gi, = gi,/mau(1, 12512)
/I perturbation
6.7, —
% (Z;nzl Juw (x(j),z(j)) + N (0,026’2I));
7. compute cumulative privacy loss according
to moments accountant.
| 8. w < SGD(w, gw);
9. sample y ~ Pposesz ~ Pz
/l update generator parameters
10. gg < Vo= 3" fu (90 (29, 9));
11. 6 < SGD (6, g9);
12. update 5 according to e, if 5 > 9, break;

maps a Gaussian noise to a feature embedding and then to an
image based on the pose. At line 4, we calculate the gradi-
ents of discriminator with respect to a random subset of im-
ages. After that we clip the gradient of the discriminator by
a threshold C' (line 5) and then perturb the gradient with a
Gaussian noise (line 6). In addition, we employ moments ac-
counting [12] to track the privacy budget (¢, ), which is accu-
mulated every time we inject noise to gradients. The param-
eters of discriminator and generator are dynamically updated
until convergence or reaching the privacy budget.

According to standard arguments [11], if we choose the

Gaussian noise ¢ in Algorithm 1 to be 4/2log 1‘725, the pro-
cedure after each batch achieves (¢, §)-DP with respect to the
sampled data in the batch. The random sampling of each
batch provides additional level of privacy protection. Accord-
ing to the privacy amplification theorem [12], the subsam-
pling procedure achieves (ge, gd)-DP with respect to the en-
tire dataset, where ¢ = m/n is the sampling ratio per batch
and € <= 1. Further, the accumulated privacy costs after all
iterations can be estimated based on moments accounting.

Theorem 1. Given the sampling ratio ¢ = m/n and the num-
ber of total iterations T, there exist constants c¢1 and co so that
Algorithm 1 achieves (¢,3)-DP for any € < c1¢*T and § > 0
if the noise scale o and the clipping threshold C are chosen
appropriately.

Proof. Let f denote the gradient update function which maps
data samples to a real valued vector and the output is bounded
by a constant C, e.g., || f||2 < 1. Let M be the random Gaus-
sian mechanism M (d) = >, f(d;) + N(0,0°I) where S
represents a subset data in a batch.

Let L denote the privacy loss, which is a random variable
and is defined as:

L(o;M,d,d) =log

PriM(d) = o] )
— o

Pr M (d")

where d, d’ € D™ are two adjacent datasets, and o € R is an
output. The privacy loss can be estimated by the A\** moment
of L, which is defined as follows:

anm (N d,d") =1logE,p(a) [exp (AL (0; M, d,d"))]. (6)

Further, we need to bound all possible values of .y and we
define apng £ maxg .y anm (A;d,d’) as the maximum value
over all possible adjacent datasets d, d’. It can be proven that
for a Gaussian mechanism M, a x4 is bounded by:

am(N) <PAA+1)/(1-q)0* +0(¢*/0). (D

In addition, aq has two other properties [12]: com-
posability and tail bound. Composability indicates that if a
mechanism M is composed of a series of sub-mechanisms
My, .oy My, we have apg () < Zszl apm, (N). Tail bound
indicates that the mechanism M meets (¢,6)-dp if § =
miny (ap — Ae) with € > 0.

According to the two properties above and (7)), the log mo-
ment of Algorithm 1 can be bounded by a(\) < ¢?\%t/o2.
Therefore, Algorithm 1 is (e, 0)-differential private as long as
the following conditions are satisfied: (1) T¢*A\?/0? < \e/2,
(2) exp(—Ae/2) < 6, and (3) A < o2log(1/qo). It can be
proven that there exist some constants c¢; and ¢y such that

when we choose o to be 0 > caq+/T log(1/d)/e for any
e<c qQT, the above three conditions hold.

5. EXPERIMENT AND RESULTS -

5.1. Dataset and Baselines

3We use CAD-60 [15] and Market-1501 [16]. CAD-60 is
a human activity dataset and consists of four different per-
sons performing twelve activities in the indoor environment,
resulting in 60 RGB videos. We choose four activities, i.e.,
talking on the phone, drinking water, opening pill container,
and writing on whiteboard. The total number of image frames
from videos we use is 18960. Market-1501 has 32668 images
of 1501 persons which includes 12936 training images of 751



Oure =1 Blur=3.8 Down=8 Pixel=800
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Fig. 2. Compare original images, skeleton images, and sanitized
images using different methods on CAD-60 (top 2 rows) and Market-
1501 (bottom 2 rows).

persons and 19732 testing images of 750 individuals. We use
all 12936 training images for image generation.

Baselines include blurring and superpixel in [3] as well as
image downsampling in [4]. All methods have parameters to
control image obfuscation levels. We choose 5 different pa-
rameter values for each method. For blurring, we use Gaus-
sian blur with five kernel size, i.e., 1, 3.8, 4.4, 10 and 15. The
bigger, the more obfuscated. For downsampling, the scale is
setto 5, 8, 11, 14 and 50. The larger the scale, the blurrier.
For image superpixeling, the segmentation number is set to
2000, 800, 20, 14 and 1. The smaller, the more obfuscated.
For our method, we use the same set of poses as conditions
and train generation models with different privacy parameter
e€e.g., 106, 20, 5, 1, 0.8. As € decrease, more Gaussian noises
will be injected to the model and thus the generated images
have more privacy protection.

When training our model, we set other parameters as fol-
lows: § = 102, batch size m = 10, generator learning rate
Ay = 8¢, discriminator learning rate Ay = 8¢~ ", the num-
ber of discriminator iterations per generator iteration ng = 5,
clipping parameter ¢ = 0.01, and gradient bound C' = 1.

5.2. Balance between Utility and Privacy

We demonstrate that our method can achieve higher privacy
protection with minimal impact on utility. For the utility task,
we choose single-image action recognition because it is a core

Table 2. Compare identity attack accuracy on images protected
with different methods that achieve utility accuracy around 65%.

Datasets Methods
Oure =1 Blur=3.8 Down=8 Pixel=800
CAD-60 0.2862 0.8020 0.8802 0.9731
Market-1501 0.0027 0.1305 0.3901 0.6818
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Fig. 3. Compare privacy-utility trade-off on CAD-60 dataset.

computer vision task with applications such as smart homes.
The quantification of privacy may vary by contexts, and we
choose a privacy protection task to avoid the attack of person
identities similar to [4} [10]. We emphasize that the proposed
generation framework does not assume specific target utility
or privacy tasks.

For the utility evaluation, each video of CAD-60 dataset
has a corresponding activity label and the label is applied for
each image frame. We then apply each of the 4 image ob-
fuscating methods with one of 5 parameters to raw images
and get a set of obfuscated image sets. For each set, we use
the images of three persons as training and the images of the
fourth person as testing. We utilize 4-fold cross-validation
to evaluate the classification performance of a single image
recognition classifier, e.g., a baseline classifier in [2]].

For the privacy evaluation, we consider a person identifi-
cation attack in a simple scenario [10] where the attacker has
access to the original training images with the corresponding
person identities. However, the attacker cannot see original
test image but only the privacy-protected version. In such sce-
nario, the attacker can utilize the training images to train an
identification classifier. During testing stage, we use different
protecting methods to sanitize the original testing images, re-
sulting in several sanitized testing datasets. The trained clas-
sifier is then used to identify these sanitized testing images.

To compare different methods, we show images obfus-
cated by each method given certain parameter values that
achieve the same utility accuracy. For example, in order to
achieve 65% in activity recognition, the kernel size of image
blurring needs to be 3.8, the scale of downsampling needs
to be 8, the segmentation number of image superpixel is 800,
and e of our method is 1. Note that it is not suitable to perform
action classification on Market-1501 dataset. For consistency,
we adopt the same parameters as used in CAD-60. Samples
of the obfuscated images under these settings are shown in



Figure 2] We can see that our method is more effective in
preserving privacy (e.g., more gender/appearance ambiguity)
when achieving the same level of utility.

Table [2] summarizes the privacy attack accuracy achieved
by different protecting methods. In particular, with param-
eters that achieve the action recognition accuracy at around
65%, our proposed model achieves person identification ac-
curacy at as low as 0.2862 for CAD-60 while the accuracy of
baselines all exceed 0.8. As for Market-1501, the person iden-
tification accuracy of our method is 0.0027, which is close to
the random guess 0.0013 (since there are 751 persons) while
others are much higher. Our proposed method effectively pro-
tects identities compared with baselines.

When image protection level decreases (e.g., less blurred
images), the utility accuracy will increase. Meanwhile, the
images are less robust to privacy attacks thus attack accu-
racy will also increase. Thus, the utility accuracy should be a
monotonically increasing function with respect to identity at-
tack accuracy. Figure|3[shows the performance of our method
and baselines on the CAD-60 dataset with different parameter
values. The x-y coordinates of each marker indicate the attack
accuracy and utility accuracy of images with the choice of one
parameter value. For example, as our privacy protection level
decreases (e.g., ¢ = 0.8to e = 109), both the action utility
and identity attack accuracy increase. We can observe that
at the same level of identification attack, our method always
achieves higher utility than baselines.

6. CONCLUSIONS

We proposed a novel sanitization framework that is able to
generate synthetic human action images with provable pri-
vacy guarantees. Experiments demonstrate that our method
achieves high utility in tasks such as single-image activity
recognition under similar level of privacy protection. Our
framework can be applied to those video synthesis tasks
where we can extract each individual frame from the video
and sanitize images independently. In the future work,
we would like to extend our technique to handle temporal
smoothing constraints with rigorous privacy guarantees.
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