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ABSTRACT
We consider a model for repeated stochastic matching where compatibility is probabilistic, is realized the first
time agents are matched, and persists in the future. Such a model has applications in the gig economy, kidney
exchange, and mentorship matching.

We ask whether a decentralized matching process can approximate the optimal online algorithm. In par-
ticular, we consider a decentralized stable matching process where agents match with the most compatible
partner who does not prefer matching with someone else, and known compatible pairs continue matching
in all future rounds. We demonstrate that the above process provides a 0.316-approximation to the optimal
online algorithm for matching on general graphs. We also provide a 1/7-approximation for many-to-one bi-
partite matching, a 1/11-approximation for capacitated matching on general graphs, and a 1/2𝑘-approximation
for forming teams of up to 𝑘 agents. Our results rely on a novel coupling argument that decomposes the
successful edges of the optimal online algorithm in terms of their round-by-round comparison with stable
matching.
CCS Concepts: • Mathematics of computing→ Matchings and factors; Approximation algorithms;
• Theory of computation → Algorithmic mechanism design; Stochastic approximation; • Social and
professional topics→ Centralization / decentralization.
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1 INTRODUCTION
We consider a model with a finite set of agents who can be repeatedly matched in each of a fi-
nite number of rounds. Each pair of agents (𝑖, 𝑗) is compatible with a known probability 𝑝 {𝑖, 𝑗 } .
When a pair is first matched, their compatibility is realized, and is successful with probability
𝑝 {𝑖, 𝑗 } and unsuccessful with probability 1 − 𝑝 {𝑖, 𝑗 } . This compatibility persists through all future
rounds. This model captures learning dynamics in platforms that match workers with repeated
tasks (dog-walking, babysitting, private chefs), mentorship programs, and kidney exchange. In
such models, agents may only have an estimate of their compatibility with potential partners and
typically learn their compatibility with others through being matched.

The goal of a matching platform is to maximize aweighted sum of the size of the matching in each
round. For example, a platformmaywant tomaximize the total number of successful matches, such
as the total number of dog-dogwalker days or babysitting events. Or, it may only be interested in
the number of successfully matched pairs by the end of the matching process. In mentorship and
kidney exchange programs agents delays are costly, so matches made earlier in the process may be
more valuable than matches made later. In contrast, the goal of each agent is to selfishly maximize
the number of rounds in which they are matched.

Consider two matching processes. The optimal centralized matching algorithm, OPT, solves an
NP-hard Bayesian optimization problem to maximize the expected reward, by prescribing match-
ings adaptively across rounds. In contrast, in the Stable Matching or SM process, the pairs that
were successfully matched to each other in previous rounds remain matched and the rest of the
matching is formed by pairing the agents with the highest success probability in a greedy fashion.
Ties are broken arbitrarily. We show that SM provides a constant-factor approximation of OPT.

TheoRem 1. The expected reward of SM is at least a 0.316-approximation of the expected reward
of the optimal online algorithm.

In Section 2, we provide a more detailed explanation of the SM process and its relationship
with stable matching. Informally, if agents form preference lists over all other agents based on
probability of compatibility, then SM forms a stable matching with respect to these preferences.

Stable matching has a number of attractive properties. While the optimal centralized matching
OPT is NP-hard to compute, stable matching can be computed in polynomial time and reached
in a decentralized manner. Additionally, also in contrast with OPT, stable matching is incentive
compatible: it does not match agents against their will by forcing unmatched agents with high
compatibility to match with low-compatibility partners, or break up compatible matches in future
rounds. Stable matching is also attractive in settings such as kidney exchange or mentor matching
where time is valuable, as it does not sacrifice present potential matches for future payoffs.

Our analysis implies a better approximation factor for another previously-known matching al-
gorithm, known as GReedy-Commit[9]. Similar to SM, GReedy-Commit commits to known com-
patible pairs by matching them in all future rounds, but unlike SM, it selects a maximum weight
matching between the remaining agents to maximize the immediate expected reward. We can in-
terpret GReedy-Commit as an off-the-shelf centralized matching service that can be computed by
the platform in polynomial time if it knows the compatibility probabilities but does not want to
solve the optimal online repeated matching problem. We show that GReedy-Commit provides a
better constant-factor approximation to OPT.

TheoRem 2. The expected reward of GReedy-Commit is at least a 0.43-approximation of the ex-
pected reward of the optimal online algorithm.

Finally, we consider settings where agents have the capacity to be bilaterally matched with
multiple other agents, or grouped in teams. Many gig economy markets and matching settings are
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built on many-to-one bipartite markets, where agents on one side (e.g. workers) can be matched
to multiple agents on the other side of the bipartition (e.g. tasks). In this setting SM provides a
1/7-approximation to OPT. In the general matching problem where all agents can be matched to
multiple other agents, SM provides a 1/11-approximation to OPT, and in the teams problem where
we form teams of up to 𝑘 agents, SM provides a 1/2𝑘-approximation to OPT.

Together, our results contribute to the discussion of the benefits of investing in optimal central-
ized matching. We show if the platform allows myopic, self-interested agents to determine a de-
centralized matching, the outcome attains a constant factor of the expected reward of the optimal
online matching. If the platform offers a centralized matching service, in addition to determining
match probabilities it must also force agents into matches that are not incentive-compatible, and
may even need to solve an NP-hard problem.

1.1 Technical Ingredients

A key technical contribution of this paper is to compare the decentralized stable matching process
to the optimal online algorithm for centralized repeated matching. In the study of online Bayesian
optimization, an extremely common benchmark is the optimal offline algorithm, which knows at
the outset which edges are successful and unsuccessful. In our setting, optimal offline is not an
interesting benchmark, because for a certain family of inputs any online algorithm achieves an
arbitrarily poor approximation to the optimal offline algorithm (see Appendix A).

We compare the stable matching SM with the optimal online algorithm OPT by coupling edges
selected by OPT with those selected by SM. Since the two algorithms uncover different information
as they progress, care must be taken in the coupling process not to condition analysis of the reward
achieved by one algorithm on information that is acquired by the other.

Domination Lemma. A pivotal piece of our analysis is a Domination Lemma, which uses the
greedy structure of the stablematching to bound the reward generated by a subset of edges selected
by OPT by twice the reward generated by SM. The subset of edges is carefully chosen so that SM
approximately improves upon OPT, despite the fact that OPT is able to use information from prior
rounds in a more sophisticated manner. Specifically, note that SM greedily selects max-weight
edges between agents who have not yet been matched. Now fix a round 𝑡 , and consider the edges
selected by OPT in round 𝑡 that do not share an endpoint with successful edges previously selected
(i.e. selected in rounds 1, 2, . . . , 𝑡 − 1) by SM. Such edges can also be selected by SM in round 𝑡 , and
so the greediness of SM implies that the expected number of such edges that are successful is
bounded by the twice the expected number of successful edges newly selected by SM in round 𝑡 .
While the intuition behind the Domination Lemma is straightforward, care needs to be taken to
ensure that expectations are taken appropriately, since OPT and SM explore different parts of the
sample space and so their performance is conditional on different histories.

Charging Lemma. We bound the remaining edges using a Charging Lemma that charges edges
selected by OPT to adjacent edges selected by SM. For matching on general graphs, the bounds
provided by the Charging Lemma and a refined version of the Domination Lemma define a factor-
revealing LP that yields the 0.316-approximation. In the other settings, generalized versions of the
Charging Lemma and Domination Lemma show the constant-factor approximations.

Our analysis also provides some intuition for why stable matching, which utilizes a myopic, de-
centralized matching process in each round, and which limits its use of information by committing
to successful matches, is nonetheless able to achieve a constant-factor approximation to the opti-
mal online algorithm, which can select optimal matchings in each round, and can also adaptively
make use of information across rounds. In the uncapacitated matching setting, the Domination
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Lemma shows that in any given round, agents who have not previously been matched can match
themselves via stable matching at least half as well as OPT, and the Charging Lemma observes
that in any given round, agents who are matched in that round via stable matching are collec-
tively matched at least half as well compared to OPT. Therefore stable matching cannot do much
worse than OPT, even though it makes use of information in a much less sophisticated manner.

1.2 Relationship with Prior Work
There is a large body of work on centralized and decentralized matchings in online and two-sided
platforms. Most of this literature focuses on designing optimal information structures in central-
ized matchings, or optimal procedures for centralized matching by the platform. Our question
also motivates a variant of repeated stochastic matching that is related to existing literature on
the query-commit problem and stochastic matching with rewards. Interestingly, our analysis is suf-
ficiently general to also handle previously studied centralized algorithms in the query-commit
setting, and consequently we are able to provide improved bounds on prior algorithms.

Optimal matching in matching platforms. There is also a substantial literature on finding optimal
or near-optimal matching policies in two-sided platforms with long-lived agents, such as matching
in ridesharing [5, 6, 22, 23], volunteer platforms [33] and blood donation [35]. We focus on such
platforms where match compatibility is difficult to determine and can be learned exactly only
through matching. A well-known example of such a setting is kidney exchange, which has been
studied from a repeated matching perspective [3, 4] and a failure-aware perspective [11].

Online and StochasticMatching. Theonline bipartitematching problem introduced in [28], where
vertices on one side of a bipartite graph arrive online, is foundational to the literature on online
matching problems. Many variations have been studied, including the adwords problem [16, 37],
matching with stochastic rewards [18, 24, 36, 38] (where edge realizations are stochastic) and the
random-order and i.i.d. online matching problems [10, 12, 25, 27, 29, 30, 32, 34]. While almost all
of these papers provide competitive guarantees compared to the optimum offline algorithm, we
provide guarantees compared to the optimum online algorithm in a multi-round environment.

Query-Commit. Motivated in part by the application of kidney exchange, there is a large body
of literature studying a variant of stochastic matching known as the query-commit problem [1, 7,
9, 14, 17, 21, 40]. Here, edges have fixed realization probabilities and can be queried in sequence,
with the constraint that successful edges queried must be accepted, and accepted edges must form
a matching. The objective is to maximize the size of the resulting matching. [9] introduced this
setting and proved that the greedy algorithm (which simply queries feasible edges in decreasing
order of probability) is a 1/4-approximation to the optimal online algorithm even when vertices
have patience parameters, i.e. limits on how many incident edges can be queried. The authors ad-
ditionally showed that the optimal online algorithm is NP-hard to compute. [1] improved on this
result by showing that the greedy algorithm is in fact a 1/2-approximation (with patience parame-
ters), and [7] provided constant-factor approximations on weighted graphs through an LP-based
approach. Later work provided constant-factor approximations in query-commit settings for fea-
sibility constraints significantly generalizing the matching constraint (e.g., [19], [20], [2]).

A less common assumption in the query-commit literature is the ability to query a matching in
each round, instead of a single edge. [9] define this setting, propose the GReedy-Commit algorithm,
and prove that it achieves a 1/4-approximation to the optimal online algorithm which is forced to
commit. Their analysis can furthermore be extended to a capacitated matching setting, where in
each roundwe can select a matching that must respect integral capacity constraints on each vertex.
[7] also prove a 1/20-approximation in the weighted setting, where the constraint is that a matching
of size at most 𝐶 can be queried in each round (for any parameter 𝐶).

 
Technical Program Presentation ∙ EC '21, July 18–23, 2021, Budapest, Hungary

638



The main differences between this line of work and our contribution are two-fold. Most impor-
tantly, while GReedy-Commit operates globally in each round, the decentralized matching pro-
cess we analyze cannot replicate such a centralized greedy approach. Secondly, we compare to
algorithms that are not forced to commit to successful edges. (If OPT-Commit denotes the optimal
online algorithm that is forced to forever match any successful edges it finds, simple examples
show that OPT is a more powerful algorithm than OPT-Commit; see Appendix C .) Because we
compare to the optimal online algorithm that is not restricted to committing, our coupling argu-
ment is substantively different to, and more delicate than, the one in [9]. Despite this challenge,
our analysis of the decentralized setting still improves upon [9]; we show greedy achieves a 0.316-
approximation against a non-committing (more powerful) OPT, tightening the previous analysis
of a 1/4-approximation to committing OPT.
Learning by Matching. Prior work has also explored several models of learning in matching

settings. Many of these papers consider a multi-armed bandit setting where rewards are stochastic
and redrawn i.i.d. from an unknown distribution, with algorithms of an explore-exploit nature
[13, 26, 31]. Efficient algorithms that approximate the optimal online algorithm were also studied
by [41] in a stochastic setting with a price for querying each edge, relying on a Gittins Index
characterization for the optimal online algorithm [15, 42].

2 STABLE MATCHING IN GENERAL GRAPHS
We begin with a setting where each agent is matched with at most one other agent in each round.
This setting captures bipartite matching problems such as matching mentors and mentees, as well
as matching in general graphs such as matching peer mentors, roommates and kidney exchange.

There is a set𝑉 of vertices, representing agents. For every pair 𝑖, 𝑗 ∈ 𝑉 of agents with 𝑖 ≠ 𝑗 , there
is an edge between 𝑖 and 𝑗 with probability 𝑝 {𝑖, 𝑗 } independent from other edges, representing the
compatibility of the agents. The set of agents and probabilities are known at the outset. We will
find it useful to view the entire graph as being generated randomly from the outset: before the first
round nature samples the graph𝐺 (𝑉 , 𝐸) with probability

∏
𝑒∈𝐸 𝑝𝑒

∏
𝑒∉𝐸 (1−𝑝𝑒 ). The platform and

agents do not have direct access to𝐺 . Instead, in rounds 1 ≤ 𝑡 ≤ 𝑇 , they can determine a matching
𝑀𝑡 between the vertices in 𝑉 and observe whether the edges in 𝑀𝑡 are in 𝐸 or not.

Let𝑋𝑒 be the Bernoulli random variable indicating whether 𝑒 is in 𝐸; we say an edge is successful
if 𝑋𝑒 = 1. Each agent’s goal is to maximize the expected number of rounds in which they are
successfully matched. The platform’s reward in each round is equal to the number of successful
edges selected in that round. Given weights 𝜔1, . . . , 𝜔𝑇 , the platform’s goal is to maximize the
weighted sum

∑𝑇
𝑡=1𝜔𝑡

∑
𝑒∈𝑀𝑡

𝑋𝑒 of the rewards collected in all 𝑇 rounds. This can capture if the
platform’s goal is to maximize the size of the matching in the last round (𝜔𝑡 = 1𝑡=𝑇 ), maximize the
total number of successful matches in each round (𝜔𝑡 = 1 for all 𝑡 ), or weighted toward favoring
matches in earlier rounds (e.g. 𝜔𝑡 = 𝛿𝑡 for 𝛿 ∈ (0, 1)).

The (deterministic) optimal online algorithm for maximizing the total reward can be derived by
an exponential-size dynamic program [8]. However, exact optimization is NP-hard (as we discuss
later), and for large numbers of agents it is hence infeasible for a matching platform to compute
this algorithm. With this in mind, we focus on simple matching processes that are computable in
polynomial time, and give approximations to the optimal online algorithm.

We assume that each agent 𝑖 knows his or her compatibility probabilities 𝑝 {𝑖, 𝑗 } with every other
agent 𝑗 . This could be enabled, for example, by search functionality in the platform that allows
agents to view information about other agents. Fix a given round and an agent 𝑖 , and assume that
through prior matches agent 𝑖 now has updated their priors with other agents to {𝑝 {𝑖, 𝑗 }} (i.e., all
unsuccessful matches are updated to 0 and all successful matches are updated to 1). Agent 𝑖 wants
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to be matched as soon as possible, so in this round would like to match with the remaining agent
argmax𝑗≠𝑖𝑝 {𝑖, 𝑗 } who is most likely to be compatible with 𝑖 . Hence, agent 𝑖 can form a preference
list over all other agents in this round by sorting their current compatibility probabilities {𝑝 {𝑖, 𝑗 }}.

In the SM process, we assume that in each round agents choose a matching with no blocking pair
under these preferences (two agents who are not matched to each other but prefer each other to
their matched partners). We additionally assume that once a pair of agents is successfully matched
they will continue matching with each other in future rounds. It is straightforward to see that the
decentralized stable matching, where there are no blocking pairs, can be formalized as follows.

Stable Matching (SM)
Initialize the set of successful edges 𝐴← ∅. Let 𝑆 ← 𝑉 .
For rounds 1 ≤ 𝑡 ≤ 𝑇 :
• While there are agents in 𝑆 who are compatible with positive probability, find the

most compatible pair 𝑓 , match 𝑖 with 𝑗 , and remove 𝑖, 𝑗 from 𝑆 . Let𝑀𝑡 be thematching
determined once no agents in 𝑆 are compatible with positive probability.
• Output 𝑀𝑡 ∪𝐴 as the selected matching for round 𝑡 .
• If an edge 𝑒 in𝑀𝑡 is successful add it to 𝐴. Otherwise add both its endpoints back to
𝑆 and set 𝑝𝑒 ← 0.

In other words, the stable matching can be determined by greedily selecting pairs of agents
who are most likely to be compatible, matching them, and committing to matching them in future
rounds if their edge is successful. The stable matching is incentive-compatible within-rounds, in
the sense that if in round 𝑡 some agent 𝑖 prefers matching with another agent 𝑗 to their match in
𝑀𝑡 then 𝑗 is matched to a preferred agent. The stable matching is also incentive-compatible across-
rounds, in the sense that agents who are successfully matched in previous rounds prefer staying
matched to matching again, and agents always prefer to be matched as soon as possible.

For additional clarity, consider when all compatibility probabilities are distinct and strictly
smaller than 1. In this case, the stable matching in the first round is unique: the pair with the
highest compatibility match with each other (otherwise they would form a blocking pair), the pair
with the highest probability among the remaining agents match, and so on. No matter the realiza-
tions, in all rounds there is a unique stable matching based on the updated preferences.When some
edge probabilities are the same the stable matching may not be unique, but our analysis applies
no matter which stable matching is selected, as long as previously matched edges stay matched.

We compare the result of SM with a platform that optimizes its matching process centrally. One
downside to this approach is that determining this optimal online algorithm (OPT) is NP-hard.

PRoposition 1. Computing the optimal online algorithm is NP-hard.

This was originally proved by Chen et al. [9];1 for completeness we provide a full proof for our
setting in Appendix D. This hardness result motivates the analysis of matching algorithms which
can be computed efficiently. Our main result is the following.

TheoRem 1. The expected reward of stable matching is at least a 0.316-approximation of the ex-
pected reward of the optimal online algorithm.

The proof of Theorem 1 relies on coupling edges selected by OPT with those selected by SM.
A subset of these edges are bounded using a Domination Lemma, which uses the greediness of
1[9] state the hardness result for a slightly different setting, where the optimal online algorithm is forced to commit to
edges that are successful. Despite the fact that in our setting, OPT is not required to commit, the same proof holds.
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SM to bound the expected reward generated by a subset of edges selected by OPT by twice the
expected reward generated by SM.This coupling requires a delicate comparison of two algorithms
that may have, through different histories, discovered very different pieces of information about
the sample graph𝐺 . The remaining edges are bounded using a Charging Lemma that charges edges
selected by OPT to adjacent edges selected by SM. The bounds provided by the Charging Lemma
and the Domination Lemma define a factor-revealing LP that yields the 0.316-approximation. In
Section 2.4, we additionally show an upper bound of 0.5 + 𝜖 on the approximation ratio that SM
achieves to OPT.

2.1 Coupling Edges Selected by Stable Matching and OPT
The main technical innovation in our paper is to couple the edges selected by OPT with the edges
selected by SM in a way that admits a constant-factor bound in expectation for each round despite
the fact that SM and OPT learn different information in each round. To specify the subsets of edges
that are coupled in the Charging and Domination Lemmas, we introduce some additional notation.

Throughout the paper, for a random set 𝑆 we will write E[𝑆] as a shorthand for E[|𝑆 |]. We use
⊔ to denote a union of sets that are disjoint.

For all 𝑡 ∈ [𝑇 ], let 𝑆≤𝑡 denote the set of successful edges selected by SM in round 𝑡 .2 Also define
𝑆𝑡 to be the successful new edges that SM selects for the first time in round 𝑡 . We hence have

𝑆≤𝑡 = 𝑆1 ⊔ 𝑆2 ⊔ . . . ⊔ 𝑆𝑡 . (1)

Similarly, let 𝑂≤𝑡 denote the set of successful edges that OPT selects in round 𝑡 .
Fix 𝑡 . To bound the expected number of edges in 𝑂≤𝑡 , we will partition these edges based on

whether or not they can be added to 𝑆≤𝑡 . In particular, we write

𝑂≤𝑡 = Aug ⊔ Adj (2)

where Aug denotes all the edges in𝑂≤𝑡 that are vertex-disjoint from 𝑆≤𝑡 (and hence can augment
this matching), and Adj denotes the remaining edges that share an endpoint with some edge in
𝑆≤𝑡 .3 It will also be useful to categorize all edges in𝑂≤𝑡 according to the round in which OPT first
selected them; hence, we will write

Aug = Aug1 ⊔ Aug2 ⊔ . . . ⊔ Aug𝑡 , (3)

where Aug𝑗 denotes all edges in Aug that OPT first selected in round 𝑗 . Similarly, we break up

Adj = Adj1 ⊔ Adj2 ⊔ . . . ⊔ Adj𝑡 (4)

where Adj𝑗 is all edges in Adj that OPT first selected in round 𝑗 . Note that Aug and Adj and their
corresponding partitions are defined with respect to 𝑆≤𝑡 and𝑂≤𝑡 and therefore they all depend on
𝑡 . We have dropped the index 𝑡 from their notation to simplify the exposition.

In the rest of this section, we will use the Domination Lemma to couple edges in 𝑆𝑖 with edges
in Aug𝑖 , and the Charging Lemma to couple edges in 𝑆𝑡 with edges in Adj𝑡 . This coupling provides
bounds that define the factor-revealing LP.

2.2 The Domination Lemma
Our main technical lemma is the Domination Lemma, which makes use of the greediness of SM
to bound its approximation to OPT. In particular, recall that 𝑆≤𝑖−1 is the set of successful edges
selected by SM in round 𝑖 . Then in each round 𝑖 ≤ 𝑡 , SM selects edges to add on to 𝑆≤𝑖−1 greedily.
2Note 𝑆≤𝑡 is a random set that is a deterministic function of the sample graph𝐺 .
3As 𝑆≤𝑡 and 𝑂≤𝑡 are deterministic functions of the sample graph 𝐺 , Aug and Adj are hence also random sets entirely
determined by the sample graph.
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In this step, the Domination Lemma lower bounds its expected reward versus some of the edges
selected by OPT.

Lemma 1 (Domination Lemma). Fix a round 𝑡 and define Aug𝑖 for 1 ≤ 𝑖 ≤ 𝑡 as in Equations (2)
and (3). Then, for all 𝑖 ≤ 𝑡 , 2 · E[𝑆𝑖 ] ≥ E[Aug𝑖 ].

PRoof. The expectations in the lemma are over all sample graphs. In the proof, we require a
consideration of what each algorithm knows up to round 𝑖 , and through this split up the probability
space the expectations are being taken over. To do so, we define the notion of a history induced
on an algorithm, and analyze the expected size of 𝑆𝑖 and Aug𝑖 conditioned on these histories.

Fix some 𝑖 ≤ 𝑡 . For a sample graph 𝐺 and an algorithm A, we define 𝐻A (𝐺), the history that
𝐺 induces on A, as follows. The history 𝐻A (𝐺) consists of the set of matchings A selects in the
first 𝑖 − 1 rounds, along with the observed outcomes {𝑋𝑒 } of all the edges in these matchings,
conditioned on the sample graph being 𝐺 . We next partition the probability space over sample
graphs based on the distinct histories they induce on SM in the first 𝑖 − 1 rounds. In particular, for
any possible history ℎ, let Gℎ denote the set of all sample graphs𝐺 such that 𝐻 SM (𝐺) = ℎ. We use
E[𝑆𝑖 | Gℎ] as a shorthand for the expected size of 𝑆𝑖 , conditioned on the sample graph 𝐺 being in
Gℎ , and use P[Gℎ] for the probability that our sample graph𝐺 is an element of Gℎ . Note then that

E[𝑆𝑖 ] =
∑
ℎ

E[𝑆𝑖 | Gℎ] · P[Gℎ], and E[Aug𝑖 ] =
∑
ℎ

E[Aug𝑖 | Gℎ] · P[Gℎ],

where the sum is over all possible histories ℎ. It hence suffices to show that 2 · E[𝑆𝑖 | Gℎ] ≥
E[Aug𝑖 | Gℎ] for any history ℎ.

To do so, we analyze E[Aug𝑖 | Gℎ] by partitioning Gℎ based on the different histories these
sample graphs induce on OPT. Specifically, for a fixed history ℎ′, let Gℎ,ℎ′ denote all sample graphs
𝐺 such that 𝐻 SM (𝐺) = ℎ and 𝐻𝑂𝑃𝑇 (𝐺) = ℎ′. Note that E[Aug𝑖 | Gℎ] =

∑
ℎ′ E[Aug𝑖 | Gℎ,ℎ′] ·

P[Gℎ,ℎ′ |Gℎ], and therefore, to complete the proof of Lemma 1, it suffices to show that

2 · E[𝑆𝑖 | Gℎ] ≥ E[Aug𝑖 | Gℎ,ℎ′]
for any possible histories ℎ, ℎ′. The rest of the proof is devoted to this inequality.

Conditioned on our sample graph being in Gℎ,ℎ′ , let 𝑁 be the new edges selected by OPT in
round 𝑖 that can augment the matching 𝑆≤𝑖−1. As we mentioned earlier, we can assume that OPT
is deterministic. So 𝑁 is uniquely determined by ℎ and ℎ′. Also, by definition 𝑁 is disjoint from all
edges in ℎ′ and all successful edges in ℎ.

Let 𝑁0 ⊆ 𝑁 denote those edges in 𝑁 that belong to neither ℎ nor ℎ′. Because edges are indepen-
dent, for each edge 𝑒 outside history ℎ or ℎ′, the probability that a random sample graph in Gℎ,ℎ′
includes edge 𝑒 is exactly 𝑝𝑒 . Therefore, the expected number of edges in 𝑁 that are successful is
given by

∑
𝑒∈𝑁0

𝑝𝑒 as all edges in 𝑁 \ 𝑁0 are guaranteed to be unsuccessful.
Furthermore, observe that the set of edges in 𝑁0 can feasibly augment 𝑆≤𝑖−1 as every edge in

𝑁0 is vertex-disjoint from 𝑆≤𝑖−1, and the edges in 𝑁0 form a matching disjoint from ℎ. Note that
SM chooses edges greedily to augment 𝑆≤𝑖−1; as the greedy algorithm gives a 1/2-approximation
to maximum weight matching, we hence have

2 · E[𝑆𝑖 | Gℎ] ≥
∑
𝑒∈𝑁0

𝑝𝑒 .

Additionally, note that conditioned on our sample graph being in Gℎ,ℎ′ , Aug𝑖 is guaranteed to be a
subset of the successful edges in 𝑁0, as edges augmenting 𝑆≤𝑡 must also augment 𝑆≤𝑖−1. Therefore,∑

𝑒∈𝑁0

𝑝𝑒 ≥ E[Aug𝑖 | Gℎ,ℎ′] .
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We conclude
2 · E[𝑆𝑖 | Gℎ] ≥ E[Aug𝑖 | Gℎ,ℎ′]

as desired. □

To obtain a bound of 0.316 on the approximation factor achieved by SM we provide a refinement
of the Domination Lemma. To prove the Domination Lemma, roughlywe showed that for any fixed
round 𝑖 , if we look at the successful edges that OPT selects for the first time in round 𝑖 which can
augment 𝑆≤𝑖−1, the expected size of this set is no more than 2 · E[𝑆𝑖 ]. As Aug𝑖 fits this description,
this shows that E[Aug𝑖 ] ≤ 2 · E[𝑆𝑖 ]. However, this lemma is loose; Aug𝑖 does not necessarily
comprise all the edges that OPT selects for the first time in round 𝑖 which can augment 𝑆≤𝑖−1. In
particular, certain edges in Adj𝑖 might fit this description as well — they certainly cannot augment
𝑆≤𝑡 by definition, but for small values of 𝑖 many of them might be able to augment 𝑆≤𝑖−1.

To refine the Domination Lemma, we categorize the edges in Adj according to which of 𝑆1, 𝑆2,
. . ., 𝑆𝑡 they are incident to; this is motivated by the goal of finding some edges in Adj𝑖 that can
augment 𝑆𝑖 . In particular, we break up

Adj = Adj(𝑆1) ⊔ Adj(𝑆2) ⊔ . . . ⊔ Adj(𝑆𝑡 )
where Adj(𝑆 𝑗 ) denotes the subset of Adj consisting of edges incident with 𝑆 𝑗 but not 𝑆≤ 𝑗−1. This
is well-defined because the sets 𝑆1, 𝑆2, . . ., 𝑆𝑡 are disjoint and form a matching. Similarly, for any
fixed 𝑗 we break up

Adj(𝑆 𝑗 ) = Adj1 (𝑆 𝑗 ) ⊔ Adj2 (𝑆 𝑗 ) ⊔ . . . ⊔ Adj𝑡 (𝑆 𝑗 )
where Adj𝑖 (𝑆 𝑗 ) is all edges in Adj(𝑆 𝑗 ) that OPT first selected in round 𝑖 .

The informal statement of the refined Domination Lemma is that if we fix a round 𝑖 , and look at
all edges that OPT first discovered in round 𝑖 that can be added to 𝑆≤ 𝑗−1, the expected size of this
set is at most twice the expected size of 𝑆 𝑗 . Our notation above lets us write this formally.

Lemma 2 (Refined Domination Lemma). Fix a round 𝑡 . We have for all 𝑖, 𝑗 ≤ 𝑡 that

E[Aug𝑖 ] + E[Adj𝑖 (𝑆 𝑗 )] + E[Adj𝑖 (𝑆 𝑗+1)] + . . . + E[Adj𝑖 (𝑆𝑡 )] ≤ 2 · E[𝑆 𝑗 ] .

The proof of the Refined Domination Lemma only requires small changes from the proof of the
Domination Lemma, and can be found in Appendix E.1.

2.3 Proof of Theorem 1
We next state and prove the Charging Lemma, related to the fact that two maximal matchings in
a graph always have sizes within a factor of 2.

Lemma 3 (ChaRging Lemma). Fix a round 𝑡 . For all 𝑗 ≤ 𝑡 ,
𝑡∑
𝑖=1

E[Adj𝑖 (𝑆 𝑗 )] ≤ 2 · E[𝑆 𝑗 ] .

PRoof. Fix a sample graph. Consider any edge 𝑒 ∈ ∪𝑖Adj𝑖 (𝑆 𝑗 ). By definition, it is incident to at
least one edge in 𝑆 𝑗 ; charge 𝑒 to one of the edges in 𝑆 𝑗 it is incident to. Note that because∪𝑖Adj𝑖 (𝑆 𝑗 )
forms a matching, every edge in 𝑆 𝑗 is charged at most twice. Hence the result holds sample graph
by sample graph, as well as in expectation over all sample graphs. □

The task remaining is to use the structure we have found to give an upper bound on E[𝑂≤𝑡 ]E[𝑆≤𝑡 ] ;
we do so via a factor-revealing linear program, with constraints corresponding to the Refined
Domination Lemma and the Charging Lemma.
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Factor-revealing LP (Primal)

max
𝑡∑
𝑖=1

𝑋𝑖 +
𝑡∑
𝑖=1

𝑡∑
𝑗=1

𝑋𝑖, 𝑗

such that 𝑋𝑖 +
𝑡∑

𝑞=𝑗

𝑋𝑖,𝑞 ≤ 2𝑌𝑗 for all 1 ≤ 𝑖, 𝑗 ≤ 𝑡 (1)

𝑡∑
𝑖=1

𝑋𝑖, 𝑗 ≤ 2𝑌𝑗 for all 1 ≤ 𝑗 ≤ 𝑡 (2)

𝑡∑
𝑗=1

𝑌𝑗 ≤ 1 (3)

𝑌𝑗 ≥ 0, 𝑋𝑖 ≥ 0, 𝑋𝑖, 𝑗 ≥ 0 for all 1 ≤ 𝑖, 𝑗 ≤ 𝑡 (4)

In this linear program, the variables {𝑋𝑖 }1≤𝑖≤𝑡 correspond to {E[Aug𝑖 ]}, the variables {𝑋𝑖, 𝑗 }1≤𝑖, 𝑗≤𝑡
correspond to {E[Adj𝑖 (𝑆 𝑗 )]}, and the variables {𝑌𝑗 }1≤ 𝑗≤𝑡 correspond to {E[𝑆 𝑗 ]}, and the bounds
from the lemmas are encoded as constraints.

Given any instance of our matching problem, we can construct a feasible solution for this LP by
setting:

𝑋𝑖 =
E[Aug𝑖 ]
E[𝑆≤𝑡 ]

, 𝑋𝑖, 𝑗 =
E[Adj𝑖 (𝑆 𝑗 )]
E[𝑆≤𝑡 ]

, 𝑌𝑗 =
E[𝑆 𝑗 ]
E[𝑆≤𝑡 ]

.

Indeed, note that when we set the variables in this way, (1) directly states the Refined Domination
Lemma, and (2) directly states the Charging Lemma. Also, because

∑
𝑗 |𝑆 𝑗 | = |𝑆≤𝑡 | we have that (3)

holds. For the suggested feasible solution, we can note that the objective simplifies to:
𝑡∑
𝑖=1

𝑋𝑖 +
𝑡∑
𝑖=1

𝑇∑
𝑗=1

𝑋𝑖, 𝑗 =

∑
𝑖 E[Aug𝑖 ] +

∑
𝑖, 𝑗 E[Adj𝑖 (𝑆 𝑗 )]

E[𝑆≤𝑡 ]
=
E[𝑂≤𝑡 ]
E[𝑆≤𝑡 ]

Hence, the maximum objective obtained by our LP gives a lower bound on the worst-case compet-
itive ratio that SM achieves against OPT.

To give a bound on the maximum value obtained by this LP, we take the dual, noting that by
weak duality it suffices to analyze the value obtained by a specific feasible solution. The dual of
our LP is given below.

Factor-revealing LP (Dual)
min 𝑢

such that
𝑗∑

𝑞=1

𝐹𝑖,𝑞 + 𝑐 𝑗 ≥ 1 for all 1 ≤ 𝑖, 𝑗 ≤ 𝑡 (1)

𝑡∑
𝑖=1

2𝐹𝑖, 𝑗 + 2𝑐 𝑗 ≤ 𝑢 for all 1 ≤ 𝑗 ≤ 𝑡 (2)

𝑡∑
𝑗=1

𝐹𝑖, 𝑗 ≥ 1 for all 1 ≤ 𝑖 ≤ 𝑡 (3)

𝑢 ≥ 0, 𝑐 𝑗 ≥ 0, 𝐹𝑖, 𝑗 ≥ 0 for all 1 ≤ 𝑖, 𝑗 ≤ 𝑡 (4)
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Consider a feasible solution for the dual LP given by 𝐹𝑖, 𝑗 = 1
1+𝑡 (𝑒−1) ·

( 𝑡
𝑡−1

) 𝑗−1 for 1 ≤ 𝑖, 𝑗 ≤ 𝑡 ,
𝑐 𝑗 = 1 − 𝑡 𝑗−(𝑡−1) 𝑗

𝑡 (𝑡−1) 𝑗−1𝑒−(𝑡−1) 𝑗 for 1 ≤ 𝑗 ≤ 𝑡 and 𝑢 = max𝑗 ∈[𝑡 ]
{∑

𝑖 2𝐹𝑖, 𝑗 + 2𝑐 𝑗
}
= 2 + 2(𝑡−1)𝑡

𝑡𝑡−(𝑡−1)𝑡 .
4 The

objective value 𝑢 = 𝑢 (𝑡) is increasing in 𝑡 and

lim
𝑡→∞

𝑢 (𝑡) = 2 + 2
e − 1 .

Hence by weak duality, the objective value of our primal is at most 2 + 2
𝑒−1 . It follows that the

expected reward of SM in round 𝑡 is at least a
(
2 + 2

𝑒−1
)−1 ≥ 0.316 fraction of the expected reward

of OPT in round 𝑡 . This completes the proof of Theorem 1.

2.4 Discussion: How much better can a matching platform do?
So far, we have shown that a decentralized stable matching process achieves at least a 0.316 pro-
portion of the reward of the optimal matching service. In this section, we provide some additional
discussion on what else is achievable by the platform.

First, suppose the platform could invest in an off-the-shelf matching process. In particular, we
consider theGReedy-Commit algorithm thatwas previously proposed by [9].TheGReedy-Commit
algorithm proceeds by proposing in the first round a matching of vertices in𝑉 that maximizes the
sum of edge probabilities, and in subsequent rounds committing to keeping all successful edges
from the previous rounds, and augmenting them with a matching that maximizes the sum of edge
probabilities in the remaining graph. We describe GReedy-Commit formally in Appendix B.

Note that GReedy-Commit is computable in polynomial-time, and is incentive-compatible across
rounds but not within rounds. Hence GReedy-Commit can be thought of as amatching service that
hides information and myopically dictates a maximum matching in each round, but cannot incen-
tivize matched agents to be rematched in future rounds.

Chen et al. showed that GReedy-Commit gives a 0.25-approximation to OPT.5 As an extension
to our other results in this section, we show that our techniques improve on the analysis of Chen
et al. In particular, we show the following result.

TheoRem 2. The expected reward of GReedy-Commit is at least a 0.43-approximation to OPT.

The proof proceeds very similarly to the proof of the approximation factor for SM. The Charg-
ing Lemma continues to hold, and a stronger version of the Refined Domination Lemma holds,
improved by a factor of 2. These constraints yield a different factor-revealing LP which we use to
prove the claimed 0.43 factor. Details can be found in Appendix E.2.

Another natural question is what upper bound we can give on how well SM and GReedy-
Commit can perform compared to the optimum online algorithm. Although computing OPT is
NP-hard, perhaps one of them could be very close to optimal, in the sense of guaranteeing a (1−𝜀)-
approximation to OPT for some small 𝜀? We show this is not the case; in particular, we show that
both SM and OPT provide at best a 1/2-approximation to the optimal online algorithm.

Lemma 4. The expected reward of SM and GReedy-Commit are at most a 1/2-approximation to OPT.

4This is the optimal Dual solution. Note that if we change our objective, we might be able to get better approximation
factors; e.g. if we change the objective to be the cumulative reward, which sums the successful selected edges over every
round instead of finding a round-by-round approximation guarantee, wewill be able to achieve a 2.96-approximation factor.
5[9] provide a proof for a slightly different result which works to prove Lemma 4; see footnote 1.
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PRoof. Consider the bipartite graph 𝐺𝑛,𝜖 with bipartition (𝑈 = (𝑢1, . . . , 𝑢𝑛),𝑉 = (𝑣1, . . . , 𝑣𝑛))
edges 𝐸 = {𝑢1𝑣𝑖 }∪{𝑢𝑖𝑣1}, the edge𝑢1𝑣1 has probability 1 of being successful, and every other edge
has probability 0.5 − 𝜖 . We illustrate the graph in Figure ⁇ in the appendix.

Suppose there are 𝑇 = 𝑛2 rounds. SM matches 𝑢1 to 𝑣1 in the first round. Since the edge is
successful, 𝑢1 will be matched to 𝑣1 in every subsequent round. Hence SM obtains a reward of 𝑛2.

We now define a different algorithm that selects the matching (𝑢1𝑣𝑖+1) ∪ (𝑢𝑖+1𝑣1) in round 𝑖 ,
for 1 ≤ 𝑖 ≤ 𝑛 − 1. With probability 1 − 𝑜 (1), both edges are successful in at least one of these
rounds. In this case the algorithm can select this matching from round 𝑛 to round 𝑇 , obtaining
payoff 2𝑛2 (1 − 𝑜 (1)) in these rounds. In expectation, the reward of the above algorithm is at least
(1− 𝑜 (1)) · 2𝑛2 (1− 𝑜 (1)) = 2𝑛2 (1− 𝑜 (1)) . As SM only obtains a reward of 𝑛2, taking 𝑛 sufficiently
large proves the claim.

The same example proves that GReedy-Commit is at most a (1/2+𝜖)-approximation to OPT. □

Finally, one might wonder how much of this gap between stable matching or GReedy-Commit
and OPT is due to the fact that both algorithms commit to previously matched successful pairs,
while OPT does not. Consider the optimal online algorithm that is restricted to committing to
successfully matched pairs (OPT-Commit). OPT-Commit can be thought of as the optimal matching
service that improves on GReedy-Commit by dictating amatching in each round in an optimal non-
myopic manner, but again cannot incentivize matched agents to be rematched in future rounds.
We note that the expected reward achieved by OPT-Commit is not always the same as OPT (see
Appendix C ), so committing causes some loss of reward.

Furthermore, we show that OPT-Commit achieves at least a 0.5-approximation to OPT. Since
SM and GReedy-Commit achieve at best a 0.5-approximation to OPT, if they do not achieve this
then part of the loss is due to the fact that both SM and GReedy-Commit are myopic and do not
account for the effect of current queries on possible matchings in future rounds, rather than the
fact that both commit to previously matched successful pairs.

PRoposition 2. The expected reward of OPT-commit is at least a 1/2-approximation to OPT.

The proof of Proposition 2 relies on constructing an algorithm that commits to successfully
matched pairs, and that is a 1/2-approximation to OPT. The algorithm (which we denote by A)
proceeds as follows: in round 𝑖 ,A selects all the successful edges it has found so far, as well as the
edges that OPT selects in round 𝑖 which can augment this matching. We show that in every round
the expected size of the matching found by A is at least a 1/2-approximation to the expected size
of the matching selected by OPT. We provide a complete proof of Proposition 2 in Appendix C.

In sum, we have considered a number of different matching algorithms. SM is decentralized,
while the rest are centralized matching platforms that determine and prescribe either a myopic
maximum matching (GReedy-Commit) or a non-myopic optimal matching (OPT-Commit, OPT).
All of the centralizedmatching platformsmust hide some amount of information from participants,
as the prescribed matchings in each round are not necessarily stable and hence not within-round
incentive-compatible. In the case of OPT the matching proposed by the platform in addition is not
across-round compatible, as it needs to coerce successfully matched agents to return and be re-
matched in future rounds. Both types of incentive constraints are not without loss, and in addition
in order to implement either OPT-Commit and OPT the platform must solve an NP-hard prob-
lem. Nonetheless all of these platform designs attain an expected reward within a constant-factor
approximation of OPT.
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3 CAPACITATED MATCHING
In this section, we consider the difference between stable matching and optimal online matching
in more general settings, such as where all agents can be in bilateral matches with multiple of any
of the other agents, or agents can be grouped in teams. For example, styling and clothing rental
companies may have limited inventory of different items to send to customers, and students may
be able to take on multiple projects, or may be grouped into project teams.

Formally, we have a general graph 𝐺 (𝑉 , 𝐸) where vertices have capacities {𝐶 (𝑣)}𝑣∈𝑉 given by
arbitrary positive integers. In each of𝑇 rounds, we can select a capacitated matching among these
agents, i.e. some 𝐸 ′ ⊆ 𝐸 such that each 𝑣 has at most 𝐶 (𝑣) edges in 𝐸 ′ incident to it. As in the
previous section, each agent’s 𝑣 ’s goal is to maximize the expected number of successful matches
they participate in over all rounds, and the platform’s goal is to maximize the weighted sum of the
rewards collected in all 𝑇 rounds.

How canwe define an appropriate decentralized outcome in this general setting? Suppose agents
can observe their compatibility 𝑝 {𝑖, 𝑗 } with every other agent. A similar argument to the previous
section shows that each agent 𝑖 maximizes their individual expected number of successful matches
by matching in each round with the 𝐶 (𝑣) agents who are most likely to be compatible with 𝑖 (in-
cluding agents to whom 𝑖 has been successfully matched in the past). Hence, in the decentralized
matching, there again will be no blocking pair of two agents who are not matched to each other
but both prefer the other to at least one of their matched partners. Moreover, once a pair of agents
is successfully matched they will continue matching with each other in future rounds. This deter-
mines a decentralized capacitated stable matching process, which we will again denote by SM.

In this general setting, we show that SM gives a constant-factor approximation to OPT.

TheoRem 4. In the setting where agents have arbitrary capacities, the expected reward achieved
by the SM algorithm is at least a 1/11 fraction of the expected reward of the optimal online algorithm.

Moreover, in many practical matching settings (e.g. gig economy applications, mentorship)
matches occur between two sides of a market, and agents on one side of the market (e.g. jobs,
mentees) only have capacity 1. In this setting, we can make use of the structure of the underlying
graph to refine our approximation factor.

TheoRem 5. In themany-to-one setting, the expected reward obtained by SM is at least a 1/7 fraction
of the expected reward of the optimal online algorithm.

Next we consider a setting where for some set of agents 𝑉 , each subset 𝑆 ⊆ 𝑉 of size at most 𝑘
has an associated probability 𝑝𝑆 of being “compatible” as a team. Generalizing the previous setting,
in each of𝑇 rounds, the agents are partitioned into teams so that each agent is in at most one team.
We can equivalently think of the problem as constructing round-by-round matchings in a random
hypergraph. We use modifications of the Domination and Charging Lemmas to show that the
decentralized greedy formation of teams of constant size provides a constant-factor approximation
to the optimal online algorithm. Formally, we show the following result, and provide a full proof
in Appendix E.5.

TheoRem 6. In a hypergraph where all hyperedges have cardinality at most 𝑘 , the expected reward
obtained by SM is at least 1/2𝑘 of the expected reward of OPT.

3.1 What changes with capacities?
We first provide some intuition for what differentiates the capacitated setting from the setting in
Section 2, where agents can only be matched with one other agent every round. This intuition will
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motivate the new proof techniques used in the capacitated setting, and also highlight the nuances
in the decomposition used to prove Theorem 1.

The difficulty in extending the techniques in Section 2 lies in the definition of what it means to
be an augmenting edge, which in turn determines the decomposition of the edges OPT selects into
Aug and Adj. A crucial property underlying the proof of the domination lemma is that in the non-
capacitated setting, whether a matching 𝑁 augments another matching 𝑁 ′ can be determined by
checking whether each 𝑒 ∈ 𝑁 augments 𝑁 ′.6 Specifically, if each 𝑒 ∈ 𝑁 individually can augment
𝑁 ′, and the edges in 𝑁 ′ form a matching, then all edges in 𝑁 ′ can jointly augment 𝑁 . For natural
definitions of augmentation in the capacitated setting (e.g.𝑁 augments𝑁 ′ if𝑁⊔𝑁 ′ is a capacitated
matching), a statement of this sort is no longer true.

Hence, it is natural that in the capacitated case we might give a definition of Aug𝑖 constructed
by jointly considering a group of edges in Aug𝑖 that can augment 𝑆≤𝑖−1, instead of considering
whether edges in Aug𝑖 could augment 𝑆≤𝑖−1 individually. In particular, we might define Aug𝑖 to
be a maximum subset of edges in 𝑂𝑖 which can augment 𝑆≤𝑖−1, and hope that we could claim
E[Aug𝑖 ] ≤ 𝐶 ·E[𝑆≤𝑖−1] for some constant𝐶 . This natural approach unfortunately fails; the reason
is that Aug𝑖 can only be formed using information that SM did not have available at the start of
round 𝑖 .7

Given that these natural generalizations to the augmentation approach fail, we instead decom-
pose successful edges OPT selects based on a notion of occupancy for each agent. We say that a
node is heavily occupied if at least half their capacity is taken up by edges in 𝑆≤𝑡 . We decompose
𝑂≤𝑡 , the successful edges that OPT selects in round 𝑡 , into edges that are in 𝑆≤𝑡 , edges that are not
in 𝑆≤𝑡 but have at least one of their endpoints heavily occupied by 𝑆≤𝑡 , and the remaining edges.
Formally, we write

𝑂≤𝑡 = (𝑂≤𝑡 ∩ 𝑆≤𝑡 ) ⊔ Occ ⊔ Rem
where Occ denotes all edges in 𝑂≤𝑡 \ 𝑆≤𝑡 with an endpoint that is filled to at least half-capacity
from edges in 𝑆≤𝑡 , and Rem denotes the remaining edges in 𝑂≤𝑡 \ (𝑆≤𝑡 ⊔ Occ).

Later in Subsection 3.3, we show a tighter analysis of this same decomposition technique for
bipartite many-to-one matchings results in a better approximation factor. In both Sections 3.2
and 3.3, we use a generalized version of the Charging Lemma to bound edges in Occ incident with
nodes that are heavily occupied, and a generalized version of the Domination Lemma to bound
edges in Rem incident only with nodes that are not heavily occupied.

3.2 A 1/11-approximation for Capacitated Matchings on General Graphs
In this section, we prove Theorem 4, and show that SM achieves at least a 1/11 fraction of the
expected reward of OPT in the general capacitated setting.

Recall that 𝐴≤𝑡 and 𝑂≤𝑡 denote the successful edges selected by SM and OPT, respectively, in
round 𝑡 . The proof of Theorem 4 will follow from proving for all 𝑡 ∈ [𝑇 ]

E[𝑂≤𝑡 ] ≤ 11 · E[𝑆≤𝑡 ] . (5)

Recall that we decomposed 𝑂≤𝑡 = (𝑂≤𝑡 ∩ 𝑆≤𝑡 ) ⊔ Occ ⊔ Rem. This decomposition immediately
lets us write a generalized Charging Lemma.

Lemma 5 (GeneRalized ChaRging Lemma). We have E[Occ] ≤ 4 · E[𝑆≤𝑡 ].
6An edge 𝑒 augments 𝑁 ′ if and only if it doesn’t share any endpoints with edges in 𝑁 ′, a matching 𝑁 augments 𝑁 ′ if and
only if it doesn’t share any endpoints with edges in 𝑁 ′.
7In the previous domination lemma, the fact that we could augment edge-by-edge let us argue that Aug𝑖 could actually
be bounded only using information that SM had available at round 𝑖 . This subtlety reinforces the need for the careful
conditioning in the previous proof.
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PRoof. Fix any sample graph 𝐺 . For each edge 𝑒 ∈ Occ, charge it to an endpoint of 𝑒 with at
least half of its capacity occupied by edges in 𝑆≤𝑡 . As Occ forms a valid capacitated matching, the
charge placed on each vertex is at most its capacity. Additionally, note that we can cover each of
these charges by having every edge in 𝑆≤𝑡 pay two charges to each of its endpoints. The result
follows by averaging over all sample graphs. □

The main claim for which we require different ideas is a generalized Domination Lemma. Recall
that 𝑆𝑡 and 𝑂𝑡 denote the new successful edges selected in round 𝑡 by SM and OPT, respectively.
As before, we need to analyze the successful edges selected by OPT based on the round they were
discovered; with this in mind we write

Rem = Rem1 ⊔ Rem2 ⊔ . . . ⊔ Rem𝑡

where Rem𝑖 denotes those edges in Rem which OPT selected for the first time in round 𝑖 . The
Generalized Domination Lemma bounds Rem𝑖 against 𝑆𝑖 .

Lemma 6 (GeneRalized Domination Lemma). For all 𝑖 ≤ 𝑡 we have E[Rem𝑖 ] ≤ 6 · E[𝑆𝑖 ].

PRoof. Using the same notation in the previous proof of the Domination Lemma, for fixed
histories ℎ, ℎ′ it suffices to show that

E[Rem𝑖 | Gℎ,ℎ′] ≤ 6 · E[𝑆𝑖 | Gℎ] .
Conditioned on our sample graph being in Gℎ,ℎ′ , there is a fixed set 𝑁 of edges that OPT selects

in round 𝑖 which are not in 𝑆≤𝑖−1, and furthermore have neither endpoint filled to half-capacity by
edges in 𝑆≤𝑖−1. Using the same logic as before, we have that if 𝑁0 ⊆ 𝑁 denotes those edges in 𝑁
disjoint from ℎ and ℎ′, then

E[Rem𝑖 | Gℎ,ℎ′] ≤
∑
𝑒∈𝑁0

𝑝𝑒

as Rem𝑖 is some (random) subset of 𝑁0. In contrast to previous settings, it is not the case that the
set of edges in 𝑁0 can feasibly augment 𝑆≤𝑖−1. However, we show there exists a subset of edges
from 𝑁0 with at least one-third of the total weight which can feasibly augment 𝑆≤𝑖−1. To prove
this, we need the following graph theoretic claim.

Claim 1. In any weighted graph 𝐺 = (𝑉 , 𝐸) where each vertex 𝑣 has degree 𝑑𝑣 , there exists a
subgraph 𝑆 whose edges contain at least 1/3 of the total weight of all edges in𝐺 , such that each vertex
𝑣 has degree at most ⌈𝑑𝑣2 ⌉ in 𝑆 .

PRoof. Consider the following algorithm for constructing 𝑆 . Of all remaining edges in 𝐸, add
the one of maximum weight to 𝑆 . Call this edge 𝑒 = (𝑢, 𝑣); remove 𝑒 from𝐺 . Furthermore, if 𝑢 has
remaining incident edges in𝐺 , remove one (chosen arbitrarily). If 𝑣 has remaining incident edges
in 𝐺 , remove one (chosen arbitrarily). Continue until 𝐺 has no edges remaining.

Note that for any vertex 𝑣 , there are at most ⌈𝑑𝑣2 ⌉ edges of 𝑆 incident to 𝑣 . Indeed, after adding
any edge to 𝑆 that is incident to 𝑣 , we delete an edge in𝐺 incident to 𝑣 if possible. Note also that in
each step, the weight of the edge we add to 𝑆 is at least the weight of each edge we delete. Hence
in each step, we add to 𝑆 at least a 1/3 fraction of the weight of the edge we added and the edges
we deleted. This holds in aggregate over all rounds. □

To finish the proof of the lemma, we use this claim to find a subgraph 𝑆 of (𝑉 , 𝑁0) with at least
1/3 of the weight; we claim this subgraph is feasible to augment 𝑆≤𝑖−1 (and can be selected by SM
in round 𝑖). Indeed, note it is disjoint from ℎ, and each vertex 𝑣 is filled to at most ⌈𝐶 (𝑣)2 ⌉ capacity
in 𝑆 (because 𝑁0 is a valid capacitated matching). Furthermore, every endpoint 𝑣 of an edge in 𝑆

is filled to at most ⌊𝐶 (𝑣)2 ⌋ capacity by edges in 𝑆≤𝑖−1. Thus, 𝑆 is a feasible set of edges to augment
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𝑆≤𝑖−1 in round 𝑖 . Well-known results also imply that in a fixed round, the SM algorithm gives a
1/2-approximation to maximum weight augmenting edges (see, e.g., [39]). Hence,

E[𝑆𝑖 | Gℎ] ≥
∑
𝑒∈𝑆

𝑝𝑒 ≥
1
6
·
∑
𝑒∈𝑁0

𝑝𝑒 .

This demonstrates the result. □

From Lemma 6 we can see

E[Rem] =
𝑡∑
𝑖=1

E[Rem𝑖 ] ≤ 6
𝑡∑
𝑖=1

E[𝑆𝑖 ] ≤ 6 · E[𝑆≤𝑡 ] .

Hence, using both Lemmas 5 and Lemma 6 we have
E[𝑂≤𝑡 ] = E[𝑂≤𝑡 ∩ 𝑆≤𝑡 ] + E[Occ] + E[Rem] ≤ 11 · E[𝑆≤𝑡 ]

which completes the proof of Theorem 4.

3.3 A 1/7-approximation for Many-to-One Matchings
In many practical matching applications, matches occur between two sides of a market, where
agents on one side can accept multiple matches while agents on the other side can be matched at
most once. For example, workers may take on multiple jobs which each only need one worker, and
mentors are frequently matched with multiple mentees who each only have one mentor. In this
section, we consider the performance of SM in this more restricted setting ofmany-to-one bipartite
matchings. In particular, we show our previous decomposition achieves a better approximation
factor.

Formally, we assume our agents are broken into two disjoint sets 𝑆 ⊔𝑀 (think “students” and
“mentors”); for each pair (𝑠,𝑚) where 𝑠 ∈ 𝑆 and𝑚 ∈ 𝑀 we are given a “success probability” 𝑝𝑠,𝑚
representing the chance that an edge between 𝑠 and𝑚 is realized when nature samples a random
graph. Vertices in 𝑆 are on the left and vertices in 𝑀 are on the right. Each agent 𝑚 ∈ 𝑀 has
capacity 𝐶 (𝑚) ∈ Z>0, and each agent 𝑠 ∈ 𝑆 has capacity 𝐶 (𝑠) = 1. We show Theorem 5, which we
restate here.

TheoRem 5. In themany-to-one setting, the expected reward obtained by SM is at least a 1/7 fraction
of the expected reward of the optimal online algorithm.

PRoof. The proof will proceed by showing E[𝑂≤𝑡 ] ≤ 7 · E[𝑆≤𝑡 ] for all 𝑡 ∈ [𝑇 ]. Partition the
edges of 𝑂≤𝑡 as

𝑂≤𝑡 = Occ ⊔ Rem
where Occ denotes edges in 𝑂≤𝑡 whose left endpoint is incident to some edge in 𝑆≤𝑡 , or whose
right endpoint is occupied to at least half capacity by edges in 𝑆≤𝑡 , and Rem denotes the remaining
edges in 𝑂≤𝑡 .8

Lemma 7 (Many-to-one ChaRging Lemma). We have E[Occ] ≤ 3 · E[𝑆≤𝑡 ] .
PRoof. Fix any sample graph. For each edge in Occ, if it is adjacent to an edge in 𝑆≤𝑡 along its

left endpoint, charge it to the unique edge in 𝑆≤𝑡 it is adjacent to. Otherwise, place a charge on its
right endpoint. Each right vertex 𝑣 that is charged by this process is charged at most 𝐶 (𝑣) times
by this process, and has at least𝐶 (𝑣)/2 edges in 𝑆≤𝑡 incident to it. So the charges on right vertices
can be covered by charging each edge in 𝑆≤𝑡 at most twice. In all, we have charged each edge in
𝑆≤𝑡 at most three times; the result follows by averaging over all sample graphs. □
8Note this is an extremely similar decomposition to that in the previous section. We do not have a separate category for
edges in𝑂≤𝑡 that are also in 𝑆≤𝑡 , as every 𝑒 ∈ 𝑂≤𝑡 ∩ 𝑆≤𝑡 is automatically in Occ.
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Lemma 8 (Many-to-one Domination Lemma). For all 𝑖 ≤ 𝑡 we have E[Rem𝑖 ] ≤ 4 · E[𝑆𝑖 ] .

PRoof. The intuition behind this lemma is that at round 𝑖 , there exists a feasible subset of the
edges in Rem𝑖 that augments 𝑆≤𝑖−1, with at least half the total weight. As before, the greedy prop-
erty of SM algorithm gives a 1/2-approximation to maximum weight matching on a round-by-
round basis. The rigorous proof follows the structure of previous domination lemmas very closely;
details are available in Appendix E.5. □

Combining Lemma 7 and Lemma 8 gives

E[𝑂≤𝑡 ] = E[Occ] +
𝑡∑
𝑖=1

E[Rem𝑖 ] ≤ 3 · E[𝑆≤𝑡 ] +
𝑡∑
𝑖=1

4 · E[𝑆𝑖 ] = 7 · E[𝑆≤𝑡 ],

which completes the proof. □

4 CONCLUSION AND FUTURE DIRECTIONS
This paper contributes to the literature on centralized and decentralized matching in platforms by
providing an additional justification for focusing on decentralized algorithms. In particular, we
consider matching platforms with repeated interactions between long-lived agents who have un-
known but persistent preferences, such as gig economy applications, mentorship matching, kidney
exchange, and team formation. We show that letting demand and supply myopically reach a sta-
ble matching in a decentralized manner approximates the outcome of computing and imposing a
centralized matching. This is despite the fact that the centralized matching processes we consider
are not incentive-compatible, and may even be NP-hard to compute.

We focused on a setting for matching with stochastic rewards and learning dynamics. While
this setting has been studied in the query-commit literature, the primary motivation in that litera-
ture was failure-aware kidney exchange, and the primary focus of that literature was on querying
individual edges in sequence to optimize some last-round objective. Beyond kidney exchange, this
setting reflects natural learning dynamics that are present in a wide variety of markets that re-
peatedly match the same agents and provide persistent rewards, such as gig economy job markets,
mentorship programs and team formation, and our focus on querying matchings and maximizing
rewards received in all rounds is motivated by these settings. Further work can be done to identify
when techniques from one approach can be transferred to the other.

Another difference from the query-commit literature is that we ask how a decentralized greedy
algorithm compares to an optimal online algorithm that is not restricted to commit to past suc-
cesses. While we show that OPT-Commit is a 2-approximation to OPT, further characterization
of the relationship between OPTand OPT-Commit remains open. In addition, our results hold for
any objective that takes a weighted sum of rewards across rounds. This is because the analysis
throughout the paper was performed on a round-by-round basis. Objectives of potential interest
included the sum of rewards across different rounds, expected discounted rewards, as well as the
size of maximum successful matching that can be identified at the end of𝑇 rounds, and we believe
our analysis can be tightened for these specific objectives to produce sharper bounds. We also
believe that there are sharper bounds for the capacitated settings. We leave the study of tighter
approximation guarantees to future work.

More broadly, our findings raise a number of follow-up questions. Can platforms be designed
in a way to nudge agents towards a decentralized outcome that approximates the optimal cen-
tralized matching achievable by the platform? What is the approximation gap between incentive-
compatible matching platforms and what is achievable by a centralized authority? This paper also
explores the problem of learning through prior assignments, a natural direction that is relatively
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less studied in the literature. Variations on this thememerit future exploration; for example, match-
ing programs in highly relational and idiosyncratic settings like mentorship matching frequently
face a cold start problem, where the program designer has some prior over which features best
predict a successful match, and can refine this prior by observing the outcomes of prior matches.
In mentorship or rotation programs an additional feature is that edge successes are often corre-
lated; for example a student may think she has a general interest in economics and computation
but learn that she is more interested in theory generally. We hope that this paper will motivate
future work in these directions.
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