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Abstract—We present BORA (Bag Optimizer for Robotic
Analysis), a file system middleware that optimizes the acqui-
sition of bags, which are specially formatted files used to store
timestamped ROS (robot operating system) messages. BORA sits
between ROS and an existing file system to conduct semantic-
aware data pre-processing. In particular, it categorizes ROS
bag data into multiple groups with each having a distinct
label. BORA predigests data index constructions and reduces
file open time via a hash-based label management scheme. It
is also capable of providing ROS analytic applications with
only data needed without a sequence of data searching and
locating operations. We implement a BORA prototype, which
is then integrated into three computing platforms: a single-
node server, a four-node PVFS storage cluster, and a Tianhe-
1A Supercomputer storage subsystem. Next, we evaluate the
BORA prototype on the three platforms using four real-world
ROS applications. Our experimental results show that compared
to a traditional bag management scheme BORA improves data
acquisition performance by up to 11x. In addition, it offers up to
10x data acquisition performance improvement and 3,100x bags
open improvement under a swarm robotics data analysis scenario
where data is retrieved across multiple bags simultaneously.

I. INTRODUCTION

Robot operating system (ROS) is an open-sourced meta-
operating system framework that consists of libraries and tools
to help software developers create robotic applications such as
simultaneous localization and mapping (SLAM) [1], grasping
[2] and navigation [3].

ROS works alongside a traditional operating system like
Linux to facilitate developers to resolve some specific is-
sues (e.g., distributed computation, software reuse, and rapid
testing) that appear in the development of robotic software.
Besides conventional robotic applications, robotic control and
analysis systems such as industrial robotics [4], UAV (un-
manned aerial vehicle) swarms [5], and low-power rescue
devices [6] are also developed on top of ROS.

The abstractions provided by ROS allow developers to
design and implement robotic applications without considering
underlying systems. A robot control system usually comprises
multiple processes that perform computation. Each process
is called a node in ROS. For example, one node controls a
laser range-finder while another node controls wheel motors.
Nodes communicate with each other by passing messages,
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which are routed via logical publish/subscribe buses called
topics [7]. A node sends out a message by publishing it to
a given topic, whereas a node that is interested in a certain
kind of data will subscribe to an appropriate topic [7]. In
general, publishers and subscribers are not aware of each
others’ existence, which decouples information producers from
consumers. Fig. 1a shows the ROS stack. ROS provides a tool
called rosbag that can record the messages published on
one or more topics to a specially formatted file called bag and
then replay those messages later. The message recording and
replaying capabilities form a powerful way to test some robot
software: a developer can run a robot only a few times while
recording some relevant topics, and then replay the messages
on those topics many times to experiment with the software
that processes those data [7]. Serving as a fundamental storage
abstraction in the ROS framework, bag works well as it reaches
its original expectation.

However, more than just replaying messages many applica-
tions nowadays need to extract messages of certain topics from
bag files for later analysis [8] [9]. For example, SLAM needs
to extract image data from bag files to build a point cloud and
further generate a map based on inertial measurement data
[1]. To achieve this goal, the rosbag tool needs to perform
a sequence of operations including scanning the offset of
chunk sections, collecting data types and message definitions,
as well as locating and retrieving message records via seek
operations. Besides, in order to provide two-dimensional data
queries such as (topics, time_range), rosbag has to collect
all the timestamps of message records and then build a tree-
structure to target the requested messages in a range between
start_time and stop_time [7]. The current way of extracting
messages from bag files is inefficient due to the following
reasons: (1) each time a developer opens a bag file, ROS needs
to first scan it to gather message location information and
statistics for high-level indexing, which is a time-consuming
repeated effort; (2) a developer must write a script to either
replaying a bag file to subscribe the messages of interests or
iterate over messages in the bag, which is neither efficient nor
reusable; (3) since bag is not originally designed to handle
complex queries for data analysis, it is very time-consuming
to extract message records of multiple topics, especially when
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Fig. 1: (a) ROS stack; (b) bag format; (c) an example of a single-robot system; (d) an example of a swarm of robots system.

the size of a bag file keeps growing.

To provide rich query capabilities, some studies suggest that
a database system could be used to replace the current bag
file mechanism [10]. We argue, however, the advantages of a
file system can better fit the needs of ROS data storage and
management. First of all, a ROS bag file has a native ability to
quickly store a large volume of data in a chronological order,
which is essential for robotic applications [11]. Second, the
ROS bag file abstraction ensures prompt data migration either
from robots to a desktop computer or from local computers
to a remote cluster [12]. Third, a ROS bag file can store
poly-type data including structured data (e.g., GPS locations,
inertial measurements, pressures, etc.) and unstructured data
(e.g., images, laser scans, videos, etc.) [13]. On the contrary, it
is hard for a database system to accomplish this task. Finally, a
file system ensures that ROS can concurrently collect multiple
bag files from swarm robots and provide parallel cross-bag
data retrieving capabilities.

To solve the problem of inefficient ROS message acquisition
while retaining the advantages of the bag mechanism, in
this paper we present BORA (Bag Optimizer for Robotic
Analysis). BORA is essentially a file system middleware
that optimizes ROS bag data storage and acquisition. It sits
between the ROS framework and an underlying file system to
conduct topic-conscious bag data re-organization on a storage
node. Based on the components of a bag, BORA is able to
re-organize its data into multiple groups with each having a
distinct label and manage these data groups through a hash-
based index. Thus, BORA can provide ROS applications with
a well-organized data layout and a simpler bag data locating
scheme. Besides, it provides a coarse-grain secondary index
mechanism to provide data that meets some particular period
predicates. As a result, BORA can reduce bag open time and
increase the efficiency of interested data retrieving.

The main contributions of this paper include: (1) we pro-
pose BORA, a first file system middleware to optimize data
organization of ROS bags for robotic analysis. BORA is
designed to enhance data query capability of existing bag-
based ROS storage systems with a minimum cost; (2) we
implement a BORA prototype and then integrate it into three
computing platforms (i.e., a single-node server, a four-node
cluster, and a Tianhe-1A storage subsystem under four real-
world robotic applications; (3) a comprehensive experimental
study is provided to fully evaluate the efficacy of the BORA

prototype; (4) BORA can be readily extended to most robotic
data analytic and implementation applications, which also
require a similar data extracting and locating procedure. We
plan to release the source code of BORA for public use.

The rest of the paper is organized as follows. Section II
provides the background and motivation of this research. The
design and implementation details of BORA are presented
in Section III, which is followed by an evaluation of BORA
shown in Section IV. While Section V discusses some lessons
learned from this research, Section VI summarizes the related
work. Finally, Section VII concludes this paper.

II. BACKGROUND AND MOTIVATION

In this section, we first briefly introduce bag, which is the
storage mechanism of ROS. Next, we explain the differences
in bag data processing between the existing way and our
proposed BORA-assisted approach.

A. Overview of ROS Bag

A bag is a file format in ROS for storing message data.
A message is a simple data structure that comprises multiple
typed fields. All bags are files with a .bag extension. An array
of tools have been built to allow a developer to store, process,
analyze, and visualize them [7]. Bags are typically created
by a tool like rosbag, which subscribes to one or more
ROS topics and stores serialized message data in a file as
it is received. Fig. 1b shows a typical ROS bag file format.
A bag is comprised of an array of diverse records including
bag header, chunk, index, connection, and chunk info. The bag
header stores information about the entire bag (e.g., the offset
to the first index record and the number of chunks) [7]. The
rosbag tool stores messages in the unit of chunk and appends
an index record to each chunk. An index record contains
offsets and timestamps of all messages in the preceding
chunk as shown in Fig. 1b. Index data is scattered all over
a bag. The connection info record contains metadata about
a connection being established, including typing information
and routing information. After all messages are recorded,
rosbag generates a chunk info record for each chunk and
then appends them to the end of the bag. A chunk info record
stores the offset of its corresponding chunk and timestamps of
the earliest and the latest messages in that chunk. A detailed
description of bag format can be found in [7].

There are two typical ways of using bags: (1) online use
in a ROS computation graph where a developer can collect



certain message data in a bag on the fly to control real-time
robots; (2) offline use in data replaying where a developer can
echo data on screens in the time order of message collecting.
A ROS computation graph is a peer-to-peer network of ROS
processes that are processing data together [7]. Fig. 1c shows
a simple ROS computation graph. There are some APIs like
rebagging available for developers to iterate over a bag and
extract messages that match a particular filter into a new bag
file. Furthermore, some tools allow developers to automatically
update bag files when messages are out of date [7].

Fig. 1c also illustrates an example of a single-robot ROS
system. In this system, the Camera node and Gyroscope node
publish messages to two different topics (i.e., Topicl and
Topic2), respectively. After the command rosbag record
-0 sample.bag Topicl Topic2 is executed, rosbag
creates a new node called Recorder, which subscribes to the
two topics (see Fig. 1c). It then writes all messages received
into a file called sample.bag. The amount of data collected in
a bag file varies from a few hundred megabytes to hundreds of
gigabytes or even larger. The sample.bag file is typically stored
in a workstation or a small cluster. It can be then analyzed in-
situ or shared with a remote server. In addition to many single-
robot systems, some ROS applications demand an autonomous
robot swarm, a bio-inspired concept that provides a robust and
flexible robotic system by exploiting a large number of robots.
This concept allows for the coordination of robots in order to
cooperatively perform a single global task. Fig. 1d shows an
example of a robotic swarm. Each of them generates a bag
file, which is then dumped to a data center where a sufficient
storage capacity and computational power are available to
store and analyze the huge amount of data collected.

B. New Requirements of ROS Bag Usage

With rapid development of artificial intelligence in recent
years, ROS applications with advanced data analysis require-
ments are emerging [14] [15] [16]. For example, SLAM needs
to extract vision data from bags to build point clouds, and
then, generate an environmental map with landmark data
from bags to help robots locate themselves in an unknown
territory [9]. Object and pattern recognition techniques require
to extract RGB image data, image data with depth info, and
camera pose info from bags to perform training of object
models, which are then used for detection [17]. Assisted
by a spectrum of new artificial intelligence techniques, ROS
developers are applying various deep learning algorithms such
as CNN (convolutional neural networks), RNN (recurrent
neural networks), and GAN (generative adversarial networks),
to train models for pattern recognition [18], decision making
[19], and controls on robots [20]. These algorithms require
a set of environmental information as inputs, which leads to
the need of retrieving a significant amount of structured and
unstructured data from bags. How to efficiently extract data
from bags for model training becomes a new challenge. The
main reason is that bags were originally designed in a log-
structured way to quickly record sensor data in chronological
order. The rosbag tool needs to scan the entire bag to locate

the scattered messages and iterate over them to find the wanted
data. Besides, the performance potential of underlying storage
devices cannot be fully exploited as a file system rarely has
semantic information from applications to optimize its I/O.

To meet the data analysis requirements of these emerging
ROS applications, some researchers proposed to replace exist-
ing bag mechanism with a sophisticated database management
system (DBMS) in order to enhance the performance of
queries for ROS data analysis [21]. We argue that a database-
backed message logging system might be inadequate to ROS
applications. First, the current ROS publisher/subscriber mech-
anism supports a data rate of GB/s when running an advanced
robot such as PR2 [22]. A DBMS, however, can hardly
collect continuous large volumes of data in real-time. Second,
robot developers often store robotic data on various comput-
ing platforms with distinct storage capabilities ranging from
embedded devices, laptops, to clusters [10]. A DBMS may
be unsuitable for an embedded computing platform. Third,
robotic data consists of both structured data (joint angles,
transpose vectors, altitude, latitude, etc.) and unstructured data
(laser scans, images, motion pictures, etc.) [11]. However, a
DBMS might not be able to support a rich querying interface
to deal with mixed data structures.

To verify whether a DBMS is an appropriate substitute
for an existing file system utilizing the ROS bag mecha-
nism, we conducted a preliminary experiment on an Intel
workstation with 16 GB main memory and two 256 GB
NVMe SSDs. In particular, we measured the performance of
three representative database systems (i.e., a NoSQL database
called Areospike [23], a traditional SQL DB named Post-
greSQL [24], and a time series database called InfluxDB [25])
and one file system (i.e., Ext4) when 49,233 TF (transform
stamped info) messages were inserted (see Fig. 2). The TF
messages were extracted from a real-world Handheld SLAM
bag [26]. We found that it only took Ext4 130 milliseconds
to append 49,233 TF messages to a bag file. To insert the
same set of TF messages, the three database systems are 51.8x,
93.6x%, and 3,694.6x slower than Ext4, respectively. In addition,
InfluxDB cannot support complex array structures, and thus,
is inadequate to process ROS data, which could be multiple
dimensional. For example, an IMU (inertial measurement
unit) message contains four float64 data structures with each
consisting of a three-dimensional array [26]. A DBMS also has
some limitations in sharing data among systems with diverse
configurations. The poor message insertion performance of
the database systems plus their inadequacies in ROS data
processing motivated us to stick to the path of development of
a file system middleware to enhance the performance of data
acquisition of bags.

Motivation 1: there is a great need to develop a file system
middleware that can optimize ROS bag organization so that
the overhead of data traversal can be largely reduced while
the original useful bag abstraction can be retained. In this way,
robots can store and share a high-volume of data quickly after
the data has been collected. Existing I/O middleware systems
like PLFS [27] and ADIOS [28] cannot be applied without
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Fig. 2: A performance comparison in message insertion.

deep modification to optimize ROSbag. We conducted a group
of experiments to compare PLFS with Ext4 and XFS. It shows
that PLFS takes 2x longer time to write a 3.9GB bag file, and
spends 1x longer time to retrieve a topic of data (Fig. 3).
ADIOS requires substantial changes in the application code,
which becomes a burden for a ROS application developer.
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Fig. 3: (a) bag write (notions refer to Table II);
(b) bag read (bag size: 2.9GB, notions refer to Table III).

The rosbag tool builds an index for all messages during
an open operation to support data acquisition. For example, the
command bag.read_messages (topics=[‘fool’,
*foo2’]) can read out messages of two different topics
(i.e., fool and foo2) from a bag. Fig. 4a demonstrates the
steps within a traditional bag open operation using the default
rogbag APIL There is a time-consuming iteration after the
chunk info is read as rosbag traverses the chunk info list
to locate the corresponding position of the index and build
a hash table for message queries. The open operation takes
O(N) of time, where N is the number of entities in the chunk
info list. In our experimental studies, we found that opening
a 21GB bag took more than seven seconds. Note that the
experiment was carried out on an SSD (solid state drive). The
implication is that simply replacing a slow storage device like
HDD (hard disk drive) with a high-performance SSD cannot
solve the problem of inefficient bag data retrieval.

Motivation 2: there is a great need to develop a simplified
indexing mechanism that can improve the efficacy of both
bag manipulation and multi-queries. A sample multi-query
could be bag.read_messages (topics,
end_time), where start_time and end_time defines a
time window for querying messages of different topics.

The two motivations drive us to develop a bag optimizer
for robotic analysis (BORA), a file system middleware that
can optimize the storage and data acquisition of ROS bags.
The key challenge of BORA is that bags were originally
designed in a log-structured way to quickly record sensor
data in chronological order. As a result, retrieving wanted

start_time,

data in a bag requires scanning the entire bag to locate the
scattered messages. When the size of a bag file increases, the
cost of this inefficient data retrieval becomes proportionally
high. The poor performance of data retrieval of bags becomes
increasingly inadequate to meet the requirements of a ROS
application with some advanced data analysis needs. Another
challenge is how to minimize the modifications of the existing
ROS software stack shown in Fig. 1a while achieving the goal
of this research. The design of BORA is presented in the next
section.
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Fig. 4: (a) rosbag open; (b) BORA-assisted open.

III. THE DESIGN OF BORA
A. Design Goals

First of all, BORA should keep the existing bag format to
retain the advantages of quick high-volume data collecting and
data sharing. In addition, keeping the bag format also ensures
the compatibility of ROS applications. Second, BORA should
provide transparency for developers so that the upper-level
applications do not need to modify their interface codes. Third,
BORA aims at the enhancements of bag data acquisition.

As shown in Fig. 4b, BORA reduces bag open time by
eliminating the iteration existed in a traditional bag open oper-
ation shown in Fig. 4a. It utilizes a coarse-grain time indexing
technique to provide a fixed time window for the messages.
Using a simple calculation, BORA targets the messages within
certain time slots to provide a reduced number of messages
for later fine-grain looking up based on timestamps.

B. BORA Architecture

Fig. 5a illustrates the architecture of BORA. BORA sits
between the ROS framework and an underlying file system. It
supports the ordinary ROS-Lib with the help of the FUSE in-
terface to retain traditional usage of bags including replay and
computation graphs. We also developed a BORA-Lib, which
is integrated into the ROS-Lib to achieve better performance
of rebagging and complex data acquisition operations for
robotic data analysis. To provide transparency, BORA uses a
container structure so that developers can use the traditional



bag abstraction without any knowledge of BORA via a front-
end path. Real data is stored as a directory via a back-end
path on the underlying file system (see Fig. 5a). The container
contains a data organizer and a tag manger.

ROS ROS-Lib
BORA-Lib
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[Virlual Layer
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Fig. 5: (a) BORA architecture; (b) container architecture.

Container: BORA creates a container structure on the
underlying file system for each logical bag file generated.
Inspired by the subfiling mechanism proposed by the authors
of PLFS [27], BORA splits an existing bag file into multiple
single-topic files in the container to improve performance.
Different from PLFS, which was designed for performance
improvement in checkpoint-restart use cases, BORA focuses
on offering better data query performance based on robotic
data semantics. Internally, the basic structure of a container
is a hierarchical directory tree consisting of a single top-level
directory and multiple sub-directories. BORA creates a logical
view of a single file from this container structure. Fig. 5b
demonstrates the organization of the container. After a file
called bagl is created BORA builds a container structure on
the underlying file system. The container is comprised of a root
directory with the same name called bag/ and multiple sub-
directories to store message data. The names of sub-directories
are determined by the types of messages that are defined by
topics. For each write, BORA appends the message data to
the corresponding topic file and updates an entry in the index
file. The index entry contains the timestamp of the write, its
logical offset, its length, and a pointer to its physical location.
The metadata shown in Fig. 5b is generated internally by the
rosbag tool.

Data Organizer: Once an original bag file arrives, the data
organizer reads the metadata of the bag to locate connection
info records, and then reads all of them at once to identify the
types of messages (i.e., topics). Next, it scans and distributes
messages to distinct target sub-directories in the container
structure under the specific topic names. To de-serialize the
I/O operation, BORA uses one thread to scan the file and a
few other threads to distribute messages to the underlying file
system. The number of threads is determined by system specs.

Tag Manager: The tag manager maintains a hash table
that maps types of topics to their logical locations on the
underlying file system. The key of an entry in the table
is a topic name and the value is its back-end path. In
this way, BORA can quickly locate the path to the re-
quested topics such as /bagl/topicl and /bagl/topic2

for rosbag command bag.read_messages (topics

=[‘topicl’, ‘topic2’]). The operations of BORA are
detailed in Section III-C. BORA does not store the hash
table but builds it whenever a bag is opened. We conducted
a group of experiments to measure the overhead of building
the hash table on-the-fly. When the number of topics is less
than 100,000 there is no significant time difference between
reading the hash table and building it on-the-fly (see Table I).
The experimental results prove that the hash table construction

TABLE I: Time and Space Costs to Construct the Hash Table

Number of Topics | Hash Table Size (KB) | Time Costs(ms)
10 0.11 0.163
100 1.2 0.476
1,000 13 3.949
10,000 136 29.883
100,000 1,500 35.840

time is determined by the number of topics (a.k.a the number
of sensors that a robot is equipped). One can find that the
table construction times are restrained in a range from less
than one millisecond to three dozens of millisecond as the
number of topics increases from 10 to 100,000. This time cost
is insignificant compared to the data query time (more than
dozens of seconds). Since a single robot usually is not capable
of installing one hundred thousand sensors, so we can safely
predict that the cost of on-the-fly hash table construction is
negligible.

C. BORA Operations

BORA supports two ways of rosbag 1/0O operations. Com-
mon operations including open, read, and write are passed
through ROS-Lib via the FUSE layer. In this section, we
discuss three advanced operations of BORA: data duplication
(copy from external storage devices), data acquisition (data
query by topics), and combined data query with topics and
start-end times. These operations are intercepted by BORA-
Lib and then manipulated by BORA Containers (see Fig. 5a).
Since all three BORA operations are performed on a bag
file that has been created by the rosbag tool, they use
bags in an offline way (see Section II-A). BORA could be
integrated into a file system running on a robot so that it
can manipulate bag data (e.g., storing a bag, extracting data
from a bag, etc.) in an online way. However, online usage of
BORA requires modifications the way of storing a bag file in
the ROS framework. This may demand the support of ROS
communities to promote framework updates with BORA.

BORA data duplication: ROS uses bags mainly to store
and share a large volume of robotic data for later analysis.
Unlike online bag writes, a bag to be duplicated has com-
plete information of a robotic application including metadata,
message data, and descriptive semantics. BORA reorganizes
data arrangement when a developer copies bags from external
portable storage devices or downloads them remotely. During
a duplication operation, BORA creates a container structure
on the back-end directory with a name same as that of the
bag. And then it creates sub-directories whose names are
determined by the names of topics, which can be identified



by reading the connection info from the metadata of the bag.
Next, it scans messages to identify the topic that the message
belongs to and then appends each message to a sub-directory
with the same name. Finally, it updates the records on the
index file. In this way, BORA re-distributes data to target sub-
directories by scanning the file once.

Fig. 6 illustrates how BORA carries out a data duplication
operation step-by-step: (1) BORA intercepts I/O requests from
ROS; (2) data organizer scans and separates data to different
topics; (3) data organizer distributes data by topics to a thread
pool; (4) task manager assigns available threads to write data
with topic to the underlying file system. Data organizer is only
involved during the first time that a bag is duplicated into a
BORA structure. For later data sharing, bags will be copied
as sub-directory trees if a target machine installs BORA.
Otherwise, they will be copied as the ordinary structures (a.k.a.
“bag is a file”) thanks to the container structure.

‘ ROS Data Migration ‘

° bag1: Bag file

Data Organizer

Back-end: Underlying File System
/mnt

bag1

metadata topic1 topic2 ---topicN Index

Fig. 6: BORA data duplication.

BORA data acquisition:

As aforementioned, bag is originally designed to re-
play the data that is collected by robots in chronologi-
cal order. The replay operation can be viewed as a se-
quence of reads. When it comes to data acquisition for
queries, the rosbag tool needs to iterate the bag file
to build an index structure for message searching, which
takes O(N) time (see Fig. 4a). In order to respond to the
command bag.read_messages (topics=[ ‘topicl’,
‘topic2’]), rosbag launches a sequence of searches to
find and then pass all offsets of messages that belong to these
two topics to the underlying file system. BORA enhances
data acquisition operation in two steps. First, it eliminates
the labor of iterations when opening a bag file (see Fig. 4b).
BORA quickly parses the sub-directories of a bag on the back-
end and then builds a hash table for the tag manager. In the
hash table, the keys are topic names while the values are the
corresponding paths. Next, BORA uses ‘topicl’ and ‘topic2’ to

lookup the hash table to obtain their corresponding back-end
paths, and then, passes them to the underlying file system.
The underlying file system treats ‘topicl’ and ‘topic2’ data
as two independent files because BORA already processed
the files into large blocks of contiguous data during the data
migration step. Fig. 7 shows the detailed steps in a BORA
data acquisition operation: (1) BORA intercepts data queries
with topic names from ROS; (2) tag manager uses topic
names to find and pass their back-end paths accordingly to the
underlying file system; (3) the underlying file system returns
the requested topics to ROS. Note that multiple levels of
parallelism in a file system can be exploited to further improve
I/O performance.
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Fig. 7: BORA data acquisition.

BORA data query with start-end time: Data acquisition
is a basic bag data query operation, which only uses one
parameter (i.e., topic name) for looking-up messages. ROS
data analysis also requires advanced data queries that combine
topic names and a start-end time range when messages are
collected (i.e., finding out messages of certain topics that
are recorded from a start time to an end time). The existing
approach first searches and distills the requested topics. Next,
it performs a merge-sort of timestamps of all the messages
that belong to the distilled topics to build an index entry list,
which consists of timestamp and messages offsets. The time
complexity of this operation is O(NlogN), where N is the
number of messages. The rosbag tool then uses topic names
and start-end times to find the target messages. BORA, instead,
applies a coarse-grain time indexing technique that uses a fixed
time window to manage messages of each topic. Under each
sub-directory, there is a priority queue that stores a pair of
key-value where the key is the start time of a time window
and the value is an offset list of messages that have timestamps
within the time window.

The impact of the sort on data query with start-end time is
two-folded: 1. it further improves the data query performance



by up to 11x for single-topic queries and up to 4x for multiple-
topic queries, especially on the SSD server (see Section IV.B);
2. it provides a two-dimensional (by topics and by time) query
capability based on a file system.

Fig. 8 illustrates a sample internal data structure for time in-
dexing where the time window is set to 5 time units. For exam-
ple, a key value pair named (31, [offset list]) onthe
back-end directory named /mnt/bagl/topicl/ indicates
that the [offset list] holds the offsets of all topicl messages that
are collected within the start-end time range from 31 to 36 (see
Fig. 8). Once a pair of start-end times is provided, BORA per-
forms arithmetic calculations as | start_time/time_window |
and [end_time/time_window] to figure out the start and end
time slots of the sub-directories. Note that the value of the
time window can be configured by a developer. In this way,
BORA diminishes time cost of data queries by (1) reducing
the number of messages that rosbag needs to scan to build
an index entry list via a coarse-grain time index structure; (2)
reducing the redundant labor for building an index entry list
of the distilled messages via merge-sort.
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IV. BORA EVALUATION
A. Experimental Setup

Very often bag files collected by an institute are not only
for its own research but also for sharing with the entire
robotic community. Thus, they need to be copied from robots’
onboard storage devices to local servers before a further
data analysis or sharing can be performed. In this scenario,
BORA sits between the robots and local servers to reorganize
data. A local server could be a workstation, a small cluster,
or a brawnier system. In order to comprehensively evaluate
the efficacy of BORA, we integrate it into three computing
platforms with different scales: a single-node server, a four-
node PVFES cluster, and a Tianhe-1A storage subsystem. The
single-node server represents a mainstream laptop, desktop,
or server that is widely used by ROS developers. The four-
node PVES cluster is employed to evaluate the performance of
BORA in parallelism and scalability. Finally, the Tianhe-1A
storage subsystem is utilized to evaluate the effectiveness of
BORA on a real-world computing platform for data analysis
of a robotic swarm [29].

All experiments are carried out under real-world appli-
cations that were collected by the Technical University of
Munich [26]. Generally, a ROS application generates random
access patterns due to its mixed types of sensors, different

messages acquisition intervals, and distinct message sizes.
However, BORA reorganizes a bag file according to the topics
of messages, and then, transforms random accesses into partial
sequential accesses. Table II presents the composition of a
2.9 GB Handheld SLAM bag [26]. The bag consists of seven
topics and more than 98% of its data is image data (a.k.a
unstructured data). Note that the unstructured data interleaves
with some structured data such as IMU (nertial measurement
unit), TF (transform stamped info), and Marker Arrays (ar-
bitrary primitive shapes info). This example illustrates the
importance of data acquisition optimization, especially when
unstructured data is mixed with structured data.

The four real-world applications are summarized in Table
III. There are two types of SLAM algorithms: handheld SLAM
(HS) and robot SLAM (RS). While the former only uses RGB
images and depth images, the latter employs additional data
including IMU. The dynamic object (DO) is a deep learn-
ing object detection application that requires environmental
semantics including TF, camera pose info, and marker array in
addition to RGB images. This application demonstrates a data
acquisition scenario where numerous small-size structured
data and large-size unstructured data are mixed. The pre-
analysis algorithms (PA) represent a common scenario where
multiple stages of data analysis and modeling are required.
These algorithms first pick some types of topics to build a
training model and then select a few other types for subsequent
phases of data analysis until final decisions are made. The
entire procedure involves multiple data semantic acquisitions,
multiple stages of semantic analysis of diverse algorithms, and
multi-dimensional data reconstructions. Each of these stages
may require a different set of topics, which leads to a varied
number of topic retrievals.

B. Evaluation on Bag Duplication

Although FUSE introduces some one-time overhead, we
implemented BORA with it to avoid additional API code
changes. We evaluate BORA by copying one bag from an
existing directory to a predefined BORA front-end on an SSD.
We find that in the worst case BORA-assisted Ext4 (i.e.,
BORA on Ext4) is 50% slower than Ext4 and BORA-assisted
XFS (i.e., BORA on XFS) is 90% slower than XFS (see
Fig. 9). On average, the initial capture overhead of BORA
is 26% and 51% compared to Ext4 and XFS, respectively.
We further notice that as the file size increases this overhead
of BORA becomes less significant. For example, when the
file size is larger than 3.9 GB BORA only slows down the
performance of bag write by 10% and 22% for Ext4 and
XFS, respectively. Besides, we find that if a destination path
is a BORA-supported one (i.e., ‘BORA to BORA on Ext4’ or
‘BORA to BORA on XFS’ shown in Fig. 9) BORA can copy
a bag as fast as Ext4 and XFS. This is mainly because the
data organizer of BORA is a one-time attempt to reorganize
a bag into a BORA structure.



TABLE II: Data organization of a 2.9 GB bag

1d Topic name Type description # of Messages | Data size
A /camera/depth/image Depth Image 1,429 1.64 GB
B /camera/rgb/image_color RGB Image 1,431 1.23 GB
C /camera/rgb/camera_info RGB CameraPose Info 1,432 594 KB
D | /camera/depth/camera_info Depth CameraPose Info 1,430 594 KB
E /cortex_marker_array Primitive Shapes (MarkerArray) 14,487 8.4 MB
F /imu Inertial Measurement Unit Info (IMU) 24,367 8.4 MB
G Itf Transform Stamped Message (TF) 16,411 3.6 MB

TABLE III: Required Topics in Each Real-world Application

Application
Handheld SLAM (HS)
Robot SLAM (RS)

Dynamic Object (DO)

Required Topics
Depth Image, RGB Image
Depth Image, RGB Image, IMU
TF, RGB Image
CameraPose, MarkerArray
Randomly Pick

Pre-analysis Algorithms(PA)

I Ext4
EEE BORA on Extd4
mmm BORA to BORA on Extd

C— XFs
EEN BORA on XFS
mmm BORA to BORA on XFS

DO HS RS D

o HS RS DO HS RS D
2.2GB 3GB 3.9GB 15.4GB 21GB 27.3GB
(a)

o HS RS
2.2GB 3GB 3.9GB 15.4GB 21GB 27.3GB
(b)

Fig. 9: Comparisons of write time of bags with distinct sizes.

C. Evaluation on A Single-Node Server

We evaluate BORA on a single-node server that equips with
an Intel®Xeon®CPU E5-2603 v4 @1.70GHz, 16GB DRAM,
and two 256GB NVMe SSDs. The operating system is CentOS
release 6.10 (Final). We evaluate the performance of BORA
in terms of major usage patterns including querying by topic
and querying by start-end time.

Performance of query by topic: Fig. 10 presents the time
comparisons of query by topic between two ordinary local file
systems (i.e., XFS and Ext4) with and without BORA by a
single topic from Handheld SLAM bags with different sizes.
While the y axis represents query time, the x axis shows five
topics (i.e., A, B, C, E, F shown in Table II) of Handheld
SLAM bags. Fig. 10a shows the results when the bag size is
2.9 GB. We observe that on average BORA enhances 50% of
query performance compared to the control groups. Especially,
BORA achieves a 5x faster performance when querying a topic
with a small data size (i.e., topic C in all sub-figures of Fig.
10). We further notice that BORA takes much less time to open
a bag. This is because the ordinary open consumes more time
as rogbag has to traverse the entire bag to generate index
data during an open operation. The time consumed by open
becomes significant when ROS only reads a small portion of
data. On the contrary, this time is negligible in BORA as it
only loads tag index, which is a small hash table. Comparing
Fig. 10a with the rest three sub-figures, one can see that BORA
consistently improves performance when the size of a bag
increases from 2.9 GB to 20.3 GB.

Fig. 11 and Fig. 12 present query time comparisons of

the four real-world applications between two underlying file
systems (i.e., XFS and Ext4) with and without BORA with
small and large bags. We observe that compared to the control
groups on average BORA enhances the query performance by
more than 70% and 50% for the 2.9 GB case and 21 GB
case, respectively. Fig. 11 and Fig. 12 demonstrate that BORA
can substantially improve query performance for all four real-
world applications across all cases.

Performance of query by start-end time and topic: In
this group of experiments, we evaluate BORA in terms of
advanced data queries by start-end times as well as topics.
Fig. 13 and Fig. 14 compare the query times under different
time intervals. We fix the start time and choose an end time
by adding a stair-step time interval (i.e., 5 seconds in our
experiments). We can see that BORA outperforms the control
groups by up to 11x in single-topic queries (see Fig. 13) and
3.5x in multiple-topic queries (see Fig. 14). This is mainly
because BORA reduces the search range. When the end time
keeps increasing and covers the entire bag file, BORA can still
achieve around a 2x performance improvement. In particular,
we find that BORA gains 11x performance improvement when
querying camera_info data (see Fig. 13d). This is because the
rosbag tool spends unavoidable efforts on building an index
structure of the complete data set for time query even the
requested data is very small. BORA can reduce indexing and
searching time by providing a smaller range of data via a
coarse-grained time index.

D. Evaluation on A Small Cluster

This group of experiments is conducted on a 4-node all-SSD
PVES cluster, which is interconnected with 10 Gbit/s Ethernet.
Each node is equipped with one Intel®Xeon®CPU E5-2603
v4 @1.70GHz, 16 GB DRAM, and two 256 GB NVMe SSDs,
which are organized as a soft RAID-0 array.

Fig. 15 presents the data query time comparisons between
PVFS with and without BORA. Fig. 15a and Fig. 15b provide
query times with a single topic from Handheld SLAM. We
can see that BORA achieves up to 2x speedup compared
to the ordinary PVFS mainly due to its negligible open
time. Furthermore, we observe that BORA gains 30x speedup
for querying some specific structured data such as /camer-
a/rgb/camera_info. This large performance improvement is
attributed to BORA’s extremely low-time cost of opening a
bag file. Fig. 15¢ and Fig. 15d show query times of four
real-world applications. We observe that BORA gains 2x
speedup on average compared to the ordinary PVFS, which
demonstrates good scalability of BORA. In addition, Fig. 16
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Fig. 16: Comparisons of query time by one topic and start-end time of Handheld SLAM with 42 GB bag on a PVES cluster.

provides query performance with topics and start-end times.
BORA outperforms the control group in every testing case,
which proves the effectiveness of the proposed coarse-grain
time indexing technique. One can see that the evaluation
results on the PVFS cluster are not as good as that of on
the single-node server. This is mainly due to the performance
bottleneck of the network (10 Gbit/s Ethernet) and limited
user-level parallelism.

E. Evaluation on A Tianhe-1A Storage Subsystem

In this sub-section, we evaluate BORA on a Tianhe-1A
storage subsystem that is capable of performing data analysis
of a robotic swarm [30]. A Lustre parallel file system is
running on top of the storage subsystem, which consists of
twelve compute nodes, three object storage servers (OSS),
and four meta data servers (MDS). All of them are con-
nected by Mellanox®Inifiband switch MT27500 ConnectX-
3 (56 Gpbs). Each compute node is equipped with two
Intel®Xeon®CPUs Gold 6134@3.2GHz and 384 GB DRAM.
Each OSS server has two Intel®Xeon®CPUs E5-2660 v3
@2.6GHz and 128 GB DRAM. Each MDS server consists
of two Intel®Xeon®CPUs E5-2650 v2 @2.6GHz and 64 GB
DRAM. The total storage capacity of the cluster is 804 TB.
Data analysis of a robotic swarm normally requires multiple
processes to query the same topic from multiple bags simul-
taneously. In this scenario, a developer is retrieving messages
of the same topic type (e.g., RGB Image in Table II) from
multiple bags, which are collected by a large number of robots
in a swarm from the same relative position concurrently. By
doing so, the developer can build an object that has a multi-
angle view (e.g., Bullet Time®effect in the movie The Matrix).

We configure the number of robots in a swarm to be 10, 50,
and 100 to represent a small swarm, a middle-sized swarm, and
a large swarm, respectively. The total number of bags in each
swarm is equal to its number of robots. The storage subsystem

can support up to 192 concurrent processes. In order to avoid
contention, we launch up to 100 processes to open bags with
one process dedicated for a particular bag. In this group of
experiments, two bag sizes are employed: 21 GB and 42 GB.
The processes launched open all the bags at the same time
and then run the Robot SLAM application to extract data of
various types including Depth Image, RGB Image, and IMU.
Fig. 17 shows that the BORA-assisted Lustre outperforms
the control group in all cases. More importantly, it exhibits
better scalability as Fig. 17b demonstrates more than 10x
overall performance improvement when totally 4.2 TB data
(i.e., 100 bags with each having 42 GB data) is processed. The
read performance gains of BORA stem from its capability of
aggregating data of same topics, which provides a sequential
access pattern to underlying HDDs. The significant time cost
improvement (i.e., up to 3,113x in opening 100 bags with each
having 42 GB data) comes from open operation, which is
achieved by BORA’s light-weight open procedure. Recall that
BORA only loads a small hash table of tag index information
instead of traversing the entire bag file. The substantial per-
formance improvement in open shows that BORA can fully
exhibit its potential when the number of bags and data volume
of each bag increase. As shown in Fig. 18, BORA’s coarse-
grain time indexing mechanism reduces time costs by up to
4x for queries by topics and a time range.

V. DISCUSSIONS

In this section, we summarize three lessons that we learned
from this research.

An efficient data indexing mechanism is critical to the
performance of robotic analysis: Data indexing plays a key
role in achieving an efficient ROS data analysis, especially
when the amount of data is large. To obtain a good perfor-
mance in write, ROS spreads index information throughout
a bag file. However, this index layout makes data analyzing,
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collecting, and aggregating time-consuming. Furthermore, we
observe that most data is written only once but will be read
multiple times the latter. Therefore, it is essential to extract
index information to a specific location, which can be quickly
retrieved later. BORA can greatly boost the performance of
data acquisition mainly because it employs an efficient data
indexing mechanism.

Redundant data retrieval should be avoided as much
as possible: In the robotic analysis, it is common to retrieve
a complete collection of a dataset with multi-dimensional
variables to the memory and then manipulate it. As multi-
dimensional data collection becomes more complicated a data
cleaning operation requires more temporal memory space to
store some intermediate values, which leads to a longer data
processing time. Therefore, a technique that can dynamically
provide an appropriate amount of data to avoid redundant
data retrieval is much needed. BORA can judiciously retrieve
only desired data from a complete dataset so that redundant
data retrieval is avoided, which also contributes to its high
performance in data acquisition.

The potential of SSDs cannot fully exhibit without a data
organization optimization in ROS software layers: Modern
storage devices like SSDs can offer much higher performance
than that of HDDs. However, we found that simply replacing
HDDs with SSDs cannot achieve a high data acquisition
performance in ROS applications. The reason is that when
high-bandwidth SSDs are employed software latency becomes
a dominant factor that determines the performance of data
processing. Thus, optimizing ROS data organization in various
software layers becomes a must.

VI. RELATED WORK

To the best of our knowledge, this research is the first study
that focuses on optimizing data organization of ROS bags for
robotic analysis. Therefore, little closely related work is found
in the literature. In this section, we first briefly summarize
some widely used I/O middleware systems. Next, we introduce
prior investigations in DMBS for ROS applications.

Although several adaptive I/O middleware systems
[31] [28] [27] [32] have been developed to improve the I/O
efficiency for various applications, none of them can work
with the ROS framework. HDF5 is a data model containing
complex data objects and metadata [31]. Its file format is
incompatible with that of bag. ADIOS [28] provides a high-
level I/O API to perform aggressive data relocation within the
checkpoint, but it requires application modifications. Unlike
ADIOS, PLFS [27] uses a user-level file system interface to
gain performance benefits without modifying any application.
ROMIO [32] is an MPI-IO implementation, which delivers
high performance I/O in the presence of noncontiguous
requests. It requires high-level libraries like MPICH and
significant code modification if it is employed in the ROS
framework. Like PLFS, BORA requires no code modification
in any file system or application. PLES [27] might be the
most similar in philosophy to BORA, particularly in that
both employing a container structure to provide a transparent
data management layer. Table IV summarizes the differences
between these middleware systems.

TABLE IV: I/O Middleware System Comparison

Interposition Usage App. Modification
HDF5 Library Scientific Data No
ADIOS Library Checkpoint-restart No
PLFS FUSE or Library | Checkpoint-restart Yes
ROMIO Library MPI-IO No
BORA FUSE or Library | Bag Enhancement Yes

A handful of database systems had been developed to fa-
cilitate robotic analysis from various angles. While MongoDB
was developed to store and manage document data provided
by a set of domestic mobile robot sensors for a smart-home
environment [33], a NoSQL graph database named Neo4]
was proposed to store and query long-term human-robotic
interaction data for high data availability [34]. Aerospike
is an in-memory NoSQL database system [23]. It faces a
challenge in striking a balance among capacity, performance,
and data persistence. Unlike [33] [34] that targeted a single-
robot analysis platform, Cassandra was developed to store a
large amount of robotic data for the progressive assignment
algorithm for a multi-agent system [35]. Along the same line,
PostgreSQL was built on a cloud platform to manage a range
of robotic control data from six-axis robots to improve control
precision with intelligent functions [24]. InfluxDB [25] and
BtrDB [36] were designed to optimize the performance of data
retrieval from a time series database. Unfortunately, they do
not support complex array structures, and thus, are inadequate
to process rich ROS data. Even though these DBMS systems
were proposed to make robotic data analysis easier in some



specific scenarios, they lost the advantages of existing ROS
bag mechanisms (i.e., portability and generality) as none of
them kept robotic use cases in mind.

VII. CONCLUSIONS

Software development for robots is often more challenging
than other types of software development. One reason is that
algorithm testing can be time-consuming and error-prone. ROS
separates low-level hardware control and high-level decision
making into separate programs. It also provides a simple
way to record and playback sensor data and other types of
messages. By recording a robot’s sensor data, a developer can
replay it many times to test various algorithms on that data.
ROS is a de facto robotic software development platform as
it received extensive support from the robotics community.

More than just replaying messages, some emerging robotic
applications [8] [9] now require the capabilities of advanced
message acquisition and rich queries. How to retain the ad-
vantages of the existing ROS bag mechanism while enhancing
message extracting and querying becomes a new challenge. To
solve it, we develop a prototype of a file system middleware
called BORA, which is then integrated into three computing
platforms. Further, we evaluate BORA in terms of data queries
using four real-world ROS applications. Our experimental
results demonstrate that BORA can significantly improve
data query performance. Besides, it meets the data analysis
requirements of robot swarms.
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Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED
0.1 Abstract

This description contains the information needed to launch all
experiments of SC20 paper "BORA: A Bag Optimizer for Robotic
Analysis". More precisely, we explain how to compile and run BORA
used in our evaluation part. The source code of BORA is temporarily
unavailable to the public because we are filing a PCT (Patent Coop-
eration Treaty, an international patent law treaty) patent (the patent
number can be provided if it does not violate the anonymous role)
for this project. The patent application already passed the Interna-
tional Search phase and is currently in the International Publication
phase. Once it passes the International Publication phase, we will
immediately disclose the BORA source code to the public.

0.2 Description

Program: C/C++, Python 3.7.6 and FUSE 2.9.4

Run-time state: The system is idle and only running our tests
Output: Sensor messages queried by the user

Experiment workflow: Clone project, compile and install
BORA. Install ROS framework. Specify the front-end and
back-end storage directories, mount BORA to the front-end
directory, then save the bag file to the front-end, and finally
use ROS-Lib to operate.

Publicly available?: The source code will be published as
soon as possible once the patent application is accepted.

0.2.1 Hardware dependencies. BORA has been tested on a variety
of x86 machines.

0.3 Installation

(1) First you must clone BORA code to the local machine: The
code will be published to github, after the source code is
made public.

(2) Get into BORA directory and compile it.

$ cd BORA && mkdir build
$ cd build && cmake ..

$ make -j4

$ sudo make install

0.4 Experiment workflow
(1) Create a config file under SHOME/.borarc, the format is as
follows.

- mount_point: /mnt/bora
backends:
- location: posix:///home/foo/ssd

(2) Mount BORA
$ ./bin/bora /mnt/bora

(3) Then we can put bag file to the mount point and use ROS
library to use it. The method of use is the same as the ROS
official document.

0.5 Evaluation and expected result

The expected results include sensor messages (GPS, IMU, Image
etc.)

ARTIFACT AVAILABILITY

Software Artifact Availability: Some author-created software ar-
tifacts are NOT maintained in a public repository or are NOT avail-
able under an OSI-approved license.

Hardware Artifact Availability: All author-created hardware arti-
facts are maintained in a public repository under an OSI-approved
license.

Data Artifact Availability: All author-created data artifacts are
maintained in a public repository under an OSI-approved license.

Proprietary Artifacts: None of the associated artifacts, author-
created or otherwise, are proprietary.

Author-Created or Modified Artifacts:

Persistent ID: https://github.com/SC20-bora/bora
— (DOI: 10.5281/zenodo.3957776)

Artifact name: The preliminary link to BORA source
— code. The code will be disclosed once our PCT
— patent passes the International Search phase.

BASELINE EXPERIMENTAL SETUP, AND
MODIFICATIONS MADE FOR THE PAPER

Relevant  hardware details: We run  Author-Kit (see
https://github.com/SC-Tech-Program/Author-Kit) to gather
the hardware environment information. First of all, We evaluate
BORA on a single-node server that equips with an Intel Xeon CPU
E5-2603 v4 @1.70GHz, 16GB DRAM, and two 256GB NVMe SSDs.
We then run BORA on a 4-node all-SSD PVES cluster, which is
interconnected with 10 Gbit/s Ethernet. Each node is equipped
with one Intel Xeon CPU E5-2603 v4 @1.70GHz, 16GB DRAM, and
two 256GB NVMe SSDs, which are organized as a soft RAID-0
array. At last, we evaluate BORA on a production cluster. The
production cluster is running on top of a Lustre parallel file system
which consists of 12 compute nodes, three object storage servers
(0SS), and four metadata servers (MDS), which are connected
by Mellanox Inifiband switch MT27500 ConnectX-3 (56Gpbs).
Each compute node is equipped with two Intel Xeon CPUs Gold
6134@3.2GHz and 384GB DRAM. Each OSS server has two
Intel®Xeon CPUs E5-2660 v3 @2.6GHz and 128GB DRAM. Each
MDS server consists of two Intel Xeon CPUs E5-2650 v2 @2.6GHz
and 64GB DRAM. The total storage capacity of the cluster is 804TB.

Operating systems and versions: CentOS 6.10 Final

Compilers and versions: CMake 3.13 and gcc 7.4.0



Applications and versions: Real world robotic applications pre-
sented by Technical University of Munich

Libraries and versions: ROS Library, FUSE 2.9.4 or above

Key algorithms: The paper describes in detail how BORA orga-
nizes the bag file and how to build an index for quick query

Input datasets and versions: All experiments are carried out un-
der real-world applications that were collected by the Technical
University of Munich. (https://vision.in.tum.de/data/datasets/rgbhd-
dataset)
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