
Scaling Sparse Matrix Multiplication on CPU-GPU
Nodes

Yang Xia
Computer Science and Engineering

The Ohio State University
xia.425@osu.edu

Gagan Agrawal
Computer and Cyber Sciences

Augusta University
gagrawal@augusta.edu

Peng Jiang
Computer Science Department

University of Iowa
peng-jiang@uiowa.edu

Rajiv Ramnath
Computer Science and Engineering

The Ohio State University
ramnath@cse.ohio-state.edu

Abstract—Multiplication of two sparse matrices (SpGEMM) is
a popular kernel behind many numerical solvers, and also fea-
tures in implementing many common graph algorithms. Though
many recent research efforts have focused on implementing
SpGEMM efficiently on a single GPU, none of the existing
work has considered the case where the memory requirements
exceed the size of GPU memory. Similarly, the use of the
aggregate computing power of CPU and GPU has also not
been addressed for those large matrices. In this paper, we
present a framework for scaling SpGEMM computations for
matrices that do not fit into GPU memory. We address how the
computation and data can be partitioned across kernel executions
on GPUs. An important emphasis in our work is overlapping
data movement and computation. We achieve this by addressing
many challenges, such as avoiding dynamic memory allocations,
and re-scheduling data transfers with the computation of chunks.
We extend our framework to make efficient use of both GPU and
CPU, by developing an efficient work distribution strategy. Our
evaluation on 9 large matrices shows that our out-of-core GPU
implementation achieves 1.98-3.03X speedups over a state-of-the-
art multi-core CPU implementation, our hybrid implementation
further achieves speedups up to 3.74x, and that our design choices
are directly contributing towards achieving this performance.

I. INTRODUCTION

Sparse general matrix-matrix multiplication (SpGEMM) is
one of the key kernels of preconditioners such as algebraic
multigrid method [7] and some graph algorithms [22], [8],
[13], [29], [35]. Given two sparse input matrices A and B,
SpGEMM computes the sum of products for each element of
the sparse matrix C as follows:

Cij =
∑
k

Aik ×Bkj

where i and j are the row and column identifiers of the non-
zero elements of matrices A and B, and k is the set of colliding
indices. Due to the sparsity structure of both input matrices and
the output matrix, achieving high performance for SpGEMM
is very challenging. As a result, a number of recent efforts have
been done to develop GPU implementations for SpGEMM [4],
[10], [16], [24], [25].

One important area that has received no attention is creating
an out-of-core GPU implementation, i.e., existing publications
are limited to handling cases where the entire computation
can be done with the available memory in (one) GPU. In
both scientific computing and graph processing, i.e., the two
common types of applications of SpGEMM, sparse matrices
can be large. For example, even the most memory-efficient
and state-of-the-art SpGEMM implementation [30] is not able
to handle a number of matrices from the SuiteSparse Matrix
Collection [11] on a GPU because of memory limitations.
(SuiteSparse collection has matrices arising from both scien-
tific computations and graph applications.) Typically, matrices
capturing graphs can be large – for example, one survey [32]
identified that graphs with more than 100 million vertices
and more than 1 billion edges (and requiring more than 1
Terabytes for uncompressed storage) are quite common. The
nodes in these graphs can represent entities ranging from
humans, scientific artifacts, products, or other digital elements,
and thus arise from a number of different use cases. Recently,
unified memory are available and can be used to solve the
issue of memory limits. It allows the applications to access
the memory on the host side transparently, and load the data
to GPU memory when there are page faults. Thus, this feature
can significantly ease the programming. However, without the
knowledge of the SpGEMM, the loaded memory pages may
contain some data which are useless and waste the bandwidth.
Besides, there are overheads with page faults. Thus, in this
work, we proposed an out-of-core implementation to solve the
issue.

Out-of-core GPU implementations have been developed for
many applications – MapReduce based graph processing [34],
ray casting (visualization) [14], LU solver (numerical compu-
tation) [26], deep learning [5], and others. However, SpGEMM
out-of-core implementation involves significant challenges not
normally associated with other applications. First, when two
sparse matrices are multiplied, the output matrix typically has
a much larger number of non-zero elements than the two input
matrices combined. Take matrix com-LiveJournal in Table II



as an example. Here, the number of non-zero elements of
result matrix C = A × A is 70x more than the matrix
A itself. Thus, storing partial results and transferring them
to CPU chunk by chunk can be a significant challenge for
SpGEMM – an issue typically not seen with other applications.
For example, in a general framework proposed for out-of-
core GPU implementations [20], the authors assume that the
data not fitting in GPU memory is read-only. However, for
SpGEMM, the larger challenge is output data.

This paper addresses a number of challenges associated
with creating an out-of-core SpGEMM solver. The first issue
is partitioning the problem space – we use a row panel
of A and a column panel of B to output the final set of
values for a chunk of C. Because transferring these chunks
to CPU can be a very dominant cost, overlapping computa-
tion and transfer of data between GPU and CPU is crucial
for performance. However, with current versions of CUDA,
asynchronous execution requires that the code does not use
dynamic memory (de)allocation, whereas underlying GPU
implementations of SpGEMM use memory in complex ways
to make it more efficient. Thus, we avoid dynamic allocations
with memory pre-allocations. Besides, there are a number of
data transfers in the same direction within the procedure of the
computation. However, GPU only supports one data transfer in
one direction at one time, which makes the computations wait
for data transfers and lose concurrency. We address this issue
through careful scheduling of data transfers. Also, through a
reordering of the output chunks on the basis of the number
of floating-point operations (flops), we make the overhead of
data transfers completely hide the overhead of computations.

Further, we extend our framework to utilize both GPU and
CPU computation resources to further improve performance.
The design choice we made is to assign chunks that involve
more flops to the GPU and the others to the CPU. Besides,
we determine the amount of workload of GPU/CPU based on
a static ratio of flops across all matrices.

We evaluate our work on a set of matrices, which are se-
lected from the SuiteSparse Matrix Collection [11]. Our exper-
imental results demonstrate that our GPU implementation can
achieve high performance: compared with a state-of-the-art
multi-core CPU implementation, our implementation performs
1.98-3.03X faster. The hybrid implementation further improves
performance by 3.74X. We also show that our asynchronous
implementation can effectively improve the performance of
our out-of-core GPU implementation through overlapping data
transfers with the real SpGEMM computations. Finally, we
show that our workload assignment for the GPU and the CPU
is effective: with reordering, we achieve speedups over the
default implementation; with a fixed ratio of flops, we almost
always achieve the best results.

II. BACKGROUND

This section provides background for our work. We first
introduce a compressed sparse row (CSR) representation,
which is the most commonly used representation for sparse
matrices. Then, we briefly review some research works on the
GPU execution of SpGEMM computation.

Algorithm 1 Sequential implementation of Gustavson’s Row-
Row SpGEMM algorithm.

1: . Initialize all elements in matrix C as zeroes
2: for Ai∗ in matrix A do
3: for Aik in row Ai∗ do
4: for Bkj in row Bk∗ do
5: value = Aik ×Bkj

6: if Cij /∈ Ci∗ then
7: insert(Cij , Ci∗)
8: Cij ← value
9: else

10: Cij = Cij + value
11: end if
12: end for
13: end for
14: end for

Fig. 2: A simple example of matrix multiplication. The non-
zero elements are represented by dots and triangles.

(a) A sparse matrix. (b) CSR format of the matrix.

Fig. 1: Compressed sparse row representation of a sparse
matrix. (Example is taken from [21])

A. Compressed Sparse Row Representation

In this work, we adopt the compressed sparse row (CSR)
format, which is widely used for storing and processing sparse
matrices, including in recent work on SpGEMM[28], [30].
As shown in Figure 1, three arrays are used: row_offsets,
col_ids , and data. The array col_ids stores the column indices
of the non-zero elements in the sparse matrix row by row.
In this work, the column ids are sorted for each row. The
corresponding values of these non-zero elements are stored in
the array data. row_offset indicates the beginning index of each
row in the matrix in the array col_ids and data. For example,
the value of the third element of the array row_offsets is 5,
which means that for the third row, the starting column id is
col_ids[5] and the corresponding value is data[5].

B. Implementations of Sparse General Matrix-Matrix Multi-
plication (on GPUs)

For a matrix A, let Ai∗, and A∗i denote the ith row and the
ith column of matrix A respectively. Ii(A) denotes the indices
of the non-zero elements in the ith row of matrix A. One



approach for SpGEMM is the row-column formulation. Here,
to get Cij , we multiply Ai∗ with B∗j , i.e., Cij = Ai∗ ×B∗j .
In the Row-Row Formulation, to compute Ci∗, we multiply
each non-zero element in Ai∗ with the corresponding row in
the matrix B. Then, we add the corresponding scaled B rows
to get the Ci∗. Thus, Ci∗ =

∑
j∈Ii(A) Aij × Bj∗. Note that

column-row, and column-column approaches are also feasible.
Many recent research efforts on optimizing SpGEMM on

GPUs [28], [30], [23], [31], [16], [17] generally follow Gus-
tavson’s algorithm [19], which is shown as Algorithm 1. Gus-
tavson’s algorithm follows the row-row Formulation: For each
non-zero element of the matrix A, we read the corresponding
row of the matrix B using column identifier. This is followed
by accumulating non-zero elements in the output matrix C as
shown in lines 5 to 9.

Unlike dense matrix multiplication, a key challenge of
SpGEMM computations is that the output of the SpGEMM
computation is still a sparse matrix, which is also stored in
CSR representation. Since each element of the output matrix
is computed as a result of operations on a sparse row and a
sparse column, it is not trivial to determine which element
of the output matrix will be non-zero. Take Figure 2 as an
example, the 0th and 2nd elements of the row 0 of the matrix
A are non-zeroes. Thus, we read row 0 and row 2 of the
matrix B. As shown in the figure, non-zero elements in these
two rows have only two distinct column ids, which are 0 and
3. As a result, the first row of the result matrix contains only
two non-zero elements, which are C00 and C03. Thus, memory
allocation for the output matrix is a hard problem. Note that
in Algorithm 1, we assumed that a new value can be inserted
in a row of C – however, use of a dynamic structure like a
linked list that can support such insertions (and membership
lookup) will clearly be very expensive.

Similar to many other implementations, we use a two-phase
strategy to solve this issue. The first phase is the symbolic
phase, where they first count the number of non-zero elements
of each row in the output matrix. The second phase is called
numeric phase, which starts with the knowledge of the number
of non-zero elements in the output matrix, and thus, space
allocation is now feasible. After allocating space, we compute
the actual values in the output matrix.

We also note that the algorithm is well-suited for parallel
execution, with the main issue being how to combine the
intermediate products to non-zero elements of the output
matrix. Since the output matrix is also sparse, it is hard to
efficiently combine intermediate products. For example, in
Figure 2, row 0 and row 2 both have an element whose column
id is 0. Thus, we need to combine these two elements to a
single value in the results matrix C. Building on prior work
in this area [28], [31], we use two accumulation methods:
hashmap and dense accumulation. The hashmap method first
allocates memory space based on an upper bound estimation
of the size of the hash table. It then inserts values using the
column ids of the intermediate results as the key. Then, it sorts
the values of each row of the result matrix according to their
column ids to obtain the final result matrix compressed with

Algorithm 2 Overall procedure of out-of-core iterative
SpGEMM computation.

1: partition_rows(A, num_row_panels)
2: partition_cols(B, num_col_panels)
3: for row = 0; row < num_row_panels; row ++ do
4: for col = 0; col < num_col_panels; col ++ do
5: C[row][col] = SpGEMM(A[row], B[col)
6: Transfer chunk C[row][col] back to host side
7: end for
8: end for

Algorithm 3 Overall procedure of out-of-core iterative
SpGEMM computation.

1: . num_row_panels refers to the number of row panels in A
2: . num_col_panels refers to the number of column panels in B
3: partition_rows(A, num_row_panels)
4: partition_cols(B, num_col_panels)
5: for row = 0; row < num_row_panels; row ++ do
6: for col = 0; col < num_col_panels; col ++ do
7: . A[row] is a row panel
8: . B[col] is a column panel
9: C[row][col] = SpGEMM(A[row], B[col)

10: Transfer chunk C[row][col] back to host side
11: end for
12: end for

a sparse format [28]. The dense accumulation method [31],
[30] stores and accumulates intermediate values in a dense
array for each row. In contrast to the hashing solution, this
method directly uses the column ids to access the array. As
expected, this dense accumulation method can achieve high
performance for matrices with relatively dense output rows,
while low density leads to low memory utilization of the dense
array.

III. DESIGN

In this section, we first introduce the overall framework
for executing SpGEMM in an out-of-core fashion on a GPU.
Then, we describe the implementation method we used for
in-core SpGEMM computation for clarity. We further extend
our framework to support concurrent executions on both
CPU and GPU. Finally, we briefly introduce our partitioning
implementation.

A. Overall Framework of Out-of-Core GPU Implementation

Algorithm 3 briefly illustrates the overall procedure of
our out-of-core GPU implementation. As shown in line 3-
4, we partition matrix A into row panels while for matrix
B, we partition it into column panels, which are simply sets
of consecutive rows/columns. Given a row (column) panel
identifier i, A[i] (B[i]) denotes the row panel of A (column
panel of B). Similarly, C[i][j] represents the chunk of the
result matrix C that is output by processing A[i] and B[j].
For each row panel or column panel, we store data using CSR
format on device memory because it is the mostly commonly
used data format. Then, we iterate over each row panel and
column panel to get a corresponding chunk of matrix C using
an in-core GPU implementation. Finally, we transfer the result
chunk back to the CPU.



Fig. 3: Overall framework of out-of-core GPU SpGEMM
(Blue box denotes GPU side and white box denotes CPU side.

As shown in the algorithm, our framework uses the Row-
Column Formulation. With our ultimate goal of continuing to
scale SpGEMM computations to arbitrarily large matrices, we
partition both matrix A and matrix B into smaller chunks (to
handle cases where either matrix of them is too large to reside
in device memory). Thus, both the Row-Row Formulation and
the Column-Column Formulation are not suitable in our case.
For example, in the Row-Row Formulation, there are no limits
on the number of non-zero elements of a single row in matrix
A. As a result, it is not feasible to partition matrix B under
the Row-Row Formulation. Also, we do not choose Column-
Row Formulation because it requires accumulation operations
for obtaining the output matrix from the partial results. In
contrast, in the Row-Column Formulation, final values within
a chunk of the output matrix C are independent.

B. In-core GPU Implementation

As shown in Algorithm 3, after partitioning matrix A into
row panels and matrix B into column panels, a function is
invoked to multiply these row and column panels to produce a
chunk of output C. Our GPU implementation for this builds on
the in-core effort in spECK [30], which in turn specializes the
two-phase strategy mentioned in the last section. Considering
the challenge of not just memory allocation but also parti-
tioning between processing cores, such GPU implementations
consist of three major stages (shown in Figure 3). First, we
launch a kernel to do row analysis of input matrices, i.e.,
computing the number of floating-point operations associated
with each row. Then, we transfer this collected information
from device memory to the host memory. Based on the
information captured, we assign rows of the matrix A to
different groups to achieve load balance on the host. Second,
we launch a kernel for each group and calculate the number
of non-zero elements in each row of the result matrix, which
is typically called symbolic execution. Once this step has been
completed, we know the space allocation and the memory
location where each row group can start writing its output.

Algorithm 4 Overall procedure of our hybrid implementation.
1: . num_row_panels refers to the number of row panels in A
2: . num_col_panels refers to the number of column panels in B
3: nun_chunk = num_row_panels× num_col_panels
4: . Compute flops of each chunk C on GPU
5: total_flop = 0
6: for row = 0; row < num_row_panels; row ++ do
7: for col = 0; col < num_col_panels; col ++ do
8: chunk_id = row × num_col_panels+ col
9: flop = GetFlops(A[row], B[col])

10: flops[chunk_id] = flop
11: total_flop = total_flop+ flop
12: end for
13: end for
14: Sort the chunks based on the flops with a decreasing order
15: . Get the number of chunks processed on GPU
16: num_gpu = 0
17: gpu_flop = 0
18: for ch = 0; ch < num_chunk; ch++ do
19: gpu_flop = gpu_flop+ flops[ch]
20: if (gpu_flop/total_flop) >= Ratio then
21: num_gpu = ch+ 1
22: break
23: end if
24: end for
25: Parallel GPU thread to process num_gpu chunks
26: Parallel CPU thread to process the remaining chunks

Finally, we re-assign rows of matrix A based on the number
of non-zero elements to achieve global load balance again and
invoke kernels to do the actual computations, which is referred
as numeric execution in the figure. As shown in the figure,
we use dense accumulation for dense rows and the hashmap
methods for sparse rows to accumulate results, as it is well
established through prior work [30] that they are more efficient
for their respective cases.

C. GPU and CPU Hybrid Implementation

Our GPU implementation was extended to support concur-
rent executions on both CPU and GPU. The motivation of this
was that though our GPU implementation outperformed multi-
core CPU implementation, CPU performance was also quite
competitive (details in Section V). Thus, we seek opportunities
to utilize both GPU and CPU resources to perform SpGEMM
computations.

We considered two critical performance issues for our
hybrid implementation. The first is which computing device
should a chunk be assigned to. The second is how to determine
the ratio of workload for GPU or CPU. For the first question,
we observed that GPU is more suitable to process dense
chunks and the throughput of GPU is larger, we reorder chunks
of result matrix C based on the number of floating-point
operations (flops). Then, we assign chunks with more flops
to GPU and the remaining to CPU. In terms of the fraction of
the workload assigned to two units, this is done by considering
the expected relative speedup of GPU over CPU (denoted by
S). Specifically, we use the number of flops as the indicator
for the workload. We seek a value g, where first g chunks
contain at least S/(S + 1) of the number of flops, and assign



these g chunks to GPU. We denote Ratio = S/(S + 1),
and our experimental results show that a fixed value of 65%
can achieve good performance for all of our input matrices.
However, this ratio is just suitable for our experimental setups,
and it might change if we use another GPU or CPU, but we
should still be able to use a ratio to assign the workloads.

Algorithm 4 shows the procedure of our hybrid implemen-
tation. We keep row panels and columns panels both on device
memory and host memory. We first compute the number of
flops of each chunk in lines 6-13 and order the chunks based
on the number of flops calculated in line 14. Note that the
overhead of computing the flops of each chunk is really
small compared with SpGEMM computations on GPU [30],
[28].Then, we get the number of chunks assigned to GPU
based on the Ratio in line 18-23. Finally, we launch two
parallel threads: one thread for GPU and one for CPU. Both
GPU and CPU threads generate the final matrix chunk by
chunk. The GPU implementation of each chunk is described in
the above section. On CPUs, a recent high-performance multi-
core implementation from Nagasaka et al.[27] was invoked for
each chunk (more specifically, the hashmap implementation
available from them). We also considered MKL library [36]
from Intel as another alternative. However, since MKL Li-
brary only supports integer as the data type for the arrays
row_offsets and col_ids, it can not handle large matrices.
Moreover, hashmap implementation from Nagasaka et al.[27]
also outperformed the MKL Library for small matrices.

D. Partitioning Implementation

One of the requirements for the framework described above
is to efficiently partition the matrices A and B to row and
column panels, respectively. Note that with the use of the
CSR format (which stores each sparse row contiguously),
partitioning the matrix A to row panels is straight-forward
and it is easy to make it parallel.

However, partitioning of the matrix B is more difficult
because we are not able to identify elements of the same
column directly using the CSR format. As a result, we use a
two-stage partitioning: We first calculate the number of non-
zero elements for each column panel, and then we allocate the
memory for the column panel. Finally, we fill in the column
ids and values of each column panel using the CSR format.

A simplistic implementation would iterate over the column
panels to be computed. The range of columns of the original
matrix that belongs to a given column panel is computed and
denoted by [start_col, end_col]. For each column panel, we
iterate over all the rows in the matrix and identify the non-
zero elements in this row that are in the column range we
computed. Recall that row_offset[r] stores the starting index
in the col_id and data arrays that correspond to the row r.
Thus, we iterate over row_offset[r] and row_offset[r+1], and
determine the elements in the sparse matrix that are within the
column range we are looking for.

It is easy to see that this algorithm can be quite inefficient,
particularly as the size of rows and the number of column
panels increases. We optimize this process by creating an

Fig. 4: Percentage of data transfer time over total execution
time for synchronous spECK.

additional data structure, which is col_offset. For a given
column panel, col_offset[j] stores the earliest location in data
and col_id arrays where elements corresponding to the row
j and this particular column panel are stored. Now, as each
column panel is processed, each row r is traversed starting not
from row_offset[r] but from col_offset[i]. Subsequently, after
finding the first element in this row that is not within the range
of columns for this column panel, col_offset[r] is set to help
processing of the next column panel. We also parallelize the
partitioning in a prefix sum fashion.

IV. ASYNCHRONOUS EXECUTION

As we had shown in Algorithm 3, the output matrix C is
computed and moved from device memory to CPU memory
chunk by chunk because the size of the output matrix is
typically significantly larger than input matrices and exceeds
the limit of device memory. Experimental results show that
such data transfers can take a large amount of time. Thus,
overlapping data movements with real computations turns
out to be important for performance. In turn, designing an
implementation that can support such asynchronous transfers
impacts the overall design in several ways. This section
explains these implementation issues and our solutions.

A. Motivation for Asynchronous Execution

We first demonstrate that the overhead of data transfers is
significant. For this purpose, the following experiment was
conducted. We modified the implementation of state-of-the-
art method spECK [30] to follow the structure shown in
Algorithm 3. Data movement was done synchronously – we
refer to this version as synchronous, partitioned spECK, or
simply synchronous spECK.

Figure 4 shows the percentage of data transfer time over
total execution time using synchronous spECK using 9 matri-
ces (More details of matrices and experimental environment
are given later in Section V). The percentage varies with the
chunk size. Thus, we select the results when synchronous
spECK achieves the best performance. As can be seen, the
data transfers time are quite high – ranging from 77.55% to
89.65% of the total execution time depending upon the matrix.
Thus, these results point to the possibility of up to 22.45%
reduction in total execution time if all computation can be
overlapped with these transfers.



Fig. 5: Illustration of the data transfer issue for asynchronous
executions.

B. Implementation Issues of Asynchronous Transfers

As illustrated above, it is attractive to transfer data from
device memory to CPU memory asynchronously to hide the
overhead of real SpGEMM computations. A simple imple-
mentation is that we create two streams and two buffers on
device. When we finish the SpGEMM computations using
the first stream and store the results on the first chunk, we
can start transferring the data from the first buffer to CPU
pinned memory and start SpGEMM computations of the next
chunk using the second stream. We use the streams and buffers
alternatively to complete the overall procedure.

However, this simple idea does not work for our SpGEMM
computations. First, according to the Programming Guide [18],
two commands from different streams can not run concurrently
if the host issues any device memory allocation and de-
allocations. As a result, we have to avoid dynamic memory
allocations during SpGEMM computations to support the
asynchronous executions. On the other hand, an efficient
SpGEMM implementation typically requires many dynamic
memory allocations, to achieve load balance or make efficient
use of device memory [30]. For example, as shown in Figure 3,
only when we finish the symbolic execution and get the number
of non-zero elements in the result matrix C, we can allocate
device memory to store the array col_ids and data. This is to
avoid allocating too much device memory. Another example
is when we finish the row analysis, we need to assign rows to
different groups. Thus, we need to allocate device memory to
store the group information.

Second, there is only one engine for each direction of data
transfer because we used PCI-e, which means that we can only
have one data transfer from host to device at one time (and
similarly, only one data transfer from device to host). However,
an efficient SpGEMM implementation requires multiple data
transfers during the computations [30], [28]. For example, in
the row analysis stage, we launch a kernel to compute the
number of floating-point operations in each row and store this
information on device memory. Then, we need to transfer these
data from device memory to host memory so that CPU can
assign rows to different groups based on the results of row
analysis, which is shown in Figure 3. However, this causes
a problem to enable asynchronous executions. As illustrated

Fig. 6: Illustration of the solution to solve the data transfer
issue. The numbers show the order of data transfers.

in Figure 5, the SpGEMM computations of chunk i will
wait until the data transfer of chunk i − 1 finished before
symbolic execution. As a result, we lose the opportunity to
have concurrency execution.
Pre-Allocation to Avoid Dynamic Memory Allocation: To
solve the first challenge, we allocate device memory before
we execute SpGEMM computations as shown in Algorithm 3.
An alternative solution we considered is to compute the upper
bounds of the sizes of the data structures we used. However,
the gap between upper bounds and the actual sizes are really
large. As an example, consider estimating the upper bound
of the number of non-zero elements in an output chunk. A
commonly used approach would be to look at the number
of floating-point operations (which are analyzed towards the
goal of load balancing). In the worst case, every single
multiplication of elements of matrices A and B could lead to
a distinct element in C. However, we find that the difference
between the estimate and the actual observed value can be
large. These differences not only impact the efficiency of
execution but also limits the size of chunk. Furthermore, a
fixed sized allocation will imply that the chunk size used
would be limited by certain chunks that are extremely dense,
and thus require large allocation.

Our solution involves doing our own memory management.
A large chunk of memory is pre-allocated on device memory
and shared by all dynamic data structures. For each data
structure, we maintain an offset, which is assigned incremen-
tally as memory requirements are determined and a structure
needs memory. This method turned out to be more effective
than trying to work with worst-case estimates of memory
requirements.
Dividing and Scheduling Data Transfers: Our solution to
overcome the second challenge is shown in Figure 6. When
we finish SpGEMM computations of the chunk i−1, we do not
transfer the result chunk back to the CPU side immediately.
Instead, we first finish the row analysis stage of the chunk i and
transfer the collected data back to the host side. Subsequently,
we transfer data of chunk i − 1, and overlap it with the
symbolic execution phase of the chunk i − 1, as shown in
the figure. The motivation is that overhead of row analysis is



typically very small compared with other phases. Thus, we
give up concurrency opportunities during the row analysis
stage. However, we can continue to process the chunk i
without waiting for the data transfer of the chunk i − 1 to
be finished. As a result, data transfer of chunk i− 1 can hide
the overhead of symbolic execution phase.

Further, when we finish the symbolic execution phase of
chunk i, we get the number of non-zero elements of each row
in result matrix C. We also need to transfer this information
from the GPU to the CPU. This also conflicts with the data
transfer of chunk i−1. Thus, we divide the output of the chunk
i − 1 into two portions as shown in Figure 6. The transfer
of the first portion is overlapped with the symbolic execution
phase, and the second portion’s transfer is overlapped with
the numeric execution phase. Since the numeric execution
typically takes a longer time than the symbolic execution
phase, in our implementation the first portion contains 33%
of the total number of rows. Our experimental results show
that the time spent on both symbolic and numeric execution
phases can be hidden by data transfer under this ratio for our
selected input matrices.

C. Scheduling Execution Order of Chunks with GPU

As illustrated above, the overhead of data transfers typically
dominates the overall overhead. Thus, we seek opportunities to
schedule the executions of chunks so that the overhead of data
transfers can completely hide the overhead of computations.
The size of each chunk, and thus the time spent computing it
and transferring it, varies very significantly. If we attempt to
overlap computations on a large chunk with transfer of a very
small chunk, the benefits may be very small. Our solution in
this work is to reorder the chunks to make the data transfer
overhead in decreasing order. In this way, the overhead of
SpGEMM computations of the chunk i tends to be smaller
than the overhead of data transfer of the chunk i− 1, so that
the computation overhead can be hidden by the data transfer
overhead.

It should be noted that the overhead of data transfer depends
on the number of non-zero elements of the chunk. However,
calculating the number of non-zero elements itself counts as
a large overhead itself. To overcome this problem, we use the
number of flops of each chunk instead because the number of
non-zero elements and the number of flops typically have a
positive correlation.

V. EXPERIMENTAL RESULTS

In this section, we present our experimental results on a
set of large matrices to demonstrate the effectiveness of our
design for an out-of-core GPU implementation and a CPU-
GPU hybrid implementation. We first show the features of
the selected input matrices and our experimental environment.
This is followed by a comparison of both our GPU imple-
mentation and the hybrid implementation against a multi-core
CPU implementation. We also focus on evaluating the impact
of our design choices, i.e., use of asynchronous transfers, and
parameter for distributing work between CPU and GPU.

TABLE I: Nvidia Tesla V100 Specifications.
GPUs Tesla V100

Architecture Volta
#SM 80

Size of device memory 16GB
FP32 CUDA Cores/GPU 5120

Memory Interface 4096-bit HBM2
Register File Size / SM (KB) 65536

Max Registers / Thread 255
Shared Memory Size / SM (KB) Configurable up to 96 KB

Max Thread Block Size 1024

TABLE II: Features of input matrices used in our experiments.
All numbers except compression ratio are in millions.

matrix abbr. n nnz(A) flop(A2) nnz(A2) compression ratio
ljournal-2008 lj2008 5.36 79.02 7828.66 4245.41 1.84
com-LiveJournal com-lj 4.00 69.36 8580.90 4859.09 1.77
soc-LiveJournal1 soc-lj 4.85 68.99 5915.63 3366.05 1.76
stokes stokes 11.45 349.32 9424.18 2115.15 4.46
uk-2002 uk-2002 18.52 298.11 29206.61 3194.99 9.14
wikipedia-20070206 wiki0206 3.57 45.03 12796.04 4802.94 2.66
nlpkkt200 nlp 16.24 440.23 24932.82 2425.94 10.28
wikipedia-20061104 wiki1104 3.15 39.38 10728.99 4018.47 2.67
wikipedia-20060925 wiki0925 2.98 37.27 10030.09 3750.38 2.67

A. Experimental Environment

We conducted our experiments on an Nvidia Tesla V100.
The specifications of this GPU are shown in Table I. The GPU
is attached to an Intel(R) Xeon(R) CPU E5-2680 (2013 Ivy
Bridge) running at 2.4 GHz. The CPU contains 14 physical
cores and provides hyper-threading with 2 threads for each
core. Thus, in our experiments, we use 28 threads for multi-
core implementation. The size of the host memory is 128GB
in our experiments. The host operating system for our exper-
iments is CentOS Linux release 7.4.1708 (Core). Our GPU
implementations are based on CUDA 10.1 toolkit and NVCC
V10.1.168 is used to compile our programs.

B. Input Matrices

From the SuiteSparse Matrix Collection, we select 9 matri-
ces [11] for detailed study and analysis. Most of these matrices
(except for stokes and nlpkkt200) are collected from graphs.
Our experiments use double as the data type for the array data.
We selected these matrices because even the state-of-the-art
spECK [30], which is shown to be more memory efficient as
compared to previous implementations, can not handle any of
these matrices because of memory limits on device memory of
NVIDIA Tesla V100 GPU. Since these matrices are square,
the multiplication operation we conduct is C = A × A, as
is the convention in other studies on SpGEMM [28], [30],
[31], [37]. Table II shows the main features of these matrices
and the matrix (A2) obtained by their multiplication. Here, n
denotes the number of rows (or columns), nnz(A) denotes
the number of non-zero elements in the matrix, flop(A2)
denotes the number of floating point operations during the
multiplication(a mutiply-add counts as 2 flops) , nnz(A2)
denotes the number of non-zero elements in the result matrix,
and compression ratio denotes the ratio between the flop(A2)
and nnz(A2), which is an important performance metric. Also,
for clarity of figures in this paper, we show the abbreviation
of matrices named in the second column. Note that the storage
requirements of the output matrix (A2) can be as high as 60
GB, which well exceeds the storage of a Volta GPU.



Fig. 7: Comparing GFLOPS of our hybrid implementation
with multi-core CPU implementation and out-of-core GPU
implementation.

C. Comparison with Multi-core CPU Implementation

In this section, we compare both our out-of-core GPU
implementation and the hybrid implementation against a multi-
core CPU implementation. The multi-core CPU implementa-
tion we use is modified from Nagasaka et al.[27]. As stated
earlier, this implementation can handle large matrices (unlike
MKL) while outperforming MKL on small matrices. The
execution times measured for GFLOPS calculation include the
time for transferring all chunks of the output matrix to the CPU
memory. The results are shown in Figure 7.

First, we note that the GFLOPS achieved by our GPU
implementation ranges from 0.34 to 2.03. We observed that
the performance of SpGEMM computations is closely related
with the compression ratio. Specifically, the compression ratio
of matrices nlpkkt200, uk-2002 and stokes are highest (10.28,
9.14, 4.46, respectively), whereas the compression ratios are
under 3 for all other matrices. Correspondingly, the GFLOPS
achieved by these three matrices are highest (2.42, 2.03, 1.03,
respectively). Recall that the major overhead of our out-of-core
implementation comes from data transfers, so the performance
is positively correlated with compression ratio, which denotes
the ratio between the amount of computation (proportional to
flops) and the data transfer costs (proportional to nnz(A2)).
Also, we observed that the data skewness of the martices is
related with the compression ratio. Typically, regular matrices
such as nlpkkt200 and stokes typically have a higher compres-
sion ratio.

Next, in comparing GPU implementation with a CPU
baseline, we find that the speedup of our out-of-core GPU
implementation over the multi-core implementation are be-
tween 1.98 and 3.03, with most values around 2. Note that the
ratio remains relatively similar even as the absolute GFLOPS
vary – this is because sparse matrices with more (less)
regularity achieve better (worse) performance on both GPU
and CPU. Finally, when comparing hybrid implementation
over GPU implementation, we see speedups between 1.16 and
1.57, with most around 1.5. Note that the speedups of GPU
implementation over multi-core implementation is around 2X
in most cases. Thus, with GPU and CPU combined, the ideal
case is that the total execution time is reduced by 1/3rd, or
a 1.5X speedup. Thus, actually achieving this speedup for
most cases shows that the workload assignment our hybrid
implementation is effective and balanced. Note that the matrix
where GPU to CPU ratio is the highest, i.e, 3.03 (com-

Fig. 8: Comparing our asynchronous GPU implementation
with synchronous (spECK) GPU implementation.

LiveJournal, the additional speedup with the combined version
is also the lowest.

D. Effectiveness of Asynchronous Executions
One of the challenges we have addressed in this work

is to achieve asynchronous execution on GPU, i.e., overlap
transferring of data from GPU to CPU with GPU execution.
To demonstrate the benefits of this, we took the spECK GPU
implementation [30] and modified it to work on our class of
matrices. This was achieved through the same partitioning of
the output matrix as in our implementation. Note that this
implementation performs dynamic memory allocation, unlike
our work.

The results are shown in Figure 8. We can observe that
the asynchronous implementation achieves a speedup between
6.8% - 17.7% over the synchronous implementation. The
speedup of the asynchronous implementation is mainly limited
by the overhead of data transfers. As shown in Figure 4, the
percentage of data transfers overhead over total execution time
range from 77.5% to 89.6%.

E. Workload Assignment for GPUs
We now focus on our implementation related to work

allocation in our hybrid implementation: reordering of chunks
(sorting by number of flops required for the chunk) and the
ratio of work allocation between GPU and CPU.

Effect of Reordering: We show the importance of reorder-
ing the executions of chunks in Figure 9. In the reordering
implementation, we always assign chunks with more flops
to the GPU and the remaining to the CPU. In the default
implementation, we simply assign chunks to the GPU until the
number of flops achieves the given ratio of work distribution
between the CPU and GPU. This ratio (65% to GPU) and
the chunk sizes of each input matrices used of these two
implementations stay the same. The experimental results show
that with our reordering, it can achieve significant performance
improvement over the default implementation. This is because
GPU is more suited for execution of chunks with higher
density.

In our hybrid implementation with reordering, the ratio of
flops assigned to GPUs is a key parameter for the performance
In Figure 10, we compare the GFLOPS of two representative
matrices under different values of the ratio. As indicated in
the figure, the GFLOPS typically increases as we increase the
ratio, but then drops. Our experimental results show that a
fixed value for the ratio can achieve reasonable efficiency for
our matrices.



Fig. 9: Hybrid implementation with and without reordering.

Fig. 10: Comparing performance on two matrices varying
GPU/CPU chunk allocation ratio.

We further examine this issue through another experiment,
reported in Table III. We compare the chunks assigned to
GPUs when the ratio is 65% with the number of chunks
at which best performance of hybrid version is achieved
(determined through exhaustive search). Note that because we
have sorted the chunks by flops and most dense chunks are
scheduled on the GPU, the number of chunks allocated to
GPU is relatively small. As can be seen in the table, in 7 out
of 9 cases, the number of chunks at which best performance is
achieved is also the same as what one would get by 65% ratio.
Further, for the remaining 2 matrices, the number of chunks
we selected is close to the bast value and the performance
drops are very small (2.95% and 4.30% respectively). Thus,
this simple ratio is able to achieve best performance almost
always.

VI. RELATED WORK

In this section, we first discuss other research efforts on
GPU acceleration of SpGEMM computations. Then, we in-
troduced techniques proposed for SpGEMM in the context
of CPU architecture. Finally, we list work on partitioning of
matrices for SpGEMM computation.

A large body of work exists on accelerating the computation
of SpGEMM on GPUs. Bellet al. [7], [9] proposed the ESC
approach, which breaks the computation into Expansion, Sort-

TABLE III: Comparing the number of chunks assigned to GPU
- Fixed ratio 65% vs. Best Case

matrix Best No. of GPU chunks 65% GPU allocation No. of chunks
ljournal-2008 4 4
com-LiveJournal 3 3
soc-LiveJournal1 5 5
stokes 5 5
uk-2002 2 2
wikipedia-20070206 3 2
nlpkkt200 3 2
wikipedia-20061104 5 5
wikipedia-20060925 5 5

ing, and Compression. It first generates intermediate products
(Expand), then it sorts these immediate results by their row
and column identifies (Sort). Finally, it combines the values
with colliding indices (Compress). Daltonet al. [10] improve
that performance by storing intermediate products in shared
memory. Winter et al. [37] further improve on this work by
achieving both global load balance and local load balance.
Merging is another important accumulation method, which
uses sorted intermediate results and merge rows of the matrix
directly. This method is like the merge-sort algorithm [15].
RMerge [16] splits the matrix into sub-matrices with limited
row length and computes the product of these matrices in
an iterative way. The benefit is they can utilize the register
resources. Gremse et al. [17] further improve the performance
through utilizing the shared memory so that they can merge
rows of the matrix without splitting the matrix. bhSPARSE
[24] dynamically chooses between different merging solutions
based on the number of intermediate products. None of these
efforts have supported out-of-core implementation for GPUs or
considered utilizing combining the aggregate processing power
of CPUs or GPUs. Recently, a CPU-GPU joint distributed
SpGEMM algorithm called pipelined Sparse SUMMA was
proposed [33]. They also implemented a probabilistic memory
requirement estimator for efficiency.

In the context of CPUs, Patwary et al. [31] suggested
that using dense arrays more efficient than using hash tables
for multi-core platforms. They also proposed to partition the
matrix to column panels so that the dense array can reside in
L2 cache and reduce the data movement overhead. As a result,
they achieve 3.8X speedups over the MKL library. Nagasaka
et al. [27] proposed a multi-thread implementation on the
Intel KNL processor and compare performance of different
implementations on different kinds of matrices. Akbudak et al.
[2] proposed to apply hypergraph and bipartite graph models
to exploit both spatial and temporal locality for row-wise
SpGEMM computations. To make efficient use of multi-level
memory Deveci et al. [12] designed different chunking-based
SpGEMM algorithms for Intel KNL. Again, none of this
work has considered combining GPU execution with CPU
execution.

Matrix partitioning is a significant problem for SpGEMM
computation because a reasonable partitioning can not only
improve the load balance, but also improve the data locality.
There has been a significant amount of research work on
hypergraph Partitioning to improve the locality. Akbudak et al.
[2] applied the hypergraph model to improve the data locality
for the Xeon Phi architecture. Akbudak et al. [1] presented
a hypergraph partitioning model to minimize communication
cost, while make sure that workload is balanced. Ballard et
al. [6] proposed a framework to prove communication lower
bounds for both parallel and sequential SpGEMM. They also
converted identifying a communication-optimal algorithm for
given input matrices to solving the HP problem. Akbudak
et al. [3] also applied the HP model on the outer-product,
inner-product, and row-by-row-product parallel SpGEMM al-
gorithms.



VII. CONCLUSION

This work is motivated by the observation that despite
significant interest in SpGEMM implementation on GPUs, the
limited memory of GPU hinders execution when the matrices
involved are large, as is often the case in practice. To address
this gap, we proposed an iterative out-of-core GPU imple-
mentation. A number of optimizations and design choices
were critical to this process. Since data transfer overhead is a
dominant factor in performance, we overlapped execution with
data transfers. In the process, we had to create an implemen-
tation that does not require dynamic memory (de)allocation,
and is judicious about data transfers. We extend our iterative
implementation to a hybrid implementation, which offloads a
fraction of chunks to the CPU to further improve performance.
Our evaluation with 9 large matrices shows that we outperform
a state-of-the-art CPU implementation, our hybrid implemen-
tation further achieves a speedup by 3.74X, and reordering
and asynchronous execution turn out to be important for
performance.
Acknowledgements. This research was partially supported by
NSF awards CCF-1629392; CCF-2007793 and OAC-2034850.

REFERENCES

[1] Kadir Akbudak and Cevdet Aykanat. Simultaneous input and output
matrix partitioning for outer-product–parallel sparse matrix-matrix mul-
tiplication. SIAM Journal on Scientific Computing, 36(5):C568–C590,
2014.

[2] Kadir Akbudak and Cevdet Aykanat. Exploiting locality in sparse
matrix-matrix multiplication on many-core architectures. IEEE Trans-
actions on Parallel and Distributed Systems, 28(8):2258–2271, 2017.

[3] Kadir Akbudak, Oguz Selvitopi, and Cevdet Aykanat. Partitioning
models for scaling parallel sparse matrix-matrix multiplication. ACM
Transactions on Parallel Computing (TOPC), 4(3):1–34, 2018.

[4] Pham Nguyen Quang Anh, Rui Fan, and Yonggang Wen. Balanced
hashing and efficient gpu sparse general matrix-matrix multiplication. In
Proceedings of the 2016 International Conference on Supercomputing,
pages 1–12, 2016.

[5] Ammar Ahmad Awan, Khaled Hamidouche, Jahanzeb Maqbool Hashmi,
and Dhabaleswar K Panda. S-caffe: Co-designing mpi runtimes and caffe
for scalable deep learning on modern gpu clusters. In Proceedings of the
22nd ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pages 193–205, 2017.

[6] Grey Ballard, Alex Druinsky, Nicholas Knight, and Oded Schwartz.
Hypergraph partitioning for sparse matrix-matrix multiplication. ACM
Transactions on Parallel Computing (TOPC), 3(3):1–34, 2016.

[7] Nathan Bell, Steven Dalton, and Luke N Olson. Exposing fine-grained
parallelism in algebraic multigrid methods. SIAM Journal on Scientific
Computing, 34(4):C123–C152, 2012.

[8] Timothy M Chan. More algorithms for all-pairs shortest paths in
weighted graphs. SIAM Journal on Computing, 39(5):2075–2089, 2010.

[9] Steven Dalton, Nathan Bell, Luke Olson, and Michael Garland. Cusp:
Generic parallel algorithms for sparse matrix and graph computations.
Version 0.5. 0, 2014.

[10] Steven Dalton, Luke Olson, and Nathan Bell. Optimizing sparse
matrix—matrix multiplication for the gpu. ACM Transactions on
Mathematical Software (TOMS), 41(4):1–20, 2015.

[11] Timothy A. Davis and Yifan Hu. The university of florida sparse matrix
collection. ACM Trans. Math. Softw., 38(1), December 2011.

[12] Mehmet Deveci, Simon D Hammond, Michael M Wolf, and
Sivasankaran Rajamanickam. Sparse matrix-matrix multiplication on
multilevel memory architectures: Algorithms and experiments. arXiv
preprint arXiv:1804.00695, 2018.

[13] John R Gilbert, Steve Reinhardt, and Viral B Shah. High-performance
graph algorithms from parallel sparse matrices. In International Work-
shop on Applied Parallel Computing, pages 260–269. Springer, 2006.

[14] Enrico Gobbetti, Fabio Marton, and José Antonio Iglesias Guitián.
A single-pass gpu ray casting framework for interactive out-of-core
rendering of massive volumetric datasets. The Visual Computer, 24(7-
9):797–806, 2008.

[15] Oded Green, Robert McColl, and David A Bader. Gpu merge path: a
gpu merging algorithm. In Proceedings of the 26th ACM international
conference on Supercomputing, pages 331–340, 2012.

[16] Felix Gremse, Andreas Hofter, Lars Ole Schwen, Fabian Kiessling, and
Uwe Naumann. Gpu-accelerated sparse matrix-matrix multiplication
by iterative row merging. SIAM Journal on Scientific Computing,
37(1):C54–C71, 2015.

[17] Felix Gremse, Kerstin Kupper, and Uwe Naumann. Memory-efficient
sparse matrix-matrix multiplication by row merging on many-core
architectures. SIAM Journal on Scientific Computing, 40(4):C429–C449,
2018.

[18] Design Guide. Cuda c programming guide. NVIDIA, July, 2013.
[19] Fred G Gustavson. Two fast algorithms for sparse matrices: Multipli-

cation and permuted transposition. ACM Transactions on Mathematical
Software (TOMS), 4(3):250–269, 1978.

[20] Takahiro Harada. A framework to transform in-core gpu algorithms to
out-of-core algorithms. I3D ’16, page 179–180, New York, NY, USA,
2016. Association for Computing Machinery.

[21] Peng Jiang, Changwan Hong, and Gagan Agrawal. A novel data
transformation and execution strategy for accelerating sparse matrix
multiplication on gpus. In Proceedings of the 25th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, pages
376–388, 2020.

[22] Jeremy Kepner, Peter Aaltonen, David Bader, Aydin Buluç, Franz
Franchetti, John Gilbert, Dylan Hutchison, Manoj Kumar, Andrew
Lumsdaine, Henning Meyerhenke, et al. Mathematical foundations of
the graphblas. In 2016 IEEE High Performance Extreme Computing
Conference (HPEC), pages 1–9. IEEE, 2016.

[23] Rakshith Kunchum, Ankur Chaudhry, Aravind Sukumaran-Rajam, Qing-
peng Niu, Israt Nisa, and P Sadayappan. On improving performance
of sparse matrix-matrix multiplication on gpus. In Proceedings of the
International Conference on Supercomputing, pages 1–11, 2017.

[24] Weifeng Liu and Brian Vinter. An efficient gpu general sparse matrix-
matrix multiplication for irregular data. In 2014 IEEE 28th International
Parallel and Distributed Processing Symposium, pages 370–381. IEEE,
2014.

[25] Weifeng Liu and Brian Vinter. A framework for general sparse matrix–
matrix multiplication on gpus and heterogeneous processors. Journal of
Parallel and Distributed Computing, 85:47–61, 2015.

[26] Xing Mu, Hou-Xing Zhou, Kang Chen, and Wei Hong. Higher
order method of moments with a parallel out-of-core lu solver on
gpu/cpu platform. IEEE Transactions on Antennas and Propagation,
62(11):5634–5646, 2014.

[27] Yusuke Nagasaka, Satoshi Matsuoka, Ariful Azad, and Aydın Buluç.
High-performance sparse matrix-matrix products on intel knl and multi-
core architectures. In Proceedings of the 47th International Conference
on Parallel Processing Companion, pages 1–10, 2018.

[28] Yusuke Nagasaka, Akira Nukada, and Satoshi Matsuoka. High-
performance and memory-saving sparse general matrix-matrix multipli-
cation for nvidia pascal gpu. In 2017 46th International Conference on
Parallel Processing (ICPP), pages 101–110. IEEE, 2017.

[29] Qingpeng Niu, Pai-Wei Lai, SM Faisal, Srinivasan Parthasarathy, and
P Sadayappan. A fast implementation of mlr-mcl algorithm on multi-
core processors. In 2014 21st International Conference on High
Performance Computing (HiPC), pages 1–10. IEEE, 2014.

[30] Mathias Parger, Martin Winter, Daniel Mlakar, and Markus Steinberger.
speck: accelerating gpu sparse matrix-matrix multiplication through
lightweight analysis. In Proceedings of the 25th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, pages
362–375, 2020.

[31] Md Mostofa Ali Patwary, Nadathur Rajagopalan Satish, Narayanan Sun-
daram, Jongsoo Park, Michael J Anderson, Satya Gautam Vadlamudi,
Dipankar Das, Sergey G Pudov, Vadim O Pirogov, and Pradeep Dubey.
Parallel efficient sparse matrix-matrix multiplication on multicore plat-
forms. In International Conference on High Performance Computing,
pages 48–57. Springer, 2015.

[32] Siddhartha Sahu, Amine Mhedhbi, Semih Salihoglu, Jimmy Lin, and
M Tamer Özsu. The ubiquity of large graphs and surprising challenges
of graph processing. Proceedings of the VLDB Endowment, 11(4):420–
431, 2017.



[33] Oguz Selvitopi, Md Taufique Hussain, Ariful Azad, and Aydın Buluç.
Optimizing high performance markov clustering for pre-exascale archi-
tectures. In 2020 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), pages 116–126. IEEE, 2020.

[34] Koichi Shirahata, Hitoshi Sato, and Satoshi Matsuoka. Out-of-core gpu
memory management for mapreduce-based large-scale graph processing.
In 2014 IEEE International Conference on Cluster Computing (CLUS-
TER), pages 221–229. IEEE, 2014.

[35] Virginia Vassilevska, Ryan Williams, and Raphael Yuster. Finding
heaviest h-subgraphs in real weighted graphs, with applications. ACM
Transactions on Algorithms (TALG), 6(3):1–23, 2010.

[36] Endong Wang, Qing Zhang, Bo Shen, Guangyong Zhang, Xiaowei Lu,
Qing Wu, and Yajuan Wang. Intel math kernel library. In High-
Performance Computing on the Intel® Xeon Phi™, pages 167–188.
Springer, 2014.

[37] Martin Winter, Daniel Mlakar, Rhaleb Zayer, Hans-Peter Seidel, and
Markus Steinberger. Adaptive sparse matrix-matrix multiplication on the
gpu. In Proceedings of the 24th Symposium on Principles and Practice
of Parallel Programming, pages 68–81, 2019.


