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The rich literature on online Bayesian selection problems has long focused on so-called prophet

inequalities, which compare the gain of an online algorithm to that of a “prophet” who knows

the future. An equally-natural, though significantly less well-studied benchmark is the optimum

online algorithm, which may be omnipotent (i.e., computationally-unbounded), but not omniscient.

What is the computational complexity of the optimum online? How well can a polynomial-time

algorithm approximate it?

Problem Statement. The input is a (known) bipartite graph, with nodes of one side, termed

offline nodes, present at time zero. At each time 𝑡 ≥ 1, online node 𝑡 arrives with some (known)

probability 𝑝𝑡 , yielding a (known) value of 𝑣𝑡 if it is matched. These matching choices must be

made immediately and irrevocably, with the objective to maximize the overall gain. (Note: In the

full paper, we consider an extension where online nodes sample weights to offline nodes from

arbitrary distributions.)

The optimal offline algorithm (the prophet) can be approximated with a factor of 1/2 (see, e.g.,

[3]). This ratio is tight, as the problem generalizes the original single-item prophet inequality.

We study the optimal online algorithm: it is well-defined, and computable via an exponential-sized

dynamic program. How well can be approximate this algorithm in polynomial time?

Hardness. We show that it is PSPACE-hard to approximate this problem within some constant

𝛼 < 1. To the best of our knowledge, this is the first hardness result for the computation of the

optimal online algorithm in an online Bayesian selection setting. Our result builds on a sequence of

reductions from the (PSPACE-hard) approximation of the stochastic SAT problem, due to Condon et
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al. [1]. In particular, our proof proceeds via the use of expander graphs for the hardness of bounded-

degree stochastic SAT, and reducing this problem to our online Bayesian matching problem.

Algorithm. On the flip side, we present a polynomial-time algorithm which approximates

optimal online within a factor of 0.51—beating the best-possible prophet inequality.

At the core of our algorithm is a linear program with a constraint that naturally separates online

from offline algorithms (previously observed in [5]). This LP’s variables {𝑥𝑖,𝑡 } intuitively upper

bound the probability edge (𝑖, 𝑡) is matched by the optimal online algorithm. Our algorithm solves

this LP and uses its solution to match each edge (𝑖, 𝑡) with probability at least 0.51 · 𝑥𝑖,𝑡 , yielding
our approximation ratio, by linearity of expectation. Broadly, for each arriving online node 𝑡 , we

pick a neighbor 𝑖 with probability based on 𝑥 , and if 𝑖 is free, match (𝑖, 𝑡) with some correcting

probability, as in [2].

Unlike the algorithm of [2], we allow some online nodes 𝑡 to make two choices of an offline

neighbor, to increase the marginal probabilities for certain edges. Here, we rely crucially on the LP

constraint separating online from offline algorithms, and a careful analysis of correlations between

offline nodes’ matched statuses. From this, we obtain our 0.51 approximation of the optimal online

algorithm, beating the best-possible ratio of 1/2 of any prophet inequality.

Conclusions and Open Questions. It is natural to further study the efficient approximability

of our problem. We suspect that much better approximation guarantees are achievable. A related

interesting question is to obtain better approximation for the widely-studied special case of online

nodes drawn from some i.i.d distribution.

More broadly, one might ask how well one can approximate the optimal online algorithm for

online Bayesian selection problems under the numerous constraints studied in the literature, includ-

ing matroid and matroid intersections, knapsack constraints, etc. For which of these problems is the

online optimum easy to compute? Which admit a PTAS? Which admit constant approximations?

Which are hard to approximate? We are hopeful that the ideas developed here will prove useful

when exploring this promising research direction.

Follow-up work: Since this paper was posted to Arxiv, the last two authors have extended this

paper’s algorithm to obtain improved algorithms for the (seemingly unrelated) online edge coloring

problem [4]. Their ideas can be used to improve our approximation ratio from 0.51 to 0.526.
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