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Abstract—Universal quantum computation requires the im-
plementation of a logical non-Clifford gate. In this paper, we
characterize all stabilizer codes whose code subspaces are pre-
served under physical 7 and T gates. For example, this could
enable magic state distillation with non-CSS codes and, thus,
provide better parameters than CSS-based protocols. However,
among non-degenerate stabilizer codes that support transversal
T, we prove that CSS codes are optimal. We also show that
triorthogonal codes are, essentially, the only family of CSS codes
that realize logical transversal 7" via physical transversal 7. Using
our algebraic approach, we reveal new purely-classical coding
problems that are intimately related to the realization of logical
operations via transversal 7'. Decreasing monomial codes are also
used to construct a code that realizes logical CCZ. Finally, we use
Ax’s theorem to characterize the logical operation realized on a
family of quantum Reed-Muller codes. This result is generalized
to finer angle Z-rotations in https://arxiv.org/abs/1910.09333.

Index Terms—Heisenberg-Weyl group, quantum computing,
Clifford hierarchy, stabilizer codes, self-dual codes, CSS codes

I. INTRODUCTION

Quantum computers have been theoretically shown to pro-
vide computational advantages over conventional (classical)
computers, which could have impacts in fields as varied as
quantum simulation, optimization, chemistry, communications,
and metrology. Recently, Google and NASA demonstrated a
computational advantage for a random circuit sampling task
via a real experiment on their 53-qubit quantum machine [1].
Although the extent of the advantage has been disputed by
IBM [2], it is widely accepted that this is a milestone hardware
demonstration. However, these computers are still very noisy
and algorithms that are sensitive to noise are not within reach.
One example is Shor’s algorithm for factoring integers [3], [4],
which has huge implications for digital security. A quantum
error correcting code (QECC) provides resilience to noise, and
in this paper we focus on fault-tolerant implementation of a
universal set of gates on the qubits protected by a QECC.

Universality requires one to realize a logical non-Clifford
gate and the easiest fault-tolerant realization is a transversal
operation, which splits into gates on individual qubits. In other
words, given an [n, k, d] QECC, we would like to understand
the k-qubit (logical) gates that can be realized as transver-
sal operations on the n physical qubits of the code. Since
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addressing this question in full generality is challenging, in
this paper we algebraically characterize all [n, k, d] stabilizer
QECC:s [5], [6] whose code subspaces are preserved by a given
pattern of 7" and T'" gates on the n qubits, i.e., this transversal
operation induces some logical operation on the %k protected
qubits. This characterization encompasses all schemes in the
literature that use transversal 1" gates on stabilizer codes to
achieve their objective. For example, [7], [8] use this approach
for magic state distillation (MSD).

In particular, for state distillation, almost all existing proto-
cols use Calderbank-Shor-Steane (CSS) codes [9], [10], which
form a subclass of stabilizer codes. Our results can be used
to construct distillation protocols that utilize transversal gates
on non-CSS stabilizer codes. At first look, this points towards
the possibility of better parameters than CSS-based protocols.
However, we prove that, given any [n,k,d] non-degenerate
stabilizer code supporting a pattern of 7" and T'f, there exists
an [n, k,d] CSS code with the same property. Here, by non-
degenerate we mean that each stabilizer element acts non-
trivially on at least d physical qubits. While the degenerate
case remains unsolved, our algebraic approach enables one to
reason about CSS optimality for transversal Z-rotations, which
is an important open problem in quantum error correction.

When our main result (Theorem 2) is specialized to CSS
codes we obtain new classical coding problems, and the gen-
eral case is quite similar. Since this is a self-contained problem
that classical coding theorists can analyze, we describe it here.

CSS-T Codes: A pair (Cy,C5) of binary linear codes with
parameters [n, k1,d1] and [n, ko, ds], respectively, such that
Cs C (4 and the following properties hold:

1) Cy is an even code, i.e., wy(z) = 0 (mod 2) for all
x € Cy, where wy(x) is the Hamming weight of .

2) For each z € (b, there exists a dimension wgy(x)/2
self-dual code in Ci- that is supported on z, i.e., there
exists C,, C Cf s.t. |Cp| = 2wn(®)/2 ¢, = CL, and
z € C, = 2z 2 x, ie., supp(z) C supp(z), where Ci-
is the code dual to C; and supp(z) is the support of z.

Open Problem: A [n, k; — ko, min(dy, d5 )] family of CSS-T
codes such that M = Q(1) and (ideally) M =
Q(1), where dy is the minimum distance of Cj .

This specific code family arises when the T' gate is applied
transversally, but different patterns of 7" and T gates produce
variants of it [11]. A [2™,( .),2™/%] Reed-Muller CSS-T

m/3

family is described by C; = RM(m/3,m), Cy = RM%nz"ngi%O—
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1,m). However, this family has vanishing rate and distance.
It is an important open problem to construct a constant rate
CSS-T family with growing distance. For example, this would
enable constant overhead MSD, since the ratio of input noisy
states to output e-noisy states is O (log” (%)), where vy £
loli(g%f) for an [n, k, d] code [8]. This leads to a tremendous
decrease in resource counts for this critical subroutine [12].

Several researchers have worked on constructing codes
that support 7' gates. One of the earliest known codes to
support transversal T is the [15,1,3] (CSS) quantum Reed-
Muller (QRM) code [7], [13], [14]. Subsequently, triorthog-
onal codes [8] were developed to produce a systematic
construction of CSS codes where the logical transversal T’
can be realized via physical transversal T' (up to diagonal
Clifford corrections). In Section III-A we will show that this
is essentially the only family of CSS codes that satisfies
this property. The topological family of 3D color codes [15]
has also been shown to support transversal T' gates. More
recently, quasitransversality [16] and the implied generalized
triorthogonality [17] conditions have been developed to con-
struct CSS codes that support transversal 7. Finally, quantum
pin codes [18] are CSS codes that are inspired by topological
codes, but they have a more general abstract construction that
intrinsically supports (quasi-)transversal Z-rotations.

The approach in this prior work is to analyze the CSS
basis states. Our approach is different in that we analyze the
operators in the stabilizer, and it is more general, in that it
extends beyond CSS codes. For details and proofs see [11].

II. BACKGROUND AND NOTATION
A. Heisenberg-Weyl and Clifford Groups
The 1-qubit Pauli operators are the unitaries I (identity),

xelt ) el O] veaz-P o o
where © £ /—1. They satisfy X2 = Z2 = Y2 = I,. The

n-qubit Heisenberg-Weyl (or Pauli) group HWyx, N £ 27
consists of Kronecker products of these single-qubit oper-
ators with overall phases +*,x € Z; = {0,1,2,3}. We
represent a Hermitian Pauli matrix via two binary vectors
a=log,...,an],b=1[F1,...,0n] € Zy with the notation

E(a,b) £ (M1 X1 Z) @@ (10X ZP) L (2)

Two Pauli matrices E(a,b) and E(c,d) commute if the sym-
plectic inner product {[a,b],[c,d])s = adT + bcT (mod 2) =
0, and they anti-commute otherwise [19].

Throughout the paper, & denotes modulo-2 addition and +
denotes standard integer addition. Also, all binary and integer-
valued vectors will be row vectors while complex-valued
vectors will be column vectors. For = [z1,...,2,],y =
[Y1,...,yn] € ZY, we define z xy 2 [2191,. .., Tnln]-

The Clifford group Cliff i is the normalizer of HW  in Uy,
the unitary group of N x N matrices. Hence, for g € Cliffy,

I, 0
©)

gE(a,b)g" = +B(a,b]F,), where F,QFT = Q = [0 I"].

So Fy is a binary symplectic matrix, i.e., it preserves symplec-
tic inner products ([a, b], [c, d])s = [a, b] Q2 [c, d]T. Since, up to
scalars, Cliffy is a finite subgroup of Uy, it is insufficient
to perform universal quantum computation. It is well-known
that Cliff ;y augmented by any non-Clifford unitary can approx-
imate any other unitary operator arbitrarily well. A standard
choice is the “T™ gate T £ pl/2 & 71/4 20).

B. Quadratic Form Diagonal (QFD) Gates

The Clifford hierarchy is a hierarchy of unitary operators
first defined by Gottesman and Chuang [21] to demonstrate
universal quantum computation via teleportation. The first
level of the hierarchy is CY) £ HWy and the subsequent
levels £ > 2 are defined recursively by

CO 24U eUy: UE(a,b)Ut eC¥ VDV a,bezy}. (4)

From this definition, it is easily seen that C @) = Cliff ~. Cui et
al. [22] described the structure of all diagonal unitaries in this
hierarchy. In particular, they showed that the entries in such
unitaries have to be of the form exp (2’272”1), where g € Zoe.

In [23], the set of QFD gates is introduced and defined by

’
T}(f) A Z ngvT mod 2 |’U> <U|, (5)

’UEZ?;

where ¢ £ exp (%) ,R € ZI)" is symmetric, [v) = e, is

the standard basis vector in (C]% with a 1 in the entry indexed
by v € Z%, and (v| £ |U>T. It is shown that all 1- and 2-
local diagonal gates in the hierarchy are QFD, e.g., T' = T[(f %
Moreover, their action on Pauli operators is characterized by

L 4
74 E(a,b)(ri )
= PO B (a0 b+ aR) TR 0 (©)
(R, a,b,0) 2 (1 —2°"2)agRal + 2" (aobT + boaT), (7)
R(Ra CL,E) é (1 + 2e_2)DaoR - (D&ORDQD
+ DCLORD@O + 2DaoRDa0) € ngx_rf (3

Equation (6) naturally extends the action in (3) to a large class
of diagonal unitaries, e.g., TXTT = e=""/4YP, P £ \/Z.
I, R

0 In]
(defined over Z:), which also satisfies Tr QT'% = Q (mod 2).
Here, D, represents a diagonal matrix with the diagonal set
to the vector x, and T = 1 — = with 1 representing the vector
whose entries are all 1. We write a = ag+2a; +4as+...,b =
bo+2b1 +4by+. .. € Z™ with a;, b; € Z%. With this notation,
bo + agR is an integer sum and the definition of E(a,b) has
been suitably generalized to integer vectors a, b (see [23]).

Note that the symplectic matrix in this case is ' =

C. Stabilizer Codes

A stabilizer group S is a commutative subgroup of HWy
with Hermitian elements that does not contain —I. If S has
r generators, then it can be expressed as S = (v; F(c¢;,d;);1 =
1,...,7), where v; € {£1} and E(c;, d;), E(cj,d;) commute
for all 7,5 € {1,...,r}, ie, ([ci,di], [¢j,d;])s = 0 (mod 2).
Given a stabilizer S, the associated [n, k, d] stabilizer code is
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defined as V(S) £ {|y) € CN: g|o) = |[¢) for all g € S},
where & £ n — r and d is the distance of the code that is
defined as the minimum weight of an undetectable error.

A Calderbank-Shor-Steane (CSS) code has a set of purely
X-type and purely Z-type stabilizer generators. Consider two
classical binary codes C7,C5 such that C; C (7, and let
Ci, C3 represent their respective dual codes. Then, Ci-
Cs- and the stabilizer for the resulting CSS code is given by
S 2 (v.E(c,0),v4E(0,d),c € Cz,d € Ci-) for some suitable
ve,vg € {£1}. Let C; be an [n, k1] code and C be an [n, k2]
code such that C; and C2L can correct up to t errors. Then, S
defines an [n, k1 — ko, > 2¢t+1] CSS code that we will denote
by CSS(X, Co; Z,C1H). If G and Gy are generator matrices
for the codes C» and Oy, respectively, then a generator matrix
for the binary representation of stabilizers can be written as

n n
‘ Gf‘ —| n — kl )
Gy | o

Qs = [ ©)

—

For any S, the projector on to the code V(S) is given by

T 2"
(IN+V1'E Cza 1 1
s = ] > :;Ze] (aj.b;),  (10)

i=1

where €; € {£1} in the last equality is determined by the
product of signs of the generators of .S that multiply to produce
the stabilizer element E(a;,b;).

III. STABILIZER CODES SUPPORTING QFD GATES

In order to perform universal fault-tolerant quantum compu-
tation with stabilizer QECCs, we need to identify fault-tolerant
realizations of the necessary logical operators. For logical
Pauli operators, there are at least two known algorithms [5],
[24] to translate them into the relevant physical Pauli operators
for stabilizer codes. At the second level of the Clifford
hierarchy, for logical Clifford gates, there have been several
works that determine fault-tolerant realizations on specific
codes or code families. In [19], [25] we developed a systematic
and efficient algorithm using symplectic matrices to translate
logical Clifford circuits into physical Clifford circuits for any
stabilizer code. Although this Logical Clifford Synthesis (LCS)
algorithm currently does not guarantee fault-tolerance of the
solutions, a better understanding of the symplectic solution
space might help us achieve that objective.

For non-Clifford gates, the lack of a symplectic formalism
and the fact that Paulis are not mapped to Paulis under
conjugation together make synthesis of logical non-Clifford
gates much harder. Therefore, our first goal is to understand
the structure required in the stabilizer so that a specified (non-
Clifford) gate preserves the code subspace. In this paper we
restrict ourselves to physical QFD gates since we have an
extension of the symplectic formalism for these gates. We will
discuss two steps involved in achieving this goal and solve the
transversal 7" special case completely. For proofs, refer to [11].

Step 1: Express QFD action on Pauli matrices in Pauli basisi

1
5= E(0,2), where

First we expand Tl(f) = ZTGZW ng)x .

) & E(07 l’) (0) :| 'uwT vRvT
cn’ =Tr | ——= = E . (11
R,z |: \/27 Tr \/27 . 5 ( )

(e-1)

Applying this for 7 Th(Roat)

in (6) we get, assuming a, b € Z7,

it Ea,b) (7))’

= ¢¢(Rab DB (g b+ aR) T (Rfﬂ)

D

= ¢ Bab O, b+ aR) - E(0,x)
\ﬁgz; R(R,a,0),x
¢(R,a,b,L)
5 > =D =" Ba,b+aR +2). (12)
Raf)x
TELY

The primary problem here is to determine which coefficients
are non-zero for given R, a, ¢, and to compute their values.

Lemma 1: Let E(a,b) € HWy, for some a,b € Z. Then
the transversal T gate acts on E(a b) as

Qun a)/2 Z

y=a

TO"E(a,b) (T*")" = 1) E(a,boy),

where wg(a) = aa” is the Hamming weight of a, and y < a
denotes that support of y is contained in the support of a.

For the general case where each qubit is acted upon by a
possibly different integer power of 7T', we provide the result
in [11]. These formulae may be of independent interest.

Step 2: Determine conditions on S for TI(%)Hs(TI(%))T = Ilg.

We focus on the above equality because this is the necessary
and sufficient condition for a (QFD) unitary to preserve the
code subspace (see [11] for a simple argument). By expanding
the above equality for 7" using the result in Step 1, we get

T(XmHS (T®n) T

.
= %Z% [T®”E(aj,bj) (T®”)T} (13)
j=1
1 &
= Z%(a,)/Q S D)WY B b ey (4)

y=a;

This needs to equal (10) and the following characterizes that.
Theorem 2: Let S = (v;E(c;,d;);i = 1,...,r) define
a stabilizer code, with arbitrary v; € {:I:l}, and denote
the elements of S by €;E(aj,b;),j = 1,2,...,2". If the
transversal application of the T' gate preserves the code space
V(S) and hence realizes a logical operation on V(.S), then:
1) For any €;E(a;j,b;) € S, wm(a;) is even, where
wr(aj;) represents the Hamming weight of a; € Z7.
2) For any €;E(aj,b;) € S with non-zero a;, define Z; £
{#z=<a;: €,E(0,2) € S for some ¢, € {£1}}.Then Z;
contains its dual computed only on the support of a;,
i.e., on the ambient dimension w (a;). Equivalently, Z;
contains a dimension wg (a;)/2 self-dual code A; that
is supported on aj, i.e., there exists a subspace A; C Z;
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such that yz7 = 0 (mod 2) for any y, z € A; (including
y = 2) and dim(4,) = wg(a;)/2.

3) Let Zj C Zy" 2 represent Z; with all positions
outside the support of a; punctured (dropped). Then,
for each z € Z% such that 7 € (Z;)* for some j €
{1,...,2"}, we have €, = ZZZT, ie., zZZTE(O,z) es.
Here, (Z;)" denotes the dual of Z; taken over this
punctured space with ambient dimension w (a;). (Also,
Z; D (Z;)* with zeros added outside the support of a;.)

Conversely, if the first two conditions above are satisfied, and

if the third condition holds for all z € A; instead of just the

dual of (the punctured) Z;, then transversal T' preserves the

code space V' (S) and hence induces a logical operation.

We will illustrate this theorem using a simple CSS example.
Example 1: Define a [6,2,2] CSS code by the matrix

11111 1[000000
0000O0GO0[I T 0OTOO
G=19000000/001100]|
00000O0/0O0O0O0T11

The right half of the last 3 rows form the generators
of Zg for this code. Since there is only one non-trivial
a; in this case, we see that Zg = A; with a; =
[1,1,1,1,1,1]. Hence, the stabilizer generators are X®¢ =
X1 Xo - Xg,—Z125,—Z3Z4,—Z5Zg, since the generators
of Zg have weight 2. Multiplying X®% and the product of
these three Z-stabilizers, we see that Y®% ¢ S.

We can define the logical X operators for this code to be
X, = X1 X5, X5 = X3X, since these are linearly indepen-
dent and commute with all stabilizers. Then we observe

TE X, Xo (T = e 27/4(Y, Py) (Yo ) (16)
= —1- (’LX1Z1P1)(ZX2Z2P2) (17)
= —Z(XlXQ)(P1P2), (18)

since —Z,7Z5 € S. We observe that (P, P)X®%(P P,)T =
V1VoXs Xy X5Xg = X®6 up to the stabilizer —Z;Z5, so
Py P, indeed preserves V(S). But (P P)(X1X2)(PP)f =
YiYQ = (XlXQ)(—leQ) = X1X2, and P1P2 ObViOllSly
commutes with X5, so P, P is essentially the logical identity
gate. A similar reasoning holds for P;P,. Therefore, up to a
global phase, the transversal T preserves the logical operators
X, and X5, so in this case the transversal 7' gate realizes just
the logical identity (up to a global phase). This can also be
checked explicitly by writing the logical basis states.

Given that S has the necessary structure given by The-
orem 2, note that we can freely add another Z-stabilizer
generator that commutes with X ®6, e.g., L143247¢
[1,0,1,1,0,1] ¢ Zg. This preserves the transversal T' prop-
erty: once T%"IIg(T%")" = Ilg, mapping IIg + Ilg -
w preserves equality since E(0, z) is diagonal. M

This example also illustrates the calculations required to
determine the logical operator induced by transversal 7" on the
code space. Our general results in [11] follows this strategy.

When we specialize this theorem to CSS codes, we obtain
the CSS-T codes introduced in Section I. We observe that

18

the case of general stabilizer codes is quite similar. The
generalization to arbitrary patterns of 7' and 7T is given
in [11], together with a partial extension to finer angle Z-
rotations, which involves trigonometric quantities.

Remark 3: Intuitively, a CSS-T code is determined by two
classical codes Cs C C7 such that for every codeword = €
Ca, there exists a dimension wy(z)/2 self-dual code in C7-
supported on z. This also means that C; * Co C Cf- for the
following reason. Let a € Cy,x € (5, so that a is orthogonal
to every vector in Ci. In particular, a is orthogonal to the
self-dual code C, C Cji- supported on x. But for any z € C,,
azT = (axz)zT = 0. This means axx € C, C Cf since C,, is
self-dual. We believe this observation can make it convenient
to derive properties of CSS-T codes, e.g., using [26]. [ ]

Now we provide an important corollary (see [11] for proof).

Definition 4: An [n, k,d] stabilizer code is non-degenerate
if every stabilizer element has weight at least d.

Corollary 5: Consider an [n, k, d] non-degenerate stabilizer
code V'(.9) that satisfies Theorem 2. The stabilizer S has gen-
erators of the form €E(a,b), ' E(a’,0),e"E(0,b'). Then the
[n, k,d] CSS code defined by replacing eE(a,b)’s (a,b # 0)
with €F(a,0)’s also satisfies the transversal T' property, i.e.,
generators € E(a’,0),¢"E(0,b') of S are left unchanged. M

This corollary shows that, for the purpose of transversal T’
on non-degenerate stabilizer codes, CSS-T codes are optimal
(in terms of n, k, d). Therefore, magic state distillation proto-
cols based on these codes might be nearly optimal, unless
the degenerate case fails non-trivially. We provide a brief
discussion of the degenerate case in [11], where we show
that we can extend the above corollary under an additional
condition on the stabilizer of the degenerate code.

A. Logical T Gates from Transversal T

In [11] we revisit the well-known [15,1,3] code using
classical codes and show that it is indeed a CSS-T code.
More generally, we can construct CSS-T codes where the
physical transversal T realizes logical transversal 7'. In fact,
triorthogonal codes introduced by Bravyi and Haah [8] serve
exactly this purpose. As our next result, using our methods we
show a “converse” that triorthogonality is not only sufficient
but also necessary if we desire to realize logical transversal T’
via physical transversal 7" (using a CSS-T code).

Definition 6 (Triorthogonality [8]): A p X g binary matrix
G is said to be triorthogonal if and only if the support of any
pair and triple of its rows has an even weight overlap, i.e.,
wp (G * Gp) = 0 (mod 2) for any two rows G, and Gy, for
1<a<b<p, and wy(G, * Gy x G.) = 0 (mod 2) for all
triples of rows G,, Gy, G, for 1 <a <b<c < p.

Theorem 7: Let S be the stabilizer for an [n, k,d] CSS-T

code CSS(X, Cy; Z, C1). Let G = Gcé/cz
2

matrix for the classical code C; O C5 such that the rows
xi,i = 1,...,k, of Gg,/c, form a generating set for the
coset space Cp/C5 that produces the logical X group of
the CSS-T code, ie., X = (F(z;,0);i = 1,...,k). Then

be a generator

9 Ehysical transversal 7" realizes logical transversal 7', without
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Clifford corrections as in [8], if and only if the matrix G is
triorthogonal and the following condition holds for all a € Cs:

k
x = @cizi, ¢i €{0,1} = wy(z ®a) = wy(c) (mod 8).
i=1
Corollary 8: The triorthogonal construction introduced by
Bravyi and Haah [8] is the most general CSS family that
realizes logical transversal 7' from physical transversal T'.
Proof: The strategy is to show that the weight condition
in Theorem 7 is equivalent to the condition one obtains by
setting the Clifford correction in [8] to be trivial (see [11]). H
Note that if the weight condition in Theorem 7 is replaced
by the condition that F(z,0) € X = #@[E(0,z) € S,
then the induced logical operator is trivial, i.e., the logical
identity [11]. Since for CSS-T codes we already have Cy C
Cfi-, this condition is equivalent to the constraint C; C Ci-.

B. Logical Controlled-Controlled-Z Gates from Transversal T

The gate CCZ = diag(1,1,1,1,1,1,1,—1) belongs to
C®) and enables universal computation when combined with
C®. One of the simplest codes that realizes logical CCZ
from physical transversal 7' is Campbell’s [8,3,2] (CSS)
“smallest interesting color code” [27]. In our notation, this
code is described by setting C to be the 8-bit repetition code
RM(0, 3) and C; = C{- to be the [8, 4, 4] extended Hamming
code, which is also the self-dual Reed-Muller code RM(1, 3).

A general class of polynomial evaluation codes, called de-
creasing monomial codes (DMCs), were introduced by Bardet
et al. [28]. While a Reed-Muller code RM(r, m) is generated
by all binary m-variate monomials of degree up to r < m,
DMCs allow one to include all monomials up to degree r — 1
and a subset of degree-r monomials according to a partial
order. This provides greater design freedom, and we refer
to [28] for a description of some code properties.

Example 2: Recently, Krishna and Tillich used DMCs to
construct triorthogonal codes from punctured polar codes
for magic state distillation [29]. We are able to con-
struct a [16,3,2] CSS code from DMCs where transver-
sal T realizes logical CCZ. Define the code C5 as the
space generated by the monomials Gy = {1,z1,2z2}, and
the code C; as the space generated by G Go U
{x3, x4, z122}. Hence, the logical X group is generated by
Gx = {x3,z4,2122}. Using [28] it is easy to see that
Gt = {1,11, 29,73, 24,179, T173, T174, ToT3, ToT4} and
Gy = G{ U{z374, 117923, 717274 }. So the logical Z group
is generated by Gz = {x1x224, x122x3, T3T4}.

To see that this code satisfies Theorem 2, consider for exam-
ple the X -stabilizer corresponding to the monomial z; € Gs.
We observe that the elements x1,z1%9, 123,124 € Gf‘
are supported on x;. When we project down to x;, we get
the monomials 1,2, = x9,ZT2 = x3,T3 = x4 that precisely
generate the code RM(1, 3) that is self-dual. A similar analysis
can be made for other elements in C5. Moreover, since the
elements in Gf- have weights 4,8, or 16, the last condition
of Theorem 2 does not introduce any negative signs for the
Z-stabilizers. We believe this is not just one special case but

points towards using this formalism for a general construction
of CSS codes that support transversal Z-rotations. In [11] we
also discuss connections to pin codes [18], quasitransversal-
ity [16] and the generalized triorthogonality [17] conditions
for CSS codes to realize logical CCZs from transversal 7. H
Finally we describe a [2™, ("), 2"] quantum Reed-Muller
(QRM) family that we generalize to support transversal finer
angle Z-rotations in [11]. We also characterize the exact
induced logical operation through Ax’s theorem on residue
weights of polynomials [30]. For the T' case, QRM(r, m) is
described by Cy = RM(r,m) and Cy = RM(r —1,m), where
mT_l <r< % ensures that transversal 71" preserves the code
space and induces a non-trivial logical gate. This has close
connections to [17]. The argument to show that QRM(r, m)
satisfies Theorem 2 is very similar to the [16, 3, 2] example.
Example 3: We use the [64,15,4] code to demonstrate the
general form of the logical operation. Here, the logical qubits
vy € 735 are identified with the degree r = 2 monomials that
define generators for logical X operators. Hence, we have

[UF) = [Vz12a), @ [Vay2s)p, @ @ [Vagae)y, € c*. (19
(The f will be clarified shortly.) The logical gate induced by
T®54 is described by UL [vs), = (=1)907) |vs), , q(vy) =

V2o Vegzy Vesae + V2o Vzzas Vg + Vg2 VegzgVaaxs

+ Voy23Vaoas Vrsze T Vzios Vasrs Vrsag T VoyasVroze Vasas

+ Vzr24Vzoxs Vrsag + Vg4 Vzoxs Vzsag + Vzr24VaoxgVzsas

+ VoyasVsozs Vaaws T Vzias Vrsas Vosws T Voyos Vraws Vrsea

=+ Ufﬂlfﬂsvr2r3v$4$s + v$1$61}$2z41}13$5 + UI1161)$2$5U$3$47

where each term in the polynomial corresponds to a logical
CCZ gate acting on the three logical qubits indexed by the
three monomial subscripts, and the sum corresponds to a
product of such gates (in the logical unitary space).

Recall that for vy € Zl5 the CSS basis states are given by

Z |Uf GCI/CZ >

ceCs

v)e = i C | (20)
For QRM(r, m), the rows of G¢, /¢, correspond to degree
monomials, each identifying a logical qubit. So a non-trivial
logical X operator is described by a degree r polynomial f,
but only the degree r terms determine which logical qubits are
acted upon. This implies that each degree r term in f sets the
corresponding logical qubit to |1), (lvy), = |0), initially).
For this code, the rows of G¢, /¢, are evaluations of the 15
degree 2 monomials, namely x1zs, T123, 2124, ..., T5Lg. SO
the polynomial f € RM(r, m) above is a linear combination
of degree r 2 monomials, and possibly lower degree
monomials (that correspond to just X -type stabilizers). Hence,
vy € Z1° exactly describes which corresponding rows of
Gc, /¢, are chosen in this linear combination. Therefore, if
f = mime + x324 + w526 + (smaller degree terms), then
Uzyzs = Vzgzs = Vazsze = 1 and other logical qubits are set
to |0);, so g(vy) = 1. But if f = z1z2 + 2324 + 526 +
2325 + 46 + (smaller degree terms), then g(vy) = 0 as this
f corresponds to two CCZs applying the phase —1. [ ]
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