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Abstract—Universal quantum computation requires the im-
plementation of a logical non-Clifford gate. In this paper, we
characterize all stabilizer codes whose code subspaces are pre-
served under physical T and T

† gates. For example, this could
enable magic state distillation with non-CSS codes and, thus,
provide better parameters than CSS-based protocols. However,
among non-degenerate stabilizer codes that support transversal
T , we prove that CSS codes are optimal. We also show that
triorthogonal codes are, essentially, the only family of CSS codes
that realize logical transversal T via physical transversal T . Using
our algebraic approach, we reveal new purely-classical coding
problems that are intimately related to the realization of logical
operations via transversal T . Decreasing monomial codes are also
used to construct a code that realizes logical CCZ. Finally, we use
Ax’s theorem to characterize the logical operation realized on a
family of quantum Reed-Muller codes. This result is generalized
to finer angle Z-rotations in https://arxiv.org/abs/1910.09333.

Index Terms—Heisenberg-Weyl group, quantum computing,
Clifford hierarchy, stabilizer codes, self-dual codes, CSS codes

I. INTRODUCTION

Quantum computers have been theoretically shown to pro-

vide computational advantages over conventional (classical)

computers, which could have impacts in fields as varied as

quantum simulation, optimization, chemistry, communications,

and metrology. Recently, Google and NASA demonstrated a

computational advantage for a random circuit sampling task

via a real experiment on their 53-qubit quantum machine [1].

Although the extent of the advantage has been disputed by

IBM [2], it is widely accepted that this is a milestone hardware

demonstration. However, these computers are still very noisy

and algorithms that are sensitive to noise are not within reach.

One example is Shor’s algorithm for factoring integers [3], [4],

which has huge implications for digital security. A quantum

error correcting code (QECC) provides resilience to noise, and

in this paper we focus on fault-tolerant implementation of a

universal set of gates on the qubits protected by a QECC.
Universality requires one to realize a logical non-Clifford

gate and the easiest fault-tolerant realization is a transversal

operation, which splits into gates on individual qubits. In other

words, given an [[n, k, d]] QECC, we would like to understand

the k-qubit (logical) gates that can be realized as transver-

sal operations on the n physical qubits of the code. Since
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addressing this question in full generality is challenging, in

this paper we algebraically characterize all [[n, k, d]] stabilizer

QECCs [5], [6] whose code subspaces are preserved by a given

pattern of T and T † gates on the n qubits, i.e., this transversal

operation induces some logical operation on the k protected

qubits. This characterization encompasses all schemes in the

literature that use transversal T gates on stabilizer codes to

achieve their objective. For example, [7], [8] use this approach

for magic state distillation (MSD).

In particular, for state distillation, almost all existing proto-

cols use Calderbank-Shor-Steane (CSS) codes [9], [10], which

form a subclass of stabilizer codes. Our results can be used

to construct distillation protocols that utilize transversal gates

on non-CSS stabilizer codes. At first look, this points towards

the possibility of better parameters than CSS-based protocols.

However, we prove that, given any [[n, k, d]] non-degenerate

stabilizer code supporting a pattern of T and T †, there exists

an [[n, k, d]] CSS code with the same property. Here, by non-

degenerate we mean that each stabilizer element acts non-

trivially on at least d physical qubits. While the degenerate

case remains unsolved, our algebraic approach enables one to

reason about CSS optimality for transversal Z-rotations, which

is an important open problem in quantum error correction.

When our main result (Theorem 2) is specialized to CSS

codes we obtain new classical coding problems, and the gen-

eral case is quite similar. Since this is a self-contained problem

that classical coding theorists can analyze, we describe it here.

CSS-T Codes: A pair (C1, C2) of binary linear codes with

parameters [n, k1, d1] and [n, k2, d2], respectively, such that

C2 ⊂ C1 and the following properties hold:

1) C2 is an even code, i.e., wH(x) ≡ 0 (mod 2) for all

x ∈ C2, where wH(x) is the Hamming weight of x.

2) For each x ∈ C2, there exists a dimension wH(x)/2
self-dual code in C⊥

1 that is supported on x, i.e., there

exists Cx ⊆ C⊥
1 s.t. |Cx| = 2wH(x)/2, Cx = C⊥

x , and

z ∈ Cx ⇒ z � x, i.e., supp(z) ⊆ supp(x), where C⊥
1

is the code dual to C1 and supp(x) is the support of x.

Open Problem: A [[n, k1−k2,min(d1, d
⊥
2 )]] family of CSS-T

codes such that
(k1−k2)

n = Ω(1) and (ideally)
min(d1,d

⊥

2
)

n =
Ω(1), where d⊥2 is the minimum distance of C⊥

2 .

This specific code family arises when the T gate is applied

transversally, but different patterns of T and T † gates produce

variants of it [11]. A [[2m,
(

m
m/3

)

, 2m/3]] Reed-Muller CSS-T

family is described by C1 = RM(m/3,m), C2 = RM(m/3−
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1,m). However, this family has vanishing rate and distance.

It is an important open problem to construct a constant rate

CSS-T family with growing distance. For example, this would

enable constant overhead MSD, since the ratio of input noisy

states to output ǫ-noisy states is O
(

logγ
(

1
ǫ

))

, where γ ,
log(n/k)
log(d) for an [[n, k, d]] code [8]. This leads to a tremendous

decrease in resource counts for this critical subroutine [12].
Several researchers have worked on constructing codes

that support T gates. One of the earliest known codes to

support transversal T is the [[15, 1, 3]] (CSS) quantum Reed-

Muller (QRM) code [7], [13], [14]. Subsequently, triorthog-

onal codes [8] were developed to produce a systematic

construction of CSS codes where the logical transversal T
can be realized via physical transversal T (up to diagonal

Clifford corrections). In Section III-A we will show that this

is essentially the only family of CSS codes that satisfies

this property. The topological family of 3D color codes [15]

has also been shown to support transversal T gates. More

recently, quasitransversality [16] and the implied generalized

triorthogonality [17] conditions have been developed to con-

struct CSS codes that support transversal T . Finally, quantum

pin codes [18] are CSS codes that are inspired by topological

codes, but they have a more general abstract construction that

intrinsically supports (quasi-)transversal Z-rotations.
The approach in this prior work is to analyze the CSS

basis states. Our approach is different in that we analyze the

operators in the stabilizer, and it is more general, in that it

extends beyond CSS codes. For details and proofs see [11].

II. BACKGROUND AND NOTATION

A. Heisenberg-Weyl and Clifford Groups

The 1-qubit Pauli operators are the unitaries I2 (identity),

X ,

[

0 1
1 0

]

, Z ,

[

1 0
0 −1

]

, Y , ıXZ =

[

0 −ı
ı 0

]

, (1)

where ı ,
√
−1. They satisfy X2 = Z2 = Y 2 = I2. The

n-qubit Heisenberg-Weyl (or Pauli) group HWN , N , 2n,

consists of Kronecker products of these single-qubit oper-

ators with overall phases ıκ, κ ∈ Z4 , {0, 1, 2, 3}. We

represent a Hermitian Pauli matrix via two binary vectors

a = [α1, . . . , αn], b = [β1, . . . , βn] ∈ Z
n
2 with the notation

E(a, b) ,
(

ıα1β1Xα1Zβ1

)

⊗ · · · ⊗
(

ıαnβnXαnZβn
)

. (2)

Two Pauli matrices E(a, b) and E(c, d) commute if the sym-

plectic inner product 〈[a, b], [c, d]〉s , adT + bcT (mod 2) =
0, and they anti-commute otherwise [19].

Throughout the paper, ⊕ denotes modulo-2 addition and +
denotes standard integer addition. Also, all binary and integer-

valued vectors will be row vectors while complex-valued

vectors will be column vectors. For x = [x1, . . . , xn], y =
[y1, . . . , yn] ∈ Z

n
2 , we define x ∗ y , [x1y1, . . . , xnyn].

The Clifford group CliffN is the normalizer of HWN in UN ,

the unitary group of N ×N matrices. Hence, for g ∈ CliffN ,

gE(a, b)g† = ±E([a, b]Fg), where FgΩF
T
g = Ω =

[

0 In

In 0

]

.

(3)

So Fg is a binary symplectic matrix, i.e., it preserves symplec-

tic inner products 〈[a, b], [c, d]〉s = [a, b] Ω [c, d]T . Since, up to

scalars, CliffN is a finite subgroup of UN , it is insufficient

to perform universal quantum computation. It is well-known

that CliffN augmented by any non-Clifford unitary can approx-

imate any other unitary operator arbitrarily well. A standard

choice is the “T ” gate T , P 1/2 , Z1/4 [20].

B. Quadratic Form Diagonal (QFD) Gates

The Clifford hierarchy is a hierarchy of unitary operators

first defined by Gottesman and Chuang [21] to demonstrate

universal quantum computation via teleportation. The first

level of the hierarchy is C(1) , HWN and the subsequent

levels ℓ ≥ 2 are defined recursively by

C(ℓ) , {U ∈ UN : UE(a, b)U† ∈ C(ℓ−1) ∀ a, b ∈ Z
n
2}. (4)

From this definition, it is easily seen that C(2) = CliffN . Cui et

al. [22] described the structure of all diagonal unitaries in this

hierarchy. In particular, they showed that the entries in such

unitaries have to be of the form exp
(

2πıq
2ℓ

)

, where q ∈ Z2ℓ .

In [23], the set of QFD gates is introduced and defined by

τ
(ℓ)
R ,

∑

v∈Z
n
2

ξvRvT mod 2ℓ |v〉 〈v| , (5)

where ξ , exp
(

2πı
2ℓ

)

, R ∈ Z
n×n
2ℓ

is symmetric, |v〉 = ev is

the standard basis vector in C
N with a 1 in the entry indexed

by v ∈ Z
n
2 , and 〈v| , |v〉†. It is shown that all 1- and 2-

local diagonal gates in the hierarchy are QFD, e.g., T = τ
(3)
[ 1 ].

Moreover, their action on Pauli operators is characterized by

τ
(ℓ)
R E(a, b)(τ

(ℓ)
R )†

= ξφ(R,a,b,ℓ)E(a0, b0 + a0R) τ
(ℓ−1)

R̃(R,a,ℓ)
, (6)

φ(R, a, b, ℓ) , (1− 2ℓ−2)a0Ra
T
0 + 2ℓ−1(a0b

T
1 + b0a

T
1 ), (7)

R̃(R, a, ℓ) , (1 + 2ℓ−2)Da0R − (Dā0
RDa0

+Da0
RDā0

+ 2Da0RDa0
) ∈ Z

n×n
2ℓ−1 . (8)

Equation (6) naturally extends the action in (3) to a large class

of diagonal unitaries, e.g., TXT † = e−ıπ/4Y P, P ,
√
Z.

Note that the symplectic matrix in this case is ΓR =

[

In R
0 In

]

(defined over Z2ℓ ), which also satisfies ΓR ΩΓT
R = Ω (mod 2).

Here, Dx represents a diagonal matrix with the diagonal set

to the vector x, and x̄ = 1− x with 1 representing the vector

whose entries are all 1. We write a = a0+2a1+4a2+. . . , b =
b0+2b1+4b2+ . . . ∈ Z

n with ai, bi ∈ Z
n
2 . With this notation,

b0 + a0R is an integer sum and the definition of E(a, b) has

been suitably generalized to integer vectors a, b (see [23]).

C. Stabilizer Codes

A stabilizer group S is a commutative subgroup of HWN

with Hermitian elements that does not contain −IN . If S has

r generators, then it can be expressed as S = 〈νiE(ci, di); i =
1, . . . , r〉, where νi ∈ {±1} and E(ci, di), E(cj , dj) commute

for all i, j ∈ {1, . . . , r}, i.e., 〈[ci, di], [cj , dj ]〉s = 0 (mod 2).

Given a stabilizer S, the associated [[n, k, d]] stabilizer code is
1892
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defined as V (S) , {|ψ〉 ∈ C
N : g |ψ〉 = |ψ〉 for all g ∈ S},

where k , n − r and d is the distance of the code that is

defined as the minimum weight of an undetectable error.

A Calderbank-Shor-Steane (CSS) code has a set of purely

X-type and purely Z-type stabilizer generators. Consider two

classical binary codes C1, C2 such that C2 ⊂ C1, and let

C⊥
1 , C

⊥
2 represent their respective dual codes. Then, C⊥

1 ⊂
C⊥

2 and the stabilizer for the resulting CSS code is given by

S , 〈νcE(c, 0), νdE(0, d), c ∈ C2, d ∈ C⊥
1 〉 for some suitable

νc, νd ∈ {±1}. Let C1 be an [n, k1] code and C2 be an [n, k2]
code such that C1 and C⊥

2 can correct up to t errors. Then, S
defines an [[n, k1−k2,≥ 2t+1]] CSS code that we will denote

by CSS(X,C2;Z,C
⊥
1 ). If G2 and G⊥

1 are generator matrices

for the codes C2 and C⊥
1 , respectively, then a generator matrix

for the binary representation of stabilizers can be written as

GS =

n n
[ ]

G⊥
1 n− k1

G2 k2
. (9)

For any S, the projector on to the code V (S) is given by

ΠS ,

r
∏

i=1

(IN + νiE(ci, di))

2
=

1

2r

2r
∑

j=1

ǫjE(aj , bj), (10)

where ǫj ∈ {±1} in the last equality is determined by the

product of signs of the generators of S that multiply to produce

the stabilizer element E(aj , bj).

III. STABILIZER CODES SUPPORTING QFD GATES

In order to perform universal fault-tolerant quantum compu-

tation with stabilizer QECCs, we need to identify fault-tolerant

realizations of the necessary logical operators. For logical

Pauli operators, there are at least two known algorithms [5],

[24] to translate them into the relevant physical Pauli operators

for stabilizer codes. At the second level of the Clifford

hierarchy, for logical Clifford gates, there have been several

works that determine fault-tolerant realizations on specific

codes or code families. In [19], [25] we developed a systematic

and efficient algorithm using symplectic matrices to translate

logical Clifford circuits into physical Clifford circuits for any

stabilizer code. Although this Logical Clifford Synthesis (LCS)

algorithm currently does not guarantee fault-tolerance of the

solutions, a better understanding of the symplectic solution

space might help us achieve that objective.

For non-Clifford gates, the lack of a symplectic formalism

and the fact that Paulis are not mapped to Paulis under

conjugation together make synthesis of logical non-Clifford

gates much harder. Therefore, our first goal is to understand

the structure required in the stabilizer so that a specified (non-

Clifford) gate preserves the code subspace. In this paper we

restrict ourselves to physical QFD gates since we have an

extension of the symplectic formalism for these gates. We will

discuss two steps involved in achieving this goal and solve the

transversal T special case completely. For proofs, refer to [11].

Step 1: Express QFD action on Pauli matrices in Pauli basis.

First we expand τ
(ℓ)
R =

∑

x∈Z
n
2

c
(ℓ)
R,x · 1√

2n
E(0, x), where

c
(ℓ)
R,x , Tr

[

E(0, x)√
2n

τ
(ℓ)
R

]

=
1√
2n

∑

v∈Z
n
2

(−1)vx
T

ξvRvT

. (11)

Applying this for τ
(ℓ−1)

R̃(R,a,ℓ)
in (6) we get, assuming a, b ∈ Z

n
2 ,

τ
(ℓ)
R E(a, b)(τ

(ℓ)
R )†

= ξφ(R,a,b,ℓ)E(a, b+ aR) τ
(ℓ−1)

R̃(R,a,ℓ)

= ξφ(R,a,b,ℓ)E(a, b+ aR) · 1√
2n

∑

x∈Z
n
2

c
(ℓ−1)

R̃(R,a,ℓ),x
E(0, x)

=
ξφ(R,a,b,ℓ)

√
2n

∑

x∈Z
n
2

c
(ℓ−1)

R̃(R,a,ℓ),x
ı−axT

E(a, b+ aR+ x). (12)

The primary problem here is to determine which coefficients

are non-zero for given R, a, ℓ, and to compute their values.

Lemma 1: Let E(a, b) ∈ HWN , for some a, b ∈ Z
n
2 . Then

the transversal T gate acts on E(a, b) as

T⊗nE(a, b)
(

T⊗n
)†

=
1

2wH(a)/2

∑

y�a

(−1)by
T

E(a, b⊕ y),

where wH(a) = aaT is the Hamming weight of a, and y � a
denotes that support of y is contained in the support of a.

For the general case where each qubit is acted upon by a

possibly different integer power of T , we provide the result

in [11]. These formulae may be of independent interest.

Step 2: Determine conditions on S for τ
(ℓ)
R ΠS(τ

(ℓ)
R )† = ΠS .

We focus on the above equality because this is the necessary

and sufficient condition for a (QFD) unitary to preserve the

code subspace (see [11] for a simple argument). By expanding

the above equality for T⊗n using the result in Step 1, we get

T⊗nΠS

(

T⊗n
)†

=
1

2r

2r
∑

j=1

ǫj

[

T⊗nE(aj , bj)
(

T⊗n
)†
]

(13)

=
1

2r

2r
∑

j=1

ǫj
2wH(aj)/2

∑

y�aj

(−1)bjy
T

E(aj , bj ⊕ y). (14)

This needs to equal (10) and the following characterizes that.

Theorem 2: Let S = 〈νiE(ci, di); i = 1, . . . , r〉 define

a stabilizer code, with arbitrary νi ∈ {±1}, and denote

the elements of S by ǫjE(aj , bj), j = 1, 2, . . . , 2r. If the

transversal application of the T gate preserves the code space

V (S) and hence realizes a logical operation on V (S), then:

1) For any ǫjE(aj , bj) ∈ S, wH(aj) is even, where

wH(aj) represents the Hamming weight of aj ∈ Z
n
2 .

2) For any ǫjE(aj , bj) ∈ S with non-zero aj , define Zj ,

{z � aj : ǫzE(0, z) ∈ S for some ǫz ∈ {±1}}.Then Zj

contains its dual computed only on the support of aj ,

i.e., on the ambient dimension wH(aj). Equivalently, Zj

contains a dimension wH(aj)/2 self-dual code Aj that

is supported on aj , i.e., there exists a subspace Aj ⊆ Zj1893
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such that yzT = 0 (mod 2) for any y, z ∈ Aj (including

y = z) and dim(Aj) = wH(aj)/2.

3) Let Z̃j ⊆ Z
wH(aj)
2 represent Zj with all positions

outside the support of aj punctured (dropped). Then,

for each z ∈ Z
n
2 such that z̃ ∈ (Z̃j)

⊥ for some j ∈
{1, . . . , 2r}, we have ǫz = ızz

T

, i.e., ızz
T

E(0, z) ∈ S.

Here, (Z̃j)
⊥ denotes the dual of Zj taken over this

punctured space with ambient dimension wH(aj). (Also,

Zj ⊇ (Z̃j)
⊥ with zeros added outside the support of aj .)

Conversely, if the first two conditions above are satisfied, and

if the third condition holds for all z ∈ Aj instead of just the

dual of (the punctured) Zj , then transversal T preserves the

code space V (S) and hence induces a logical operation.

We will illustrate this theorem using a simple CSS example.

Example 1: Define a [[6, 2, 2]] CSS code by the matrix

GS =









1 1 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 1 1









. (15)

The right half of the last 3 rows form the generators

of ZS for this code. Since there is only one non-trivial

aj in this case, we see that ZS = A1 with a1 =
[1, 1, 1, 1, 1, 1]. Hence, the stabilizer generators are X⊗6 =
X1X2 · · ·X6,−Z1Z2,−Z3Z4,−Z5Z6, since the generators

of ZS have weight 2. Multiplying X⊗6 and the product of

these three Z-stabilizers, we see that Y ⊗6 ∈ S.

We can define the logical X operators for this code to be

X̄1 = X1X2, X̄2 = X3X4, since these are linearly indepen-

dent and commute with all stabilizers. Then we observe

T⊗6X1X2(T
⊗6)† = e−ı·2π/4(Y1P1)(Y2P2) (16)

= −ı · (ıX1Z1P1)(ıX2Z2P2) (17)

≡ −ı(X1X2)(P1P2), (18)

since −Z1Z2 ∈ S. We observe that (P1P2)X
⊗6(P1P2)

† =
Y1Y2X3X4X5X6 ≡ X⊗6 up to the stabilizer −Z1Z2, so

P1P2 indeed preserves V (S). But (P1P2)(X1X2)(P1P2)
† =

Y1Y2 = (X1X2)(−Z1Z2) ≡ X1X2, and P1P2 obviously

commutes with X̄2, so P1P2 is essentially the logical identity

gate. A similar reasoning holds for P3P4. Therefore, up to a

global phase, the transversal T preserves the logical operators

X̄1 and X̄2, so in this case the transversal T gate realizes just

the logical identity (up to a global phase). This can also be

checked explicitly by writing the logical basis states.

Given that S has the necessary structure given by The-

orem 2, note that we can freely add another Z-stabilizer

generator that commutes with X⊗6, e.g., Z1Z3Z4Z6 ↔
[1, 0, 1, 1, 0, 1] /∈ ZS . This preserves the transversal T prop-

erty: once T⊗nΠS(T
⊗n)† = ΠS , mapping ΠS 7→ ΠS ·

(IN+E(0,z))
2 preserves equality since E(0, z) is diagonal.

This example also illustrates the calculations required to

determine the logical operator induced by transversal T on the

code space. Our general results in [11] follows this strategy.

When we specialize this theorem to CSS codes, we obtain

the CSS-T codes introduced in Section I. We observe that

the case of general stabilizer codes is quite similar. The

generalization to arbitrary patterns of T and T † is given

in [11], together with a partial extension to finer angle Z-

rotations, which involves trigonometric quantities.

Remark 3: Intuitively, a CSS-T code is determined by two

classical codes C2 ⊂ C1 such that for every codeword x ∈
C2, there exists a dimension wH(x)/2 self-dual code in C⊥

1

supported on x. This also means that C1 ∗ C2 ⊆ C⊥
1 for the

following reason. Let a ∈ C1, x ∈ C2, so that a is orthogonal

to every vector in C⊥
1 . In particular, a is orthogonal to the

self-dual code Cx ⊂ C⊥
1 supported on x. But for any z ∈ Cx,

azT = (a∗x)zT = 0. This means a∗x ∈ Cx ⊂ C⊥
1 since Cx is

self-dual. We believe this observation can make it convenient

to derive properties of CSS-T codes, e.g., using [26].

Now we provide an important corollary (see [11] for proof).

Definition 4: An [[n, k, d]] stabilizer code is non-degenerate

if every stabilizer element has weight at least d.

Corollary 5: Consider an [[n, k, d]] non-degenerate stabilizer

code V (S) that satisfies Theorem 2. The stabilizer S has gen-

erators of the form ǫE(a, b), ǫ′E(a′, 0), ǫ′′E(0, b′). Then the

[[n, k, d]] CSS code defined by replacing ǫE(a, b)’s (a, b 6= 0)

with ǫE(a, 0)’s also satisfies the transversal T property, i.e.,

generators ǫ′E(a′, 0), ǫ′′E(0, b′) of S are left unchanged.

This corollary shows that, for the purpose of transversal T
on non-degenerate stabilizer codes, CSS-T codes are optimal

(in terms of n, k, d). Therefore, magic state distillation proto-

cols based on these codes might be nearly optimal, unless

the degenerate case fails non-trivially. We provide a brief

discussion of the degenerate case in [11], where we show

that we can extend the above corollary under an additional

condition on the stabilizer of the degenerate code.

A. Logical T Gates from Transversal T

In [11] we revisit the well-known [[15, 1, 3]] code using

classical codes and show that it is indeed a CSS-T code.

More generally, we can construct CSS-T codes where the

physical transversal T realizes logical transversal T . In fact,

triorthogonal codes introduced by Bravyi and Haah [8] serve

exactly this purpose. As our next result, using our methods we

show a “converse” that triorthogonality is not only sufficient

but also necessary if we desire to realize logical transversal T
via physical transversal T (using a CSS-T code).

Definition 6 (Triorthogonality [8]): A p × q binary matrix

G is said to be triorthogonal if and only if the support of any

pair and triple of its rows has an even weight overlap, i.e.,

wH(Ga ∗Gb) ≡ 0 (mod 2) for any two rows Ga and Gb for

1 ≤ a < b ≤ p, and wH(Ga ∗ Gb ∗ Gc) ≡ 0 (mod 2) for all

triples of rows Ga, Gb, Gc for 1 ≤ a < b < c ≤ p.

Theorem 7: Let S be the stabilizer for an [[n, k, d]] CSS-T

code CSS(X,C2;Z,C
⊥
1 ). Let G1 =

[

GC1/C2

G2

]

be a generator

matrix for the classical code C1 ⊃ C2 such that the rows

xi, i = 1, . . . , k, of GC1/C2
form a generating set for the

coset space C1/C2 that produces the logical X group of

the CSS-T code, i.e., X̄ = 〈E(xi, 0); i = 1, . . . , k〉. Then

physical transversal T realizes logical transversal T , without
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Clifford corrections as in [8], if and only if the matrix G1 is

triorthogonal and the following condition holds for all a ∈ C2:

x =

k
⊕

i=1

cixi, ci ∈ {0, 1} ⇒ wH(x⊕ a) ≡ wH(c) (mod 8).

Corollary 8: The triorthogonal construction introduced by

Bravyi and Haah [8] is the most general CSS family that

realizes logical transversal T from physical transversal T .

Proof: The strategy is to show that the weight condition

in Theorem 7 is equivalent to the condition one obtains by

setting the Clifford correction in [8] to be trivial (see [11]).

Note that if the weight condition in Theorem 7 is replaced

by the condition that E(x, 0) ∈ X̄ ⇒ ıwH(x)E(0, x) ∈ S,

then the induced logical operator is trivial, i.e., the logical

identity [11]. Since for CSS-T codes we already have C2 ⊆
C⊥

1 , this condition is equivalent to the constraint C1 ⊆ C⊥
1 .

B. Logical Controlled-Controlled-Z Gates from Transversal T

The gate CCZ , diag(1, 1, 1, 1, 1, 1, 1,−1) belongs to

C(3) and enables universal computation when combined with

C(2). One of the simplest codes that realizes logical CCZ

from physical transversal T is Campbell’s [[8, 3, 2]] (CSS)

“smallest interesting color code” [27]. In our notation, this

code is described by setting C2 to be the 8-bit repetition code

RM(0, 3) and C1 = C⊥
1 to be the [8, 4, 4] extended Hamming

code, which is also the self-dual Reed-Muller code RM(1, 3).
A general class of polynomial evaluation codes, called de-

creasing monomial codes (DMCs), were introduced by Bardet

et al. [28]. While a Reed-Muller code RM(r,m) is generated

by all binary m-variate monomials of degree up to r ≤ m,

DMCs allow one to include all monomials up to degree r− 1
and a subset of degree-r monomials according to a partial

order. This provides greater design freedom, and we refer

to [28] for a description of some code properties.

Example 2: Recently, Krishna and Tillich used DMCs to

construct triorthogonal codes from punctured polar codes

for magic state distillation [29]. We are able to con-

struct a [[16, 3, 2]] CSS code from DMCs where transver-

sal T realizes logical CCZ. Define the code C2 as the

space generated by the monomials G2 = {1, x1, x2}, and

the code C1 as the space generated by G1 = G2 ∪
{x3, x4, x1x2}. Hence, the logical X group is generated by

GX = {x3, x4, x1x2}. Using [28] it is easy to see that

G⊥
1 = {1, x1, x2, x3, x4, x1x2, x1x3, x1x4, x2x3, x2x4} and

G⊥
2 = G⊥

1 ∪{x3x4, x1x2x3, x1x2x4}. So the logical Z group

is generated by GZ = {x1x2x4, x1x2x3, x3x4}.

To see that this code satisfies Theorem 2, consider for exam-

ple the X-stabilizer corresponding to the monomial x1 ∈ G2.

We observe that the elements x1, x1x2, x1x3, x1x4 ∈ G⊥
1

are supported on x1. When we project down to x1, we get

the monomials 1, x̃1 = x2, x̃2 = x3, x̃3 = x4 that precisely

generate the code RM(1, 3) that is self-dual. A similar analysis

can be made for other elements in C2. Moreover, since the

elements in G⊥
1 have weights 4, 8, or 16, the last condition

of Theorem 2 does not introduce any negative signs for the

Z-stabilizers. We believe this is not just one special case but

points towards using this formalism for a general construction

of CSS codes that support transversal Z-rotations. In [11] we

also discuss connections to pin codes [18], quasitransversal-

ity [16] and the generalized triorthogonality [17] conditions

for CSS codes to realize logical CCZs from transversal T .
Finally we describe a [[2m,

(

m
r

)

, 2r]] quantum Reed-Muller

(QRM) family that we generalize to support transversal finer

angle Z-rotations in [11]. We also characterize the exact

induced logical operation through Ax’s theorem on residue

weights of polynomials [30]. For the T case, QRM(r,m) is

described by C1 = RM(r,m) and C2 = RM(r−1,m), where
m−1
3 < r ≤ m

3 ensures that transversal T preserves the code

space and induces a non-trivial logical gate. This has close

connections to [17]. The argument to show that QRM(r,m)

satisfies Theorem 2 is very similar to the [[16, 3, 2]] example.
Example 3: We use the [[64, 15, 4]] code to demonstrate the

general form of the logical operation. Here, the logical qubits

vf ∈ Z
15
2 are identified with the degree r = 2 monomials that

define generators for logical X operators. Hence, we have

|vf 〉L = |vx1x2
〉L ⊗ |vx1x3

〉L ⊗ · · · ⊗ |vx5x6
〉L ∈ C

215 . (19)

(The f will be clarified shortly.) The logical gate induced by

T⊗64 is described by UL |vf 〉L = (−1)q(vf ) |vf 〉L , q(vf ) =
vx1x2

vx3x4
vx5x6

+ vx1x2
vx3x5

vx4x6
+ vx1x2

vx3x6
vx4x5

+ vx1x3
vx2x4

vx5x6
+ vx1x3

vx2x5
vx4x6

+ vx1x3
vx2x6

vx4x5

+ vx1x4
vx2x3

vx5x6
+ vx1x4

vx2x5
vx3x6

+ vx1x4
vx2x6

vx3x5

+ vx1x5
vx2x3

vx4x6
+ vx1x5

vx2x4
vx3x6

+ vx1x5
vx2x6

vx3x4

+ vx1x6
vx2x3

vx4x5
+ vx1x6

vx2x4
vx3x5

+ vx1x6
vx2x5

vx3x4
,

where each term in the polynomial corresponds to a logical

CCZ gate acting on the three logical qubits indexed by the

three monomial subscripts, and the sum corresponds to a

product of such gates (in the logical unitary space).
Recall that for vf ∈ Z

15
2 the CSS basis states are given by

|vf 〉L ≡ 1

|C2|
∑

c∈C2

∣

∣vf ·GC1/C2
⊕ c

〉

. (20)

For QRM(r,m), the rows of GC1/C2
correspond to degree r

monomials, each identifying a logical qubit. So a non-trivial

logical X operator is described by a degree r polynomial f ,

but only the degree r terms determine which logical qubits are

acted upon. This implies that each degree r term in f sets the

corresponding logical qubit to |1〉L (|vf 〉L = |0〉L initially).
For this code, the rows of GC1/C2

are evaluations of the 15
degree 2 monomials, namely x1x2, x1x3, x1x4, . . . , x5x6. So

the polynomial f ∈ RM(r,m) above is a linear combination

of degree r = 2 monomials, and possibly lower degree

monomials (that correspond to just X-type stabilizers). Hence,

vf ∈ Z
15
2 exactly describes which corresponding rows of

GC1/C2
are chosen in this linear combination. Therefore, if

f = x1x2 + x3x4 + x5x6 + (smaller degree terms), then

vx1x2
= vx3x4

= vx5x6
= 1 and other logical qubits are set

to |0〉L, so q(vf ) = 1. But if f = x1x2 + x3x4 + x5x6 +
x3x5 +x4x6 +(smaller degree terms), then q(vf ) = 0 as this

f corresponds to two CCZs applying the phase −1.
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