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Abstract

The compliant nature of soft fingers allows for safe and dexterous manipulation of objects by humans in an
unstructured environment. A soft prosthetic finger design with tactile sensing capabilities for texture discrimi-
nation and subsequent sensory stimulation has the potential to create a more natural experience for an amputee.
In this work, a pneumatically actuated soft biomimetic finger is integrated with a textile neuromorphic tactile
sensor array for a texture discrimination task. The tactile sensor outputs were converted into neuromorphic spike
trains, which emulate the firing pattern of biological mechanoreceptors. Spike-based features from each taxel
compressed the information and were then used as inputs for the support vector machine classifier to differentiate
the textures. Our soft biomimetic finger with neuromorphic encoding was able to achieve an average overall
classification accuracy of 99.57% over 16 independent parameters when tested on 13 standardized textured
surfaces. The 16 parameters were the combination of 4 angles of flexion of the soft finger and 4 speeds of
palpation. To aid in the perception of more natural objects and their manipulation, subjects were provided with
transcutaneous electrical nerve stimulation to convey a subset of four textures with varied textural information.
Three able-bodied subjects successfully distinguished two or three textures with the applied stimuli. This work
paves the way for a more human-like prosthesis through a soft biomimetic finger with texture discrimination
capabilities using neuromorphic techniques that provide sensory feedback; furthermore, texture feedback has the
potential to enhance user experience when interacting with their surroundings.

Keywords: soft biomimetic finger, flexible tactile sensor, neuromorphic encoding, supervised learning, sensory
feedback

Introduction

INTEREST IN SOFT ROBOTICS has grown over the past couple
of decades largely due to their compliant structure that
tends to be more biomimetic and suitable for tasks such as
delicate object handling and palpation. Currently, soft robots
have been adapted to a variety of areas such as locomotion,
minimally invasive surgery, and orthoses.'™ A variety of soft
orthoses have been developed for hand, elbow, and ankle

rehabilitation as well as for suction liners, prostheses, and
human augmentation systems.”™ Since soft robots have the
potential to mimic organisms and interface with human
bodies, there is an increased trend toward the development of
biomimetic robotic grippers and prostheses.®'®'® While
these designs have a great grasping capacity, most soft fingers
have limited dexterity and sensing capabilities. A few soft
fingers have independent, interphalangeal actuation produc-
ing more than one degree of freedom (DOF).'>!'” However,

'Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA.

?Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, Maryland, USA.
3School of Automation Science and Electrical Engineering, Beihang University, Beijing, China.

Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore.
SSINAPSE Laboratory, National University of Singapore, Singapore, Singapore.

*Both these authors are co-first authors.



SORO-2020-0016-ver9-Sankar_1P.3d 08/27/20 9:09am Page 2

none have incorporated texture sensing and sensory feedback
capabilities. This study attempts to address this need.

The compliant nature of soft robots give them an advan-
tage over rigid continuum robots because the soft manipu-
lator allows for a more conforming grasp when manipulating
objects of diverse sizes, shapes, and texture. Additionally,
most soft robots are underactuated, meaning that the DOF do
not necessarily correspond to the number of joints. This al-
lows soft robots to have increased complexity and movement
without adding additional components.?® Soft robots are built
using compliant materials such as silicone, polymer, rubber,
or combined soft and rigid materials creating endo- or exo-
skeletons with soft actuators.'®'®2! Due to the prevalence of
flexible materials and multiple extruders, many soft robots
are three-dimensional (3D)-printed without any need for as-
sembly, further reducing the costs.® Soft robotic actuators
range from pulley systems, pneumatics, to hydraulics.?
Pneumatic actuators are most common because air is
lightweight, omnipresent, and inviscid. Given these ben-
efits, this study designed a pneumatically actuated biomi-
metic finger that is fabricated from silicone and fabric.

When subjects receive static and dynamic sensory cues
during tactile sensing, they can understand and dynamically
interact with their surroundings. Static cues can be obtained
instantaneously, with a few studies incorporating these cues,
such as tem erature curvature, and force, into their soft ro-
bots.'®!7?%3 Processing dynamic cues, such as texture, is
more complex as it requires spatial and temporal information.
Identifying surface texture has been shown to be a desirable
capability using tactile sensing and feedback as an aid to sur-
geons during minimally invasive surgery.”** Additionally,
tactile sensing has been shown to help prosthesis users with
handling everyday objects.”**’ This idea of texture recognition
was proposed by our group in preliminary studies with soft
robots, particularly in prosthetic applications.”®* Various
tactile sensors made from multiple materials have been used
for texture discrimination tasks in previous studies.”*™*! Sev-
eral studies tested their sensor and texture discrimination
methods on sets of 215 grated textures,’* ¢ whereas fewer
studies used a smaller subset of natural textures.>’~*' While
these sensors perform fairly well at texture discrimination
tasks, they do not use a flexible textile sensor that is easily
incorporable into the soft biomimetic finger. Additionally,
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most of these sensors do not neuromorphically encode the
sensory information for texture discrimination.

Neuromorphic encoding is a method to mimic the response
of mechanoreceptors found in human skin that transduce tactile
information as neural spike train code. To model biomimetic
tactile sensing, encoding, and feedback for our system, it is
desirable to understand and model these tactile receptors. This
process is inspired by the behavior of neurons in transmitting
and processing information. Neuromorphic encoding of the
spike train and its subsequent processing is more computa-
tionally efficient at encodm§ spatial and temporal information
than standard analog data.>**"**** Additionally, neuromorphic
encoding allows for easier integration with neuroprostheses as
the biomimetic spiking activity can be delivered directly to the
skin or afferent nerves to elicit more natural sensory percep-
tion.***> Such tactile feedback, mimicking the skin receptors
and sensory nerve’s code, has the potential to reduce the
learning time required for the brain to adapt to using the neu-
roprosthesis.** Neuromorphic encoding and spike-based de-
coding have been used for texture discrimination tasks in
previous studies.>*"#%47 However, this study combines the
benefits of the soft biomimetic finger with the integrated flex-
ible, textile tactile sensor and uses neuromorphic encoding with
support vector machine (SVM), while also providing users with
sensory feedback.

The goal of this study is to demonstrate the texture dis-
crimination capabilities of a novel soft biomimetic finger that
is pneumatically actuated and lays the foundation for a pros-
thetic finger with palpation and sensory feedback capabilities.
The work presented here builds on our preliminary stud-

,282% where we first presented the prototype design of a soft
ﬁnger and the use of tactile sensors. Now, in this work, we
fully investigate the effects of palpation speed and actuation
on texture discrimination using the soft finger and explore the
use of sensory feedback (Fig. 1). This article first presents
the comprehensive design of the soft biomimetic finger and
the textile tactile sensor array. The tactile sensor response is
encoded in a biomimetic manner, mimicking the properties
of skin tactile receptors. Then, we test the texture discrimi-
nation performance with the SVM classifier. Finally, we
convey classified texture information to the user using sen-
sory feedback. Our work represents several transformative
steps leading to a novel soft biomimetic finger design with a
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FIG. 1.

Overview of the texture discrimination method using the soft biomimetic finger. (A) Texture palpation using the

soft finger with the tactile sensor. (B) The sensor response is neuromorphically encoded using the Izhikevich neuron model
to mimic SA-1 neuron spiking patterns. (C) The spike-based features, average ISI, and mean spike rate are used as inputs for
SVM to classify the textures. (D) Sensory feedback is then provided to the user through TENS. ISI, interspike interval;
SA-1, slowly adapting; SVM, support vector machine; TENS, transcutaneous electrical nerve stimulation. Color images are

available online.
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flexible sensor and capability to palpate textures and sub-
sequently provide sensory feedback.

Design and Fabrication
Sensor array design

Sensors incorporated into soft robots prioritize flexibility
and simple fabrication to minimize its effect on the robot’s
actuation. The design of the flexible, textile tactile sensor
array (Fig. 2) was inspired by the mechanoreceptors found in
the epidermis of the human body.*® This variation of a pie-
zoresistive tactile sensor was easily integrated with the fin-
gertip of the soft biomimetic finger, which was fabricated
mainly from silicone and fabric. Additionally, the sensor does
not interfere with the normal actuation of the soft biomimetic
finger. The 3 x 3 tactile sensor array has nine taxels, or sensing
elements, to convey spatial information about the textures.
This type of sensor can be easily scaled to cover a larger
surface area with more taxels to provide additional spatial
information.

The tactile sensor was fabricated using conductive fabric
traces (LessEMF, Latham, NY) and piezoresistive fabric
(Eonyx, Pinole, CA), which transforms the force applied on
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FIG. 2. (A) Graphic of the flexible textile tactile sensor

array. The 3x3 sensor array has nine 4 mm~ taxels (or
sensing elements) spaced 2.5 mm apart. The tactile sensor
array is integrated at the fingertip of the soft biomimetic
finger. (B) The characterization curve of the tactile sensor
(Force vs. Voltage response) was created by placing 11
calibration weights, ranging from 10 to 1000g, onto the
taxel using an end-effector tip. Each weight was applied
once per taxel. The characterization curve of the center
taxel, taxel 5, is shown as it makes the most direct contact
with the textures. The other taxels follow a similar curve
with a consistent range of linear response. Color images are
available online.

the material into changes in resistance. The piezoresistive
fabric is sandwiched between 2mm perpendicular crossing
strips of conductive fabric. This creates a 2x2mm? sensing
surface area for each taxel. The conductive fabric traces are
spaced 2.5 mm apart. A black, protective, elastic fabric encases
the entire sensor array. Due to these low-cost materials, the
textile tactile sensor benefits from a low manufacturing cost.

The voltage response of the tactile sensor array was mea-
sured using an Arduino Mega 2560 microcontroller. Each
common line of the sensor was connected in series with a 10
kQ resistor, acting as a voltage divider. For this study, the
exact value of the applied force is not necessary, as the tex-
ture discrimination method with neuromorphic encoding uses
the relative forces measured across the textures.

Soft biomimetic finger design

The pneumatically actuated soft biomimetic finger has
three joints with two independently controllable DOF, similar

to a human finger (Fig. 3). It was fabricated from Dragon «F3

Skin™ 10 Medium (Smooth-on, Macungie, PA) silicone
rubber and two inextensible materials, cotton fiber and cotton
fabric.?® The fracture strength for the silicone rubber, which is
the measure of the material’s ability to resist failure during
elongation, is 1000%. Dragon Skin rubbers have previously
been used for applications from medical prosthetics to special
skin effects.”**? Since the soft biomimetic finger was con-
structed from silicone and fabric, it has a low manufacturing
cost and is very compliant.

Using the concept of hybrid fiber reinforced actuators,”’ the
two inextensible materials behave as strain-limiting layers to
reinforce the actuator and prevent radial expansion. To create
the air channels in the actuator, the silicone prepolymer was
poured over carbon fiber rods, separated by a block of sili-
cone, during the fabrication process. The carbon fiber rods
serve as the template for the air cavity and the block of sili-
cone separates the two air channels. Next, two layers of cotton
fiber (0.1 mm thickness) were wound around the cured
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FIG. 3. (A) Isometric view of the soft biomimetic finger

model. (B) Graphical cross section of the soft finger. Color
images are available online.
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silicone inner bladder with a pitch of 0.4 mm to completely
cover the inner bladders. Next, three strips of cotton fabric,
one 20 mm and two 8 mm width strips, with a length of 96 mm
were applied at specific intervals along the soft finger. The
20 mm strip was applied around the section of silicone be-
tween the two pneumatic channels to mimic the proximal
phalange. The 8 mm strips were applied on the soft biomi-
metic finger at specific intervals to mimic the distal and in-
termediate phalanges of a human finger. The sections of
silicone not wrapped with these fabric strips are intended to
create the metacarpophalangeal (MCP), proximal interpha-
langeal, and distal interphalangeal joints (Fig. 3). The fiber
and fabric-reinforced inner section was then coated with a
final layer of silicone. To seal the fingertip, a small silicone
rod and silicone glue were added to the distal end of the soft
finger. Finally, a strip of fabric, 100 mm by 12 mm, was ad-
hered to the palmar surface of the soft finger. This final strain-
limiting layer of fabric creates the directional curvature that
mimics the human finger. Through this process, the pneu-
matically actuated soft biomimetic finger’s three joints with
two DOF was created.

The angle of flexion of the soft biomimetic finger is de-
termined by the actuation pressure, with a linear relationship
during simultaneous actuation of both air channels (Fig. 4).
The pneumatic setup (Fig. 4C) used an air compressor and
two three-way direct-acting solenoid valves to regulate the
air flow into the soft biomimetic finger. Each valve is con-
nected to an air channel’s inlet and a pressure sensor (Hon-
eywell ASDXACXI100PAAAS). The pneumatic circuit is
independently controlled by an Arduino microcontroller.

Textured plates design

A total of 13 textured plates were designed and 3D printed
out of polylactic acid (PLA) to assess the soft finger’s texture
discrimination capability (Fig. 5). These 108x36mm?” tex-
tured plates, with varying texture elements, were passively
palpated by the soft biomimetic finger. The varied texture el-
ements of the textured plates require both spatial and temporal
information to accurately discriminate between the textures.
The 36 x 36 mm? textured surface was centered along the plate
to create an isolated surface for palpation. Each texture was
raised 2.5 mm above the top plane of the textured plate.

Methods

To test texture discrimination in this study (Fig. 1), the soft
finger passively palpated the 13 textured plates at 4 speeds and
4 actuated states. This resulted in 16 total parameters being
tested over the 13 textured plates to determine the texture
discrimination ability of the soft finger at varying conditions.

Experimental procedure

Consistent palpation of the textures required a robust
testing method with a gripper that held the soft biomimetic
finger without inhibiting its actuation. Thus, the soft finger’s
MCP inlet was held by the gripper to allow normal actuation
and was mounted to an UR5 Robot arm (Universal Robots,
Odense, Denmark) to palpate the textured plates. First, the
soft biomimetic finger was brought down onto one side of the
textured plate until the fingertip was between 10° and 15°
with respect to the textured plate and applied a normal force
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FIG.4. (A) Side view of the simultaneous actuation of both
joints at varying pressures when mounted horizontally on the
URS robot arm. (B) Angle of flexion of the soft biomimetic
finger in response to the pneumatic actuation pressure. The
angle of flexion is the degree to which the fingertip moved
when the soft finger flexed during actuation compared with
the 0° horizontal reference at the base of the soft finger. (C)
Overview of the pneumatic setup used to actuate the soft
finger. Color images are available online.

of 1N (Fig. 6). The soft finger was held at this angle to €F6
achieve maximum surface contact of the sensor onto the
texture. Then, the soft finger palpated the textured plates by
being moved along the direction shown in Figure 5. Finally,
the soft finger was moved back up and to the start position. A
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A

FIG. 5. Textured plates designed

to test the soft biomimetic finger’s

ability to discriminate textures. The
four main texture elements are
hemispheres (B-D), sinusoidal waves
(E-G), triangular ridges (H-J), and

curved ridges (K-M). These texture

elements were varied by 3, 4, or 6
rows and combined with the flat
(A) texture created 13 total tex-
tured plates. The red arrow indi-

cates the direction of palpation.
Color images are available online.

complete loop of the URS robot arm was considered one trial.
Each of the 13 textures was palpated with 80 trials for all 16
parameters. The voltage response of each taxel was sampled
by the Arduino Mega 2560 microcontroller at 100 Hz and
processed in MATLAB.

With the goal of comprehensively testing the texture dis-
crimination capability of the soft biomimetic finger at dif-
ferent conditions, tests occurred at varying speeds of palpation
and levels of actuation. To test the ability of the soft finger at
varying speeds of palpation, the URS robot arm moved the
soft finger at 23, 44, 64, and 81 mm/s. The soft finger was also
tested at varying pressure levels for simultaneous joint actu-
ation: 0, 10, 15, and 18 psi. This changed the duration of each
trial for the 16 parameters, which is shown in Table 1. Al-
though the soft biomimetic finger could actuate up to 30 psi
and create a larger bending angle, this was not feasible in this
testing environment. Beyond 18 psi, proper contact of the
fingertip to the textures on the plates was not achievable.

Neuromorphic encoding

Neuromorphic encoding was used due to its computational
efficiency in encoding information and its biological rele-
vance for afferent nerve stimulation.*>>** The encoding of
spatial and temporal information is important when proces-
sing dynamic cues such as texture. The Izhikevich neuron
model was used to mimic the mechanoreceptor activity of the
tactile epithelial cells called Merkel cells.’* To utilize the

URS gripper Tactile sensor array

Textured plate Soft biomimetic finger

Izhikevich framework, the tactile response from each taxel
was converted using the tonic spiking model. This model
exhibits a steady-state spiking pattern after the initial onset
and is used as the basis for the slowly adapting (SA-1) neuron

spiking patterns (Fig. 7). This neuromorphic encodin% method «F7

has been used previously for similar applications.?~444¢

The Izhikevich neuron model uses Equations (1)—(3) to gen-
erate the spike train with injected current /, neuronal mem-
brane voltage v, and recovery variable u, which represents the
activation and inactivation of K* and Na* ionic channels.>*

d
i =0.04v% + 5v + 140 — u + kI (1
d
d—btl:a(bvfu) )
if v > 30 mv, th vee 3)
if v> 30 mv, then Weutd

The voltage response of each taxel was normalized and a
gain factor, k, of 75 was applied, which was best for classi-
fication. This normalized and amplified signal served as the
input current for the neuron spiking model. The Tonic Spiking
model’s parameters are a=0.02, »=0.2, c=—65, and d=8.

For each texture and testing parameter, the spiking re-
sponses from the sensor array were segmented into windows

FIG. 6. Overview of the different positions of the soft biomimetic finger in a trial with the positions numbered in
chronological order. The soft finger was mounted on the URS robot arm and is shown during passive palpation of textured
plate G, while at O psi. The soft finger was held at 10-15° compared with the textured plate. In position (2), the soft
biomimetic finger is brought down until it applies 1 N of force, measured on taxel 5. Color images are available online.
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TABLE 1. DURATION OF A SINGLE TRIAL
FOR EACH PARAMETER

Palpation speed (mm/s)

Durations (s) 23 44 64 81
Actuated pressure (psi)
0 9.8s 5.65s 4.27s 3.57s
10 10.62s 6.06s 4,545 3.78s
15 11.545s 6.52s 4.84s 4.01s
18 12.15s 6.82s 5.05s 4.16s

corresponding to the duration of the loop based on each pa-
rameter (Table 1). These windows were converted offline
into spike trains with the Izhikevich neuromorphic model. To
compress the information and serve as the features for the
classification algorithm, the average interspike interval and
mean spike rate were calculated for each taxel in every trial
window. The average interspike interval was calculated by
measuring the time elapsed between spikes and averaging
those values in each window. The mean spike rate was cal-
culated by tallying the number of spikes in 100 ms bins and
dividing it by the bin length, followed by averaging those
values in each window.

Classification algorithms

To test the ability of the soft biomimetic finger to classify
textures, the two features from each taxel in a window were
used as inputs for SVMs multiclass linear classification
model. Specifically, the linear kernel of SVM from MA-
TLAB was used because the assumptions of normal distri-
bution and similar within-class variance were not required. A
supervised learning algorithm was chosen because the iden-
tities of the textures were known. In our preliminary texture
discrimination studies, this classification algorithm has been
shown to classify textures well.?>*¢

Eighteen features, two per taxel for each trial, from the
compressed spiking information were used as the input for
the classifier. To reduce the bias of the model, the k-fold
cross-validation procedure was performed using the classical
statistical methods.’>>® This procedure randomly splits the
data set into k groups. Then, a single group is taken out as the
test data set and the remaining groups are used as the training
data set. A model is first fit on the training data set and sub-
sequently evaluated on the test data set. Finally, the evalua-
tion score is retained and the same process is completed on
the remaining groups. The final classification accuracy is the
combination of the result from all groups. In this experiment,

Skin
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FIG.7. Spiking response of an SA-1 neuron in response to
a tactile stimulus.
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a k=4 was used on the 80 trials per texture plate, resulting in
splits of 75% training and 25% testing.

Sensory feedback

Upon classification of the textures, the textural information
should then be conveyed to the user. To investigate whether a
user would be able to differentiate different textures, trans-
cutaneous electrical nerve stimulation (TENS) was used for
sensory stimulation. This technique has been used previously
for conveying touch and pressure information to an ampu-
tee.*3” As a demonstration of sensory feedback for textures,
four stimulation conditions based on frequency and pulse
width were tested. These four stimulation conditions re-
presented a subset of four textures with varied textural in-
formation but did not directly correspond to those texture
patterns. Three healthy able-bodied subjects participated in
this study that was approved by the Johns Hopkins Medicine
Institutional Review Board. Sensory mapping was first per-
formed to obtain a stimulation site on the subject’s wrist that
activated referred sensation in their hand. During sensory
mapping, a beryllium copper (BeCu) probe was connected to
the isolated current stimulator (DS3; Digitimer Ltd.), which
provided a monophasic current. A 5 mm disposable Ag/AgCl
electrode (Norotrode 20; Myotronics) was placed on the
stimulation site for three psychophysical experiments.

To determine the stimulation frequency that separates dis-
crete and continuous perception of sensation at the referred
sensation site in the phantom hand, a discrete vs. continuous
frequency detection experiment was conducted.”” Two fre-
quencies from this experiment were selected and designated as
the low-frequency (discrete) and high-frequency (continuous)
conditions. Then, to determine the minimum level of stimula-
tion that is detectable by the subject, a stimulation detection
experiment was subsequently conducted.’” The pulse width of
the stimulation was varied while the frequency was held con-
stant at the previous discrete or continuous frequency value.
From this experiment, two pulse widths were selected and
designated as the low-intensity and high-intensity conditions.
For each experiment, the subject received 2 s of stimulation and
verbally indicated if they perceived the stimulation as discrete
or continuous. The data were fitted with a psychometric func-
tion using a sigmoid as shown in Equation (4), where « is the
detection threshold and f is the discrimination sensitivity.

1

T4e G o @

Finally, a conditional discrimination experiment was con-
ducted to investigate whether the subjects could differentiate
one condition from another. The subjects were presented with
two 2-s stimulations, with a 1-s interval. The subjects then
reported whether they perceived the two stimulations as the
same or different. Table 2 shows the pulse width and fre-
quency parameters used for the condition discrimination ex-
periment for each subject (ABO1, AB02, and ABO3).

Results and Discussion
Neuromorphic encoding

The voltage response from the tactile sensor was converted
into spiking patterns by passing it through the neuromorphic

T2
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TABLE 2. STIMULATION PARAMETERS FOR THE CONDITION DISCRIMINATION EXPERIMENT

Subject
ABO1 ABO2 ABO3
Condition PW (ms) Frequency (Hz) PW (ms) Frequency (Hz) PW (ms) Frequency (Hz)
1 1 10 2.5 10 5 5
2 10 10 10 10 10 5
3 1 50 2.5 50 5 50
4 10 50 10 50 10 50

PW, pulse width.

F8» model (Fig. 8). SA-1 neurons primarily respond to the am-

plitude of the injected current. Therefore, they spike throughout
the presence of a texture, following the spatial features of that
texture. As such, the spike train generated through passive
palpation followed the spatial features of the textures. Due to
the compliance of the soft biomimetic finger and flexible tactile
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FIG. 8. Spiking responses from a single taxel on the tac-
tile sensor based on the voltage responses from Textures B,
E, H, and K. The spiking responses shown were from the
soft biomimetic finger when it palpated the textures at
23mm/s and was actuated to 15 psi. Color images are
available online.

sensor, the spatial features of the textured plates were accen-
tuated and provided a distinct and reliable response to each
texture.

Classification performance

The soft biomimetic finger was tested at four speeds of
palpation and four levels of actuation. The goal was to test the
soft biomimetic finger over the 16 parameters to characterize
and show how accurately it was able to classify the textures.
When run through the pipeline, the soft finger was able to
reliably classify all 13 textures at each of the parameters. The
overall classification accuracies of each parameter are shown

in Table 3. The average of the overall classification accura- €T3

cies for the parameters was 99.57%.
The confusion matrix of one parameter, 23 mm/s and 15 psi

actuation, is shown in Figure 9. Concurring with the overall €F9

accuracy of 99.62% of this parameter, the class accuracies do
not drop less than 93.66%, with Texture G (six Sinusoidal
waves) being the only one that caused some confusion for the
SVM classifier. The soft biomimetic finger benefits from its
pliancy and the spatial integration of the taxels in the flexible
tactile sensor array when discriminating textures. These results
confirm the robust and high-performing texture discrimina-
tion capability of the neuromorphic encoding algorithm. Next,
we demonstrate the resultant sensory feedback to the user.

Sensory feedback

Three able-bodied subjects participated in the stimulation
psychophysical experiments. The results of the conditional

discrimination experiment are shown in Figure 10, where the €F10

rows represent the condition presented first and the columns
represent the condition presented second. Subjects ABO1 and
ABO02 were able to differentiate between three conditions,
whereas subject ABO3 was able to differentiate between two
conditions. The ability to discriminate between stimulation

TABLE 3. THE OVERALL CLASSIFICATION ACCURACIES
OF THE SOFT BIOMIMETIC FINGER IN EACH PARAMETER

Palpation speed (mm/s)

Actuated

pressure (psi) 23 44 64 81

0 98.65% 99.52%  99.90% 99.52%
10 99.33% 99.62%  99.04% 99.81%
15 99.62% 99.42%  99.42% 99.81%
18 99.71%  100.00% 99.71%  100.00%
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SVM Texture Classification at 23 mm/s and 15psi

100%
y.§100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 000% 000% 000% 0.00% 0.00% ’
B | 0.00% 0.00% 000% 000% 0.00% 0.00% 000% 000% 0.00% 0.00% 0.00%
FIG.' 9. Confusion matrix c | 0.00% 0.29% 0.00% 0.00% 0.00% 1.21% 0.74% 0.00% 0.00% 0.00%
showing the class accuracy of
cach toxture when the soft D |000% 000% 74 0.03% 000% 000% 000% 1.10% 0.09% 0.00% 0.00% 0.00%
biomimetic finger was actu- [E|0.00% 0.00% 0.00% 1.00% 0.00% 0.10% 0.00% 0.00% 0.00% 0.00% 0.00%
ated to 15 psi and palpated the £ g00% 0.00% 000% 0.00% 4 0.11% 0.00% 000% 033% 0.00% 0.00% 0.00%
textures at 23 mm/s. The soft
biomimetic finger was able to G| 000% 000% 000% 000% 030% A4 0.00% 000% 200% 000% 0.00% 0.00%
successfully discriminate the  H|0.00% 0.00% 0.00% 0.00% 0.00% 0.40% A4 0.00% 0.16% 0.00% 0.00% 0.00%
textures at this parameter, o000 000% 000% 0.00% 0.00% 000% 0.00% 4 0.49% 0.00% 0.00% 0.00%
achieving an overall classi-
fication accuracy of 99.620%.  J|000% 000% 000% 000% 000% 050% 0.00% 0.00% A 0.00% 0.00% 0.00%
Color images are available |K|o000% 000% 000% 000% 0.00% 006% 1.16% 0.30% 0.00% 0.00% 0.00%
online. L|000% 000% 000% 000% 0.00% 000% 000% 0.00% 0.00% 0.00% 0.00% LINILA
M| 000% 000% 000% 000% 0.00% 000% 000% 0.00% 000% 0.00% 0.00% 0.00% [LULIEA
0%

frequencies or intensities varied among subjects. Subject
ABO1 had difficulty in separating discrete versus continuous
pattern at low stimulation intensity (Fig. 10A). Subject AB0O2
had difficulty in separating low versus high intensity for the
continuous stimulation pattern (Fig. 10B). Subject ABO3,
however, could only determine difference in discrete vs.
continuous patterns, but not intensity (Fig. 10C).

Rigid finger comparison

The texture discrimination experiment was also run using
the same tactile sensor array attached to the fingertip of the
index finger on a Touch Bionics prosthetic hand. This was
performed to compare how well the soft finger was able to
classify soft and hard textures compared with a rigid finger.
For this comparison, another set of textured plates, identical
to those shown in Figure 5, were fabricated out of Dragon
Skin 10 silicone, referred to as soft textured plates. The soft
biomimetic finger and rigid prosthetic finger passively pal-
pated these soft textured plates and the original hard textured
plates, with 40 trials for each of the 26 textures.

Overall, the soft finger performed on par with the rigid
finger, with a slight improvement at discriminating the soft
textures. The soft finger achieved an accuracy of 98.65% for
both soft and hard textures, whereas the rigid finger obtained

E F G H 1 J K L M

an accuracy of 98.27% for hard textures and 97.31% for soft
textures. Although the differences are small, the drop in
performance of soft texture discrimination for the hard finger
could indicate the benefit of the soft finger to discriminate
soft textures.

Discussion

A soft finger with a soft compliant sensor and neuro-
morphic encoding attempts to mimic a human finger. Our
study finds that this combination of features has many attri-
butes of human fingers. The compliance of the soft finger
would aid it in palpating softer materials. However, further
exploration is needed to determine the relative benefits of our
soft finger solution compared with the current hard finger
design as the results from our limited study of textures be-
tween the two were comparable. Additionally, our study did
not include objects of different curvatures. Still, the benefits
of the soft finger, such as suitability to handle delicate ob-
jects, could pave the way for a hybrid biomimetic or andro-
morphic finger solution, combining the advantages of both
soft and hard materials.

Sensors incorporated into soft robots prioritize flexibility and
simple fabrication to minimize its effect on the robot’s actuation.
Therefore, the primary design constraint of our sensor is that it

A Subject AB01 B Subject AB02 C Subject AB03

100% 100% 100%
Cond 1 {100.00% 100.00% QUALLEN 100.00% Cond 1 {100.00% 100.00% 100.00% 100.00% Cond 1 100.00% 16,6?‘% 100.00% 100.00%
Cond 2 |100.00% 100.00% 100.00% 100.00% Cond 2 |100.00% 100.00% 100.00% 100.00% Cond 2 | 50.00% 100.00% 100.00% 100.00%

Cond 3

Cond 3 100.00% 100.00% 100.00%

Cond 4 |100.00% 100.00% 100.00% 100.00%

83.33% 100.00% 100.00% 50.00%

Cond 4 |100.00% 100.00%M 100.00%
0% 0%

Cond 3 |100.00% 83.33% 100.00%

Cond 4 | 83.33% 100.00% ELE 100.00%

Cond1 Cond 2 Cond 3 Cond 4

Cond1 Cond 2 Cond 3 Cond 4

0%
Cond1 Cond 2 Cond 3 Cond 4

FIG. 10. Condition discrimination results for subjects ABOl (A), AB02 (B), and AB03 (C). Each grid shows the
percentage at which the subject was able to identify if the conditions presented were the same or different. Color images are

available online.
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needs to be flexible and cannot interfere with the normal actu-
ation of the soft biomimetic finger. Based on this, we created a
novel flexible, textile tactile sensor for the soft biomimetic fin-
ger, with neuromorphic output that performed well at texture
discrimination.

With the current selection of textures, the soft finger was
able to classify the textures with a high level of accuracy. A
texture database, which includes finer natural textures,
would help validate and test this method further.>’ De-
coding algorithms such as Victor—Purpura distance and van
Rossum distance with spiking neural networks can also
provide more information about the textures and improve
classification performance.’®*” Additionally, the design of
the flexible tactile sensor array with overlapping receptor
fields allows the use of super resolution. By involving spatial
averages over the taxels in the sensor array, the ability to
sense at a higher acuity is possible. This is a technique used
to enhance the resolution of an imaging system.”® The hu-
man body is also able to perceive textures regardless of the
speed of palpation. This speed invariance could be achieved
using a modified neuromorphic model and testing with a
similar method. Finally, by using multiple soft biomimetic
fingers in unison, grasping and manipulating objects with
texture recognition while providing sensory feedback is
possible.

Since the subjects were only able to differentiate between
a few conditions, static stimulation using TENS may not be
enough to convey all the current textural information. How-
ever, dynamic stimulation of the user with the neuromorphic
output could convey more information. Using these sensory
feedback methods, a more natural perception of the environ-
ment can occur and ultimately aid in prosthetic embodiment.
Additionally, this work will be useful in human-machine
interactions, such as co-robotics, especially as robotic hands
and human hands interact.

Conclusion

Our study demonstrates the ability of the soft biomimetic
finger to accurately differentiate textures with the added
potential to provide users the ability to perceive their envi-
ronment while interacting with it. The andromorphic nature
of the soft biomimetic finger, with its softness, compliance,
and neuromorphic mechanoreceptor-like spiking responses,
makes it best suited to bring robotic and prosthetic technol-
ogy closer to a natural finger.

Furthermore, we showed that a novel soft, three-jointed
biomimetic finger with two DOF and the ability to discriminate
textures using a flexible textile tactile sensor array can palpate
textures and then convey classified texture information to the
user using sensory feedback. At different independent speeds
of palpation and levels of actuation parameters, the soft bio-
mimetic finger was able to classify textures with very high
accuracy. Thus, our work demonstrates the soft finger with
biomimetic tactile sensors and neuromorphic encoding can be
used for palpation applications, especially texture discrimina-
tion tasks.
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