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Abstract

In this work, we sequenced and annotated the genome of Streptochaeta angustifolia,
one of two genera in the grass subfamily Anomochlooideae, a lineage sister to all other
grasses. The final assembly size is over 99% of the estimated genome size, capturing
most of the gene space. Streptochaeta is similar to other grasses in the structure of its
fruit (a caryopsis or grain) but has peculiar flowers and inflorescences that are distinct
from those in the outgroups and in other grasses. To provide tools for investigations of
floral structure, we analyzed two large families of transcription factors, AP2-like and
R2R3 MYBs, that are known to control floral and spikelet development in rice and maize
among other grasses. Many of these are also regulated by small RNAs. Structure of the
gene trees showed that the well documented whole genome duplication at the origin of
the grasses (p) occurred before the divergence of the Anomochlooideae lineage from
the lineage leading to the rest of the grasses (the spikelet clade) and thus that the
common ancestor of all grasses probably had two copies of the developmental genes.
However, Streptochaeta (and by inference other members of Anomochlooideae) has
lost one copy of many genes. The peculiar floral morphology of Streptochaeta may thus
have derived from an ancestral plant that was morphologically similar to the spikelet-
bearing grasses. We further identify 114 loci producing microRNAs and 89 loci
generating phased, secondary siRNAs, classes of small RNAs known to be influential in
transcriptional and post-transcriptional regulation of several plant functions.
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Introduction

The grasses (Poaceae) are arguably the most important plant family to humankind due
to their agricultural and ecological significance. The diversity of grasses may not be
immediately evident given their apparent morphological simplicity. However, the total
number of described species in the family is 11,500+ (Soreng et al., 2017), and more
continue to be discovered and described. Grasses are cosmopolitan in distribution,
occurring on every continent. Estimates vary based on the definition of grassland, but,
conservatively, grasses cover 30% of the Earth’s land surface (White et al., 2000;
Gibson, 2009). Grasses are obviously the major component of grasslands, but grass
species also occur in deserts, savannas, forests (both temperate and tropical), sand
dunes, salt marshes and freshwater systems, where they are often ecologically
dominant (Lehmann et al., 2019). The traits that have contributed to the long-term
ecological success of the grasses have also allowed them to be opportunistic colonizers
in disturbed areas and agricultural systems (Linder et al., 2018), where grasses are
often the main crops, providing humanity with greater than 50% of its daily caloric intake
(Sarwar, 2013). The adaptations and morphologies of the grasses that have led to
ecological and agronomic dominance represent major innovations relative to ancestral
species.

Monophyly of the grass family is unequivocally supported by molecular evidence, but
grasses also exhibit several uniquely derived morphological or anatomical traits (Grass
Phylogeny Working Group et al., 2001; Kellogg, 2015; Leandro et al., 2018). These
include the presence of arm cells and fusoid cells (or cavities) in the leaf mesophyll; the
pollen wall with channels in the outer wall (intraexinous channels); the caryopsis fruit
type; and a laterally positioned, highly differentiated embryo. The 30 or so species of the
grass lineages represented by subfamilies Anomochlooideae, Pharoideae and
Puelioideae, which are successive sisters to the remainder of the family, all inhabit
tropical forest understories, and also share a combination of ancestral features including
a herbaceous, perennial, rhizomatous habit; leaves with relatively broad,
pseudopetiolate leaf blades; a highly bracteate inflorescence; six stamens in two whorls;
pollen with a single pore surrounded by an annulus; a uniovulate gynoecium with three
stigmas; compound starch granules in the endosperm; and the C3 photosynthetic
pathway (GPWG 2001). The BOP (Bambusoideae, Oryzoideae, Pooideae) + PACMAD
(Panicoideae, Aristidoideae, Chloridoideae, Micrairoideae, Arundinoideae,
Danthonioideae) clade encompasses the remaining diversity of the family ((Kellogg,
2015); Figure 1A). The majority of these lineages adapted to and diversified in open
habitats, evolving relatively narrow leaves lacking both pseudopetioles and fusoid cells
in the mesophyll, spikelets with an array of adaptations for dispersal, and flowers with
three stamens and two stigmas. The annual habit evolved repeatedly in both the BOP
and PACMAD clades, and the 24+ origins of C4 photosynthesis occurred exclusively
within the PACMAD clade (Grass Phylogeny Working Group II, 2012; Spriggs et al.,
2014).

Anomochlooideae, a tiny clade of four species classified in two genera (Anomochloa
and Streptochaeta), is sister to all other grasses (Figure 1A; (Kellogg, 2015)). Its
phylogenetic position makes it of particular interest for studies of grass evolution and
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biology, particularly genome evolution. All grasses studied to date share a whole
genome duplication (WGD), sometimes referred to as p, which is inferred to have
occurred just before the origin of the grasses (Paterson et al., 2004; Wang et al., 2005;
McKain et al., 2016). Not only are ancient duplicated regions found in the grass
genomes studied to date, but the phylogenies of individual gene families often exhibit a
doubly labeled pattern consistent with WGD (Rothfels, 2021). In this pattern we see, for
example, a tree with the topology shown in Figure 1B, which points to a WGD before
the divergence of all sequenced grasses, whereas a WGD after divergence of
Streptochaeta, would result in the topology shown in Figure 1C. While there is some
evidence from individual gene trees that the duplication precedes the divergence of
Streptochaeta+Anomochloa (Preston and Kellogg, 2006; Preston et al., 2009;
Christensen and Malcomber, 2012; Bartlett et al., 2016; McKain et al., 2016), data are
sparse. Thus, defining the position of the grass WGD requires a whole genome
sequence of a species of Anomochlooideae.

Anomochlooideae is also in a key position for understanding the origins of the
morphological innovations of the grass family. All grasses except Anomochlooideae
bear their flowers in tiny clusters known as spikelets (little spikes) (Judziewicz et al.,
1999; Grass Phylogeny Working Group et al., 2001; Kellogg, 2015). Because the
number, position, and structure of spikelets affect the total number of seeds produced
by a plant, the genes controlling their development are a subject of continual research
(e.g., (Whipple, 2017; Huang et al., 2018; Li et al., 2019a, 2019b), to cite just a few). In
contrast to the rest of the family, the flowers in Anomochlooideae are borne in complex
bracteate structures sometimes called “spikelet equivalents" ((Soderstrom and Ellis,
1987; Judziewicz and Soderstrom, 1989; Judziewicz et al., 1999); Figures 2 and 3).
These differ from both the conventional monocot flowers of the outgroups and the
spikelets of the remainder of the grasses (i.e., the “spikelet clade”; (Sajo et al., 2008,
2012; Preston et al., 2009; Kellogg et al., 2013)). The structure of the phylogeny
suggests potential interpretations of the origin of the spikelet. One possibility is a
"stepwise" model, in which a set of changes to the genetic architecture of floral
development occurred before the divergence of Anomochlooideae, leading to the
formation of spikelet equivalents; these changes were then followed by a second set of
changes that led to formation of spikelets in the rest of what would become the spikelet
clade. An alternative, which is also consistent with the phylogeny, is a "loss model", in
which all the genes and regulatory architecture needed for making spikelets originated
before the origin of Anomochlooideae, but portions of that architecture were
subsequently lost. Thus, the stepwise model implies that the spikelet equivalents are
somehow intermediate between a standard monocot flower and a grass spikelet,
whereas the loss model implies that the spikelet equivalents are highly modified or
rearranged spikelets. Resolving these hypothetical models will help reveal both how the
unique spikelet structure and the overall floral bauplan in grasses evolved.

Of the handful of species in the Anomochlooideae, Streptochaeta angustifolia (Figures
2 and 3) is the most easily grown from seed and an obvious candidate for ongoing
functional genomic investigation. Hereafter in this paper, we will refer to S. angustifolia
simply as Streptochaeta, and use it as a placeholder for the rest of the subfamily. We
present a draft genome sequence for Streptochaeta that captures the gene-space of
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this species at high contiguity, and we use this genome to assess the position of the
grass WGD. Genes and small RNAs (sRNAs) are annotated. Because of the distinct
floral morphology of Streptochaeta, we also investigate the molecular evolution of two
major transcription factor families, APETALAZ2-like and R2R3 MYB, which are known to
control floral and spikelet structure in other grasses and are regulated by sRNAs.

Materials and Methods

Input data

Streptochaeta leaf tissue was harvested and used to estimate genome size at the Flow
Cytometry Facility at lowa State University. DNA was then isolated using Qiagen
DNeasy plant kits. Three lllumina libraries (paired end and 9- and 11-kb mate pair) were
generated from these isolations at the lowa State University (ISU) DNA Facility. One
lane of 150 bp paired-end HiSeq sequencing (insert size of 180 bp) and one lane of 150
bp mate-pair HiSeq sequencing (9- and 11-kb libraries pooled) were generated, also at
the ISU DNA Facility (Table S1). Additionally, for the purpose of contig scaffolding,
Bionano libraries were prepared by first isolating high molecular weight DNA using the
Bionano Prep™ Plant DNA Isolation Kit followed by sequencing using the Irys system.

Genome assembly

We used MaSuRCA v2.21 (Zimin et al., 2013) to generate a draft genome of
Streptochaeta. The MaSuRCA assembler includes error correction and quality filtering,
generation of super reads, super read assembly, and gap closing to generate more
complete and larger scaffolds. Briefly, the config file was edited to include both paired-
end and mate-pair library data for Streptochaeta. The JF_SIZE parameter was adjusted
to 20,000,000,000 to accommodate the large input file size, and NUM_THREADS was
set to 128. All other parameters in the config file were left as default. The assembly was
executed by first generating the assemble.sh script using the config file and submitting
to a high-memory node using the PBS job scheduler. We then used Bionano
technology to generate an optical map for the genome and to perform hybrid
scaffolding. All scripts for assembly and downstream analysis are available at:
https://github.com/HuffordLab/streptochaeta.

Assembly evaluation and post-processing

The Bionano assembly was screened for haplotigs, and additional gaps were filled
using Redundans v0.13a (Pryszcz and Gabaldon, 2016). Briefly, the scaffolds were
mapped to themselves using the LAST v719 alignment program (Kielbasa et al., 2011)
and any scaffold that completely overlapped a longer scaffold with more than 80%
identity was considered redundant and excluded from the final assembly. Additionally,
short read data were aligned back to the hybrid assembly and GapCloser v1.12 from
SOAPdenovo2 (Luo et al., 2012) and SSPACE v3.0 (Boetzer et al., 2011) were run in
multiple iterations to fill gaps. The final reduced, gap-filled assembly was screened for
contamination, using Blobtools v0.9.19 (Laetsch and Blaxter, 2017), and any scaffolds
that matched bacterial genomes were removed. The assembly completeness was then
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evaluated using BUSCO v3.0.2 (Simé&o et al., 2015) with the plant profile and standard
assemblathon metrics.

To annotate the repeats in the genome, we used EDTA v1.8.3 (Ou et al., 2019) with
default options except for --species, which was set to “others”. The obtained TE library
was then used for masking the genome for synteny analyses. Assembly quality of the
repeat space was assessed based on the LTR Assembly Index (LAI; (Ou et al., 2018)),
which was computed using Itr_retriever v2.9.0 (Ou and Jiang, 2018) and the EDTA-
generated LTR list.

Gene prediction and annotation

Gene prediction was carried out using a comprehensive method combining ab initio
predictions (from BRAKER; (Hoff et al., 2019)) with direct evidence (inferred from
transcript assemblies) using the BIND strategy (Seetharam et al., 2019 and citations
therein). Briefly, RNA-Seq data were mapped to the genome using a STAR (v2.5.3a)-
indexed genome and an iterative two-pass approach under default options in order to
generate BAM files. BAM files were used as input for multiple transcript assembly
programs (Class2 v2.1.7, Cufflinks v2.2.1, Stringtie v2.1.4 and Strawberry v1.1.2) to
assemble transcripts. Redundant assemblies were collapsed and the best transcript for
each locus was picked using Mikado (2.0rc2) by filling in the missing portions of the
ORF using TransDecoder (v5.5.0) and homology as informed by the BLASTX
(v2.10.1+) results to the SwissProtDB. Splice junctions were also refined using
Portcullis (v1.2.1) in order to identify isoforms and to correct misassembled transcripts.
Both ab initio and the direct evidence predictions were analyzed with TESorter (Zhang
et al., 2019) to identify and remove any TE-containing genes and with phylostratr
(v0.20; (Arendsee et al., 2019)) to identify orphan genes (i.e., species-specific genes).
As ab initio predictions of young genes can be unreliable (Seetharam et al., 2019),
these were excluded. Finally, redundant copies of genes between direct evidence and
ab initio predictions were identified and removed using Mikado compare (2.0rc2;
(Venturini et al., 2018)) and merging was performed locus by locus, incorporating
additional isoforms when necessary. The complete decision table for merging is
provided in Table S2. After the final merge, phylostratr was run again on the
annotations to classify genes based on their age.

Functional annotation was performed based on homology of the predicted peptides to
the curated SwissProt/UniProt set (UniProt Consortium, 2021) as determined by BLAST
v2.10.1+ (Edgar, 2010). InterProScan v5.48-83 was further used to find sequence
matches against multiple protein signature databases.

Synteny

Synteny of CDS sequences for Strepotchaeta was determined using CoGe (Lyons and
Freeling, 2008), against the genomes Brachypodium (International Brachypodium
Initiative, 2010), Oryza sativa (Ouyang et al., 2007), and Setaria viridis (Mamidi et al.,
2020). SynMap2 (Haug-Baltzell et al., 2017) was employed to identify syntenic regions
across these genomes. Dot plots and chain files generated by SynMap2 under default
options were used for presence-absence analysis. We also performed repeat-masked
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208 whole genome alignments using minimap2 (Li, 2018) following the Bioinformatics
209  Workbook methods (https://bicinformaticsworkbook.org/data\Wrangling/genome-

210  dotplots.html).

211 Identification of APETALA2 (AP2)-like and R2R3 MYB proteins in
212 selected monocots

213 A BLAST database was built using seven grass species including Streptochaeta and
214  two outgroup monocots. Protein and CDS sequences of the following species were

215 retrieved from Phytozome 13.0: Ananas comosus (Acomosus_321_v3), Brachypodium
216 distachyon (Bdistachyon_556_v3.2), Oryza sativa (Osativa_323 v7.0), Spirodela

217  polyrhiza (Spolyrhiza_290 v2), Setaria viridis (Sviridis_500_v2.1) and Zea mays

218 (Zmays_493 APGv4). Sequences of Eragrostis tef were retrieved from CoGe (id50954)
219 (VanBuren et al., 2020). Sequences of Triticum aestivum were retrieved from Ensembl
220 Plant r46 (Triticum_aestivum.IWGSCv1) (Table S3).

221  AP2 and MYB proteins were identified using BLASTP and hmmscan (HMMER 3.1b2;
222  http://hmmer.org/) in an iterative manner. Specifically, 18 Arabidopsis AP2-like proteins
223 (Kim et al., 2006) were used as an initial query in a blastp search with an E-value

224  threshold of 1e-10. The resulting protein sequences were filtered based on the

225 presence of an AP2 domain using hmmscan with an E-value threshold of 1e-3 and

226  domain E-value threshold of 0.1. The filtered sequences were used as the query for the
227  next round of blastp and hmmscan until the maximal number of sequences was

228 retrieved. For MYB proteins, Interpro MYB domain (IPR017930) was used to retrieve
229  rice MYBs using Oryza sativa Japonica Group genes (IRGSP-1.0) as the database on
230 Gramene Biomart (http://ensembl.gramene.org/biomart/martview/). The number of MYB
231 domains was counted by searching for “Myb_DNA-bind” in the output of hmmscan, and
232 82 proteins with two MYB domains were used as the initial query. lterative blastp and
233  hmmscan were performed in the same manner as for AP2 except using a domain E-
234  value threshold of 1e-3.

235 The number of AP2 or MYB domains was again counted in the final set of sequences in
236 the hmmscan output, and proteins with more than one AP2 domain or two MYB

237 domains were treated as AP2-like or R2R3 MYB, respectively. To ensure that no

238 orthologous proteins were missed due to poor annotation in the AP2 or MYB domain,
239  we performed another round of BLASTP searches, and kept only the best hits. These
240 sequences were also included in the construction of the phylogenetic trees.

241 Construction of phylogenetic trees

242  Protein sequences were aligned using MAFFT v7.245 (Katoh and Standley, 2013) with
243  default parameters. The corresponding coding sequence alignment was converted

244  using PAL2NAL v14 (Suyama et al., 2006) and used for subsequent tree construction.
245  For AP2-like genes, the full length coding sequence alignment was used. For MYB, due
246  to poor alignment outside of the MYB domain, trimAl v1.2 (Capella-Gutiérrez et al.,

247  2009) was used to remove gaps and non-conserved nucleotides with a gap threshold (-
248 gt) of 0.75 and percentage alignment conservation threshold (-con) of 30. A maximum
249  likelihood tree was constructed using IQ-TREE v1.6.12 (Minh et al., 2020) with default
250 settings. Sequences that resulted in long branches in the tree were manually removed,
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251 and the remaining sequences were used for the final tree construction. Visual formatting
252  of the tree was performed using Interactive Tree Of Life (iTOL) v4 (Letunic and Bork,
253 2019).

254 RNA isolation, library construction and sequencing

255  We collected tissues from leaf and pistil as well as 1.5 mm, 3 mm and 4 mm anthers.
256  Samples were immediately frozen in liquid nitrogen and kept at -80°C prior to RNA

257  isolation. Total RNA was isolated using the PureLink Plant RNA Reagent (Thermo

258  Fisher Scientific, Waltham, MA, USA). sRNA libraries were published previously (Patel
259 etal., 2021). RNA sequencing libraries were prepared from the same material using the
260 lllumina TruSeq stranded RNA-seq preparation kit (lllumina Inc., United States)

261 following manufacturer's instructions. Parallel analysis of RNA ends (PARE) libraries
262  were prepared from a total of 20 pg of total RNA following the method described by Zhai
263 etal. (2014). For all types of libraries, single-end sequencing was performed on an

264  lllumina HiSeq 2000 instrument (lllumina Inc., United States) at the University of

265 Delaware DNA Sequencing and Genotyping Center.

266 Bioinformatic analysis of small RNA data

267  Using cutadapt v2.9 (Martin, 2011), sSRNA-seq reads were pre-processed to remove
268 adapters (Table S4), and we discarded reads shorter than 15 nt. The resulting ‘clean’
269 reads were mapped to the Streptochaeta genome using ShortStack v3.8.5 (Johnson et
270  al., 2016) with the following parameters: -mismatches 0, -bowtie m 50, -mmap u, -

271 dicermin 19, -dicermax 25 and -mincov 0.5 transcripts per million (TPM). Results

272  generated by ShortStack were filtered to keep only clusters having a predominant RNA
273  size between 20 and 24 nucleotides, inclusively. We then annotated categories of

274  microRNAs (miRNAs) and phased small interfering RNAs (phasiRNAS).

275  First, SRNA reads representative of each cluster were aligned to the monocot-related
276  miRNAs listed in miRBase release 22 (Kozomara and Giriffiths-Jones, 2014; Kozomara
277 etal., 2019) using NCBI BLASTN v2.9.0+ (Camacho et al., 2009) with the following

278  parameters: -strand both, -task blastn-short, -perc identity 75, -no greedy and -

279 ungapped. Homology hits were filtered and sRNA reads were considered as known

280 miRNA based on the following criteria: (i) no more than four mismatches and (ii) no

281  more than 2-nt extension or reduction at the 5’ end or 3’ end. Known miRNAs were

282  summarized by family. Small RNA reads with no homology to known miRNAs were

283 annotated as novel miRNAs using the de novo miRNA annotation performed by

284  ShortStack. The secondary structure of new miRNA precursor sequences was drawn
285  using the RNAfold v2.1.9 program (Lorenz et al., 2011). Candidate novel miRNAs were
286  manually inspected, and only those meeting published criteria for plant miRNA

287 annotations (Axtell and Meyers, 2018) were retained for subsequent analyses. Then,
288 the remaining sSRNA clusters were analyzed to identify phasiRNAs based on ShortStack
289  analysis reports. SRNA clusters having a "Phase Score" >30 were considered as true
290 positive phasiRNAs. Genomic regions corresponding to these phasiRNAs were

291 considered as PHAS loci and grouped in categories of 21- and 24-PHAS loci referring to
292  the length of phasiRNAs derived from these loci. Other sSRNA without miRNA or

293  phasiRNA signatures were not considered for analysis or interpretation in this study.
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To compare sRNAs accumulating in Streptochaeta anthers with other monocots, we
analyzed sRNA samples of Asparagus officinalis, Oryza sativa and Zea mays anthers.
The GEO accession numbers for those datasets are detailed in Table S3. We analyzed
these data as described for the Streptochaeta sRNA-seq data.

We used the upSetR package (UpSetR; Lex et al., 2014; Conway et al., 2017) to
visualize the overlap of miRNA loci annotated in Streptochaeta, compared to other
species.

Bioinformatic analysis of PARE data

We analyzed the PARE data to identify and validate miRNA-target pairs in anther, pistil,
and leaf of Streptochaeta tissues. Using cutadapt v2.9, PARE reads were pre-
processed to remove adapters (Table S4) and reads shorter than 15 nt were discarded.
Then, we used PAREsnip2 (Thody et al., 2018) to predict all miRNA-target pairs and to
validate the effective miRNA-guided cleavage site using PARE reads. We ran
PAREsnip2 with default parameters using Fahlgren & Carrington targeting rules
(Fahlgren and Carrington, 2010). We considered only targets in categories 0, 1 and 2
for downstream analysis. We used the EMBL-EBI HMMER program v3.3 (Potter et al.,
2018) to annotate the function of miRNA target genes using the phmmer function with
the SwissProt database.

Prediction of miRNA binding sites

Mature miR172 and miR159 sequences from all available monocots were obtained from
miRBase (Kozomara et al., 2019). miRNA target sites in AP2-like and R2R3 MYB
transcripts were predicted on a web server TAPIR (Bonnet et al., 2010) with their default
settings (score = 4 and free energy ratio = 0.7).

Results

Flow Cytometry

Two replicates of flow cytometry estimated the 1C DNA content for Streptochaeta to be
1.80 pg and 1.83 pg, which, when converted to base pairs, yields a genome size of
approximately 1.77 Gb.

Genome Assembly and post-processing

Two lanes of short reads (lllumina HiSeq 2500), generated a total of 259 million reads.
Paired-end reads with a fragment size of 250bp were generated at approximately 25.7x
genomic coverage, while the mate-pair libraries with 9- and 11-kb insert size collectively
provided 22.6x coverage. Based on k-mer analysis of these data with the program
Jellyfish (Margais and Kingsford, 2011), we estimated the repeat content for the
Streptochaeta genome to be approximately 51%. Implementation of the MaSuRCA
assembly algorithm generated an assembly size at 99.8% of the estimated genome
size, suggesting that a large portion of the genome, including repetitive regions were
successfully assembled. The MaSuRCA assembler generated a total of 22,591
scaffolds, with an N50 of 2.4Mb and an L50 of 170.
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The Bionano data produced an optical map near the expected genome size (1.74 Gb)
with an N50 of 824kb. Through scaffolding with the optical map and collapsing with
Redundans software, the total number of scaffolds dropped to 17,040, improving the
N50 to 2.6Mb and the L50 to 161. A total of 79,165 contigs were provided as input for
Redundans for scaffold reduction (total size 1,898 Mbp). With eight iterations of
haplotype collapsing, the number of scaffolds was reduced to 17,040 (total size 1,796
Mbp). Additional rounds of gap-filling using GapCloser reduced the total number of gaps
(Ns) from 210.13 Mbp to 76.33 Mbp. The improvement in the N50/N90 values with
each iteration is provided in Table S5.

The final assembly included a total of 3,010 out of 3,278 possible complete Liliopsida
BUSCOs (91.8%). Of these 2,767 (84.4% of the total) were present as a complete
single copy. Only 158 BUSCOs were missing entirely with another 110 present as
fragmented genes. The LAI (LTR Assembly Index) score, which assesses the contiguity
of the assembled LTR retrotransposons, was 9.02, which is somewhat higher than most
short-read-based assemblies (Ou et al., 2018), perhaps due to the relatively low repeat
content of the Streptochaeta genome and the use of mate-pair sequencing libraries. Dot
plots of Streptochaeta contigs aligned to rice revealed substantial colinearity (Figure
S1).

Contamination Detection

BlobTools (v0.9.19) (Laetsch and Blaxter, 2017) detected over 95% of the scaffolds
(1742 Mbp) belonging to the Streptophyta clade out of the 1,797 Mbp of assigned
scaffolds (GC mean: 0.54). Approximately 2% of the scaffolds mapped to the
Actinobacteria (36.3Mbp, GC mean: 0.72) and ~0.5% of scaffolds to Chordata (9Mbp,
GC mean: 0.48). Scaffolds assigned to additional clades by BlobTools collectively
comprise ~1.46 Mbp and the remaining 8.47 Mbp of scaffolds lacked any hits to the
database. All bacterial, fungal and vertebrate scaffolds were purged from the assembly.

Gene prediction and annotation

Direct Evidence predictions: More than 79% of the total RNAseq reads mapped
uniquely to the Streptochaeta genome with <7% multi-mapped reads. Paired-end reads
mapped (uniquely) at a higher rate (88.59%) than the single-end RNAseq (70.38%)
reads. Genome-guided transcript assemblers produced varying numbers of transcripts
across single-end (SE) and paired-end (PE) data as well as various assemblers.
Cufflinks produced the highest number of transcripts (SE: 65,552; PE:66,069), followed
by StringTie (SE: 65,495, PE: 48,111), and Strawberry (SE:68,812; PE:43,882). Class2
generated fewer transcripts overall (PE: 43,966; SE: 13,173). The best transcript for
each locus was picked by Mikado from the transcript assemblies based on its
completeness, homology, and accuracy of splice sites. Mikado also removed any non-
coding (due to lack of ORFs) or redundant transcripts to generate 28,063 gene models
(41,857 transcripts). Mikado also identified 19,135 non-coding genes within the provided
transcript assemblies. Further filtering for transposable-element-containing genes and
genes with low expression reduced the total number of evidence-based predictions to
27,082 genes (40,865 transcripts).
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Ab initio predictions: BRAKER, with inputs including predicted proteins from the direct
evidence method (as a gff3 file produced by aligning proteins to a hard-masked
Streptochaeta genome) and the mapped RNA-Seq reads (as a hints file using the bam
file), produced a total of 611,013 transcripts on a soft-masked genome. This was then
subjected to filtering to remove any TE containing genes (244,706 gene models) as well
as genes only found in Streptochaeta (466,839 gene models). After removing both of
these classes of genes, which overlapped to an extent, the total number of ab initio
predictions dropped to 40,921 genes (44,013 transcripts).

BIND (merging BRAKER predictions with directly inferred genes): After comparing
BRAKER and direct evidence predictions with Mikado compare: 9,617 transcripts were
exactly identical and direct evidence predictions were retained; 3,263 transcripts from
Mikado were considered incomplete and were replaced with BRAKER models; 13,360
BRAKER models were considered incomplete and replaced with direct evidence
transcripts; 1,884 predictions were adjacent but non-overlapping, and 17,894
predictions were BRAKER-specific and were retained in the final merged predictions.
The final gene set included a total of 44,980 genes (58,917 transcripts).

Functional Annotation: Functional annotation was informed by homology to the
curated proteins in SwissProt and resulted in the assignment of putative functions for
38,955 transcripts (10,556 BRAKER predictions, and 28,399 direct evidence
predictions). Of the unassigned transcripts, 41 predictions had pfam domain matches,
and 16,918 transcripts had an interproscan hit. Only 3,068 transcripts contained no
additional information in the final GFF3 file.

Phylostrata: All gene models predicted by the BIND strategy were examined by
classifying the genes based on their presumed age. More than 8% of the total genes
(3,742) were specific to the Streptochaeta genus and more than 15% (6,930) of genes
were Poaceae specific. 19% (8,494) of genes’ origins could be traced back to cellular
organisms and 15% (6,708) to Eukaryotic genes. The distribution of genes based on
strata and annotation method is provided in Table S6.

Transposable Element Annotation: The repeat annotation performed by the EDTA
package comprised 66.82% of the genome, the bulk of which were LTR class elements
(42.9% in total; Gypsy: 28.16%, Copia: 8.9%, rest: 5.84%), followed by DNA repeats
(23.39% in total; DTC-type: 13.65, DTM-type: 5.78%, rest: 3.96%), and MITE class
repeats (all types 0.54%).

Molecular evolution of APETALA2-like and R2R3 MYB
transcription factors

Our highly contiguous assembly in genic regions combined with gene model and
functional annotations allowed: 1) an investigation of gene families known to play a role
in floral development that have potential relevance to the origin of the grass spikelet,
and 2) evaluation of patterns of orthology between genes in Streptochaeta and
BOP/PACMAD grasses to clarify the timing of the p WGD. Many transcription factor
families are known to affect spikelet development in the grasses (Hirano et al., 2014;
Whipple, 2017). Of these, APETALAZ2 (AP2)-like genes control meristem identity and
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floral morphology, including the number of florets per spikelet (Chuck et al., 1998; Lee
and An, 2012; Zhou et al., 2012; Debernardi et al., 2020). Several R2R3 MYB genes
are also known to function in floral organ development, especially in anthers (Zhu et al.,
2008; Aya et al., 2009; Zhang et al., 2010; Schmidt et al., 2013). We explored patterns
of duplication and loss in these gene families between the origin of the grasses and the
origin of the spikelet clade, i.e. before and after the divergence of Streptochaeta.

APETALA2-like

Previous work on molecular evolution of AP2-like proteins found that the gene family
was divided into two distinct lineages, euAP2 and AINTEGUMENTA (ANT) (Kim et al.,
2006). A Maximum Likelihood tree of AP2-like genes was constructed and rooted at the
branch that separates euAP2 and ANT genes. We found that the euAP2 lineage has
conserved microRNA172 binding sequences except for a few genes in outgroups, one
gene in Eragrostis tef and one in Zea mays (Figure 4, Figure S2).

To facilitate the analysis, we name each subclade either by a previously assigned gene
name within the subclade, or the gene sub-family name with a specific number.
Streptochaeta orthologs are present in most of the subclades, except IDS1/Q, ANTS,
BBM4, WRI3 and basalANT1, in which the Streptochaeta copy is lost (Figure 4, Figure
S2). The two most common patterns within each subclade are (O,(S,G)) (O, outgroup;
S, Streptochaeta; G, other grasses) including SHAT1, ANT1, ANT3, ANT4, BBM1,
ANT7, ANT8 and ANT9, and (S,G) (inferring that outgroup sequence is lost or was not
retrieved by our search) including BBM3, WRI2 and WRI4 (Table S7). These patterns
imply that most grass-duplicated AP2-like genes were lost (i.e., the individual subclades
were returned to single copy) soon after the grass duplication. Some subclades contain
two Streptochaeta sequences and one copy in other grasses. These Streptochaeta
sequences are either sisters to each other with the Streptochaeta clade sister to the
other grasses (0,((S1,52),G)) (RSR1) (Figure 4, Figure S2, Table S7), or successive
sisters to a clade of grass sequences (0O,(S1,(S2,G))) (WRI1) (Figure 4, Figure S2,
Table S7).

In the paired subclades of IDS1/Q-SNB/SID1, ANT5-ANT6, BBM4-BBM2 and
basalANT1-basalANTZ2, the grass-duplicated gene pairs were retained, and were also
found to be syntenic pairs based on a syntelog search of the Brachypodium distachyon,
Oryza sativa or Setaria viridis genomes (Figure 5). Interestingly, in these subclade

pairs, the Streptochaeta orthologs are always sister to one member of the syntenic gene

pair but not the other. Two subclade pairs support a p position before the divergence of

Streptochaeta, including BBM4-BBM2 with a pattern of (G1,(S,G2)) (Figure 5B) and
ANTS5-ANTG6 with a pattern of (G1,((S1,S2),G2)) (Figure 5E). In subclade pairs of
IDS1/Q-SNB/SID1 and basalANT1-basalANT2, two Streptochaeta sequences are
successive sisters to one of the grass subclade pairs, forming tree topologies of
(G1,(51,(52,G2))) and (O,(G1,(S1,(S2,G2)))), respectively (Figure 4, Figure S2, Table

S7). These two cases do not fit with a simple history involving p either before or after

the divergence of Streptochaeta, and thus indicate a more complex evolutionary history.
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R2R3 MYB

The maximum likelihood tree of R2R3 MYBs was rooted with the CDC5 clade (Jiang
and Rao, 2020). Only subclades with bootstrap values larger than 80 at the node of
Streptochaeta were considered for subsequent analysis. Similar to the AP2-like tree, the
most common tree topology within each subclade is (O,(S,G)), found in 16 individual
subclades, followed by (S,G), consisting of 10 subclades. We also found 16 subclades
with other tree topologies either without or with one or two Streptochaeta sequences
and one copy of the other grass sequences, including (O,G) (MYB48), (0,((S1,52),G))
(MYB17, MYB21, GAMYBL2, MYB29 and GAMYBL1), ((S1,S2),G) (MYB78 and
MYB92), (O,(S1,(S2, G))), (S1,(S2,G)) (MYB56) and ((O,S),G) (MYB47 and MYB83)
(Table S7). Conversely, we also found that 20 subclade pairs retained the grass
duplicated gene pairs, although their tree topologies vary based on the position of
Streptochaeta and outgroups. Among these, 15 subclade pairs are also found to be
syntenic, including MYB1-MYB2, MYB6-MYB7, MYB35-MYB36, MYB42-MYB43,
MYB49-MYB50, MYB51-MYB52, MYB53-MYB54, MYB62-MYB63, MYB65-MYBG66,
SWAM1-SWAM2, MYB75-MYB76, MYB86-MYB87, MYB93-MYB94, MYB103-MYB104
and MYB105-FDL1 (Figure 5 and Figure 6, Figure S3, Table S7). Together, these
results indicate that a subset of grass MYB clades have expanded due to the grass
WGD.

Among the above subclade pairs that retain both grass sequences, we found that one
subclade pair, MYB53-MYB54 with tree topology of (O,(S1,52),(G1,G2)), supports p

having occurred after the divergence of Streptochaeta (Figure 5F). Conversely, we

found 10 subclades supporting a p position before the divergence of Streptochaeta. The

subclade MYB93-MYB94 includes three Streptochaeta sequences, one sister to one of
the grass clades and the other two sister to each other and sister to the other grass
clade, forming a tree topology of (O,((S1,G1),((S2,S3),G2))) (Figure 5A). In the other 9
subclade pairs, one or two Streptochaeta sequences are sister to one of the grass
syntenic gene pairs but not the other (Figure 5B-5E). In subclade pairs MYB86-MYB87
and MYB34-MYB36, one Streptochaeta sequence is sister to one of the grass clades,
showing (G1,(S,G2)) and (0O,(G1,(S,G2))), respectively (Figure 5B and 5C). We
observed more subclades with two sequences of Strepfochaeta, either showing
(0,(G1,((51,52),G2))) in MYB6-MYB7 and SWAM1 and SWAM2, or (G1,((S1,52),G2))
in MYB42-MYB43, MYB51-MYB52, MYB65-MYB66, MYB75-MYB76 and MYB105-
FDL1.

A few subclade pairs have tree topologies that do not support a p position either before

or after the divergence of Streptochaeta, including (O,(S1,(S2,(G1,G2)))) (MYB1-MYB2
and MYB62-MYB63), (51,(G1,(S2,G2))) (MYB22-MYB23) and ((O,S),(G1,G2)) (MYB11-
MYB12) (Table S7). In other cases, the Streptochaeta ortholog is either lost, or
positioned within the grass clades (Table S7). This may indicate a complex evolutionary
history of Streptochaeta. Alternatively, it may be an artifact due to the distant outgroups
used in this study and poor annotation of some sequences.
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Taken together, both the AP2-like and R2R3 MYB trees support the inference of p

before the divergence of Streptochaeta (12 subclades) over p after the divergence of

Streptochaeta (1 subclade) (Figure 5), consistent with previous findings (McKain et al.,
2016). In addition, our study suggests that Streptochaeta has often lost one of the
syntenic paralogs and sometimes has its own duplicated gene pairs.

Annotation of miRNAs and validation of their targets

sRNAs are important transcriptional and post-transcriptional regulators that play a role
in plant development, reproduction, stress tolerance, etc. Identification of the
complement of these molecules in Streptochaeta can inform our understanding of
distinguishing features of grass and monocot genomes. To annotate miRNAs present
in the Streptochaeta genome, we (i) sequenced sRNAs from leaf, anther and pistil
tissues, (ii) compared miRNAs present in anthers to those of three other representative
monocots (rice, maize and asparagus), and (iii) validated gene targets of these
miRNAs. In total, 185.3 million (M) sRNA reads were generated (115.6 M, 33.0 M, and
36.7 M reads for anther, pistil, and leaf tissues, respectively) from five sSRNA libraries.
Overall, we annotated 114 miRNA loci, of which 98 were homologous to 32 known
miRNA families and 16 met strict annotation criteria for novel miRNAs (Table S8; Table
S9; Table S$10). Most miRNAs from these loci (85; 90.4%) accumulated in all three
tissues (Figure 7). We found a sub-group (8 miRNAs; 7.0%) of miRNAs abundant in
anthers but not in the pistil or leaf tissues. Among these miRNAs, we found one copy
each of miR2118 and miR2275, miRNAs known to function in the biogenesis of
reproductive phasiRNAs (Johnson et al., 2009; Zhai et al., 2015). Comparing known
miRNA families expressed in anthers of Streptochaeta with three other monocots, we
observed that only 25.4% of families overlapped between species. The large number of
miRNA families detected exclusively in anthers of asparagus (29.9%) and rice (17.9%)
perhaps explains the small overlap between species.

We generated parallel analysis of RNA ends (PARE) libraries to identify and validate the
cleavage of miRNA-target pairs in anther, pistil and leaf of Streptochaeta tissues (Table
11; Table S12). Overall, we validated 58, 55 and 66 gene targets in anther, pistil and
leaf of Streptochaeta tissues, respectively. Half of these targets were detected in all
tissues (51.9%) while 7 (8.6%), 4 (4.9%) and 14 (17.3%) targets were validated
exclusively in anther, pistil, and leaf tissues, respectively, and remaining set of targets
were found in combinations of two tissues. Among the validated targets, we found
targets for three novel miRNAs, supporting their annotation. As an example, 184 reads
validated the cleavage site of one novel miRNA target gene (strangu_031733), which is
homologous to the GPX6 gene (At4g11600) known to function in the protection of cells
from oxidative damage in Arabidopsis (Rodriguez Milla et al., 2003). Among targets of
known miRNAs, we validated the cleavage site of 6 and 4 genes encoding members of
AP2 and MYB transcription factor families, respectively (Figure S2; Figure S3). We
observed that miR172 triggered the cleavage of AP2 genes in all tissues, consistent
with the well-described function of this miRNA (Aukerman and Sakai, 2003; Lauter et
al., 2005; Chuck et al., 2007, 2008). We also showed that miR159 triggered the
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cleavage of transcripts of four MYB genes, homologous to rice GAMYB genes, in leaf
and pistil tissues but not in anther.

Expression of phasiRNAs is not limited to male reproductive
tissues

We used the same sRNA libraries and annotated phasiRNAs expressed in the
Streptochaeta genome, and compared the abundances of these loci to asparagus,
maize, and rice. Overall, we detected a total of 89 phasiRNA loci (called PHAS loci)
including 71 21-PHAS and 18 24-PHAS loci (Table S8). We made three observations of
note: First, we observed a switch in the ratio of 21-PHAS to 24-PHAS locus number
comparing asparagus (< 1), a member of Asparagaceae, to grass species (> 1;
Poaceae). Second, the number of genomic PHAS loci increased, in Poaceae species,
from Streptochaeta to both maize and rice. Third, several PHAS loci were also
expressed in the pistil and leaf tissues -- female reproductive and vegetative tissues,
respectively. Overall, a total of 23 (32%) 21-PHAS loci and 11 (61%) 24-PHAS loci were
expressed in the pistil with a median abundance of 32.9% and 12.3% respectively
compared to phasiRNAs detected in anther tissue. Similarly, 22 (31%) 21-PHAS loci
and 10 (56%) 24-PHAS loci were detected in leaf tissue with a median abundance of
53.3% and 13.2% respectively compared to phasiRNAs detected in anthers. This
expression of 24-nt phasiRNAs in vegetative tissues is unusual.

Discussion

Genome assembly, contiguity, structure.

The Streptochaeta genome presented here provides a resource for comparative
genomics, genetics, and phylogenetics of the grass family. It represents the subfamily
Anomochlooideae, which is sister to all other grasses and thus is equally
phylogenetically distant to the better-known species rice, Brachypodium, sorghum, and
maize (Clark et al., 1995; Grass Phylogeny Working Group et al., 2001; Saarela et al.,
2018). The genome assembly captures nearly all of the predicted gene space at high
contiguity (complete BUSCOs 91.8%, liliopsida_odb10 profile, n = 3278), with the
genome size matching predictions based on flow cytometry. The genome-wide LTR
Assembly Index (LAI), for measuring the completeness of intact LTR elements, was
9.02. This score classifies the current genome as “draft” in quality, and is on par with
other assemblies using similar sequencing technology (Apple (v1.0) (Velasco et al.,
2010), Cacao (v1.0) (Argout et al., 2011)).

Our comprehensive annotation strategy identified a high proportion of genes specific to
the genus Streptochaeta, also known as orphan genes (3,742). Many previous studies
have indicated that orphan genes may comprise 3-10% of the total genes in plants and
can, in certain species, range up to 30% of the total (Arendsee et al., 2014). Overall the
average gene length (3,956bp), average mRNA length (3,931bp) and average CDS
length (1,060bp) are similar to other grass species queried in Ensembl (Howe et al.,
2021).
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581 Previous phylogenetic work based on transcriptomes (McKain et al., 2016) or individual
582 gene tree analyses (Preston and Kellogg, 2006; Whipple et al., 2007; Christensen and
583  Malcomber, 2012; McKain et al., 2016)) suggested that Streptochaeta shared the same
584 WGD (p) as the rest of the grasses but that it might also have its own duplication.

585 Among the large sample (200) of clades in the transcriptome gene trees from McKain et
586 al. (2016), 44% of these showed topologies consistent with p before the divergence of
587  Streptochaeta (e.g., topologies shown in Figure 2 Ai, Aii, and Aiv), with 39% being

588 ambiguous (Figure 2 Aiii, Bii). Fewer than 20% of the clades identified by (McKain et
589 al., 2016) had topologies consistent with the p duplication occurring after the divergence
590 of Streptochaeta (Figure 2 Bi).

591 Streptochaeta contigs show good collinearity with the rice genome, a finding that is also
592 consistent with the hypothesis that p preceded the divergence of Streptochaeta as

593 suggested by most of our gene trees. Mapping the Streptochaeta contigs against

594 themselves also hints at another Streptochaeta-specific duplication, although the timing
595 of this duplication cannot be inferred purely from the dot plot. Analysis of individual

596 clades within large gene families (see below) support the same conclusion.

597  Analyzing the AP2-like and MYB subclades through the lens of grass WGD events, we
598 found 12 and 1 cases supporting p before and after the divergence of Strepfochaeta ,

599 thus confirming previous transcriptomic data (Preston and Kellogg, 2006; Whipple et al.,
600 2007; Christensen and Malcomber, 2012; McKain et al., 2016). We also found that

601  Streptochaeta often lost one copy of the syntenic paralogs, not only in MADS-box genes
602 (Preston and Kellogg, 2006; Christensen and Malcomber, 2012) but also in AP2-like
603 and R2R3 MYB families. In addition, there are often two Streptochaeta sequences sister
604 to a grass clade (Figure 5, Table S7), underscoring the fact that Streptochaeta does
605 not simply represent an ancestral state for polarization of grass evolution, but has its
606 own unique evolutionary history.

607 Genome structure and phylogenetic trees of Streptochaeta genes and their orthologs
608 support the “loss model” shown in Figure 1B iv, in which many of the genes known to
609 control the structure of the grass spikelet were found in an ancestor of both

610  Streptochaeta and the spikelet clade, but have then been lost in Streptochaeta. This
611 provides circumstantial evidence that the common ancestor of all grasses - including
612  Streptochaeta (and Anomochloa) - might have borne its flowers in spikelets, and the
613 truly peculiar “spikelet equivalents” of Anomochlooideae are indeed highly modified.

614 Complex evolutionary history of Streptochaeta may contribute to its
615 unique characteristics

616 Previous studies have focused on the evolution of MADS-box genes in shaping grass
617  spikelet development. For example, the A-class gene in flower development

618 FRUITFULL (FUL) duplicated at the base of Poaceae before the divergence of

619  Streptochaeta, but FUL1/VRNT1 in Streptochaeta was subsequently lost (Preston and
620 Kellogg, 2006). Similarly, paralogous LEAFY HULL STERILE1 (LHS1) and Oryza sativa
621 MADSS duplicated at the base of Poaceae, but Streptochaeta has only one gene sister
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622 tothe LHS1 clade (Christensen and Malcomber, 2012). However, in another study on
623 the B-class MADS-box gene PISTILLATA (PI), Streptochaeta has orthologs in both the
624  PI1 and PI2 clades (Whipple et al., 2007).

625 Here we focused on AP2-like and R2R3 MYB transcription factor families, both of which
626 include members regulating inflorescence and spikelet development. The euAP2

627 lineage of the AP2-like genes determines the transition from spikelet meristem to floral
628 meristem (Hirano et al., 2014). In the maize mutant indeterminate spikelet1 (ids1), extra
629 florets are formed within the spikelets in both male and female flowers (Chuck et al.,
630 1998). The double mutant of ids7 and its syntenic paralog sister of indeterminate

631  spikelet1 (sid1) produce repetitive glumes (Chuck et al., 2008). Consistently, the rice
632 mutants of SUPERNUMERARY BRACT (SNB), which is an ortholog of SID1, also

633  exhibit multiple rudimentary glumes, due to the delay of transition from spikelet

634  meristem to floral meristem. Such mutant phenotypes are somewhat analogous to the
635  Streptochaeta “spikelet equivalents", which possess 11 or 12 bracts. In situ

636 hybridization studies on FUL and LHS1 showed that the outer bracts 1-5 resemble the
637  expression pattern of glumes in other grass spikelets, while inner bracts 6-8 resemble
638 the expression pattern of lemma and palea (Preston et al., 2009). Our phylogenetic
639 analysis suggests that the ortholog of IDS17 in Streptochaeta is lost (Figure 4, Figure
640 S2). Instead, Streptochaeta has two sequences orthologous to SID1/SNB, and these
641 two sequences are successively sister to each other with a tree pattern of

642 (G1,(S1,(S2,G2)) in IDS1/Q-SID1/SNB subclade pairs, leaving the evolutionary history
643  of Streptochaeta ambiguous (Figure 4, Figure S2, Table S7). Both IDS1 and SID1 are
644  targets of mMiRNA172 in maize (Chuck et al., 2007, 2008). Our PARE analyses did

645 validate the cleavage of all six Streptochaeta euAP2 by miRNA172 (Table $12),

646 demonstrating that the miRNA172 post-transcriptional regulation of euAPZ2 is functional
647 in Streptochaeta. Detailed spatial gene expression analysis may further reveal whether
648 and how these euAP2 genes contribute to floral structure in Streptochaeta.

649 BABY BOOM genes (BBMs) belong to the euANT lineage of the AP2-like genes, and
650 are well known for their function in induction of somatic embryogenesis (Boultilier et al.,
651 2002) and application for in vitro tissue culture (Lowe et al., 2016). Ectopic expression
652 of BBM in Arabidopsis and Brassica results in pleiotropic defects in plant development
653 including changes in floral morphology (Boutilier et al., 2002). The grasses have four
654 annotated BBMs, although it is not known whether other ANT members share similar
655 functions. BBM4 and BBM?Z2 subclades appeared to be duplicated paralog pairs due to
656 the grass WGD. Similar to the cases in previous studies (Preston and Kellogg, 2006;
657  Christensen and Malcomber, 2012), Streptochaeta has apparently lost its BBM4 copy
658 and contains one copy in the BBMZ2 subclade (Figure 4, Figure 5, and Figure S2).

659 R2R3 MYBis a large transcription factor family, some of which are crucial for anther
660 development. The rice carbon starved anther (csa) mutants show decreased sugar

661 content in floral organs including anthers, resulting in a male sterile phenotype (Zhang
662 etal, 2010). DEFECTIVE in TAPETAL DEVELOPMENT and FUNCTION1 (TDF1) is
663 required for tapetum programmed cell death (Zhu et al., 2008; Cai et al., 2015). GAMYB
664  positively regulates GA signaling by directly binding to the promoter of GA-responsive
665 genes in both Arabidopsis and grasses (Tsuiji et al., 2006; Aya et al., 2009; Alonso-Peral
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et al., 2010). OsGAMYB is highly expressed in stamen primordia, tapetum cells of the
anther and aleurone cells, and its expression is regulated by miR159. Nonfunctional
mutants of OsGAMYB are defective in tapetum development and are male sterile
(Kaneko et al., 2004; Tsuiji et al., 2006). We found conserved miRNA159 binding sites in
GAMYBs and its closely related subclades, including MYB27, MYB28, GAMYBL2,
MYB29, GAMYBL1, MYB30 and GAMYB (Figure 4). Our PARE analyses also validated
the cleavage of Streptochaeta GAMYB and GAMYBL1 in leaf and pistil tissues but not
in anthers, suggesting the expression of Streptochaeta GAMYB and GAMYBL1 may be
suppressed by miR159 in tissues other than anthers, at least at the developmental
stages we investigated (Table S$12). Streptochaeta has two sequences in each of the
GAMYBL2, MYB29, GAMYBL1 and GAMYB clades, either with a tree topology of
(0,(81,S2),G) in GAMYBL2, MYB29 and GAMYBL1, or a tree topology of
(0,(S1,(S2,G)) in GAMYB (Figure 6, Figure 4, Table S7). This again indicates that
Streptochaeta has a complex duplication history.

A survey of small RNAs in the Streptochaeta genome

miRNAs are major regulators of mMRNA levels, active in pathways important to plant
developmental transitions, biotic and abiotic stresses, and others. miRNAs generally act
as post-transcriptional regulators by homology-dependent cleavage of target gene
transcripts, when loaded to the RNA-induced silencing complex (RISC). Plant genomes
encode a variety of SRNAs that can act in a transcriptional or post-transcriptional
regulation mode. In this paper, we focused on miRNA and phasiRNA. The list of miRNA
annotated in this study is likely incomplete because the Streptochaeta sSRNA-seq data
were limited to anther, pistil and leaf tissues, and would miss miRNAs expressed
specifically in other tissues/cell types or at growth conditions not sampled. Thus,
miRNAs missed in our data may well be encoded in the Streptochaeta genome. That
being said, our miRNA characterization provides a starting point with which to describe
Streptochaeta miRNAs, and our sequencing depth and tissue diversity was likely
sufficient to identify many if not the majority of miRNAs encoded in the genome.

Phased short interfering RNAs (phasiRNAs) are 21-nt or 24-nt SRNAs generated from
the recursive cleavage of a double-stranded RNA from a well-defined terminus; these
transcripts define their precursor PHAS loci (Axtell and Meyers, 2018). Reproductive
phasiRNAs are a subset abundant in anthers and in some cases essential to male
fertility. Genomes of grass species are particularly rich in reproductive PHAS loci (Patel
et al., 2021), expressed in anthers but not in female reproductive tissues or vegetative
tissues. Previous species studies identified hundreds of PHAS loci in anthers of maize
(Zhai et al., 2015) to thousands of PHAS loci in rice (Fei et al., 2016), barley (Bélanger
et al., 2020) and bread wheat (Bélanger et al., 2020; Zhang et al., 2020). Additionally,
work in maize (Teng et al., 2020) and rice (Fan et al., 2016) showed that 21-nt and 24-
nt phasiRNAs are essential to ensure proper development of meiocytes and to
guarantee male fertility under normal growth conditions. However, Streptochaeta has a
different internal anatomy than the rest of the grasses. Specifically, anthers in
Streptochaeta are missing the “middle layer” between the endothecium and the tapetum
(Sajo et al., 2009, 2012) such that the microsporangium has only three cell layers.
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Given that most of our data (> 100 M reads) were collected from anthers, we have good
resolution for annotation of phasiRNAs in this tissue. We characterized their
absence/presence in the three-layer anthers of Streptochaeta. We annotated tens of
PHAS loci in Streptochaeta showing that anthers express phasiRNAs even in the
absence of the middle layer. Likewise, in maize, Zhai et al. (2015) showed that the
miRNA and phasiRNA precursors are dependent on the epidermis, endothecium, and
tapetum, and the phasiRNAs accumulate in the tapetum and meiocytes, so the middle
layer is apparently not involved. We observed a shift in the ratio of 21-PHAS to 24-
PHAS loci from asparagus (< 1), an Asparagaceae, to grass species (> 1), although the
implications of this shift are as yet unclear.

We also observed that several 21-nt and 24-nt phasiRNAs accumulate in either pistil or
leaf tissues, inconsistent with prior results. A small number of 21-nt PHAS loci are likely
trans-acting-siRNA-generating (TAS) loci, important in vegetative tissues, but typically
there are only a few TAS loci per genome (Xia et al., 2017), not the 20 loci that we
observed. Additionally, we found no previous reports of 24-nt phasiRNAs accumulating
in vegetative tissues or female reproductive tissues.

Utility of Streptochaeta for understanding grass evolution and
genetics

The four species of Anomochlooideae are central to understanding the evolution of the
grasses and the many traits that make them unique. We have highlighted the unusual
floral and inflorescence morphology of Streptochaeta and have compared it to grass
spikelets, but Streptochaeta can also illuminate the evolution and genetic basis of other
important traits. It is common to compare traits between members of the BOP clade
(e.g. Oryza, Brachypodium, or Triticum) and the PACMAD clade (e.g. Zea, Sorghum,
Panicum, Eragrostis), but, because these comparisons involve two sister clades, it is
impossible to determine whether the BOP or the PACMAD clade character state is
ancestral. Streptochaeta functions as an outgroup in such comparisons and can help
establish the direction of change. Here, we highlight just a few of the traits whose
analysis may be helped in future studies by reference to Streptochaeta and its genome
sequence.

Drought intolerance, shade tolerance. The grasses, including not only
Anomochlooideae, but also Pharoideae and Puelioideae, the three subfamilies that are
successive sister groups of the rest of the family, appear to have originated in
environments with low light and high humidity (Edwards and Smith, 2010; Gallaher et
al., 2019). The shift from shady, moist habitats to open, dry habitats where most grass
species are now found promises insights into photosynthesis and water use efficiency,
among other physiological traits.

Streptochaeta, like other forest grasses, has broad, spreading leaf blades and a
pseudopetiole that results in higher leaf angle and increased light interception (Gallaher
et al., 2019). Leaf angle is an important agronomic trait, with selection during modern
breeding often favoring reduced leaf angle to maximize plant density and yield (Liu et
al., 2019; Mantilla-Perez et al., 2020). A close examination of Streptochaeta may
provide insight into how leaf angle is controlled in diverse grasses. Leaf width in maize
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is controlled particularly by the WOX3-like homeodomain proteins NARROWSHEATH1
(NS1) and NS2, which function in cells at the margins of leaves (Scanlon et al., 1996;
Conklin et al., 2020). Duplication patterns and expression of NS71 and NS2 genes in the
Streptochaeta genome could test whether the models developed for maize were
present in the earliest of the grasses.

Leaf anatomy. The grass outgroup Joinvillea develops colorless cells in the mesophyll
(Leandro et al., 2018). These appear to form from the same ground tissue that is
responsible for the cavity-like “fusoid” cells in Anomochlooideae, Pharoideae, and
Puelioideae as well as the bambusoid grasses. These cells, which appear to be a
shared derived character for the grasses, form from the collapse of mesophyll cells and
may play a role in the synthesis and storage of starch granules early in plant
development (Leandro et al., 2018). While the genetic basis of leaf anatomy is, at the
moment, poorly understood, Streptochaeta will be a useful system for understanding the
development of fusoid cells in early diverging and other grasses.

Grass leaves also contain silica bodies in the epidermis; the vacuoles of these cells are
filled with amorphous silica (SiOz2). In Streptochaeta the silica bodies are a distinctive
shape, being elongated transverse to the long axis of the blade (Judziewicz and
Soderstrom, 1989). The genetic basis of silica deposition has been studied in rice (Yu et
al., 2020) and the availability of the Streptochaeta genome now permits examination of
the evolution of these genes in the grasses.

Anther and pollen development. Streptochaeta differs from most other grasses (and
indeed some Poales as well) in details of its anthers and pollen development, and the
current genome provides tools for comparative analyses. The sRNAs described above
are produced in the epidermis, endothecium and tapetum of most grasses and we
presume they are also produced in those tissues in Streptochaeta. In all grasses except
Anomochlooideae and Pharoideae, the microsporangium has four concentric layers of
cells - the epidermis, the endothecium, the middle layer, and the tapetum - which
surround the archesporial cells (Walbot and Egger, 2016). Cells in the middle layer and
the tapetum are sisters, derived from division of a secondary parietal cell. The inner
walls of the endothecial cells also mature to become fibrous (Artschwager and McGuire,
1949; Furness and Rudall, 1998). In Streptochaeta and Pharus, however, the middle
layer is absent (Sajo et al., 2007, 2009, 2012) and the endothecial cells lack fibrous
thickenings. It is tempting to speculate that the middle layer may have a role in
coordinating maturation of the endothecium. Lack of the middle layer is apparently
derived within Streptochaeta and Pharus. In known mutants of maize and rice, loss of
the middle layer leads to male sterility (Walbot and Egger, 2016) so the functional
implications of its absence in Streptochaeta are unclear.

Development of microsporangium layers may also be related to the position of
microspores inside the locule. In most grasses, the microspores and mature pollen
grains form a single layer adjacent to the tapetum, with the pore of the pollen grain
facing the tapetum, unlike many non-grasses in which the microsporocytes fill the locule
and have a haphazard arrangement. The condition in Streptochaeta is unclear, with
contradictory reports in the literature (Kirpes et al., 1996; Sajo et al., 2009, 2012).
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795  The exine, or outer layer, of grass pollen is distinct from that of its close relatives due to
796 the presence of channels that pass through the exine. While controls of this particular
797  aspect of the pollen wall are unknown in the grasses, we find that Streptochaeta and its
798 grass sisters have several GAMYB genes, which are known to be involved in exine

799 formation in rice (Aya et al., 2009) and to have played a role more broadly in

800 reproductive processes, including microspore development in early vascular plants (Aya
801 etal, 2011).

802 Chromosome number in the early grasses. Estimates of the ancestral grass

803 chromosome number and karyotype have reached different conclusions (e.g., (Salse et
804 al., 2008; Murat et al., 2010; Wang et al., 2016)). Genomes of Streptochaeta and other
805 early diverging grasses will be useful for resolving this open question, but will require
806 psuedomolecule-quality assemblies. Two other species of Streptochaeta have been
807 reported to have n=11 chromosomes (Valencia, 1962; Pohl and Davidse, 1971;

808 Hunziker et al., 1982), well below the number reported for the sister species

809 Anomochloa marantoidea, n=18 (Judziewicz and Soderstrom, 1989). The outgroups
810  Joinvillea plicata and Ecdeiocolea monostachya have n=18 (Newell, 1969) and n=19
811 (Hanson et al., 2005), respectively. However, without high quality genomes and good
812 cytogenetic data for these species, the ancestral chromosome number and structure of
813 the genomes of ancestral grasses remains a matter of speculation.

814  Finally, these are but a few of the opportunities for understanding trait evolution in the
815 grasses based on investigation of Streptochaeta, with additional insights possible in, for
816 example, the study of embryo development, caryopsis modifications, endosperm/starch
817 evolution and branching/tillering. We have demonstrated that genomes of targeted, non-
818 model species, particularly those that are sister to large, better-studied groups, can

819 provide out-sized insight about the nature of evolutionary transitions and should be an
820 increased focus now that genome assembly is a broadly accessible component of the
821 Dbiologist’s toolkit.

g22 Data Availability

823 The sRNA-seq data were reported in a previous study (Patel et al., 2021). Also, one
824 library of RNA-Seq (SRR3233339) used for annotation was previously published

825 (Givnish et al., 2010). Otherwise, all data utilized in this study are original. The complete
826 set of raw WGS, RNA-seq, sRNA-seq and PARE-seq reads were deposited in the

827  Sequence Read Archive under the BioProject ID PRIJNA343128. Alignments and

828 phylogenies for AP2-like and MYB R2R3 genes have been deposited at datadryad.org,
829 accession #XXX (to be added after acceptance). The scripts and commands used for
830 generating assembly, annotations, small RNA analyses and phylogenetic analyses are
831 documented in the GitHub repository accessible here:

832  https://qgithub.com/HuffordLab/streptochaeta
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858 Figure 1. The phylogenetic placement of Streptochaeta. (A) Phylogenetic tree depicting the BOP

859  (Bambusoideae, Oryzoideae, Pooideae) + PACMAD (Panicoideae, Aristidoideae, Chloridoideae,

860 Micrairoideae, Arundinoideae, Danthonioideae) clade and the basal placement of focal organism

861  Streptochaeta. (B) and (C) Possible patterns of whole genome duplication (WGD) and gene loss. (B)
862  WGD before the divergence of Streptochaeta assuming (i) no gene loss; (ii) loss of one clade of non-
863 Streptochaeta grass paralogs soon after WGD; (iii) loss of all grass paralogs soon after WGD; (iv) loss of
864  one Streptochaeta paralog soon after WGD. (C) WGD after divergence of Streptochaeta. (i) no gene loss;
865 (ii) loss of one clade of non-Streptochaeta grass paralogs soon after WGD. Note that patterns (Biii) and
866  (Cii) are indistinguishable.
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867

868  Figure 2. Streptochaeta angustifolia. (A) Habit (x 0.5). (B) Mid-region of leaf showing summit of sheath
869  and upper surface of blade (x 4.5). (C) Mid-region of leaf showing summit of sheath and lower surface of
870  blade (x 5). (D) Rhizome system with culm base (x 1). (E) Portion of rachis enlarged (x 1.5) All drawings
871  based on Soderstrom & Sucre 1969 (US). lllustration by Alice R. Tangerini. Reprinted from Soderstrom
872 (1981, Some evolutionary trends in the Bambusoideae (Poaceae), Annals of the Missouri Botanical

873 Garden 68: 15-47, originally Figure 5, p. 31), with permission from the Missouri Botanical Garden Press.

874
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Figure 3. Streptochaeta angustifolia. (A) Pseudospikelet (x 4.5). (B) Series of bracts 1-5 from the base
of the pseudospikelet (x 6). (C) Pseudospikelet with basal bracts 1-5 removed and showing bracts 7 and
8, whose bases are overlapping (x 4.5). (D) Bract 6 with long coiled awn (x 4.5). (E) Back portion of the
base of bract 6 showing region where embryo exits at germination. (F) Bracts 10-12 (x 6). (G) Bracts 7
and 8 (x 6). Bract 9, which exists in other species, has not been found here. (H) Ovary with long style and
three stigmas, surrounded by the thin, fused filaments of the 6 stamens (x 4.5). All drawings based on
Soderstrom & Sucre 1969 (US). lllustration by Alice R. Tangerini. Reprinted from Soderstrom (1981,
Some evolutionary trends in the Bambusoideae (Poaceae), Annals of the Missouri Botanical Garden 68:
15-47, originally Figure 6, p. 33), with permission from the Missouri Botanical Garden Press.
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886  Figure 4. Maximum likelihood tree of AP2-like genes. Numbers on branches indicate maximum

887 likelihood bootstrap values. A single gene is denoted by a rectangle, and collapsed branches are denoted
888 by triangles. Each subclade is shaded in two grey colors and named either by known genes within the
889 subclade or subfamily name with a number. Subclades with syntenic genes in Brachypodium, Oryza or
890 Setaria are shaded in two colors of yellow, and syntenic pairs are connected by an arc. Outgroup,

891  Streptochaeta and other grasses are shown in black, red and blue colors.
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899 Figure 6. Maximum likelihood tree of R2R3 genes. Numbers on branches indicate maximum likelihood
900 bootstrap values. A single gene is denoted by a rectangle, and collapsed branches are denoted in

901 triangles. Each subclade is shaded in two grey colors and named either by known genes within the

902 subclade or subfamily name with a number. Subclades with syntenic genes in Brachypodium, Oryza or
903 Setaria are shaded in two colors of yellow, and syntenic pairs are connected by an arc. Outgroup,

904  Streptochaeta and other grasses are shown in black, red and blue colors.
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905

906 Figure 7: Overlap of miRNA loci annotated in Streptochaeta tissues (A) and miRNA families annotated in
907  Streptochaeta anthers compared to three other monocots (B).
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909 Figure S1. Dot plot of Streptochaeta versus Oryza sativa. The contigs of the draft Streptochaeta
910  assembly plotted against Oryza sativa (Nipponbare; (Ouyang et al., 2007)) pseudomolecules.
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911
Figure S2. Maximum likelihood tree of AP2-like genes with gene names. Bootstrap values are shown

912
913  onthe branches. Each subclade is shaded in two grey colors and named either by known genes within
the subclade or subfamily name with a number. Subclades with syntenic genes in Brachypodium, Oryza

914
915 or Setaria are shaded in two colors of yellow, and syntenic pairs are connected by an arc. Predicted and
experimentally validated miR172 binding sites are denoted by red and green stars, respectively.

916
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917

918  Figure S3. Maximum likelihood tree of R2R3 genes with gene names. Bootstrap values are shown on
919  the branches. Each subclade is shaded in two grey colors and named either by known genes within the
920 subclade or subfamily name with a number. Subclades with syntenic genes in Brachypodium, Oryza or
921 Setaria are shaded in two colors of yellow, and syntenic pairs are connected by an arc. Predicted and
922  experimental validated miR159 binding sites are denoted by red and green stars, respectively.

923 Tables (see supplemental excel file)

924  Supplemental Table 1: Short reads (raw data) used for the assembly and their
925 estimated coverage based on a genome size of 1.8 Gbp

926  Supplemental Table 2: Criteria for merging ab initio gene models with the direct
927  evidence models. The codes are as described in the Mikado compare manual. For the
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comaprision, BRAKER gene models were used as prediction and evidence models
were used as reference.

Supplemental Table 3: Source of genome, annotation version, and sRNA-seq data used
in this study

Supplemental Table 4: 5' and 3' adapters used to construct RNA-seq libraries.

Supplemental Table 5: Summary statistics of the genome assembly after each iteration
of Redundans.

Supplemental Table 6: Phylostrata distribution of the genes predicted by BIND strategy

Supplemental Table 7: Tree topologies of the subclades in the AP2-like and R2R3 MYB
trees. O: outgroup; S: Streptochaeta; G: grasses other than Streptochaeta. If
Streptochaeta and/or outgroup genes are inside of a grass clade, it is labeled as S-G or
O-G.

Supplemental Table 8: Summary of miRNA and phasiRNA annotated in anthers of
Streptocheata angustifolia and other monocots.

Supplemental Table 9: Coordinates and abundance of the 114 annotated miRNAs in
Streptochaeta angustifolia.

Supplemental Table 10: Candidate novel miRNA annotated in Streptochaeta. This table
details the sequence and abundance of each mature miRNA and miRNA-star plus the
sequence of the locus and the predicted RNA secondary structure in dot-bracket
notation.

Supplemental Table 11: Summary of miRNA targets validated via PARE-Seq. The
described miRNAs were captured in Streptochaeta angustifolia anthers.

Supplemental Table 12: Details of PARE-validated miRNA cleavage sites detected in
anther, pistil and leaf tissues in Streptochaeta.
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